Index: src/gpu/GrTessellatingPathRenderer.cpp |
diff --git a/src/gpu/GrTessellatingPathRenderer.cpp b/src/gpu/GrTessellatingPathRenderer.cpp |
new file mode 100644 |
index 0000000000000000000000000000000000000000..3d7d89b48b3c5df9723f55162ac7801f0fcc36b2 |
--- /dev/null |
+++ b/src/gpu/GrTessellatingPathRenderer.cpp |
@@ -0,0 +1,1508 @@ |
+/* |
+ * Copyright 2015 Google Inc. |
+ * |
+ * Use of this source code is governed by a BSD-style license that can be |
+ * found in the LICENSE file. |
+ */ |
+ |
+#include "GrTessellatingPathRenderer.h" |
+ |
+#include "GrDefaultGeoProcFactory.h" |
+#include "GrPathUtils.h" |
+#include "SkChunkAlloc.h" |
+#include "SkGeometry.h" |
+ |
+#include <stdio.h> |
+ |
+/* |
+ * This path renderer tessellates the path into triangles, uploads the triangles to a |
+ * vertex buffer, and renders them with a single draw call. It does not currently do |
+ * antialiasing, so it must be used in conjunction with multisampling. |
+ * |
+ * There are six stages to the algorithm: |
+ * |
+ * 1) Linearize the path contours into piecewise linear segments (path_to_contours()). |
+ * 2) Build a mesh of edges connecting the vertices (build_edges()). |
+ * 3) Sort the vertices in Y (and secondarily in X) (merge_sort()). |
+ * 4) Simplify the mesh by inserting new vertices at intersecting edges (simplify()). |
+ * 5) Tessellate the simplified mesh into monotone polygons (tessellate()). |
+ * 6) Triangulate the monotone polygons directly into a vertex buffer (polys_to_triangles()). |
+ * |
+ * The vertex sorting in step (3) is a merge sort, since it plays well with the linked list |
+ * of vertices (and the necessity of inserting new vertices on intersection). |
+ * |
+ * Stages (4) and (5) use an active edge list, which a list of all edges for which the |
+ * sweep line has crossed the top vertex, but not the bottom vertex. It's sorted |
+ * left-to-right based on the point where both edges are active (when both top vertices |
+ * have been seen, so the "lower" top vertex of the two). If the top vertices are equal |
+ * (shared), it's sorted based on the last point where both edges are active, so the |
+ * "upper" bottom vertex. |
+ * |
+ * The most complex step is the simplification (4). It's based on the Bentley-Ottman |
+ * line-sweep algorithm, but due to floating point inaccuracy, the intersection points are |
+ * not exact and may violate the mesh topology or active edge list ordering. We |
+ * accommodate this by adjusting the topology of the mesh and AEL to match the intersection |
+ * points. This occurs in three ways: |
+ * |
+ * A) Intersections may cause a shortened edge to no longer be ordered with respect to its |
+ * neighbouring edges at the top or bottom vertex. This is handled by merging the |
+ * edges (merge_collinear_edges()). |
+ * B) Intersections may cause an edge to violate the left-to-right ordering of the |
+ * active edge list. This is handled by splitting the neighbour edge on the |
+ * intersected vertex (cleanup_active_edges()). |
+ * C) Shortening an edge may cause an active edge to become inactive or an inactive edge |
+ * to become active. This is handled by removing or inserting the edge in the active |
+ * edge list (fix_active_state()). |
+ * |
+ * The tessellation steps (5) and (6) are based on "Triangulating Simple Polygons and |
+ * Equivalent Problems" (Fournier and Montuno); also a line-sweep algorithm. Note that it |
+ * currently uses a linked list for the active edge list, rather than a 2-3 tree as the |
+ * paper describes. The 2-3 tree gives O(lg N) lookups, but insertion and removal also |
+ * become O(lg N). In all the test cases, it was found that the cost of frequent O(lg N) |
+ * insertions and removals was greater than the cost of infrequent O(N) lookups with the |
+ * linked list implementation. With the latter, all removals are O(1), and most insertions |
+ * are O(1), since we know the adjacent edge in the active edge list based on the topology. |
+ * Only type 2 vertices (see paper) require the O(N) lookups, and these are much less |
+ * frequent. There may be other data structures worth investigating, however. |
+ * |
+ * Note that there is a compile-time flag (SWEEP_IN_X) which changes the orientation of the |
+ * line sweep algorithms. When SWEEP_IN_X is unset, we sort vertices based on increasing |
