| Index: src/gpu/GrTessellatingPathRenderer.cpp
|
| diff --git a/src/gpu/GrTessellatingPathRenderer.cpp b/src/gpu/GrTessellatingPathRenderer.cpp
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..3d7d89b48b3c5df9723f55162ac7801f0fcc36b2
|
| --- /dev/null
|
| +++ b/src/gpu/GrTessellatingPathRenderer.cpp
|
| @@ -0,0 +1,1508 @@
|
| +/*
|
| + * Copyright 2015 Google Inc.
|
| + *
|
| + * Use of this source code is governed by a BSD-style license that can be
|
| + * found in the LICENSE file.
|
| + */
|
| +
|
| +#include "GrTessellatingPathRenderer.h"
|
| +
|
| +#include "GrDefaultGeoProcFactory.h"
|
| +#include "GrPathUtils.h"
|
| +#include "SkChunkAlloc.h"
|
| +#include "SkGeometry.h"
|
| +
|
| +#include <stdio.h>
|
| +
|
| +/*
|
| + * This path renderer tessellates the path into triangles, uploads the triangles to a
|
| + * vertex buffer, and renders them with a single draw call. It does not currently do
|
| + * antialiasing, so it must be used in conjunction with multisampling.
|
| + *
|
| + * There are six stages to the algorithm:
|
| + *
|
| + * 1) Linearize the path contours into piecewise linear segments (path_to_contours()).
|
| + * 2) Build a mesh of edges connecting the vertices (build_edges()).
|
| + * 3) Sort the vertices in Y (and secondarily in X) (merge_sort()).
|
| + * 4) Simplify the mesh by inserting new vertices at intersecting edges (simplify()).
|
| + * 5) Tessellate the simplified mesh into monotone polygons (tessellate()).
|
| + * 6) Triangulate the monotone polygons directly into a vertex buffer (polys_to_triangles()).
|
| + *
|
| + * The vertex sorting in step (3) is a merge sort, since it plays well with the linked list
|
| + * of vertices (and the necessity of inserting new vertices on intersection).
|
| + *
|
| + * Stages (4) and (5) use an active edge list, which a list of all edges for which the
|
| + * sweep line has crossed the top vertex, but not the bottom vertex. It's sorted
|
| + * left-to-right based on the point where both edges are active (when both top vertices
|
| + * have been seen, so the "lower" top vertex of the two). If the top vertices are equal
|
| + * (shared), it's sorted based on the last point where both edges are active, so the
|
| + * "upper" bottom vertex.
|
| + *
|
| + * The most complex step is the simplification (4). It's based on the Bentley-Ottman
|
| + * line-sweep algorithm, but due to floating point inaccuracy, the intersection points are
|
| + * not exact and may violate the mesh topology or active edge list ordering. We
|
| + * accommodate this by adjusting the topology of the mesh and AEL to match the intersection
|
| + * points. This occurs in three ways:
|
| + *
|
| + * A) Intersections may cause a shortened edge to no longer be ordered with respect to its
|
| + * neighbouring edges at the top or bottom vertex. This is handled by merging the
|
| + * edges (merge_collinear_edges()).
|
| + * B) Intersections may cause an edge to violate the left-to-right ordering of the
|
| + * active edge list. This is handled by splitting the neighbour edge on the
|
| + * intersected vertex (cleanup_active_edges()).
|
| + * C) Shortening an edge may cause an active edge to become inactive or an inactive edge
|
| + * to become active. This is handled by removing or inserting the edge in the active
|
| + * edge list (fix_active_state()).
|
| + *
|
| + * The tessellation steps (5) and (6) are based on "Triangulating Simple Polygons and
|
| + * Equivalent Problems" (Fournier and Montuno); also a line-sweep algorithm. Note that it
|
| + * currently uses a linked list for the active edge list, rather than a 2-3 tree as the
|
| + * paper describes. The 2-3 tree gives O(lg N) lookups, but insertion and removal also
|
| + * become O(lg N). In all the test cases, it was found that the cost of frequent O(lg N)
|
| + * insertions and removals was greater than the cost of infrequent O(N) lookups with the
|
| + * linked list implementation. With the latter, all removals are O(1), and most insertions
|
| + * are O(1), since we know the adjacent edge in the active edge list based on the topology.
|
| + * Only type 2 vertices (see paper) require the O(N) lookups, and these are much less
|
| + * frequent. There may be other data structures worth investigating, however.
|
| + *
|
| + * Note that there is a compile-time flag (SWEEP_IN_X) which changes the orientation of the
|
| + * line sweep algorithms. When SWEEP_IN_X is unset, we sort vertices based on increasing
|
| + * Y coordinate, and secondarily by increasing X coordinate. When SWEEP_IN_X is set, we sort by
|
| + * increasing X coordinate, but secondarily by *decreasing* Y coordinate. This is so that the
|
| + * "left" and "right" orientation in the code remains correct (edges to the left are increasing
|
| + * in Y; edges to the right are decreasing in Y). That is, the setting rotates 90 degrees
|
| + * counterclockwise, rather that transposing.
|
| + *
|
| + * The choice is arbitrary, but most test cases are wider than they are tall, so the
|
| + * default is to sweep in X. In the future, we may want to make this a runtime parameter
|
| + * and base it on the aspect ratio of the clip bounds.
|
| + */
|
| +#define LOGGING_ENABLED 0
|
| +#define WIREFRAME 0
|
| +#define SWEEP_IN_X 1
|
| +
|
| +#if LOGGING_ENABLED
|
| +#define LOG printf
|
| +#else
|
| +#define LOG(...)
|
| +#endif
|
| +
|
| +#define ALLOC_NEW(Type, args, alloc) \
|
| + SkNEW_PLACEMENT_ARGS(alloc.allocThrow(sizeof(Type)), Type, args)
|
| +
|
| +namespace {
|
| +
|
| +struct Vertex;
|
| +struct Edge;
|
| +struct Poly;
|
| +
|
| +template <class T, T* T::*Prev, T* T::*Next>
|
| +void insert(T* t, T* prev, T* next, T** head, T** tail) {
|
| + t->*Prev = prev;
|
| + t->*Next = next;
|
| + if (prev) {
|
| + prev->*Next = t;
|
| + } else if (head) {
|
| + *head = t;
|
| + }
|
| + if (next) {
|
| + next->*Prev = t;
|
| + } else if (tail) {
|
| + *tail = t;
|
| + }
|
| +}
|
| +
|
| +template <class T, T* T::*Prev, T* T::*Next>
|
| +void remove(T* t, T** head, T** tail) {
|
| + if (t->*Prev) {
|
| + t->*Prev->*Next = t->*Next;
|
| + } else if (head) {
|
| + *head = t->*Next;
|
| + }
|
| + if (t->*Next) {
|
| + t->*Next->*Prev = t->*Prev;
|
| + } else if (tail) {
|
| + *tail = t->*Prev;
|
| + }
|
| + t->*Prev = t->*Next = NULL;
|
| +}
|
| +
|
| +/**
|
| + * Vertices are used in three ways: first, the path contours are converted into a
|
| + * circularly-linked list of Vertices for each contour. After edge construction, the same Vertices
|
| + * are re-ordered by the merge sort according to the sweep_lt comparator (usually, increasing
|
| + * in Y) using the same fPrev/fNext pointers that were used for the contours, to avoid
|
| + * reallocation. Finally, MonotonePolys are built containing a circularly-linked list of
|
| + * Vertices. (Currently, those Vertices are newly-allocated for the MonotonePolys, since
|
| + * an individual Vertex from the path mesh may belong to multiple
|
| + * MonotonePolys, so the original Vertices cannot be re-used.
|
| + */
|
| +
|
| +struct Vertex {
|
| + Vertex(const SkPoint& point)
|
| + : fPoint(point), fPrev(NULL), fNext(NULL)
|
| + , fFirstEdgeAbove(NULL), fLastEdgeAbove(NULL)
|
| + , fFirstEdgeBelow(NULL), fLastEdgeBelow(NULL)
|
| + , fProcessed(false)
|
| +#if LOGGING_ENABLED
|
| + , fID (-1.0f)
|
| +#endif
|
| + {}
|
| + SkPoint fPoint; // Vertex position
|
| + Vertex* fPrev; // Linked list of contours, then Y-sorted vertices.
|
| + Vertex* fNext; // "
|
| + Edge* fFirstEdgeAbove; // Linked list of edges above this vertex.
|
| + Edge* fLastEdgeAbove; // "
|
| + Edge* fFirstEdgeBelow; // Linked list of edges below this vertex.
|
| + Edge* fLastEdgeBelow; // "
|
| + bool fProcessed; // Has this vertex been seen in simplify()?
|
| +#if LOGGING_ENABLED
|
| + float fID; // Identifier used for logging.
