| OLD | NEW |
| 1 /* | 1 /* |
| 2 * Copyright 2012 Google Inc. | 2 * Copyright 2012 Google Inc. |
| 3 * | 3 * |
| 4 * Use of this source code is governed by a BSD-style license that can be | 4 * Use of this source code is governed by a BSD-style license that can be |
| 5 * found in the LICENSE file. | 5 * found in the LICENSE file. |
| 6 */ | 6 */ |
| 7 #include "SkReduceOrder.h" | 7 #include "SkReduceOrder.h" |
| 8 | 8 |
| 9 int SkReduceOrder::reduce(const SkDLine& line) { | 9 int SkReduceOrder::reduce(const SkDLine& line) { |
| 10 fLine[0] = line[0]; | 10 fLine[0] = line[0]; |
| 11 int different = line[0] != line[1]; | 11 int different = line[0] != line[1]; |
| 12 fLine[1] = line[different]; | 12 fLine[1] = line[different]; |
| 13 return 1 + different; | 13 return 1 + different; |
| 14 } | 14 } |
| 15 | 15 |
| 16 static double interp_quad_coords(double a, double b, double c, double t) { | |
| 17 double ab = SkDInterp(a, b, t); | |
| 18 double bc = SkDInterp(b, c, t); | |
| 19 return SkDInterp(ab, bc, t); | |
| 20 } | |
| 21 | |
| 22 static int coincident_line(const SkDQuad& quad, SkDQuad& reduction) { | 16 static int coincident_line(const SkDQuad& quad, SkDQuad& reduction) { |
| 23 reduction[0] = reduction[1] = quad[0]; | 17 reduction[0] = reduction[1] = quad[0]; |
| 24 return 1; | 18 return 1; |
| 25 } | 19 } |
| 26 | 20 |
| 27 static int reductionLineCount(const SkDQuad& reduction) { | 21 static int reductionLineCount(const SkDQuad& reduction) { |
| 28 return 1 + !reduction[0].approximatelyEqual(reduction[1]); | 22 return 1 + !reduction[0].approximatelyEqual(reduction[1]); |
| 29 } | 23 } |
| 30 | 24 |
| 31 static int vertical_line(const SkDQuad& quad, SkReduceOrder::Style reduceStyle, | 25 static int vertical_line(const SkDQuad& quad, SkDQuad& reduction) { |
| 32 SkDQuad& reduction) { | |
| 33 double tValue; | |
| 34 reduction[0] = quad[0]; | 26 reduction[0] = quad[0]; |
| 35 reduction[1] = quad[2]; | 27 reduction[1] = quad[2]; |
| 36 if (reduceStyle == SkReduceOrder::kFill_Style) { | |
| 37 return reductionLineCount(reduction); | |
| 38 } | |
| 39 int smaller = reduction[1].fY > reduction[0].fY; | |
| 40 int larger = smaller ^ 1; | |
| 41 if (SkDQuad::FindExtrema(quad[0].fY, quad[1].fY, quad[2].fY, &tValue)) { | |
| 42 double yExtrema = interp_quad_coords(quad[0].fY, quad[1].fY, quad[2].fY,
tValue); | |
| 43 if (reduction[smaller].fY > yExtrema) { | |
| 44 reduction[smaller].fY = yExtrema; | |
| 45 } else if (reduction[larger].fY < yExtrema) { | |
| 46 reduction[larger].fY = yExtrema; | |
| 47 } | |
| 48 } | |
| 49 return reductionLineCount(reduction); | 28 return reductionLineCount(reduction); |
| 50 } | 29 } |
| 51 | 30 |
| 52 static int horizontal_line(const SkDQuad& quad, SkReduceOrder::Style reduceStyle
, | 31 static int horizontal_line(const SkDQuad& quad, SkDQuad& reduction) { |
| 53 SkDQuad& reduction) { | |
| 54 double tValue; | |
| 55 reduction[0] = quad[0]; | 32 reduction[0] = quad[0]; |
| 56 reduction[1] = quad[2]; | 33 reduction[1] = quad[2]; |
| 57 if (reduceStyle == SkReduceOrder::kFill_Style) { | |
| 58 return reductionLineCount(reduction); | |
| 59 } | |
| 60 int smaller = reduction[1].fX > reduction[0].fX; | |