+ * Y coordinate, and secondarily by increasing X coordinate. When SWEEP_IN_X is set, we sort by |
+ * increasing X coordinate, but secondarily by *decreasing* Y coordinate. This is so that the |
+ * "left" and "right" orientation in the code remains correct (edges to the left are increasing |
+ * in Y; edges to the right are decreasing in Y). That is, the setting rotates 90 degrees |
+ * counterclockwise, rather that transposing. |
+ * |
+ * The choice is arbitrary, but most test cases are wider than they are tall, so the |
+ * default is to sweep in X. In the future, we may want to make this a runtime parameter |
+ * and base it on the aspect ratio of the clip bounds. |
+ */ |
+#define LOGGING_ENABLED 0 |
+#define WIREFRAME 0 |
+#define SWEEP_IN_X 1 |
+ |
+#if LOGGING_ENABLED |
+#define LOG printf |
+#else |
+#define LOG(...) |
+#endif |
+ |
+#define ALLOC_NEW(Type, args, alloc) \ |
+ SkNEW_PLACEMENT_ARGS(alloc.allocThrow(sizeof(Type)), Type, args) |
+ |
+namespace { |
+ |
+struct Vertex; |
+struct Edge; |
+struct Poly; |
+ |
+template <class T, T* T::*Prev, T* T::*Next> |
+void insert(T* t, T* prev, T* next, T** head, T** tail) { |
+ t->*Prev = prev; |
+ t->*Next = next; |
+ if (prev) { |
+ prev->*Next = t; |
+ } else if (head) { |
+ *head = t; |
+ } |
+ if (next) { |
+ next->*Prev = t; |
+ } else if (tail) { |
+ *tail = t; |
+ } |
+} |
+ |
+template <class T, T* T::*Prev, T* T::*Next> |
+void remove(T* t, T** head, T** tail) { |
+ if (t->*Prev) { |
+ t->*Prev->*Next = t->*Next; |
+ } else if (head) { |
+ *head = t->*Next; |
+ } |
+ if (t->*Next) { |
+ t->*Next->*Prev = t->*Prev; |
+ } else if (tail) { |
+ *tail = t->*Prev; |
+ } |
+ t->*Prev = t->*Next = NULL; |
+} |
+ |
+/** |
+ * Vertices are used in three ways: first, the path contours are converted into a |
+ * circularly-linked list of Vertices for each contour. After edge construction, the same Vertices |
+ * are re-ordered by the merge sort according to the sweep_lt comparator (usually, increasing |
+ * in Y) using the same fPrev/fNext pointers that were used for the contours, to avoid |
+ * reallocation. Finally, MonotonePolys are built containing a circularly-linked list of |
+ * Vertices. (Currently, those Vertices are newly-allocated for the MonotonePolys, since |
+ * an individual Vertex from the path mesh may belong to multiple |
+ * MonotonePolys, so the original Vertices cannot be re-used. |
+ */ |
+ |
+struct Vertex { |
+ Vertex(const SkPoint& point) |
+ : fPoint(point), fPrev(NULL), fNext(NULL) |
+ , fFirstEdgeAbove(NULL), fLastEdgeAbove(NULL) |
+ , fFirstEdgeBelow(NULL), fLastEdgeBelow(NULL) |
+ , fProcessed(false) |
+#if LOGGING_ENABLED |
+ , fID (-1.0f) |
+#endif |
+ {} |
+ SkPoint fPoint; // Vertex position |
+ Vertex* fPrev; // Linked list of contours, then Y-sorted vertices. |
+ Vertex* fNext; // " |
+ Edge* fFirstEdgeAbove; // Linked list of edges above this vertex. |
+ Edge* fLastEdgeAbove; // " |
+ Edge* fFirstEdgeBelow; // Linked list of edges below this vertex. |
+ Edge* fLastEdgeBelow; // " |
+ bool fProcessed; // Has this vertex been seen in simplify()? |
+#if LOGGING_ENABLED |
+ float fID; // Identifier used for logging. |
+#endif |
+}; |
+ |
+/***************************************************************************************/ |
+ |
+bool sweep_lt(const SkPoint& a, const SkPoint& b) { |
+#if SWEEP_IN_X |
+ return a.fX == b.fX ? a.fY > b.fY : a.fX < b.fX; |
+#else |
+ return a.fY == b.fY ? a.fX < b.fX : a.fY < b.fY; |
+#endif |
+} |
+ |
+bool sweep_gt(const SkPoint& a, const SkPoint& b) { |
+#if SWEEP_IN_X |
+ return a.fX == b.fX ? a.fY < b.fY : a.fX > b.fX; |
+#else |
+ return a.fY == b.fY ? a.fX > b.fX : a.fY > b.fY; |
+#endif |
+} |
+ |
+inline void* emit_vertex(Vertex* v, void* data) { |
+ SkPoint* d = static_cast<SkPoint*>(data); |
+ *d++ = v->fPoint; |
+ return d; |
+} |
+ |
+void* emit_triangle(Vertex* v0, Vertex* v1, Vertex* v2, void* data) { |
+#if WIREFRAME |
+ data = emit_vertex(v0, data); |
+ data = emit_vertex(v1, data); |
+ data = emit_vertex(v1, data); |
+ data = emit_vertex(v2, data); |
+ data = emit_vertex(v2, data); |
+ data = emit_vertex(v0, data); |
+#else |
+ data = emit_vertex(v0, data); |
+ data = emit_vertex(v1, data); |
+ data = emit_vertex(v2, data); |
+#endif |
+ return data; |