|
| +#endif
|
| +};
|
| +
|
| +/***************************************************************************************/
|
| +
|
| +bool sweep_lt(const SkPoint& a, const SkPoint& b) {
|
| +#if SWEEP_IN_X
|
| + return a.fX == b.fX ? a.fY > b.fY : a.fX < b.fX;
|
| +#else
|
| + return a.fY == b.fY ? a.fX < b.fX : a.fY < b.fY;
|
| +#endif
|
| +}
|
| +
|
| +bool sweep_gt(const SkPoint& a, const SkPoint& b) {
|
| +#if SWEEP_IN_X
|
| + return a.fX == b.fX ? a.fY < b.fY : a.fX > b.fX;
|
| +#else
|
| + return a.fY == b.fY ? a.fX > b.fX : a.fY > b.fY;
|
| +#endif
|
| +}
|
| +
|
| +inline void* emit_vertex(Vertex* v, void* data) {
|
| + SkPoint* d = static_cast<SkPoint*>(data);
|
| + *d++ = v->fPoint;
|
| + return d;
|
| +}
|
| +
|
| +void* emit_triangle(Vertex* v0, Vertex* v1, Vertex* v2, void* data) {
|
| +#if WIREFRAME
|
| + data = emit_vertex(v0, data);
|
| + data = emit_vertex(v1, data);
|
| + data = emit_vertex(v1, data);
|
| + data = emit_vertex(v2, data);
|
| + data = emit_vertex(v2, data);
|
| + data = emit_vertex(v0, data);
|
| +#else
|
| + data = emit_vertex(v0, data);
|
| + data = emit_vertex(v1, data);
|
| + data = emit_vertex(v2, data);
|
| +#endif
|
| + return data;
|
| +}
|
| +
|
| +/**
|
| + * An Edge joins a top Vertex to a bottom Vertex. Edge ordering for the list of "edges above" and
|
| + * "edge below" a vertex as well as for the active edge list is handled by isLeftOf()/isRightOf().
|
| + * Note that an Edge will give occasionally dist() != 0 for its own endpoints (because floating
|
| + * point). For speed, that case is only tested by the callers which require it (e.g.,
|
| + * cleanup_active_edges()). Edges also handle checking for intersection with other edges.
|
| + * Currently, this converts the edges to the parametric form, in order to avoid doing a division
|
| + * until an intersection has been confirmed. This is slightly slower in the "found" case, but
|
| + * a lot faster in the "not found" case.
|
| + *
|
| + * The coefficients of the line equation stored in double precision to avoid catastrphic
|
| + * cancellation in the isLeftOf() and isRightOf() checks. Using doubles ensures that the result is
|
| + * correct in float, since it's a polynomial of degree 2. The intersect() function, being
|
| + * degree 5, is still subject to catastrophic cancellation. We deal with that by assuming its
|
| + * output may be incorrect, and adjusting the mesh topology to match (see comment at the top of
|
| + * this file).
|
| + */
|
| +
|
| +struct Edge {
|
| + Edge(Vertex* top, Vertex* bottom, int winding)
|
| + : fWinding(winding)
|
| + , fTop(top)
|
| + , fBottom(bottom)
|
| + , fLeft(NULL)
|
| + , fRight(NULL)
|
| + , fPrevEdgeAbove(NULL)
|
| + , fNextEdgeAbove(NULL)
|
| + , fPrevEdgeBelow(NULL)
|
| + , fNextEdgeBelow(NULL)
|
| + , fLeftPoly(NULL)
|
| + , fRightPoly(NULL) {
|
| + recompute();
|
| + }
|
| + int fWinding; // 1 == edge goes downward; -1 = edge goes upward.
|
| + Vertex* fTop; // The top vertex in vertex-sort-order (sweep_lt).
|
| + Vertex* fBottom; // The bottom vertex in vertex-sort-order.
|
| + Edge* fLeft; // The linked list of edges in the active edge list.
|
| + Edge* fRight; // "
|
| + Edge* fPrevEdgeAbove; // The linked list of edges in the bottom Vertex's "edges above".
|
| + Edge* fNextEdgeAbove; // "
|
| + Edge* fPrevEdgeBelow; // The linked list of edges in the top Vertex's "edges below".
|
| + Edge* fNextEdgeBelow; // "
|
| + Poly* fLeftPoly; // The Poly to the left of this edge, if any.
|
| + Poly* fRightPoly; // The Poly to the right of this edge, if any.
|
| + double fDX; // The line equation for this edge, in implicit form.
|
| + double fDY; // fDY * x + fDX * y + fC = 0, for point (x, y) on the line.
|
| + double fC;
|
| + double dist(const SkPoint& p) const {
|
| + return fDY * p.fX - fDX * p.fY + fC;
|
| + }
|
| + bool isRightOf(Vertex* v) const {
|
| + return dist(v->fPoint) < 0.0;
|
| + }
|
| + bool isLeftOf(Vertex* v) const {
|
| + return dist(v->fPoint) > 0.0;
|
| + }
|
| + void recompute() {
|
| + fDX = static_cast<double>(fBottom->fPoint.fX) - fTop->fPoint.fX;
|
| + fDY = static_cast<double>(fBottom->fPoint.fY) - fTop->fPoint.fY;
|
| + fC = static_cast<double>(fTop->fPoint.fY) * fBottom->fPoint.fX -
|
| + static_cast<double>(fTop->fPoint.fX) * fBottom->fPoint.fY;
|
| + }
|
| + bool intersect(const Edge& other, SkPoint* p) {
|
| + LOG("intersecting %g -> %g with %g -> %g\n",
|
| + fTop->fID, fBottom->fID,
|
| + other.fTop->fID, other.fBottom->fID);
|
| + if (fTop == other.fTop || fBottom == other.fBottom) {
|
| + return false;
|
| + }
|
| + double denom = fDX * other.fDY - fDY * other.fDX;
|
| + if (denom == 0.0) {
|
| + return false;
|
| + }
|
| + double dx = static_cast<double>(fTop->fPoint.fX) - other.fTop->fPoint.fX;
|
| + double dy = static_cast<double>(fTop->fPoint.fY) - other.fTop->fPoint.fY;
|
| + double sNumer = dy * other.fDX - dx * other.fDY;
|
| + double tNumer = dy * fDX - dx * fDY;
|
| + // If (sNumer / denom) or (tNumer / denom) is not in [0..1], exit early.
|
| + // This saves us doing the divide below unless absolutely necessary.
|
| + if (denom > 0.0 ? (sNumer < 0.0 || sNumer > denom || tNumer < 0.0 || tNumer > denom)
|
| + : (sNumer > 0.0 || sNumer < denom || tNumer > 0.0 || tNumer < denom)) {
|
| + return false;
|
| + }
|
| + double s = sNumer / denom;
|
| + SkASSERT(s >= 0.0 && s <= 1.0);
|
| + p->fX = SkDoubleToScalar(fTop->fPoint.fX + s * fDX);
|
| + p->fY = SkDoubleToScalar(fTop->fPoint.fY + s * fDY);
|
| + return true;
|
| + }
|
| + bool isActive(Edge** activeEdges) const {
|
| + return activeEdges && (fLeft || fRight || *activeEdges == this);
|
| + }
|
| +};
|
| +
|
| +/***************************************************************************************/
|
| +
|
| +struct Poly {
|
| + Poly(int winding)
|
| + : fWinding(winding)
|
| + , fHead(NULL)
|
| + , fTail(NULL)
|
| + , fActive(NULL)
|
| + , fNext(NULL)
|
| + , fPartner(NULL)
|
| + , fCount(0)
|
| + {
|
| +#if LOGGING_ENABLED
|
| + static int gID = 0;
|
| + fID = gID++;
|
| + LOG("*** created Poly %d\n", fID);
|
| +#endif
|
| + }
|
| + typedef enum { kNeither_Side, kLeft_Side, kRight_Side } Side;
|
| + struct MonotonePoly {
|
| + MonotonePoly()
|
| + : fSide(kNeither_Side)
|
| + , fHead(NULL)
|
| + , fTail(NULL)
|
| + , fPrev(NULL)
|
| + , fNext(NULL) {}
|
| + Side fSide;
|
| + Vertex* fHead;
|
| + Vertex* fTail;
|
| + MonotonePoly* fPrev;
|
| + MonotonePoly* fNext;
|
| + bool addVertex(Vertex* v, Side side, SkChunkAlloc& alloc) {
|
| + Vertex* newV = ALLOC_NEW(Vertex, (v->fPoint), alloc);
|
| + bool done = false;
|
| + if (fSide == kNeither_Side) {
|
| + fSide = side;
|
| + } else {
|
| + done = side != fSide;
|
| + }
|
| + if (fHead == NULL) {
|
| + fHead = fTail = newV;
|
| + } else if (fSide == kRight_Side) {
|
| + newV->fPrev = fTail;
|
| + fTail->fNext = newV;
|
| + fTail = newV;
|
| + } else {
|
| + newV->fNext = fHead;
|
| + fHead->fPrev = newV;
|
| + fHead = newV;
|
| + }
|
| + return done;
|
| + }
|
| +
|
| + void* emit(void* data) {
|
| + Vertex* first = fHead;
|
| + Vertex* v = first->fNext;
|
| + while (v != fTail) {
|
| + SkASSERT(v && v->fPrev && v->fNext);
|
| +#ifdef SK_DEBUG
|
| + validate();
|
| +#endif
|
| + Vertex* prev = v->fPrev;
|
| + Vertex* curr = v;
|
| + Vertex* next = v->fNext;
|
| + double ax = static_cast<double>(curr->fPoint.fX) - prev->fPoint.fX;
|
| + double ay = static_cast<double>(curr->fPoint.fY) - prev->fPoint.fY;
|
| + double bx = static_cast<double>(next->fPoint.fX) - curr->fPoint.fX;
|
| + double by = static_cast<double>(next->fPoint.fY) - curr->fPoint.fY;
|
| + if (ax * by - ay * bx >= 0.0) {
|
| + data = emit_triangle(prev, curr, next, data);
|
| + v->fPrev->fNext = v->fNext;
|
| + v->fNext->fPrev = v->fPrev;
|