| 61 int larger = smaller ^ 1; | |
| 62 if (SkDQuad::FindExtrema(quad[0].fX, quad[1].fX, quad[2].fX, &tValue)) { | |
| 63 double xExtrema = interp_quad_coords(quad[0].fX, quad[1].fX, quad[2].fX,
tValue); | |
| 64 if (reduction[smaller].fX > xExtrema) { | |
| 65 reduction[smaller].fX = xExtrema; | |
| 66 } else if (reduction[larger].fX < xExtrema) { | |
| 67 reduction[larger].fX = xExtrema; | |
| 68 } | |
| 69 } | |
| 70 return reductionLineCount(reduction); | 34 return reductionLineCount(reduction); |
| 71 } | 35 } |
| 72 | 36 |
| 73 static int check_linear(const SkDQuad& quad, SkReduceOrder::Style reduceStyle, | 37 static int check_linear(const SkDQuad& quad, |
| 74 int minX, int maxX, int minY, int maxY, SkDQuad& reduction) { | 38 int minX, int maxX, int minY, int maxY, SkDQuad& reduction) { |
| 75 int startIndex = 0; | 39 int startIndex = 0; |
| 76 int endIndex = 2; | 40 int endIndex = 2; |
| 77 while (quad[startIndex].approximatelyEqual(quad[endIndex])) { | 41 while (quad[startIndex].approximatelyEqual(quad[endIndex])) { |
| 78 --endIndex; | 42 --endIndex; |
| 79 if (endIndex == 0) { | 43 if (endIndex == 0) { |
| 80 SkDebugf("%s shouldn't get here if all four points are about equal",
__FUNCTION__); | 44 SkDebugf("%s shouldn't get here if all four points are about equal",
__FUNCTION__); |
| 81 SkASSERT(0); | 45 SkASSERT(0); |
| 82 } | 46 } |
| 83 } | 47 } |
| 84 if (!quad.isLinear(startIndex, endIndex)) { | 48 if (!quad.isLinear(startIndex, endIndex)) { |
| 85 return 0; | 49 return 0; |
| 86 } | 50 } |
| 87 // four are colinear: return line formed by outside | 51 // four are colinear: return line formed by outside |
| 88 reduction[0] = quad[0]; | 52 reduction[0] = quad[0]; |
| 89 reduction[1] = quad[2]; | 53 reduction[1] = quad[2]; |
| 90 if (reduceStyle == SkReduceOrder::kFill_Style) { | |
| 91 return reductionLineCount(reduction); | |
| 92 } | |
| 93 int sameSide; | |
| 94 bool useX = quad[maxX].fX - quad[minX].fX >= quad[maxY].fY - quad[minY].fY; | |
| 95 if (useX) { | |
| 96 sameSide = SkDSign(quad[0].fX - quad[1].fX) + SkDSign(quad[2].fX - quad[
1].fX); | |
| 97 } else { | |
| 98 sameSide = SkDSign(quad[0].fY - quad[1].fY) + SkDSign(quad[2].fY - quad[
1].fY); | |
| 99 } | |
| 100 if ((sameSide & 3) != 2) { | |
| 101 return reductionLineCount(reduction); | |
| 102 } | |
| 103 double tValue; | |
| 104 int root; | |
| 105 if (useX) { | |
| 106 root = SkDQuad::FindExtrema(quad[0].fX, quad[1].fX, quad[2].fX, &tValue)
; | |
| 107 } else { | |
| 108 root = SkDQuad::FindExtrema(quad[0].fY, quad[1].fY, quad[2].fY, &tValue)
; | |
| 109 } | |
| 110 if (root) { | |
| 111 SkDPoint extrema; | |
| 112 extrema.fX = interp_quad_coords(quad[0].fX, quad[1].fX, quad[2].fX, tVal
ue); | |
| 113 extrema.fY = interp_quad_coords(quad[0].fY, quad[1].fY, quad[2].fY, tVal
ue); | |
| 114 // sameSide > 0 means mid is smaller than either [0] or [2], so replace
smaller | |
| 115 int replace; | |
| 116 if (useX) { | |
| 117 if ((extrema.fX < quad[0].fX) ^ (extrema.fX < quad[2].fX)) { | |
| 118 return reductionLineCount(reduction); | |
| 119 } | |
| 120 replace = ((extrema.fX < quad[0].fX) | (extrema.fX < quad[2].fX)) | |
| 121 ^ (quad[0].fX < quad[2].fX); | |