+} |
+ |
+/** |
+ * An Edge joins a top Vertex to a bottom Vertex. Edge ordering for the list of "edges above" and |
+ * "edge below" a vertex as well as for the active edge list is handled by isLeftOf()/isRightOf(). |
+ * Note that an Edge will give occasionally dist() != 0 for its own endpoints (because floating |
+ * point). For speed, that case is only tested by the callers which require it (e.g., |
+ * cleanup_active_edges()). Edges also handle checking for intersection with other edges. |
+ * Currently, this converts the edges to the parametric form, in order to avoid doing a division |
+ * until an intersection has been confirmed. This is slightly slower in the "found" case, but |
+ * a lot faster in the "not found" case. |
+ * |
+ * The coefficients of the line equation stored in double precision to avoid catastrphic |
+ * cancellation in the isLeftOf() and isRightOf() checks. Using doubles ensures that the result is |
+ * correct in float, since it's a polynomial of degree 2. The intersect() function, being |
+ * degree 5, is still subject to catastrophic cancellation. We deal with that by assuming its |
+ * output may be incorrect, and adjusting the mesh topology to match (see comment at the top of |
+ * this file). |
+ */ |
+ |
+struct Edge { |
+ Edge(Vertex* top, Vertex* bottom, int winding) |
+ : fWinding(winding) |
+ , fTop(top) |
+ , fBottom(bottom) |
+ , fLeft(NULL) |
+ , fRight(NULL) |
+ , fPrevEdgeAbove(NULL) |
+ , fNextEdgeAbove(NULL) |
+ , fPrevEdgeBelow(NULL) |
+ , fNextEdgeBelow(NULL) |
+ , fLeftPoly(NULL) |
+ , fRightPoly(NULL) { |
+ recompute(); |
+ } |
+ int fWinding; // 1 == edge goes downward; -1 = edge goes upward. |
+ Vertex* fTop; // The top vertex in vertex-sort-order (sweep_lt). |
+ Vertex* fBottom; // The bottom vertex in vertex-sort-order. |
+ Edge* fLeft; // The linked list of edges in the active edge list. |
+ Edge* fRight; // " |
+ Edge* fPrevEdgeAbove; // The linked list of edges in the bottom Vertex's "edges above". |
+ Edge* fNextEdgeAbove; // " |
+ Edge* fPrevEdgeBelow; // The linked list of edges in the top Vertex's "edges below". |
+ Edge* fNextEdgeBelow; // " |
+ Poly* fLeftPoly; // The Poly to the left of this edge, if any. |
+ Poly* fRightPoly; // The Poly to the right of this edge, if any. |
+ double fDX; // The line equation for this edge, in implicit form. |
+ double fDY; // fDY * x + fDX * y + fC = 0, for point (x, y) on the line. |
+ double fC; |
+ double dist(const SkPoint& p) const { |
+ return fDY * p.fX - fDX * p.fY + fC; |
+ } |
+ bool isRightOf(Vertex* v) const { |
+ return dist(v->fPoint) < 0.0; |
+ } |
+ bool isLeftOf(Vertex* v) const { |
+ return dist(v->fPoint) > 0.0; |
+ } |
+ void recompute() { |
+ fDX = static_cast<double>(fBottom->fPoint.fX) - fTop->fPoint.fX; |
+ fDY = static_cast<double>(fBottom->fPoint.fY) - fTop->fPoint.fY; |
+ fC = static_cast<double>(fTop->fPoint.fY) * fBottom->fPoint.fX - |
+ static_cast<double>(fTop->fPoint.fX) * fBottom->fPoint.fY; |
+ } |
+ bool intersect(const Edge& other, SkPoint* p) { |
+ LOG("intersecting %g -> %g with %g -> %g\n", |
+ fTop->fID, fBottom->fID, |
+ other.fTop->fID, other.fBottom->fID); |
+ if (fTop == other.fTop || fBottom == other.fBottom) { |
+ return false; |
+ } |
+ double denom = fDX * other.fDY - fDY * other.fDX; |
+ if (denom == 0.0) { |
+ return false; |
+ } |
+ double dx = static_cast<double>(fTop->fPoint.fX) - other.fTop->fPoint.fX; |
+ double dy = static_cast<double>(fTop->fPoint.fY) - other.fTop->fPoint.fY; |
+ double sNumer = dy * other.fDX - dx * other.fDY; |
+ double tNumer = dy * fDX - dx * fDY; |
+ // If (sNumer / denom) or (tNumer / denom) is not in [0..1], exit early. |
+ // This saves us doing the divide below unless absolutely necessary. |
+ if (denom > 0.0 ? (sNumer < 0.0 || sNumer > denom || tNumer < 0.0 || tNumer > denom) |
+ : (sNumer > 0.0 || sNumer < denom || tNumer > 0.0 || tNumer < denom)) { |
+ return false; |
+ } |
+ double s = sNumer / denom; |
+ SkASSERT(s >= 0.0 && s <= 1.0); |
+ p->fX = SkDoubleToScalar(fTop->fPoint.fX + s * fDX); |
+ p->fY = SkDoubleToScalar(fTop->fPoint.fY + s * fDY); |
+ return true; |
+ } |
+ bool isActive(Edge** activeEdges) const { |
+ return activeEdges && (fLeft || fRight || *activeEdges == this); |
+ } |
+}; |
+ |
+/***************************************************************************************/ |