| + if (v->fPrev == first) {
|
| + v = v->fNext;
|
| + } else {
|
| + v = v->fPrev;
|
| + }
|
| + } else {
|
| + v = v->fNext;
|
| + SkASSERT(v != fTail);
|
| + }
|
| + }
|
| + return data;
|
| + }
|
| +
|
| +#ifdef SK_DEBUG
|
| + void validate() {
|
| + int winding = sweep_lt(fHead->fPoint, fTail->fPoint) ? 1 : -1;
|
| + Vertex* top = winding < 0 ? fTail : fHead;
|
| + Vertex* bottom = winding < 0 ? fHead : fTail;
|
| + Edge e(top, bottom, winding);
|
| + for (Vertex* v = fHead->fNext; v != fTail; v = v->fNext) {
|
| + if (fSide == kRight_Side) {
|
| + SkASSERT(!e.isRightOf(v));
|
| + } else if (fSide == Poly::kLeft_Side) {
|
| + SkASSERT(!e.isLeftOf(v));
|
| + }
|
| + }
|
| + }
|
| +#endif
|
| + };
|
| + Poly* addVertex(Vertex* v, Side side, SkChunkAlloc& alloc) {
|
| + LOG("addVertex() to %d at %g (%g, %g), %s side\n", fID, v->fID, v->fPoint.fX, v->fPoint.fY,
|
| + side == kLeft_Side ? "left" : side == kRight_Side ? "right" : "neither");
|
| + Poly* partner = fPartner;
|
| + Poly* poly = this;
|
| + if (partner) {
|
| + fPartner = partner->fPartner = NULL;
|
| + }
|
| + if (!fActive) {
|
| + fActive = ALLOC_NEW(MonotonePoly, (), alloc);
|
| + }
|
| + if (fActive->addVertex(v, side, alloc)) {
|
| +#ifdef SK_DEBUG
|
| + fActive->validate();
|
| +#endif
|
| + if (fTail) {
|
| + fActive->fPrev = fTail;
|
| + fTail->fNext = fActive;
|
| + fTail = fActive;
|
| + } else {
|
| + fHead = fTail = fActive;
|
| + }
|
| + if (partner) {
|
| + partner->addVertex(v, side, alloc);
|
| + poly = partner;
|
| + } else {
|
| + Vertex* prev = fActive->fSide == Poly::kLeft_Side ?
|
| + fActive->fHead->fNext : fActive->fTail->fPrev;
|
| + fActive = ALLOC_NEW(MonotonePoly, , alloc);
|
| + fActive->addVertex(prev, Poly::kNeither_Side, alloc);
|
| + fActive->addVertex(v, side, alloc);
|
| + }
|
| + }
|
| + fCount++;
|
| + return poly;
|
| + }
|
| + void end(Vertex* v, SkChunkAlloc& alloc) {
|
| + LOG("end() %d at %g, %g\n", fID, v->fPoint.fX, v->fPoint.fY);
|
| + if (fPartner) {
|
| + fPartner = fPartner->fPartner = NULL;
|
| + }
|
| + addVertex(v, fActive->fSide == kLeft_Side ? kRight_Side : kLeft_Side, alloc);
|
| + }
|
| + void* emit(void *data) {
|
| + if (fCount < 3) {
|
| + return data;
|
| + }
|
| + LOG("emit() %d, size %d\n", fID, fCount);
|
| + for (MonotonePoly* m = fHead; m != NULL; m = m->fNext) {
|
| + data = m->emit(data);
|
| + }
|
| + return data;
|
| + }
|
| + int fWinding;
|
| + MonotonePoly* fHead;
|
| + MonotonePoly* fTail;
|
| + MonotonePoly* fActive;
|
| + Poly* fNext;
|
| + Poly* fPartner;
|
| + int fCount;
|
| +#if LOGGING_ENABLED
|
| + int fID;
|
| +#endif
|
| +};
|
| +
|
| +/***************************************************************************************/
|
| +
|
| +bool coincident(const SkPoint& a, const SkPoint& b) {
|
| + return a == b;
|
| +}
|
| +
|
| +Poly* new_poly(Poly** head, Vertex* v, int winding, SkChunkAlloc& alloc) {
|
| + Poly* poly = ALLOC_NEW(Poly, (winding), alloc);
|
| + poly->addVertex(v, Poly::kNeither_Side, alloc);
|
| + poly->fNext = *head;
|
| + *head = poly;
|
| + return poly;
|
| +}
|
| +
|
| +#ifdef SK_DEBUG
|
| +void validate_edges(Edge* head) {
|
| + for (Edge* e = head; e != NULL; e = e->fRight) {
|
| + SkASSERT(e->fTop != e->fBottom);
|
| + if (e->fLeft) {
|
| + SkASSERT(e->fLeft->fRight == e);
|
| + if (sweep_gt(e->fTop->fPoint, e->fLeft->fTop->fPoint)) {
|
| + SkASSERT(e->fLeft->isLeftOf(e->fTop));
|
| + }
|
| + if (sweep_lt(e->fBottom->fPoint, e->fLeft->fBottom->fPoint)) {
|
| + SkASSERT(e->fLeft->isLeftOf(e->fBottom));
|
| + }
|
| + } else {
|
| + SkASSERT(e == head);
|
| + }
|
| + if (e->fRight) {
|
| + SkASSERT(e->fRight->fLeft == e);
|
| + if (sweep_gt(e->fTop->fPoint, e->fRight->fTop->fPoint)) {
|
| + SkASSERT(e->fRight->isRightOf(e->fTop));
|
| + }
|
| + if (sweep_lt(e->fBottom->fPoint, e->fRight->fBottom->fPoint)) {
|
| + SkASSERT(e->fRight->isRightOf(e->fBottom));
|
| + }
|
| + }
|
| + }
|
| +}
|
| +
|
| +void validate_connectivity(Vertex* v) {
|
| + for (Edge* e = v->fFirstEdgeAbove; e != NULL; e = e->fNextEdgeAbove) {
|
| + SkASSERT(e->fBottom == v);
|
| + if (e->fPrevEdgeAbove) {
|
| + SkASSERT(e->fPrevEdgeAbove->fNextEdgeAbove == e);
|
| + SkASSERT(e->fPrevEdgeAbove->isLeftOf(e->fTop));
|
| + } else {
|
| + SkASSERT(e == v->fFirstEdgeAbove);
|
| + }
|
| + if (e->fNextEdgeAbove) {
|
| + SkASSERT(e->fNextEdgeAbove->fPrevEdgeAbove == e);
|
| + SkASSERT(e->fNextEdgeAbove->isRightOf(e->fTop));
|
| + } else {
|
| + SkASSERT(e == v->fLastEdgeAbove);
|
| + }
|
| + }
|
| + for (Edge* e = v->fFirstEdgeBelow; e != NULL; e = e->fNextEdgeBelow) {
|
| + SkASSERT(e->fTop == v);
|
| + if (e->fPrevEdgeBelow) {
|
| + SkASSERT(e->fPrevEdgeBelow->fNextEdgeBelow == e);
|
| + SkASSERT(e->fPrevEdgeBelow->isLeftOf(e->fBottom));
|
| + } else {
|
| + SkASSERT(e == v->fFirstEdgeBelow);
|
| + }
|
| + if (e->fNextEdgeBelow) {
|
| + SkASSERT(e->fNextEdgeBelow->fPrevEdgeBelow == e);
|
| + SkASSERT(e->fNextEdgeBelow->isRightOf(e->fBottom));
|
| + } else {
|
| + SkASSERT(e == v->fLastEdgeBelow);
|
| + }
|
| + }
|
| +}
|
| +#endif
|
| +
|
| +Vertex* append_point_to_contour(const SkPoint& p, Vertex* prev, Vertex** head,
|
| + SkChunkAlloc& alloc) {
|
| + Vertex* v = ALLOC_NEW(Vertex, (p), alloc);
|
| +#if LOGGING_ENABLED
|
| + static float gID = 0.0f;
|
| + v->fID = gID++;
|
| +#endif
|
| + if (prev) {
|
| + prev->fNext = v;
|
| + v->fPrev = prev;
|
| + } else {
|
| + *head = v;
|
| + }
|
| + return v;
|
| +}
|
| +
|
| +Vertex* generate_quadratic_points(const SkPoint& p0,
|
| + const SkPoint& p1,
|
| + const SkPoint& p2,
|
| + SkScalar tolSqd,
|
| + Vertex* prev,
|
| + Vertex** head,
|
| + int pointsLeft,
|
| + SkChunkAlloc& alloc) {
|
| + SkScalar d = p1.distanceToLineSegmentBetweenSqd(p0, p2);
|
| + if (pointsLeft < 2 || d < tolSqd || !SkScalarIsFinite(d)) {
|
| + return append_point_to_contour(p2, prev, head, alloc);
|
| + }
|
| +
|
| + const SkPoint q[] = {
|
| + { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
|
| + { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
|
| + };
|
| + const SkPoint r = { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) };
|
| +
|
| + pointsLeft >>= 1;
|
| + prev = generate_quadratic_points(p0, q[0], r, tolSqd, prev, head, pointsLeft, alloc);
|
| + prev = generate_quadratic_points(r, q[1], p2, tolSqd, prev, head, pointsLeft, alloc);
|
| + return prev;
|
| +}
|
| +
|
| +Vertex* generate_cubic_points(const SkPoint& p0,
|
| + const SkPoint& p1,
|
| + const SkPoint& p2,
|
| + const SkPoint& p3,
|
| + SkScalar tolSqd,
|
| + Vertex* prev,
|
| + Vertex** head,
|
| + int pointsLeft,
|
| + SkChunkAlloc& alloc) {
|
| + SkScalar d1 = p1.distanceToLineSegmentBetweenSqd(p0, p3);
|
| + SkScalar d2 = p2.distanceToLineSegmentBetweenSqd(p0, p3);
|
| + if (pointsLeft < 2 || (d1 < tolSqd && d2 < tolSqd) ||
|
| + !SkScalarIsFinite(d1) || !SkScalarIsFinite(d2)) {
|
| + return append_point_to_contour(p3, prev, head, alloc);
|
| + }
|
| + const SkPoint q[] = {
|
| + { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
|
| + { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
|
| + { SkScalarAve(p2.fX, p3.fX), SkScalarAve(p2.fY, p3.fY) }
|
| + };
|
| + const SkPoint r[] = {
|
| + { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) },
|
| + { SkScalarAve(q[1].fX, q[2].fX), SkScalarAve(q[1].fY, q[2].fY) }
|
| + };
|
| + const SkPoint s = { SkScalarAve(r[0].fX, r[1].fX), SkScalarAve(r[0].fY, r[1].fY) };
|
| + pointsLeft >>= 1;
|
| + prev = generate_cubic_points(p0, q[0], r[0], s, tolSqd, prev, head, pointsLeft, alloc);
|
| + prev = generate_cubic_points(s, r[1], q[2], p3, tolSqd, prev, head, pointsLeft, alloc);
|
| + return prev;
|
| +}
|
| +
|
| +// Stage 1: convert the input path to a set of linear contours (linked list of Vertices).