| 122 } else { | |
| 123 if ((extrema.fY < quad[0].fY) ^ (extrema.fY < quad[2].fY)) { | |
| 124 return reductionLineCount(reduction); | |
| 125 } | |
| 126 replace = ((extrema.fY < quad[0].fY) | (extrema.fY < quad[2].fY)) | |
| 127 ^ (quad[0].fY < quad[2].fY); | |
| 128 } | |
| 129 reduction[replace] = extrema; | |
| 130 } | |
| 131 return reductionLineCount(reduction); | 54 return reductionLineCount(reduction); |
| 132 } | 55 } |
| 133 | 56 |
| 134 // reduce to a quadratic or smaller | 57 // reduce to a quadratic or smaller |
| 135 // look for identical points | 58 // look for identical points |
| 136 // look for all four points in a line | 59 // look for all four points in a line |
| 137 // note that three points in a line doesn't simplify a cubic | 60 // note that three points in a line doesn't simplify a cubic |
| 138 // look for approximation with single quadratic | 61 // look for approximation with single quadratic |
| 139 // save approximation with multiple quadratics for later | 62 // save approximation with multiple quadratics for later |
| 140 int SkReduceOrder::reduce(const SkDQuad& quad, Style reduceStyle) { | 63 int SkReduceOrder::reduce(const SkDQuad& quad) { |
| 141 int index, minX, maxX, minY, maxY; | 64 int index, minX, maxX, minY, maxY; |
| 142 int minXSet, minYSet; | 65 int minXSet, minYSet; |
| 143 minX = maxX = minY = maxY = 0; | 66 minX = maxX = minY = maxY = 0; |
| 144 minXSet = minYSet = 0; | 67 minXSet = minYSet = 0; |
| 145 for (index = 1; index < 3; ++index) { | 68 for (index = 1; index < 3; ++index) { |
| 146 if (quad[minX].fX > quad[index].fX) { | 69 if (quad[minX].fX > quad[index].fX) { |
| 147 minX = index; | 70 minX = index; |
| 148 } | 71 } |
| 149 if (quad[minY].fY > quad[index].fY) { | 72 if (quad[minY].fY > quad[index].fY) { |
| 150 minY = index; | 73 minY = index; |
| (...skipping 10 matching lines...) Expand all Loading... |
| 161 minXSet |= 1 << index; | 84 minXSet |= 1 << index; |
| 162 } | 85 } |
| 163 if (AlmostEqualUlps(quad[index].fY, quad[minY].fY)) { | 86 if (AlmostEqualUlps(quad[index].fY, quad[minY].fY)) { |
| 164 minYSet |= 1 << index; | 87 minYSet |= 1 << index; |
| 165 } | 88 } |
| 166 } | 89 } |
| 167 if (minXSet == 0x7) { // test for vertical line | 90 if (minXSet == 0x7) { // test for vertical line |
| 168 if (minYSet == 0x7) { // return 1 if all four are coincident | 91 if (minYSet == 0x7) { // return 1 if all four are coincident |
| 169 return coincident_line(quad, fQuad); | 92 return coincident_line(quad, fQuad); |
| 170 } | 93 } |
| 171 return vertical_line(quad, reduceStyle, fQuad); | 94 return vertical_line(quad, fQuad); |
| 172 } | 95 } |
| 173 if (minYSet == 0xF) { // test for horizontal line | 96 if (minYSet == 0xF) { // test for horizontal line |
| 174 return horizontal_line(quad, reduceStyle, fQuad); | 97 return horizontal_line(quad, fQuad); |
| 175 } | 98 } |
| 176 int result = check_linear(quad, reduceStyle, minX, maxX, minY, maxY, fQuad); | 99 int result = check_linear(quad, minX, maxX, minY, maxY, fQuad); |
| 177 if (result) { | 100 if (result) { |
| 178 return result; | 101 return result; |
| 179 } | 102 } |
| 180 fQuad = quad; | 103 fQuad = quad; |
| 181 return 3; | 104 return 3; |