+ |
+struct Poly { |
+ Poly(int winding) |
+ : fWinding(winding) |
+ , fHead(NULL) |
+ , fTail(NULL) |
+ , fActive(NULL) |
+ , fNext(NULL) |
+ , fPartner(NULL) |
+ , fCount(0) |
+ { |
+#if LOGGING_ENABLED |
+ static int gID = 0; |
+ fID = gID++; |
+ LOG("*** created Poly %d\n", fID); |
+#endif |
+ } |
+ typedef enum { kNeither_Side, kLeft_Side, kRight_Side } Side; |
+ struct MonotonePoly { |
+ MonotonePoly() |
+ : fSide(kNeither_Side) |
+ , fHead(NULL) |
+ , fTail(NULL) |
+ , fPrev(NULL) |
+ , fNext(NULL) {} |
+ Side fSide; |
+ Vertex* fHead; |
+ Vertex* fTail; |
+ MonotonePoly* fPrev; |
+ MonotonePoly* fNext; |
+ bool addVertex(Vertex* v, Side side, SkChunkAlloc& alloc) { |
+ Vertex* newV = ALLOC_NEW(Vertex, (v->fPoint), alloc); |
+ bool done = false; |
+ if (fSide == kNeither_Side) { |
+ fSide = side; |
+ } else { |
+ done = side != fSide; |
+ } |
+ if (fHead == NULL) { |
+ fHead = fTail = newV; |
+ } else if (fSide == kRight_Side) { |
+ newV->fPrev = fTail; |
+ fTail->fNext = newV; |
+ fTail = newV; |
+ } else { |
+ newV->fNext = fHead; |
+ fHead->fPrev = newV; |
+ fHead = newV; |
+ } |
+ return done; |
+ } |
+ |
+ void* emit(void* data) { |
+ Vertex* first = fHead; |
+ Vertex* v = first->fNext; |
+ while (v != fTail) { |
+ SkASSERT(v && v->fPrev && v->fNext); |
+#ifdef SK_DEBUG |
+ validate(); |
+#endif |
+ Vertex* prev = v->fPrev; |
+ Vertex* curr = v; |
+ Vertex* next = v->fNext; |
+ double ax = static_cast<double>(curr->fPoint.fX) - prev->fPoint.fX; |
+ double ay = static_cast<double>(curr->fPoint.fY) - prev->fPoint.fY; |
+ double bx = static_cast<double>(next->fPoint.fX) - curr->fPoint.fX; |
+ double by = static_cast<double>(next->fPoint.fY) - curr->fPoint.fY; |
+ if (ax * by - ay * bx >= 0.0) { |
+ data = emit_triangle(prev, curr, next, data); |
+ v->fPrev->fNext = v->fNext; |
+ v->fNext->fPrev = v->fPrev; |
+ if (v->fPrev == first) { |
+ v = v->fNext; |
+ } else { |
+ v = v->fPrev; |
+ } |
+ } else { |
+ v = v->fNext; |
+ SkASSERT(v != fTail); |
+ } |
+ } |
+ return data; |
+ } |
+ |
+#ifdef SK_DEBUG |
+ void validate() { |
+ int winding = sweep_lt(fHead->fPoint, fTail->fPoint) ? 1 : -1; |
+ Vertex* top = winding < 0 ? fTail : fHead; |
+ Vertex* bottom = winding < 0 ? fHead : fTail; |
+ Edge e(top, bottom, winding); |
+ for (Vertex* v = fHead->fNext; v != fTail; v = v->fNext) { |
+ if (fSide == kRight_Side) { |
+ SkASSERT(!e.isRightOf(v)); |
+ } else if (fSide == Poly::kLeft_Side) { |
+ SkASSERT(!e.isLeftOf(v)); |
+ } |
+ } |
+ } |
+#endif |
+ }; |
+ Poly* addVertex(Vertex* v, Side side, SkChunkAlloc& alloc) { |
+ LOG("addVertex() to %d at %g (%g, %g), %s side\n", fID, v->fID, v->fPoint.fX, v->fPoint.fY, |
+ side == kLeft_Side ? "left" : side == kRight_Side ? "right" : "neither"); |
+ Poly* partner = fPartner; |
+ Poly* poly = this; |
+ if (partner) { |
+ fPartner = partner->fPartner = NULL; |
+ } |
+ if (!fActive) { |
+ fActive = ALLOC_NEW(MonotonePoly, (), alloc); |
+ } |
+ if (fActive->addVertex(v, side, alloc)) { |
+#ifdef SK_DEBUG |
+ fActive->validate(); |
+#endif |
+ if (fTail) { |
+ fActive->fPrev = fTail; |
+ fTail->fNext = fActive; |
+ fTail = fActive; |
+ } else { |
+ fHead = fTail = fActive; |
+ } |
+ if (partner) { |
+ partner->addVertex(v, side, alloc); |
+ poly = partner; |
+ } else { |
+ Vertex* prev = fActive->fSide == Poly::kLeft_Side ? |
+ fActive->fHead->fNext : fActive->fTail->fPrev; |
+ fActive = ALLOC_NEW(MonotonePoly, , alloc); |
+ fActive->addVertex(prev, Poly::kNeither_Side, alloc); |
+ fActive->addVertex(v, side, alloc); |
+ } |
+ } |
+ fCount++; |
+ return poly; |
+ } |
+ void end(Vertex* v, SkChunkAlloc& alloc) { |
+ LOG("end() %d at %g, %g\n", fID, v->fPoint.fX, v->fPoint.fY); |
+ if (fPartner) { |
+ fPartner = fPartner->fPartner = NULL; |
+ } |
+ addVertex(v, fActive->fSide == kLeft_Side ? kRight_Side : kLeft_Side, alloc); |
+ } |
+ void* emit(void *data) { |
+ if (fCount < 3) { |
+ return data; |
+ } |
+ LOG("emit() %d, size %d\n", fID, fCount); |
+ for (MonotonePoly* m = fHead; m != NULL; m = m->fNext) { |
+ data = m->emit(data); |
+ } |
+ return data; |
+ } |
+ int fWinding; |
+ MonotonePoly* fHead; |
+ MonotonePoly* fTail; |
+ MonotonePoly* fActive; |
+ Poly* fNext; |
+ Poly* fPartner; |
+ int fCount; |
+#if LOGGING_ENABLED |
+ int fID; |
+#endif |