|
| +
|
| +void path_to_contours(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds,
|
| + Vertex** contours, SkChunkAlloc& alloc) {
|
| +
|
| + SkScalar toleranceSqd = tolerance * tolerance;
|
| +
|
| + SkPoint pts[4];
|
| + bool done = false;
|
| + SkPath::Iter iter(path, false);
|
| + Vertex* prev = NULL;
|
| + Vertex* head = NULL;
|
| + if (path.isInverseFillType()) {
|
| + SkPoint quad[4];
|
| + clipBounds.toQuad(quad);
|
| + for (int i = 3; i >= 0; i--) {
|
| + prev = append_point_to_contour(quad[i], prev, &head, alloc);
|
| + }
|
| + head->fPrev = prev;
|
| + prev->fNext = head;
|
| + *contours++ = head;
|
| + head = prev = NULL;
|
| + }
|
| + SkAutoConicToQuads converter;
|
| + while (!done) {
|
| + SkPath::Verb verb = iter.next(pts);
|
| + switch (verb) {
|
| + case SkPath::kConic_Verb: {
|
| + SkScalar weight = iter.conicWeight();
|
| + const SkPoint* quadPts = converter.computeQuads(pts, weight, toleranceSqd);
|
| + for (int i = 0; i < converter.countQuads(); ++i) {
|
| + int pointsLeft = GrPathUtils::quadraticPointCount(quadPts, toleranceSqd);
|
| + prev = generate_quadratic_points(quadPts[0], quadPts[1], quadPts[2],
|
| + toleranceSqd, prev, &head, pointsLeft, alloc);
|
| + quadPts += 2;
|
| + }
|
| + break;
|
| + }
|
| + case SkPath::kMove_Verb:
|
| + if (head) {
|
| + head->fPrev = prev;
|
| + prev->fNext = head;
|
| + *contours++ = head;
|
| + }
|
| + head = prev = NULL;
|
| + prev = append_point_to_contour(pts[0], prev, &head, alloc);
|
| + break;
|
| + case SkPath::kLine_Verb: {
|
| + prev = append_point_to_contour(pts[1], prev, &head, alloc);
|
| + break;
|
| + }
|
| + case SkPath::kQuad_Verb: {
|
| + int pointsLeft = GrPathUtils::quadraticPointCount(pts, toleranceSqd);
|
| + prev = generate_quadratic_points(pts[0], pts[1], pts[2], toleranceSqd, prev,
|
| + &head, pointsLeft, alloc);
|
| + break;
|
| + }
|
| + case SkPath::kCubic_Verb: {
|
| + int pointsLeft = GrPathUtils::cubicPointCount(pts, toleranceSqd);
|
| + prev = generate_cubic_points(pts[0], pts[1], pts[2], pts[3],
|
| + toleranceSqd, prev, &head, pointsLeft, alloc);
|
| + break;
|
| + }
|
| + case SkPath::kClose_Verb:
|
| + if (head) {
|
| + head->fPrev = prev;
|
| + prev->fNext = head;
|
| + *contours++ = head;
|
| + }
|
| + head = prev = NULL;
|
| + break;
|
| + case SkPath::kDone_Verb:
|
| + if (head) {
|
| + head->fPrev = prev;
|
| + prev->fNext = head;
|
| + *contours++ = head;
|
| + }
|
| + done = true;
|
| + break;
|
| + }
|
| + }
|
| +}
|
| +
|
| +inline bool apply_fill_type(SkPath::FillType fillType, int winding) {
|
| + switch (fillType) {
|
| + case SkPath::kWinding_FillType:
|
| + return winding != 0;
|
| + case SkPath::kEvenOdd_FillType:
|
| + return (winding & 1) != 0;
|
| + case SkPath::kInverseWinding_FillType:
|
| + return winding == 1;
|
| + case SkPath::kInverseEvenOdd_FillType:
|
| + return (winding & 1) == 1;
|
| + default:
|
| + SkASSERT(false);
|
| + return false;
|
| + }
|
| +}
|
| +
|
| +Edge* new_edge(Vertex* prev, Vertex* next, SkChunkAlloc& alloc) {
|
| + int winding = sweep_lt(prev->fPoint, next->fPoint) ? 1 : -1;
|
| + Vertex* top = winding < 0 ? next : prev;
|
| + Vertex* bottom = winding < 0 ? prev : next;
|
| + return ALLOC_NEW(Edge, (top, bottom, winding), alloc);
|
| +}
|
| +
|
| +void remove_edge(Edge* edge, Edge** head) {
|
| + LOG("removing edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID);
|
| + SkASSERT(edge->isActive(head));
|
| + remove<Edge, &Edge::fLeft, &Edge::fRight>(edge, head, NULL);
|
| +}
|
| +
|
| +void insert_edge(Edge* edge, Edge* prev, Edge** head) {
|
| + LOG("inserting edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID);
|
| + SkASSERT(!edge->isActive(head));
|
| + Edge* next = prev ? prev->fRight : *head;
|
| + insert<Edge, &Edge::fLeft, &Edge::fRight>(edge, prev, next, head, NULL);
|
| +}
|
| +
|
| +void find_enclosing_edges(Vertex* v, Edge* head, Edge** left, Edge** right) {
|
| + if (v->fFirstEdgeAbove) {
|
| + *left = v->fFirstEdgeAbove->fLeft;
|
| + *right = v->fLastEdgeAbove->fRight;
|
| + return;
|
| + }
|
| + Edge* prev = NULL;
|
| + Edge* next;
|
| + for (next = head; next != NULL; next = next->fRight) {
|
| + if (next->isRightOf(v)) {
|
| + break;
|
| + }
|
| + prev = next;
|
| + }
|
| + *left = prev;
|
| + *right = next;
|
| + return;
|
| +}
|
| +
|
| +void find_enclosing_edges(Edge* edge, Edge* head, Edge** left, Edge** right) {
|
| + Edge* prev = NULL;
|
| + Edge* next;
|
| + for (next = head; next != NULL; next = next->fRight) {
|
| + if ((sweep_gt(edge->fTop->fPoint, next->fTop->fPoint) && next->isRightOf(edge->fTop)) ||
|
| + (sweep_gt(next->fTop->fPoint, edge->fTop->fPoint) && edge->isLeftOf(next->fTop)) ||
|
| + (sweep_lt(edge->fBottom->fPoint, next->fBottom->fPoint) &&
|
| + next->isRightOf(edge->fBottom)) ||
|
| + (sweep_lt(next->fBottom->fPoint, edge->fBottom->fPoint) &&
|
| + edge->isLeftOf(next->fBottom))) {
|
| + break;
|
| + }
|
| + prev = next;
|
| + }
|
| + *left = prev;
|
| + *right = next;
|
| + return;
|
| +}
|
| +
|
| +void fix_active_state(Edge* edge, Edge** activeEdges) {
|
| + if (edge->isActive(activeEdges)) {
|
| + if (edge->fBottom->fProcessed || !edge->fTop->fProcessed) {
|
| + remove_edge(edge, activeEdges);
|
| + }
|
| + } else if (edge->fTop->fProcessed && !edge->fBottom->fProcessed) {
|
| + Edge* left;
|
| + Edge* right;
|
| + find_enclosing_edges(edge, *activeEdges, &left, &right);
|
| + insert_edge(edge, left, activeEdges);
|
| + }
|
| +}
|
| +
|
| +void insert_edge_above(Edge* edge, Vertex* v) {
|
| + if (edge->fTop->fPoint == edge->fBottom->fPoint ||
|
| + sweep_gt(edge->fTop->fPoint, edge->fBottom->fPoint)) {
|
| + SkASSERT(false);
|
| + return;
|
| + }
|
| + LOG("insert edge (%g -> %g) above vertex %g\n", edge->fTop->fID, edge->fBottom->fID, v->fID);
|
| + Edge* prev = NULL;
|
| + Edge* next;
|
| + for (next = v->fFirstEdgeAbove; next; next = next->fNextEdgeAbove) {
|
| + if (next->isRightOf(edge->fTop)) {
|
| + break;
|
| + }
|
| + prev = next;
|
| + }
|
| + insert<Edge, &Edge::fPrevEdgeAbove, &Edge::fNextEdgeAbove>(