| 182 } | 105 } |
| 183 | 106 |
| 184 ////////////////////////////////////////////////////////////////////////////////
//// | 107 ////////////////////////////////////////////////////////////////////////////////
//// |
| 185 | 108 |
| 186 static double interp_cubic_coords(const double* src, double t) { | |
| 187 double ab = SkDInterp(src[0], src[2], t); | |
| 188 double bc = SkDInterp(src[2], src[4], t); | |
| 189 double cd = SkDInterp(src[4], src[6], t); | |
| 190 double abc = SkDInterp(ab, bc, t); | |
| 191 double bcd = SkDInterp(bc, cd, t); | |
| 192 return SkDInterp(abc, bcd, t); | |
| 193 } | |
| 194 | |
| 195 static int coincident_line(const SkDCubic& cubic, SkDCubic& reduction) { | 109 static int coincident_line(const SkDCubic& cubic, SkDCubic& reduction) { |
| 196 reduction[0] = reduction[1] = cubic[0]; | 110 reduction[0] = reduction[1] = cubic[0]; |
| 197 return 1; | 111 return 1; |
| 198 } | 112 } |
| 199 | 113 |
| 200 static int reductionLineCount(const SkDCubic& reduction) { | 114 static int reductionLineCount(const SkDCubic& reduction) { |
| 201 return 1 + !reduction[0].approximatelyEqual(reduction[1]); | 115 return 1 + !reduction[0].approximatelyEqual(reduction[1]); |
| 202 } | 116 } |
| 203 | 117 |
| 204 static int vertical_line(const SkDCubic& cubic, SkReduceOrder::Style reduceStyle
, | 118 static int vertical_line(const SkDCubic& cubic, SkDCubic& reduction) { |
| 205 SkDCubic& reduction) { | |
| 206 double tValues[2]; | |
| 207 reduction[0] = cubic[0]; | 119 reduction[0] = cubic[0]; |
| 208 reduction[1] = cubic[3]; | 120 reduction[1] = cubic[3]; |
| 209 if (reduceStyle == SkReduceOrder::kFill_Style) { | |
| 210 return reductionLineCount(reduction); | |
| 211 } | |
| 212 int smaller = reduction[1].fY > reduction[0].fY; | |
| 213 int larger = smaller ^ 1; | |
| 214 int roots = SkDCubic::FindExtrema(cubic[0].fY, cubic[1].fY, cubic[2].fY, cub
ic[3].fY, tValues); | |
| 215 for (int index = 0; index < roots; ++index) { | |
| 216 double yExtrema = interp_cubic_coords(&cubic[0].fY, tValues[index]); | |
| 217 if (reduction[smaller].fY > yExtrema) { | |
| 218 reduction[smaller].fY = yExtrema; | |
| 219 continue; | |
| 220 } | |
| 221 if (reduction[larger].fY < yExtrema) { | |
| 222 reduction[larger].fY = yExtrema; | |
| 223 } | |
| 224 } | |
| 225 return reductionLineCount(reduction); | 121 return reductionLineCount(reduction); |
| 226 } | 122 } |
| 227 | 123 |
| 228 static int horizontal_line(const SkDCubic& cubic, SkReduceOrder::Style reduceSty
le, | 124 static int horizontal_line(const SkDCubic& cubic, SkDCubic& reduction) { |
| 229 SkDCubic& reduction) { | |
| 230 double tValues[2]; | |
| 231 reduction[0] = cubic[0]; | 125 reduction[0] = cubic[0]; |
| 232 reduction[1] = cubic[3]; | 126 reduction[1] = cubic[3]; |
| 233 if (reduceStyle == SkReduceOrder::kFill_Style) { | |
| 234 return reductionLineCount(reduction); | |
| 235 } | |
| 236 int smaller = reduction[1].fX > reduction[0].fX; | |
| 237 int larger = smaller ^ 1; | |
| 238 int roots = SkDCubic::FindExtrema(cubic[0].fX, cubic[1].fX, cubic[2].fX, cub
ic[3].fX, tValues); | |
| 239 for (int index = 0; index < roots; ++index) { | |