+}; |
+ |
+/***************************************************************************************/ |
+ |
+bool coincident(const SkPoint& a, const SkPoint& b) { |
+ return a == b; |
+} |
+ |
+Poly* new_poly(Poly** head, Vertex* v, int winding, SkChunkAlloc& alloc) { |
+ Poly* poly = ALLOC_NEW(Poly, (winding), alloc); |
+ poly->addVertex(v, Poly::kNeither_Side, alloc); |
+ poly->fNext = *head; |
+ *head = poly; |
+ return poly; |
+} |
+ |
+#ifdef SK_DEBUG |
+void validate_edges(Edge* head) { |
+ for (Edge* e = head; e != NULL; e = e->fRight) { |
+ SkASSERT(e->fTop != e->fBottom); |
+ if (e->fLeft) { |
+ SkASSERT(e->fLeft->fRight == e); |
+ if (sweep_gt(e->fTop->fPoint, e->fLeft->fTop->fPoint)) { |
+ SkASSERT(e->fLeft->isLeftOf(e->fTop)); |
+ } |
+ if (sweep_lt(e->fBottom->fPoint, e->fLeft->fBottom->fPoint)) { |
+ SkASSERT(e->fLeft->isLeftOf(e->fBottom)); |
+ } |
+ } else { |
+ SkASSERT(e == head); |
+ } |
+ if (e->fRight) { |
+ SkASSERT(e->fRight->fLeft == e); |
+ if (sweep_gt(e->fTop->fPoint, e->fRight->fTop->fPoint)) { |
+ SkASSERT(e->fRight->isRightOf(e->fTop)); |
+ } |
+ if (sweep_lt(e->fBottom->fPoint, e->fRight->fBottom->fPoint)) { |
+ SkASSERT(e->fRight->isRightOf(e->fBottom)); |
+ } |
+ } |
+ } |
+} |
+ |
+void validate_connectivity(Vertex* v) { |
+ for (Edge* e = v->fFirstEdgeAbove; e != NULL; e = e->fNextEdgeAbove) { |
+ SkASSERT(e->fBottom == v); |
+ if (e->fPrevEdgeAbove) { |
+ SkASSERT(e->fPrevEdgeAbove->fNextEdgeAbove == e); |
+ SkASSERT(e->fPrevEdgeAbove->isLeftOf(e->fTop)); |
+ } else { |
+ SkASSERT(e == v->fFirstEdgeAbove); |
+ } |
+ if (e->fNextEdgeAbove) { |
+ SkASSERT(e->fNextEdgeAbove->fPrevEdgeAbove == e); |
+ SkASSERT(e->fNextEdgeAbove->isRightOf(e->fTop)); |
+ } else { |
+ SkASSERT(e == v->fLastEdgeAbove); |
+ } |
+ } |
+ for (Edge* e = v->fFirstEdgeBelow; e != NULL; e = e->fNextEdgeBelow) { |
+ SkASSERT(e->fTop == v); |
+ if (e->fPrevEdgeBelow) { |
+ SkASSERT(e->fPrevEdgeBelow->fNextEdgeBelow == e); |
+ SkASSERT(e->fPrevEdgeBelow->isLeftOf(e->fBottom)); |
+ } else { |
+ SkASSERT(e == v->fFirstEdgeBelow); |
+ } |
+ if (e->fNextEdgeBelow) { |
+ SkASSERT(e->fNextEdgeBelow->fPrevEdgeBelow == e); |
+ SkASSERT(e->fNextEdgeBelow->isRightOf(e->fBottom)); |
+ } else { |
+ SkASSERT(e == v->fLastEdgeBelow); |
+ } |
+ } |
+} |
+#endif |
+ |
+Vertex* append_point_to_contour(const SkPoint& p, Vertex* prev, Vertex** head, |
+ SkChunkAlloc& alloc) { |
+ Vertex* v = ALLOC_NEW(Vertex, (p), alloc); |
+#if LOGGING_ENABLED |
+ static float gID = 0.0f; |
+ v->fID = gID++; |
+#endif |
+ if (prev) { |
+ prev->fNext = v; |
+ v->fPrev = prev; |
+ } else { |
+ *head = v; |
+ } |
+ return v; |
+} |
+ |
+Vertex* generate_quadratic_points(const SkPoint& p0, |
+ const SkPoint& p1, |
+ const SkPoint& p2, |
+ SkScalar tolSqd, |
+ Vertex* prev, |
+ Vertex** head, |
+ int pointsLeft, |
+ SkChunkAlloc& alloc) { |
+ SkScalar d = p1.distanceToLineSegmentBetweenSqd(p0, p2); |
+ if (pointsLeft < 2 || d < tolSqd || !SkScalarIsFinite(d)) { |
+ return append_point_to_contour(p2, prev, head, alloc); |
+ } |
+ |
+ const SkPoint q[] = { |
+ { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) }, |
+ { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) }, |
+ }; |
+ const SkPoint r = { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) }; |
+ |
+ pointsLeft >>= 1; |
+ prev = generate_quadratic_points(p0, q[0], r, tolSqd, prev, head, pointsLeft, alloc); |
+ prev = generate_quadratic_points(r, q[1], p2, tolSqd, prev, head, pointsLeft, alloc); |
+ return prev; |
+} |
+ |
+Vertex* generate_cubic_points(const SkPoint& p0, |
+ const SkPoint& p1, |
+ const SkPoint& p2, |
+ const SkPoint& p3, |
+ SkScalar tolSqd, |
+ Vertex* prev, |
+ Vertex** head, |
+ int pointsLeft, |
+ SkChunkAlloc& alloc) { |
+ SkScalar d1 = p1.distanceToLineSegmentBetweenSqd(p0, p3); |
+ SkScalar d2 = p2.distanceToLineSegmentBetweenSqd(p0, p3); |
+ if (pointsLeft < 2 || (d1 < tolSqd && d2 < tolSqd) || |
+ !SkScalarIsFinite(d1) || !SkScalarIsFinite(d2)) { |
+ return append_point_to_contour(p3, prev, head, alloc); |
+ } |
+ const SkPoint q[] = { |
+ { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) }, |
+ { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) }, |
+ { SkScalarAve(p2.fX, p3.fX), SkScalarAve(p2.fY, p3.fY) } |
+ }; |
+ const SkPoint r[] = { |
+ { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) }, |
+ { SkScalarAve(q[1].fX, q[2].fX), SkScalarAve(q[1].fY, q[2].fY) } |
+ }; |
+ const SkPoint s = { SkScalarAve(r[0].fX, r[1].fX), SkScalarAve(r[0].fY, r[1].fY) }; |
+ pointsLeft >>= 1; |
+ prev = generate_cubic_points(p0, q[0], r[0], s, tolSqd, prev, head, pointsLeft, alloc); |
+ prev = generate_cubic_points(s, r[1], q[2], p3, tolSqd, prev, head, pointsLeft, alloc); |
+ return prev; |
+} |
+ |
+// Stage 1: convert the input path to a set of linear contours (linked list of Vertices). |
+ |
+void path_to_contours(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds, |
+ Vertex** contours, SkChunkAlloc& alloc) { |
+ |
+ SkScalar toleranceSqd = tolerance * tolerance; |
+ |
+ SkPoint pts[4]; |
+ bool done = false; |
+ SkPath::Iter iter(path, false); |
+ Vertex* prev = NULL; |
+ Vertex* head = NULL; |
+ if (path.isInverseFillType()) { |
+ SkPoint quad[4]; |
+ clipBounds.toQuad(quad); |
+ for (int i = 3; i >= 0; i--) { |
+ prev = append_point_to_contour(quad[i], prev, &head, alloc); |
+ } |
+ head->fPrev = prev; |
+ prev->fNext = head; |
+ *contours++ = head; |
+ head = prev = NULL; |
+ } |
+ SkAutoConicToQuads converter; |
+ while (!done) { |
+ SkPath::Verb verb = iter.next(pts); |
+ switch (verb) { |
+ case SkPath::kConic_Verb: { |
+ SkScalar weight = iter.conicWeight(); |
+ const SkPoint* quadPts = converter.computeQuads(pts, weight, toleranceSqd); |
+ for (int i = 0; i < converter.countQuads(); ++i) { |
+ int pointsLeft = GrPathUtils::quadraticPointCount(quadPts, toleranceSqd); |
+ prev = generate_quadratic_points(quadPts[0], quadPts[1], quadPts[2], |
+ toleranceSqd, prev, &head, pointsLeft, alloc); |
+ quadPts += 2; |
+ } |
+ break; |
+ } |
+ case SkPath::kMove_Verb: |
+ if (head) { |
+ head->fPrev = prev; |
+ prev->fNext = head; |
+ *contours++ = head; |
+ } |
+ head = prev = NULL; |
+ prev = append_point_to_contour(pts[0], prev, &head, alloc); |
+ break; |
+ case SkPath::kLine_Verb: { |
+ prev = append_point_to_contour(pts[1], prev, &head, alloc); |
+ break; |
+ } |
+ case SkPath::kQuad_Verb: { |
+ int pointsLeft = GrPathUtils::quadraticPointCount(pts, toleranceSqd); |
+ prev = generate_quadratic_points(pts[0], pts[1], pts[2], toleranceSqd, prev, |
+ &head, pointsLeft, alloc); |
+ break; |
+ } |
+ case SkPath::kCubic_Verb: { |
+ int pointsLeft = GrPathUtils::cubicPointCount(pts, toleranceSqd); |
+ prev = generate_cubic_points(pts[0], pts[1], pts[2], pts[3], |
+ toleranceSqd, prev, &head, pointsLeft, alloc); |
+ break; |
+ } |
+ case SkPath::kClose_Verb: |
+ if (head) { |
+ head->fPrev = prev; |
+ prev->fNext = head; |
+ *contours++ = head; |
+ } |
+ head = prev = NULL; |
+ break; |
+ case SkPath::kDone_Verb: |
+ if (head) { |
+ head->fPrev = prev; |
+ prev->fNext = head; |
+ *contours++ = head; |
+ } |
+ done = true; |
+ break; |
+ } |
+ } |
+} |
+ |
+inline bool apply_fill_type(SkPath::FillType fillType, int winding) { |
+ switch (fillType) { |
+ case SkPath::kWinding_FillType: |
+ return winding != 0; |
+ case SkPath::kEvenOdd_FillType: |
+ return (winding & 1) != 0; |
+ case SkPath::kInverseWinding_FillType: |
+ return winding == 1; |
+ case SkPath::kInverseEvenOdd_FillType: |
+ return (winding & 1) == 1; |
+ default: |
+ SkASSERT(false); |
+ return false; |
+ } |
+} |
+ |
+Edge* new_edge(Vertex* prev, Vertex* next, SkChunkAlloc& alloc) { |
+ int winding = sweep_lt(prev->fPoint, next->fPoint) ? 1 : -1; |
+ Vertex* top = winding < 0 ? next : prev; |
+ Vertex* bottom = winding < 0 ? prev : next; |
+ return ALLOC_NEW(Edge, (top, bottom, winding), alloc); |
+} |
+ |
+void remove_edge(Edge* edge, Edge** head) { |
+ LOG("removing edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID); |
+ SkASSERT(edge->isActive(head)); |
+ remove<Edge, &Edge::fLeft, &Edge::fRight>(edge, head, NULL); |
+} |
+ |
+void insert_edge(Edge* edge, Edge* prev, Edge** head) { |
+ LOG("inserting edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID); |
+ SkASSERT(!edge->isActive(head)); |
+ Edge* next = prev ? prev->fRight : *head; |
+ insert<Edge, &Edge::fLeft, &Edge::fRight>(edge, prev, next, head, NULL); |
+} |
+ |
+void find_enclosing_edges(Vertex* v, Edge* head, Edge** left, Edge** right) { |
+ if (v->fFirstEdgeAbove) { |
+ *left = v->fFirstEdgeAbove->fLeft; |
+ *right = v->fLastEdgeAbove->fRight; |