|
| + edge, prev, next, &v->fFirstEdgeAbove, &v->fLastEdgeAbove);
|
| +}
|
| +
|
| +void insert_edge_below(Edge* edge, Vertex* v) {
|
| + if (edge->fTop->fPoint == edge->fBottom->fPoint ||
|
| + sweep_gt(edge->fTop->fPoint, edge->fBottom->fPoint)) {
|
| + SkASSERT(false);
|
| + return;
|
| + }
|
| + LOG("insert edge (%g -> %g) below vertex %g\n", edge->fTop->fID, edge->fBottom->fID, v->fID);
|
| + Edge* prev = NULL;
|
| + Edge* next;
|
| + for (next = v->fFirstEdgeBelow; next; next = next->fNextEdgeBelow) {
|
| + if (next->isRightOf(edge->fBottom)) {
|
| + break;
|
| + }
|
| + prev = next;
|
| + }
|
| + insert<Edge, &Edge::fPrevEdgeBelow, &Edge::fNextEdgeBelow>(
|
| + edge, prev, next, &v->fFirstEdgeBelow, &v->fLastEdgeBelow);
|
| +}
|
| +
|
| +void remove_edge_above(Edge* edge) {
|
| + LOG("removing edge (%g -> %g) above vertex %g\n", edge->fTop->fID, edge->fBottom->fID,
|
| + edge->fBottom->fID);
|
| + remove<Edge, &Edge::fPrevEdgeAbove, &Edge::fNextEdgeAbove>(
|
| + edge, &edge->fBottom->fFirstEdgeAbove, &edge->fBottom->fLastEdgeAbove);
|
| +}
|
| +
|
| +void remove_edge_below(Edge* edge) {
|
| + LOG("removing edge (%g -> %g) below vertex %g\n", edge->fTop->fID, edge->fBottom->fID,
|
| + edge->fTop->fID);
|
| + remove<Edge, &Edge::fPrevEdgeBelow, &Edge::fNextEdgeBelow>(
|
| + edge, &edge->fTop->fFirstEdgeBelow, &edge->fTop->fLastEdgeBelow);
|
| +}
|
| +
|
| +void erase_edge_if_zero_winding(Edge* edge, Edge** head) {
|
| + if (edge->fWinding != 0) {
|
| + return;
|
| + }
|
| + LOG("erasing edge (%g -> %g)\n", edge->fTop->fID, edge->fBottom->fID);
|
| + remove_edge_above(edge);
|
| + remove_edge_below(edge);
|
| + if (edge->isActive(head)) {
|
| + remove_edge(edge, head);
|
| + }
|
| +}
|
| +
|
| +void merge_collinear_edges(Edge* edge, Edge** activeEdges);
|
| +
|
| +void set_top(Edge* edge, Vertex* v, Edge** activeEdges) {
|
| + remove_edge_below(edge);
|
| + edge->fTop = v;
|
| + edge->recompute();
|
| + insert_edge_below(edge, v);
|
| + fix_active_state(edge, activeEdges);
|
| + merge_collinear_edges(edge, activeEdges);
|
| +}
|
| +
|
| +void set_bottom(Edge* edge, Vertex* v, Edge** activeEdges) {
|
| + remove_edge_above(edge);
|
| + edge->fBottom = v;
|
| + edge->recompute();
|
| + insert_edge_above(edge, v);
|
| + fix_active_state(edge, activeEdges);
|
| + merge_collinear_edges(edge, activeEdges);
|
| +}
|
| +
|
| +void merge_edges_above(Edge* edge, Edge* other, Edge** activeEdges) {
|
| + if (coincident(edge->fTop->fPoint, other->fTop->fPoint)) {
|
| + LOG("merging coincident above edges (%g, %g) -> (%g, %g)\n",
|
| + edge->fTop->fPoint.fX, edge->fTop->fPoint.fY,
|
| + edge->fBottom->fPoint.fX, edge->fBottom->fPoint.fY);
|
| + other->fWinding += edge->fWinding;
|
| + erase_edge_if_zero_winding(other, activeEdges);
|
| + edge->fWinding = 0;
|
| + erase_edge_if_zero_winding(edge, activeEdges);
|
| + } else if (sweep_lt(edge->fTop->fPoint, other->fTop->fPoint)) {
|
| + other->fWinding += edge->fWinding;
|
| + erase_edge_if_zero_winding(other, activeEdges);
|
| + set_bottom(edge, other->fTop, activeEdges);
|
| + } else {
|
| + edge->fWinding += other->fWinding;
|
| + erase_edge_if_zero_winding(edge, activeEdges);
|
| + set_bottom(other, edge->fTop, activeEdges);
|
| + }
|
| +}
|
| +
|
| +void merge_edges_below(Edge* edge, Edge* other, Edge** activeEdges) {
|
| + if (coincident(edge->fBottom->fPoint, other->fBottom->fPoint)) {
|
| + LOG("merging coincident below edges (%g, %g) -> (%g, %g)\n",
|
| + edge->fTop->fPoint.fX, edge->fTop->fPoint.fY,
|
| + edge->fBottom->fPoint.fX, edge->fBottom->fPoint.fY);
|
| + other->fWinding += edge->fWinding;
|
| + erase_edge_if_zero_winding(other, activeEdges);
|
| + edge->fWinding = 0;
|
| + erase_edge_if_zero_winding(edge, activeEdges);
|
| + } else if (sweep_lt(edge->fBottom->fPoint, other->fBottom->fPoint)) {
|
| + edge->fWinding += other->fWinding;
|
| + erase_edge_if_zero_winding(edge, activeEdges);
|
| + set_top(other, edge->fBottom, activeEdges);
|
| + } else {
|
| + other->fWinding += edge->fWinding;
|
| + erase_edge_if_zero_winding(other, activeEdges);
|
| + set_top(edge, other->fBottom, activeEdges);
|
| + }
|
| +}
|
| +
|
| +void merge_collinear_edges(Edge* edge, Edge** activeEdges) {
|
| + if (edge->fPrevEdgeAbove && (edge->fTop == edge->fPrevEdgeAbove->fTop ||
|
| + !edge->fPrevEdgeAbove->isLeftOf(edge->fTop))) {
|
| + merge_edges_above(edge, edge->fPrevEdgeAbove, activeEdges);
|
| + } else if (edge->fNextEdgeAbove && (edge->fTop == edge->fNextEdgeAbove->fTop ||
|
| + !edge->isLeftOf(edge->fNextEdgeAbove->fTop))) {
|
| + merge_edges_above(edge, edge->fNextEdgeAbove, activeEdges);
|
| + }
|
| + if (edge->fPrevEdgeBelow && (edge->fBottom == edge->fPrevEdgeBelow->fBottom ||
|
| + !edge->fPrevEdgeBelow->isLeftOf(edge->fBottom))) {
|
| + merge_edges_below(edge, edge->fPrevEdgeBelow, activeEdges);
|
| + } else if (edge->fNextEdgeBelow && (edge->fBottom == edge->fNextEdgeBelow->fBottom ||
|
| + !edge->isLeftOf(edge->fNextEdgeBelow->fBottom))) {
|
| + merge_edges_below(edge, edge->fNextEdgeBelow, activeEdges);
|
| + }
|
| +}
|
| +
|
| +void split_edge(Edge* edge, Vertex* v, Edge** activeEdges, SkChunkAlloc& alloc);
|
| +
|
| +void cleanup_active_edges(Edge* edge, Edge** activeEdges, SkChunkAlloc& alloc) {
|
| + Vertex* top = edge->fTop;
|
| + Vertex* bottom = edge->fBottom;
|
| + if (edge->fLeft) {
|
| + Vertex* leftTop = edge->fLeft->fTop;
|
| + Vertex* leftBottom = edge->fLeft->fBottom;
|
| + if (sweep_gt(top->fPoint, leftTop->fPoint) && !edge->fLeft->isLeftOf(top)) {
|
| + split_edge(edge->fLeft, edge->fTop, activeEdges, alloc);
|
| + } else if (sweep_gt(leftTop->fPoint, top->fPoint) && !edge->isRightOf(leftTop)) {
|
| + split_edge(edge, leftTop, activeEdges, alloc);
|
| + } else if (sweep_lt(bottom->fPoint, leftBottom->fPoint) && !edge->fLeft->isLeftOf(bottom)) {
|
| + split_edge(edge->fLeft, bottom, activeEdges, alloc);
|
| + } else if (sweep_lt(leftBottom->fPoint, bottom->fPoint) && !edge->isRightOf(leftBottom)) {
|
| + split_edge(edge, leftBottom, activeEdges, alloc);