| 240 double xExtrema = interp_cubic_coords(&cubic[0].fX, tValues[index]); | |
| 241 if (reduction[smaller].fX > xExtrema) { | |
| 242 reduction[smaller].fX = xExtrema; | |
| 243 continue; | |
| 244 } | |
| 245 if (reduction[larger].fX < xExtrema) { | |
| 246 reduction[larger].fX = xExtrema; | |
| 247 } | |
| 248 } | |
| 249 return reductionLineCount(reduction); | 127 return reductionLineCount(reduction); |
| 250 } | 128 } |
| 251 | 129 |
| 252 // check to see if it is a quadratic or a line | 130 // check to see if it is a quadratic or a line |
| 253 static int check_quadratic(const SkDCubic& cubic, SkDCubic& reduction) { | 131 static int check_quadratic(const SkDCubic& cubic, SkDCubic& reduction) { |
| 254 double dx10 = cubic[1].fX - cubic[0].fX; | 132 double dx10 = cubic[1].fX - cubic[0].fX; |
| 255 double dx23 = cubic[2].fX - cubic[3].fX; | 133 double dx23 = cubic[2].fX - cubic[3].fX; |
| 256 double midX = cubic[0].fX + dx10 * 3 / 2; | 134 double midX = cubic[0].fX + dx10 * 3 / 2; |
| 257 double sideAx = midX - cubic[3].fX; | 135 double sideAx = midX - cubic[3].fX; |
| 258 double sideBx = dx23 * 3 / 2; | 136 double sideBx = dx23 * 3 / 2; |
| (...skipping 10 matching lines...) Expand all Loading... |
| 269 : !AlmostEqualUlps(sideAy, sideBy)) { | 147 : !AlmostEqualUlps(sideAy, sideBy)) { |
| 270 return 0; | 148 return 0; |
| 271 } | 149 } |
| 272 reduction[0] = cubic[0]; | 150 reduction[0] = cubic[0]; |
| 273 reduction[1].fX = midX; | 151 reduction[1].fX = midX; |
| 274 reduction[1].fY = midY; | 152 reduction[1].fY = midY; |
| 275 reduction[2] = cubic[3]; | 153 reduction[2] = cubic[3]; |
| 276 return 3; | 154 return 3; |
| 277 } | 155 } |
| 278 | 156 |
| 279 static int check_linear(const SkDCubic& cubic, SkReduceOrder::Style reduceStyle, | 157 static int check_linear(const SkDCubic& cubic, |
| 280 int minX, int maxX, int minY, int maxY, SkDCubic& reduction) { | 158 int minX, int maxX, int minY, int maxY, SkDCubic& reduction) { |
| 281 int startIndex = 0; | 159 int startIndex = 0; |
| 282 int endIndex = 3; | 160 int endIndex = 3; |
| 283 while (cubic[startIndex].approximatelyEqual(cubic[endIndex])) { | 161 while (cubic[startIndex].approximatelyEqual(cubic[endIndex])) { |
| 284 --endIndex; | 162 --endIndex; |
| 285 if (endIndex == 0) { | 163 if (endIndex == 0) { |
| 286 SkDebugf("%s shouldn't get here if all four points are about equal\n
", __FUNCTION__); | 164 SkDebugf("%s shouldn't get here if all four points are about equal\n
", __FUNCTION__); |
| 287 SkASSERT(0); | 165 SkASSERT(0); |
| 288 } | 166 } |
| 289 } | 167 } |
| 290 if (!cubic.isLinear(startIndex, endIndex)) { | 168 if (!cubic.isLinear(startIndex, endIndex)) { |
| 291 return 0; | 169 return 0; |
| 292 } | 170 } |
| 293 // four are colinear: return line formed by outside | 171 // four are colinear: return line formed by outside |
| 294 reduction[0] = cubic[0]; | 172 reduction[0] = cubic[0]; |
| 295 reduction[1] = cubic[3]; | 173 reduction[1] = cubic[3]; |
| 296 if (reduceStyle == SkReduceOrder::kFill_Style) { | |
| 297 return reductionLineCount(reduction); | |
| 298 } | |
| 299 int sameSide1; | |
| 300 int sameSide2; | |
| 301 bool useX = cubic[maxX].fX - cubic[minX].fX >= cubic[maxY].fY - cubic[minY].