+ return; |
+ } |
+ Edge* prev = NULL; |
+ Edge* next; |
+ for (next = head; next != NULL; next = next->fRight) { |
+ if (next->isRightOf(v)) { |
+ break; |
+ } |
+ prev = next; |
+ } |
+ *left = prev; |
+ *right = next; |
+ return; |
+} |
+ |
+void find_enclosing_edges(Edge* edge, Edge* head, Edge** left, Edge** right) { |
+ Edge* prev = NULL; |
+ Edge* next; |
+ for (next = head; next != NULL; next = next->fRight) { |
+ if ((sweep_gt(edge->fTop->fPoint, next->fTop->fPoint) && next->isRightOf(edge->fTop)) || |
+ (sweep_gt(next->fTop->fPoint, edge->fTop->fPoint) && edge->isLeftOf(next->fTop)) || |
+ (sweep_lt(edge->fBottom->fPoint, next->fBottom->fPoint) && |
+ next->isRightOf(edge->fBottom)) || |
+ (sweep_lt(next->fBottom->fPoint, edge->fBottom->fPoint) && |
+ edge->isLeftOf(next->fBottom))) { |
+ break; |
+ } |
+ prev = next; |
+ } |
+ *left = prev; |
+ *right = next; |
+ return; |
+} |
+ |
+void fix_active_state(Edge* edge, Edge** activeEdges) { |
+ if (edge->isActive(activeEdges)) { |
+ if (edge->fBottom->fProcessed || !edge->fTop->fProcessed) { |
+ remove_edge(edge, activeEdges); |
+ } |
+ } else if (edge->fTop->fProcessed && !edge->fBottom->fProcessed) { |
+ Edge* left; |
+ Edge* right; |
+ find_enclosing_edges(edge, *activeEdges, &left, &right); |
+ insert_edge(edge, left, activeEdges); |
+ } |
+} |
+ |
+void insert_edge_above(Edge* edge, Vertex* v) { |
+ if (edge->fTop->fPoint == edge->fBottom->fPoint || |
+ sweep_gt(edge->fTop->fPoint, edge->fBottom->fPoint)) { |
+ SkASSERT(false); |
+ return; |
+ } |
+ LOG("insert edge (%g -> %g) above vertex %g\n", edge->fTop->fID, edge->fBottom->fID, v->fID); |
+ Edge* prev = NULL; |
+ Edge* next; |
+ for (next = v->fFirstEdgeAbove; next; next = next->fNextEdgeAbove) { |
+ if (next->isRightOf(edge->fTop)) { |
+ break; |
+ } |
+ prev = next; |
+ } |
+ insert<Edge, &Edge::fPrevEdgeAbove, &Edge::fNextEdgeAbove>( |
+ edge, prev, next, &v->fFirstEdgeAbove, &v->fLastEdgeAbove); |
+} |
+ |
+void insert_edge_below(Edge* edge, Vertex* v) { |
+ if (edge->fTop->fPoint == edge->fBottom->fPoint || |
+ sweep_gt(edge->fTop->fPoint, edge->fBottom->fPoint)) { |
+ SkASSERT(false); |
+ return; |
+ } |
+ LOG("insert edge (%g -> %g) below vertex %g\n", edge->fTop->fID, edge->fBottom->fID, v->fID); |
+ Edge* prev = NULL; |
+ Edge* next; |
+ for (next = v->fFirstEdgeBelow; next; next = next->fNextEdgeBelow) { |
+ if (next->isRightOf(edge->fBottom)) { |
+ break; |
+ } |
+ prev = next; |
+ } |
+ insert<Edge, &Edge::fPrevEdgeBelow, &Edge::fNextEdgeBelow>( |
+ edge, prev, next, &v->fFirstEdgeBelow, &v->fLastEdgeBelow); |
+} |
+ |
+void remove_edge_above(Edge* edge) { |
+ LOG("removing edge (%g -> %g) above vertex %g\n", edge->fTop->fID, edge->fBottom->fID, |
+ edge->fBottom->fID); |
+ remove<Edge, &Edge::fPrevEdgeAbove, &Edge::fNextEdgeAbove>( |
+ edge, &edge->fBottom->fFirstEdgeAbove, &edge->fBottom->fLastEdgeAbove); |
+} |
+ |
+void remove_edge_below(Edge* edge) { |
+ LOG("removing edge (%g -> %g) below vertex %g\n", edge->fTop->fID, edge->fBottom->fID, |
+ edge->fTop->fID); |
+ remove<Edge, &Edge::fPrevEdgeBelow, &Edge::fNextEdgeBelow>( |
+ edge, &edge->fTop->fFirstEdgeBelow, &edge->fTop->fLastEdgeBelow); |
+} |
+ |
+void erase_edge_if_zero_winding(Edge* edge, Edge** head) { |
+ if (edge->fWinding != 0) { |
+ return; |
+ } |
+ LOG("erasing edge (%g -> %g)\n", edge->fTop->fID, edge->fBottom->fID); |
+ remove_edge_above(edge); |
+ remove_edge_below(edge); |
+ if (edge->isActive(head)) { |
+ remove_edge(edge, head); |
+ } |
+} |
+ |
+void merge_collinear_edges(Edge* edge, Edge** activeEdges); |
+ |
+void set_top(Edge* edge, Vertex* v, Edge** activeEdges) { |
+ remove_edge_below(edge); |
+ edge->fTop = v; |
+ edge->recompute(); |
+ insert_edge_below(edge, v); |
+ fix_active_state(edge, activeEdges); |
+ merge_collinear_edges(edge, activeEdges); |
+} |
+ |
+void set_bottom(Edge* edge, Vertex* v, Edge** activeEdges) { |
+ remove_edge_above(edge); |
+ edge->fBottom = v; |
+ edge->recompute(); |
+ insert_edge_above(edge, v); |
+ fix_active_state(edge, activeEdges); |
+ merge_collinear_edges(edge, activeEdges); |
+} |
+ |
+void merge_edges_above(Edge* edge, Edge* other, Edge** activeEdges) { |
+ if (coincident(edge->fTop->fPoint, other->fTop->fPoint)) { |
+ LOG("merging coincident above edges (%g, %g) -> (%g, %g)\n", |