|
| + }
|
| + }
|
| + if (edge->fRight) {
|
| + Vertex* rightTop = edge->fRight->fTop;
|
| + Vertex* rightBottom = edge->fRight->fBottom;
|
| + if (sweep_gt(top->fPoint, rightTop->fPoint) && !edge->fRight->isRightOf(top)) {
|
| + split_edge(edge->fRight, top, activeEdges, alloc);
|
| + } else if (sweep_gt(rightTop->fPoint, top->fPoint) && !edge->isLeftOf(rightTop)) {
|
| + split_edge(edge, rightTop, activeEdges, alloc);
|
| + } else if (sweep_lt(bottom->fPoint, rightBottom->fPoint) &&
|
| + !edge->fRight->isRightOf(bottom)) {
|
| + split_edge(edge->fRight, bottom, activeEdges, alloc);
|
| + } else if (sweep_lt(rightBottom->fPoint, bottom->fPoint) &&
|
| + !edge->isLeftOf(rightBottom)) {
|
| + split_edge(edge, rightBottom, activeEdges, alloc);
|
| + }
|
| + }
|
| +}
|
| +
|
| +void split_edge(Edge* edge, Vertex* v, Edge** activeEdges, SkChunkAlloc& alloc) {
|
| + LOG("splitting edge (%g -> %g) at vertex %g (%g, %g)\n",
|
| + edge->fTop->fID, edge->fBottom->fID,
|
| + v->fID, v->fPoint.fX, v->fPoint.fY);
|
| + Edge* newEdge = ALLOC_NEW(Edge, (v, edge->fBottom, edge->fWinding), alloc);
|
| + insert_edge_below(newEdge, v);
|
| + insert_edge_above(newEdge, edge->fBottom);
|
| + set_bottom(edge, v, activeEdges);
|
| + cleanup_active_edges(edge, activeEdges, alloc);
|
| + fix_active_state(newEdge, activeEdges);
|
| + merge_collinear_edges(newEdge, activeEdges);
|
| +}
|
| +
|
| +void merge_vertices(Vertex* src, Vertex* dst, Vertex** head, SkChunkAlloc& alloc) {
|
| + LOG("found coincident verts at %g, %g; merging %g into %g\n", src->fPoint.fX, src->fPoint.fY,
|
| + src->fID, dst->fID);
|
| + for (Edge* edge = src->fFirstEdgeAbove; edge;) {
|
| + Edge* next = edge->fNextEdgeAbove;
|
| + set_bottom(edge, dst, NULL);
|
| + edge = next;
|
| + }
|
| + for (Edge* edge = src->fFirstEdgeBelow; edge;) {
|
| + Edge* next = edge->fNextEdgeBelow;
|
| + set_top(edge, dst, NULL);
|
| + edge = next;
|
| + }
|
| + remove<Vertex, &Vertex::fPrev, &Vertex::fNext>(src, head, NULL);
|
| +}
|
| +
|
| +Vertex* check_for_intersection(Edge* edge, Edge* other, Edge** activeEdges, SkChunkAlloc& alloc) {
|
| + SkPoint p;
|
| + if (!edge || !other) {
|
| + return NULL;
|
| + }
|
| + if (edge->intersect(*other, &p)) {
|
| + Vertex* v;
|
| + LOG("found intersection, pt is %g, %g\n", p.fX, p.fY);
|
| + if (p == edge->fTop->fPoint || sweep_lt(p, edge->fTop->fPoint)) {
|
| + split_edge(other, edge->fTop, activeEdges, alloc);
|
| + v = edge->fTop;
|
| + } else if (p == edge->fBottom->fPoint || sweep_gt(p, edge->fBottom->fPoint)) {
|
| + split_edge(other, edge->fBottom, activeEdges, alloc);
|
| + v = edge->fBottom;
|
| + } else if (p == other->fTop->fPoint || sweep_lt(p, other->fTop->fPoint)) {
|
| + split_edge(edge, other->fTop, activeEdges, alloc);
|
| + v = other->fTop;
|
| + } else if (p == other->fBottom->fPoint || sweep_gt(p, other->fBottom->fPoint)) {
|
| + split_edge(edge, other->fBottom, activeEdges, alloc);
|
| + v = other->fBottom;
|
| + } else {
|
| + Vertex* nextV = edge->fTop;
|
| + while (sweep_lt(p, nextV->fPoint)) {
|
| + nextV = nextV->fPrev;
|
| + }
|
| + while (sweep_lt(nextV->fPoint, p)) {
|
| + nextV = nextV->fNext;
|
| + }
|
| + Vertex* prevV = nextV->fPrev;
|
| + if (coincident(prevV->fPoint, p)) {
|
| + v = prevV;
|
| + } else if (coincident(nextV->fPoint, p)) {
|
| + v = nextV;
|
| + } else {
|
| + v = ALLOC_NEW(Vertex, (p), alloc);
|
| + LOG("inserting between %g (%g, %g) and %g (%g, %g)\n",
|
| + prevV->fID, prevV->fPoint.fX, prevV->fPoint.fY,
|
| + nextV->fID, nextV->fPoint.fX, nextV->fPoint.fY);
|
| +#if LOGGING_ENABLED
|
| + v->fID = (nextV->fID + prevV->fID) * 0.5f;
|
| +#endif
|
| + v->fPrev = prevV;
|
| + v->fNext = nextV;
|
| + prevV->fNext = v;
|
| + nextV->fPrev = v;
|
| + }
|
| + split_edge(edge, v, activeEdges, alloc);
|
| + split_edge(other, v, activeEdges, alloc);
|
| + }
|
| +#ifdef SK_DEBUG
|
| + validate_connectivity(v);
|
| +#endif
|
| + return v;
|
| + }
|
| + return NULL;
|
| +}
|
| +
|
| +void sanitize_contours(Vertex** contours, int contourCnt) {
|
| + for (int i = 0; i < contourCnt; ++i) {
|
| + SkASSERT(contours[i]);
|
| + for (Vertex* v = contours[i];;) {
|
| + if (coincident(v->fPrev->fPoint, v->fPoint)) {
|
| + LOG("vertex %g,%g coincident; removing\n", v->fPoint.fX, v->fPoint.fY);
|
| + if (v->fPrev == v) {
|
| + contours[i] = NULL;
|
| + break;
|
| + }
|
| + v->fPrev->fNext = v->fNext;
|
| + v->fNext->fPrev = v->fPrev;
|
| + if (contours[i] == v) {
|
| + contours[i] = v->fNext;
|
| + }
|
| + v = v->fPrev;
|
| + } else {
|
| + v = v->fNext;
|
| + if (v == contours[i]) break;
|
| + }
|
| + }
|
| + }
|
| +}
|
| +
|
| +void merge_coincident_vertices(Vertex** vertices, SkChunkAlloc& alloc) {
|
| + for (Vertex* v = (*vertices)->fNext; v != NULL; v = v->fNext) {
|
| + if (sweep_lt(v->fPoint, v->fPrev->fPoint)) {
|
| + v->fPoint = v->fPrev->fPoint;
|
| + }
|
| + if (coincident(v->fPrev->fPoint, v->fPoint)) {
|
| + merge_vertices(v->fPrev, v, vertices, alloc);
|
| + }
|
| + }
|
| +}
|
| +
|
| +// Stage 2: convert the contours to a mesh of edges connecting the vertices.
|
| +
|
| +Vertex* build_edges(Vertex** contours, int contourCnt, SkChunkAlloc& alloc) {
|
| + Vertex* vertices = NULL;
|
| + Vertex* prev = NULL;
|
| + for (int i = 0; i < contourCnt; ++i) {
|
| + for (Vertex* v = contours[i]; v != NULL;) {
|
| + Vertex* vNext = v->fNext;
|
| + Edge* edge = new_edge(v->fPrev, v, alloc);
|
| + if (edge->fWinding > 0) {
|
| + insert_edge_below(edge, v->fPrev);
|
| + insert_edge_above(edge, v);
|
| + } else {
|
| + insert_edge_below(edge, v);
|
| + insert_edge_above(edge, v->fPrev);
|
| + }
|
| + merge_collinear_edges(edge, NULL);
|
| + if (prev) {
|
| + prev->fNext = v;
|
| + v->fPrev = prev;
|
| + } else {
|
| + vertices = v;
|
| + }
|
| + prev = v;
|
| + v = vNext;
|
| + if (v == contours[i]) break;
|
| + }
|
| + }
|
| + if (prev) {
|
| + prev->fNext = vertices->fPrev = NULL;
|
| + }
|
| + return vertices;
|
| +}
|
| +
|
| +// Stage 3: sort the vertices by increasing Y (or X if SWEEP_IN_X is on).