fY; | |
| 302 if (useX) { | |
| 303 sameSide1 = SkDSign(cubic[0].fX - cubic[1].fX) + SkDSign(cubic[3].fX - c
ubic[1].fX); | |
| 304 sameSide2 = SkDSign(cubic[0].fX - cubic[2].fX) + SkDSign(cubic[3].fX - c
ubic[2].fX); | |
| 305 } else { | |
| 306 sameSide1 = SkDSign(cubic[0].fY - cubic[1].fY) + SkDSign(cubic[3].fY - c
ubic[1].fY); | |
| 307 sameSide2 = SkDSign(cubic[0].fY - cubic[2].fY) + SkDSign(cubic[3].fY - c
ubic[2].fY); | |
| 308 } | |
| 309 if (sameSide1 == sameSide2 && (sameSide1 & 3) != 2) { | |
| 310 return reductionLineCount(reduction); | |
| 311 } | |
| 312 double tValues[2]; | |
| 313 int roots; | |
| 314 if (useX) { | |
| 315 roots = SkDCubic::FindExtrema(cubic[0].fX, cubic[1].fX, cubic[2].fX, cub
ic[3].fX, tValues); | |
| 316 } else { | |
| 317 roots = SkDCubic::FindExtrema(cubic[0].fY, cubic[1].fY, cubic[2].fY, cub
ic[3].fY, tValues); | |
| 318 } | |
| 319 for (int index = 0; index < roots; ++index) { | |
| 320 SkDPoint extrema; | |
| 321 extrema.fX = interp_cubic_coords(&cubic[0].fX, tValues[index]); | |
| 322 extrema.fY = interp_cubic_coords(&cubic[0].fY, tValues[index]); | |
| 323 // sameSide > 0 means mid is smaller than either [0] or [3], so replace
smaller | |
| 324 int replace; | |
| 325 if (useX) { | |
| 326 if ((extrema.fX < cubic[0].fX) ^ (extrema.fX < cubic[3].fX)) { | |
| 327 continue; | |
| 328 } | |
| 329 replace = ((extrema.fX < cubic[0].fX) | (extrema.fX < cubic[3].fX)) | |
| 330 ^ (cubic[0].fX < cubic[3].fX); | |
| 331 } else { | |
| 332 if ((extrema.fY < cubic[0].fY) ^ (extrema.fY < cubic[3].fY)) { | |
| 333 continue; | |
| 334 } | |
| 335 replace = ((extrema.fY < cubic[0].fY) | (extrema.fY < cubic[3].fY)) | |
| 336 ^ (cubic[0].fY < cubic[3].fY); | |
| 337 } | |
| 338 reduction[replace] = extrema; | |
| 339 } | |
| 340 return reductionLineCount(reduction); | 174 return reductionLineCount(reduction); |
| 341 } | 175 } |
| 342 | 176 |
| 343 /* food for thought: | 177 /* food for thought: |
| 344 http://objectmix.com/graphics/132906-fast-precision-driven-cubic-quadratic-piece
wise-degree-reduction-algos-2-a.html | 178 http://objectmix.com/graphics/132906-fast-precision-driven-cubic-quadratic-piece
wise-degree-reduction-algos-2-a.html |
| 345 | 179 |
| 346 Given points c1, c2, c3 and c4 of a cubic Bezier, the points of the | 180 Given points c1, c2, c3 and c4 of a cubic Bezier, the points of the |
| 347 corresponding quadratic Bezier are (given in convex combinations of | 181 corresponding quadratic Bezier are (given in convex combinations of |
| 348 points): | 182 points): |
| 349 | 183 |
| 350 q1 = (11/13)c1 + (3/13)c2 -(3/13)c3 + (2/13)c4 | 184 q1 = (11/13)c1 + (3/13)c2 -(3/13)c3 + (2/13)c4 |
| 351 q2 = -c1 + (3/2)c2 + (3/2)c3 - c4 | 185 q2 = -c1 + (3/2)c2 + (3/2)c3 - c4 |
| 352 q3 = (2/13)c1 - (3/13)c2 + (3/13)c3 + (11/13)c4 | 186 q3 = (2/13)c1 - (3/13)c2 + (3/13)c3 + (11/13)c4 |