|
| +
|
| +Vertex* sorted_merge(Vertex* a, Vertex* b);
|
| +
|
| +void front_back_split(Vertex* v, Vertex** pFront, Vertex** pBack) {
|
| + Vertex* fast;
|
| + Vertex* slow;
|
| + if (!v || !v->fNext) {
|
| + *pFront = v;
|
| + *pBack = NULL;
|
| + } else {
|
| + slow = v;
|
| + fast = v->fNext;
|
| +
|
| + while (fast != NULL) {
|
| + fast = fast->fNext;
|
| + if (fast != NULL) {
|
| + slow = slow->fNext;
|
| + fast = fast->fNext;
|
| + }
|
| + }
|
| +
|
| + *pFront = v;
|
| + *pBack = slow->fNext;
|
| + slow->fNext->fPrev = NULL;
|
| + slow->fNext = NULL;
|
| + }
|
| +}
|
| +
|
| +void merge_sort(Vertex** head) {
|
| + if (!*head || !(*head)->fNext) {
|
| + return;
|
| + }
|
| +
|
| + Vertex* a;
|
| + Vertex* b;
|
| + front_back_split(*head, &a, &b);
|
| +
|
| + merge_sort(&a);
|
| + merge_sort(&b);
|
| +
|
| + *head = sorted_merge(a, b);
|
| +}
|
| +
|
| +Vertex* sorted_merge(Vertex* a, Vertex* b) {
|
| + if (!a) {
|
| + return b;
|
| + } else if (!b) {
|
| + return a;
|
| + }
|
| +
|
| + Vertex* result = NULL;
|
| +
|
| + if (sweep_lt(a->fPoint, b->fPoint)) {
|
| + result = a;
|
| + result->fNext = sorted_merge(a->fNext, b);
|
| + } else {
|
| + result = b;
|
| + result->fNext = sorted_merge(a, b->fNext);
|
| + }
|
| + result->fNext->fPrev = result;
|
| + return result;
|
| +}
|
| +
|
| +// Stage 4: Simplify the mesh by inserting new vertices at intersecting edges.
|
| +
|
| +void simplify(Vertex* vertices, SkChunkAlloc& alloc) {
|
| + LOG("simplifying complex polygons\n");
|
| + Edge* activeEdges = NULL;
|
| + for (Vertex* v = vertices; v != NULL; v = v->fNext) {
|
| + if (!v->fFirstEdgeAbove && !v->fFirstEdgeBelow) {
|
| + continue;
|
| + }
|
| +#if LOGGING_ENABLED
|
| + LOG("\nvertex %g: (%g,%g)\n", v->fID, v->fPoint.fX, v->fPoint.fY);
|
| +#endif
|
| +#ifdef SK_DEBUG
|
| + validate_connectivity(v);
|
| +#endif
|
| + Edge* leftEnclosingEdge = NULL;
|
| + Edge* rightEnclosingEdge = NULL;
|
| + bool restartChecks;
|
| + do {
|
| + restartChecks = false;
|
| + find_enclosing_edges(v, activeEdges, &leftEnclosingEdge, &rightEnclosingEdge);
|
| + if (v->fFirstEdgeBelow) {
|
| + for (Edge* edge = v->fFirstEdgeBelow; edge != NULL; edge = edge->fNextEdgeBelow) {
|
| + if (check_for_intersection(edge, leftEnclosingEdge, &activeEdges, alloc)) {
|
| + restartChecks = true;
|
| + break;
|
| + }
|
| + if (check_for_intersection(edge, rightEnclosingEdge, &activeEdges, alloc)) {
|
| + restartChecks = true;
|
| + break;
|
| + }
|
| + }
|
| + } else {
|
| + if (Vertex* pv = check_for_intersection(leftEnclosingEdge, rightEnclosingEdge,
|
| + &activeEdges, alloc)) {
|
| + if (sweep_lt(pv->fPoint, v->fPoint)) {
|
| + v = pv;
|
| + }
|
| + restartChecks = true;
|
| + }
|
| +
|
| + }
|
| + } while (restartChecks);
|
| + SkASSERT(!leftEnclosingEdge || leftEnclosingEdge->isLeftOf(v));
|
| + SkASSERT(!rightEnclosingEdge || rightEnclosingEdge->isRightOf(v));
|
| +#ifdef SK_DEBUG
|
| + validate_edges(activeEdges);
|
| +#endif
|
| + for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
|
| + remove_edge(e, &activeEdges);
|
| + }
|
| + Edge* leftEdge = leftEnclosingEdge;
|
| + for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
|
| + insert_edge(e, leftEdge, &activeEdges);
|
| + leftEdge = e;
|
| + }
|
| + v->fProcessed = true;
|
| + }
|
| +}
|
| +
|
| +// Stage 5: Tessellate the simplified mesh into monotone polygons.
|
| +
|
| +Poly* tessellate(Vertex* vertices, SkChunkAlloc& alloc) {
|
| + LOG("tessellating simple polygons\n");
|
| + Edge* activeEdges = NULL;
|
| + Poly* polys = NULL;
|
| + for (Vertex* v = vertices; v != NULL; v = v->fNext) {
|
| + if (!v->fFirstEdgeAbove && !v->fFirstEdgeBelow) {
|
| + continue;
|
| + }
|
| +#if LOGGING_ENABLED
|
| + LOG("\nvertex %g: (%g,%g)\n", v->fID, v->fPoint.fX, v->fPoint.fY);
|
| +#endif
|
| +#ifdef SK_DEBUG
|
| + validate_connectivity(v);
|
| +#endif
|
| + Edge* leftEnclosingEdge = NULL;
|
| + Edge* rightEnclosingEdge = NULL;
|
| + find_enclosing_edges(v, activeEdges, &leftEnclosingEdge, &rightEnclosingEdge);
|
| + SkASSERT(!leftEnclosingEdge || leftEnclosingEdge->isLeftOf(v));
|
| + SkASSERT(!rightEnclosingEdge || rightEnclosingEdge->isRightOf(v));
|
| +#ifdef SK_DEBUG
|
| + validate_edges(activeEdges);
|
| +#endif
|
| + Poly* leftPoly = NULL;
|
| + Poly* rightPoly = NULL;
|
| + if (v->fFirstEdgeAbove) {
|
| + leftPoly = v->fFirstEdgeAbove->fLeftPoly;
|
| + rightPoly = v->fLastEdgeAbove->fRightPoly;
|
| + } else {
|
| + leftPoly = leftEnclosingEdge ? leftEnclosingEdge->fRightPoly : NULL;
|
| + rightPoly = rightEnclosingEdge ? rightEnclosingEdge->fLeftPoly : NULL;
|
| + }
|
| +#if LOGGING_ENABLED
|
| + LOG("edges above:\n");
|
| + for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
|
| + LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID,
|
| + e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRightPoly->fID : -1);
|
| + }
|
| + LOG("edges below:\n");
|
| + for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
|
| + LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID,
|
| + e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRightPoly->fID : -1);
|
| + }
|
| +#endif
|
| + if (v->fFirstEdgeAbove) {
|
| + if (leftPoly) {
|
| + leftPoly = leftPoly->addVertex(v, Poly::kRight_Side, alloc);
|
| + }
|
| + if (rightPoly) {
|
| + rightPoly = rightPoly->addVertex(v, Poly::kLeft_Side, alloc);
|
| + }
|
| + for (Edge* e = v->fFirstEdgeAbove; e != v->fLastEdgeAbove; e = e->fNextEdgeAbove) {
|
| + Edge* leftEdge = e;
|
| + Edge* rightEdge = e->fNextEdgeAbove;
|
| + SkASSERT(rightEdge->isRightOf(leftEdge->fTop));
|
| + remove_edge(leftEdge, &activeEdges);
|
| + if (leftEdge->fRightPoly) {
|
| + leftEdge->fRightPoly->end(v, alloc);
|
| + }
|
| + if (rightEdge->fLeftPoly && rightEdge->fLeftPoly != leftEdge->fRightPoly) {
|
| + rightEdge->fLeftPoly->end(v, alloc);
|
| + }
|
| + }
|
| + remove_edge(v->fLastEdgeAbove, &activeEdges);
|
| + if (!v->fFirstEdgeBelow) {
|
| + if (leftPoly && rightPoly && leftPoly != rightPoly) {
|
| + SkASSERT(leftPoly->fPartner == NULL && rightPoly->fPartner == NULL);
|
| + rightPoly->fPartner = leftPoly;
|
| + leftPoly->fPartner = rightPoly;
|
| + }
|
| + }
|
| + }
|
| + if (v->fFirstEdgeBelow) {
|
| + if (!v->fFirstEdgeAbove) {
|
| + if (leftPoly && leftPoly == rightPoly) {
|
| + // Split the poly.