| 353 | 187 |
| 354 Of course, this curve does not interpolate the end-points, but it would | 188 Of course, this curve does not interpolate the end-points, but it would |
| 355 be interesting to see the behaviour of such a curve in an applet. | 189 be interesting to see the behaviour of such a curve in an applet. |
| 356 | 190 |
| 357 -- | 191 -- |
| 358 Kalle Rutanen | 192 Kalle Rutanen |
| 359 http://kaba.hilvi.org | 193 http://kaba.hilvi.org |
| 360 | 194 |
| 361 */ | 195 */ |
| 362 | 196 |
| 363 // reduce to a quadratic or smaller | 197 // reduce to a quadratic or smaller |
| 364 // look for identical points | 198 // look for identical points |
| 365 // look for all four points in a line | 199 // look for all four points in a line |
| 366 // note that three points in a line doesn't simplify a cubic | 200 // note that three points in a line doesn't simplify a cubic |
| 367 // look for approximation with single quadratic | 201 // look for approximation with single quadratic |
| 368 // save approximation with multiple quadratics for later | 202 // save approximation with multiple quadratics for later |
| 369 int SkReduceOrder::reduce(const SkDCubic& cubic, Quadratics allowQuadratics, | 203 int SkReduceOrder::reduce(const SkDCubic& cubic, Quadratics allowQuadratics) { |
| 370 Style reduceStyle) { | |
| 371 int index, minX, maxX, minY, maxY; | 204 int index, minX, maxX, minY, maxY; |
| 372 int minXSet, minYSet; | 205 int minXSet, minYSet; |
| 373 minX = maxX = minY = maxY = 0; | 206 minX = maxX = minY = maxY = 0; |
| 374 minXSet = minYSet = 0; | 207 minXSet = minYSet = 0; |
| 375 for (index = 1; index < 4; ++index) { | 208 for (index = 1; index < 4; ++index) { |
| 376 if (cubic[minX].fX > cubic[index].fX) { | 209 if (cubic[minX].fX > cubic[index].fX) { |
| 377 minX = index; | 210 minX = index; |
| 378 } | 211 } |
| 379 if (cubic[minY].fY > cubic[index].fY) { | 212 if (cubic[minY].fY > cubic[index].fY) { |
| 380 minY = index; | 213 minY = index; |
| (...skipping 20 matching lines...) Expand all Loading... |
| 401 minXSet |= 1 << index; | 234 minXSet |= 1 << index; |
| 402 } | 235 } |
| 403 if (approximately_equal_half(cy * inv, cubic[minY].fY * inv)) { | 236 if (approximately_equal_half(cy * inv, cubic[minY].fY * inv)) { |
| 404 minYSet |= 1 << index; | 237 minYSet |= 1 << index; |
| 405 } | 238 } |
| 406 } | 239 } |
| 407 if (minXSet == 0xF) { // test for vertical line | 240 if (minXSet == 0xF) { // test for vertical line |
| 408 if (minYSet == 0xF) { // return 1 if all four are coincident | 241 if (minYSet == 0xF) { // return 1 if all four are coincident |
| 409 return coincident_line(cubic, fCubic); | 242 return coincident_line(cubic, fCubic); |
| 410 } | 243 } |
| 411 return vertical_line(cubic, reduceStyle, fCubic); | 244 return vertical_line(cubic, fCubic); |
| 412 } | 245 } |
| 413 if (minYSet == 0xF) { // test for horizontal line | 246 if (minYSet == 0xF) { // test for horizontal line |
| 414 return horizontal_line(cubic, reduceStyle, fCubic); | 247 return horizontal_line(cubic, fCubic); |
| 415 } | 248 } |
| 416 int result = check_linear(cubic, reduceStyle, minX, maxX, minY, maxY, fCubic
); | 249 int result = check_linear(cubic, minX, maxX, minY, maxY, fCubic); |
| 417 if (result) { | 250 if (result) { |
| 418 return result; | 251 return result; |
| 419 } | 252 } |
| 420 if (allowQuadratics == SkReduceOrder::kAllow_Quadratics | 253 if (allowQuadratics == SkReduceOrder::kAllow_Quadratics |
| 421 && (result = check_quadratic(cubic, fCubic))) { | 254 && (result = check_quadratic(cubic, fCubic))) { |
| 422 return result; | 255 return result; |
| 423 } | 256 } |
| 424 fCubic = cubic; | 257 fCubic = cubic; |
| 425 return 4; | 258 return 4; |
| 426 } | 259 } |
| 427 | 260 |
| 428 SkPath::Verb SkReduceOrder::Quad(const SkPoint a[3], SkPoint* reducePts) { | 261 SkPath::Verb SkReduceOrder::Quad(const SkPoint a[3], SkPoint* reducePts) { |
| 429 SkDQuad quad; | 262 SkDQuad quad; |
| 430 quad.set(a); | 263 quad.set(a); |
| 431 SkReduceOrder reducer; | 264 SkReduceOrder reducer; |
| 432 int order = reducer.reduce(quad, kFill_Style); | 265 int order = reducer.reduce(quad); |
| 433 if (order == 2) { // quad became line | 266 if (order == 2) { // quad became line |
| 434 for (int index = 0; index < order; ++index) { | 267 for (int index = 0; index < order; ++index) { |
| 435 *reducePts++ = reducer.fLine[index].asSkPoint(); | 268 *reducePts++ = reducer.fLine[index].asSkPoint(); |
| 436 } | 269 } |
| 437 } | 270 } |
| 438 return SkPathOpsPointsToVerb(order - 1); | 271 return SkPathOpsPointsToVerb(order - 1); |
| 439 } | 272 } |
| 440 | 273 |
| 441 SkPath::Verb SkReduceOrder::Cubic(const SkPoint a[4], SkPoint* reducePts) { | 274 SkPath::Verb SkReduceOrder::Cubic(const SkPoint a[4], SkPoint* reducePts) { |
| 442 SkDCubic cubic; | 275 SkDCubic cubic; |
| 443 cubic.set(a); | 276 cubic.set(a); |
| 444 SkReduceOrder reducer; | 277 SkReduceOrder reducer; |
| 445 int order = reducer.reduce(cubic, kAllow_Quadratics, kFill_Style); | 278 int order = reducer.reduce(cubic, kAllow_Quadratics); |
| 446 if (order == 2 || order == 3) { // cubic became line or quad | 279 if (order == 2 || order == 3) { // cubic became line or quad |
| 447 for (int index = 0; index < order; ++index) { | 280 for (int index = 0; index < order; ++index) { |
| 448 *reducePts++ = reducer.fQuad[index].asSkPoint(); | 281 *reducePts++ = reducer.fQuad[index].asSkPoint(); |
| 449 } | 282 } |
| 450 } | 283 } |
| 451 return SkPathOpsPointsToVerb(order - 1); | 284 return SkPathOpsPointsToVerb(order - 1); |
| 452 } | 285 } |
| OLD | NEW |