|
| + if (leftPoly->fActive->fSide == Poly::kLeft_Side) {
|
| + leftPoly = new_poly(&polys, leftEnclosingEdge->fTop, leftPoly->fWinding,
|
| + alloc);
|
| + leftPoly->addVertex(v, Poly::kRight_Side, alloc);
|
| + rightPoly->addVertex(v, Poly::kLeft_Side, alloc);
|
| + leftEnclosingEdge->fRightPoly = leftPoly;
|
| + } else {
|
| + rightPoly = new_poly(&polys, rightEnclosingEdge->fTop, rightPoly->fWinding,
|
| + alloc);
|
| + rightPoly->addVertex(v, Poly::kLeft_Side, alloc);
|
| + leftPoly->addVertex(v, Poly::kRight_Side, alloc);
|
| + rightEnclosingEdge->fLeftPoly = rightPoly;
|
| + }
|
| + } else {
|
| + if (leftPoly) {
|
| + leftPoly = leftPoly->addVertex(v, Poly::kRight_Side, alloc);
|
| + }
|
| + if (rightPoly) {
|
| + rightPoly = rightPoly->addVertex(v, Poly::kLeft_Side, alloc);
|
| + }
|
| + }
|
| + }
|
| + Edge* leftEdge = v->fFirstEdgeBelow;
|
| + leftEdge->fLeftPoly = leftPoly;
|
| + insert_edge(leftEdge, leftEnclosingEdge, &activeEdges);
|
| + for (Edge* rightEdge = leftEdge->fNextEdgeBelow; rightEdge;
|
| + rightEdge = rightEdge->fNextEdgeBelow) {
|
| + insert_edge(rightEdge, leftEdge, &activeEdges);
|
| + int winding = leftEdge->fLeftPoly ? leftEdge->fLeftPoly->fWinding : 0;
|
| + winding += leftEdge->fWinding;
|
| + if (winding != 0) {
|
| + Poly* poly = new_poly(&polys, v, winding, alloc);
|
| + leftEdge->fRightPoly = rightEdge->fLeftPoly = poly;
|
| + }
|
| + leftEdge = rightEdge;
|
| + }
|
| + v->fLastEdgeBelow->fRightPoly = rightPoly;
|
| + }
|
| +#ifdef SK_DEBUG
|
| + validate_edges(activeEdges);
|
| +#endif
|
| +#if LOGGING_ENABLED
|
| + LOG("\nactive edges:\n");
|
| + for (Edge* e = activeEdges; e != NULL; e = e->fRight) {
|
| + LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID,
|
| + e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRightPoly->fID : -1);
|
| + }
|
| +#endif
|
| + }
|
| + return polys;
|
| +}
|
| +
|
| +// This is a driver function which calls stages 2-5 in turn.
|
| +
|
| +Poly* contours_to_polys(Vertex** contours, int contourCnt, SkChunkAlloc& alloc) {
|
| +#if LOGGING_ENABLED
|
| + for (int i = 0; i < contourCnt; ++i) {
|
| + Vertex* v = contours[i];
|
| + SkASSERT(v);
|
| + LOG("path.moveTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY);
|
| + for (v = v->fNext; v != contours[i]; v = v->fNext) {
|
| + LOG("path.lineTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY);
|
| + }
|
| + }
|
| +#endif
|
| + sanitize_contours(contours, contourCnt);
|
| + Vertex* vertices = build_edges(contours, contourCnt, alloc);
|
| + if (!vertices) {
|
| + return NULL;
|
| + }
|
| +
|
| + // Sort vertices in Y (secondarily in X).
|
| + merge_sort(&vertices);
|
| + merge_coincident_vertices(&vertices, alloc);
|
| +#if LOGGING_ENABLED
|
| + for (Vertex* v = vertices; v != NULL; v = v->fNext) {
|
| + static float gID = 0.0f;
|
| + v->fID = gID++;
|
| + }
|
| +#endif
|
| + simplify(vertices, alloc);
|
| + return tessellate(vertices, alloc);
|
| +}
|
| +
|
| +// Stage 6: Triangulate the monotone polygons into a vertex buffer.
|
| +
|
| +void* polys_to_triangles(Poly* polys, SkPath::FillType fillType, void* data) {
|
| + void* d = data;
|
| + for (Poly* poly = polys; poly; poly = poly->fNext) {
|
| + if (apply_fill_type(fillType, poly->fWinding)) {
|
| + d = poly->emit(d);
|
| + }
|
| + }
|
| + return d;
|
| +}
|
| +
|
| +};
|
| +
|
| +GrTessellatingPathRenderer::GrTessellatingPathRenderer() {
|
| +}
|
| +
|
| +GrPathRenderer::StencilSupport GrTessellatingPathRenderer::onGetStencilSupport(
|
| + const GrDrawTarget*,
|
| + const GrPipelineBuilder*,
|
| + const SkPath&,
|
| + const SkStrokeRec&) const {
|
| + return GrPathRenderer::kNoSupport_StencilSupport;
|
| +}
|
| +
|
| +bool GrTessellatingPathRenderer::canDrawPath(const GrDrawTarget* target,
|
| + const GrPipelineBuilder* pipelineBuilder,
|
| + const SkMatrix& viewMatrix,
|
| + const SkPath& path,
|
| + const SkStrokeRec& stroke,
|
| + bool antiAlias) const {
|
| + // This path renderer can draw all fill styles, but does not do antialiasing. It can do convex
|
| + // and concave paths, but we'll leave the convex ones to simpler algorithms.
|
| + return stroke.isFillStyle() && !antiAlias && !path.isConvex();
|
| +}
|
| +
|
| +bool GrTessellatingPathRenderer::onDrawPath(GrDrawTarget* target,
|
| + GrPipelineBuilder* pipelineBuilder,
|
| + GrColor color,
|
| + const SkMatrix& viewM,
|
| + const SkPath& path,
|
| + const SkStrokeRec& stroke,
|
| + bool antiAlias) {
|
| + SkASSERT(!antiAlias);
|
| + const GrRenderTarget* rt = pipelineBuilder->getRenderTarget();
|
| + if (NULL == rt) {
|
| + return false;
|
| + }
|
| +
|
| + SkScalar tol = GrPathUtils::scaleToleranceToSrc(SK_Scalar1, viewM, path.getBounds());
|
| +
|
| + int contourCnt;
|
| + int maxPts = GrPathUtils::worstCasePointCount(path, &contourCnt, tol);
|
| + if (maxPts <= 0) {
|
| + return false;
|
| + }
|
| + if (maxPts > ((int)SK_MaxU16 + 1)) {
|
| + SkDebugf("Path not rendered, too many verts (%d)\n", maxPts);
|
| + return false;
|
| + }
|
| + SkPath::FillType fillType = path.getFillType();
|
| + if (SkPath::IsInverseFillType(fillType)) {
|
| + contourCnt++;
|
| + }
|
| +
|
| + LOG("got %d pts, %d contours\n", maxPts, contourCnt);
|
| +
|
| + SkAutoTDeleteArray<Vertex*> contours(SkNEW_ARRAY(Vertex *, contourCnt));
|
| +
|
| + // For the initial size of the chunk allocator, estimate based on the point count:
|
| + // one vertex per point for the initial passes, plus two for the vertices in the
|
| + // resulting Polys, since the same point may end up in two Polys. Assume minimal
|
| + // connectivity of one Edge per Vertex (will grow for intersections).
|
| + SkChunkAlloc alloc(maxPts * (3 * sizeof(Vertex) + sizeof(Edge)));
|
| + SkIRect clipBoundsI;
|
| + pipelineBuilder->clip().getConservativeBounds(rt, &clipBoundsI);
|
| + SkRect clipBounds = SkRect::Make(clipBoundsI);
|
| + SkMatrix vmi;
|
| + if (!viewM.invert(&vmi)) {
|
| + return false;
|
| + }
|
| + vmi.mapRect(&clipBounds);
|
| + path_to_contours(path, tol, clipBounds, contours.get(), alloc);
|
| + Poly* polys;
|
| + uint32_t flags = GrDefaultGeoProcFactory::kPosition_GPType;
|
| + polys = contours_to_polys(contours.get(), contourCnt, alloc);
|
| + SkAutoTUnref<const GrGeometryProcessor> gp(
|
| + GrDefaultGeoProcFactory::Create(flags, color, viewM, SkMatrix::I()));
|
| + int count = 0;
|
| + for (Poly* poly = polys; poly; poly = poly->fNext) {
|
| + if (apply_fill_type(fillType, poly->fWinding) && poly->fCount >= 3) {
|
| + count += (poly->fCount - 2) * (WIREFRAME ? 6 : 3);
|
| + }
|
| + }
|
| +
|
| + int stride = gp->getVertexStride();
|
| + GrDrawTarget::AutoReleaseGeometry arg;
|
| + if (!arg.set(target, count, stride, 0)) {
|
| + return false;
|
| + }
|
| + LOG("emitting %d verts\n", count);
|
| + void* end = polys_to_triangles(polys, fillType, arg.vertices());
|
| + int actualCount = (static_cast<char*>(end) - static_cast<char*>(arg.vertices())) / stride;
|
| + LOG("actual count: %d\n", actualCount);
|
| + SkASSERT(actualCount <= count);
|
| +
|
| + GrPrimitiveType primitiveType = WIREFRAME ? kLines_GrPrimitiveType
|
| + : kTriangles_GrPrimitiveType;
|
| + target->drawNonIndexed(pipelineBuilder, gp, primitiveType, 0, actualCount);
|
| +
|
| + return true;
|
| +}
|
|
|