+ edge->fTop->fPoint.fX, edge->fTop->fPoint.fY, |
+ edge->fBottom->fPoint.fX, edge->fBottom->fPoint.fY); |
+ other->fWinding += edge->fWinding; |
+ erase_edge_if_zero_winding(other, activeEdges); |
+ edge->fWinding = 0; |
+ erase_edge_if_zero_winding(edge, activeEdges); |
+ } else if (sweep_lt(edge->fTop->fPoint, other->fTop->fPoint)) { |
+ other->fWinding += edge->fWinding; |
+ erase_edge_if_zero_winding(other, activeEdges); |
+ set_bottom(edge, other->fTop, activeEdges); |
+ } else { |
+ edge->fWinding += other->fWinding; |
+ erase_edge_if_zero_winding(edge, activeEdges); |
+ set_bottom(other, edge->fTop, activeEdges); |
+ } |
+} |
+ |
+void merge_edges_below(Edge* edge, Edge* other, Edge** activeEdges) { |
+ if (coincident(edge->fBottom->fPoint, other->fBottom->fPoint)) { |
+ LOG("merging coincident below edges (%g, %g) -> (%g, %g)\n", |
+ edge->fTop->fPoint.fX, edge->fTop->fPoint.fY, |
+ edge->fBottom->fPoint.fX, edge->fBottom->fPoint.fY); |
+ other->fWinding += edge->fWinding; |
+ erase_edge_if_zero_winding(other, activeEdges); |
+ edge->fWinding = 0; |
+ erase_edge_if_zero_winding(edge, activeEdges); |
+ } else if (sweep_lt(edge->fBottom->fPoint, other->fBottom->fPoint)) { |
+ edge->fWinding += other->fWinding; |
+ erase_edge_if_zero_winding(edge, activeEdges); |
+ set_top(other, edge->fBottom, activeEdges); |
+ } else { |
+ other->fWinding += edge->fWinding; |
+ erase_edge_if_zero_winding(other, activeEdges); |
+ set_top(edge, other->fBottom, activeEdges); |
+ } |
+} |
+ |
+void merge_collinear_edges(Edge* edge, Edge** activeEdges) { |
+ if (edge->fPrevEdgeAbove && (edge->fTop == edge->fPrevEdgeAbove->fTop || |
+ !edge->fPrevEdgeAbove->isLeftOf(edge->fTop))) { |
+ merge_edges_above(edge, edge->fPrevEdgeAbove, activeEdges); |
+ } else if (edge->fNextEdgeAbove && (edge->fTop == edge->fNextEdgeAbove->fTop || |
+ !edge->isLeftOf(edge->fNextEdgeAbove->fTop))) { |
+ merge_edges_above(edge, edge->fNextEdgeAbove, activeEdges); |
+ } |
+ if (edge->fPrevEdgeBelow && (edge->fBottom == edge->fPrevEdgeBelow->fBottom || |
+ !edge->fPrevEdgeBelow->isLeftOf(edge->fBottom))) { |
+ merge_edges_below(edge, edge->fPrevEdgeBelow, activeEdges); |
+ } else if (edge->fNextEdgeBelow && (edge->fBottom == edge->fNextEdgeBelow->fBottom || |
+ !edge->isLeftOf(edge->fNextEdgeBelow->fBottom))) { |
+ merge_edges_below(edge, edge->fNextEdgeBelow, activeEdges); |
+ } |
+} |
+ |
+void split_edge(Edge* edge, Vertex* v, Edge** activeEdges, SkChunkAlloc& alloc); |
+ |
+void cleanup_active_edges(Edge* edge, Edge** activeEdges, SkChunkAlloc& alloc) { |
+ Vertex* top = edge->fTop; |
+ Vertex* bottom = edge->fBottom; |
+ if (edge->fLeft) { |
+ Vertex* leftTop = edge->fLeft->fTop; |
+ Vertex* leftBottom = edge->fLeft->fBottom; |
+ if (sweep_gt(top->fPoint, leftTop->fPoint) && !edge->fLeft->isLeftOf(top)) { |
+ split_edge(edge->fLeft, edge->fTop, activeEdges, alloc); |
+ } else if (sweep_gt(leftTop->fPoint, top->fPoint) && !edge->isRightOf(leftTop)) { |
+ split_edge(edge, leftTop, activeEdges, alloc); |
+ } else if (sweep_lt(bottom->fPoint, leftBottom->fPoint) && !edge->fLeft->isLeftOf(bottom)) { |
+ split_edge(edge->fLeft, bottom, activeEdges, alloc); |
+ } else if (sweep_lt(leftBottom->fPoint, bottom->fPoint) && !edge->isRightOf(leftBottom)) { |
+ split_edge(edge, leftBottom, activeEdges, alloc); |
+ } |
+ } |
+ if (edge->fRight) { |
+ Vertex* rightTop = edge->fRight->fTop; |
+ Vertex* rightBottom = edge->fRight->fBottom; |
+ if (sweep_gt(top->fPoint, rightTop->fPoint) && !edge->fRight->isRightOf(top)) { |
+ split_edge(edge->fRight, top, activeEdges, alloc); |
+ } else if (sweep_gt(rightTop->fPoint, top->fPoint) && !edge->isLeftOf(rightTop)) { |
+ split_edge(edge, rightTop, activeEdges, alloc); |
+ } else if (sweep_lt(bottom->fPoint, rightBottom->fPoint) && |
+ !edge->fRight->isRightOf(bottom)) { |
+ split_edge(edge->fRight, bottom, activeEdges, alloc); |
+ } else if (sweep_lt(rightBottom->fPoint, bottom->fPoint) && |
+ !edge->isLeftOf(rightBottom)) { |
+ split_edge(edge, rightBottom, activeEdges, alloc); |
+ } |
+ } |
+} |
+ |
+void split_edge(Edge* edge, Vertex* v, Edge** activeEdges, SkChunkAlloc& alloc) { |
+ LOG("splitting edge (%g -> %g) at vertex %g (%g, %g)\n", |
+ edge->fTop->fID, edge->fBottom->fID, |
+ v->fID, v->fPoint.fX, v->fPoint.fY); |
+ Edge* newEdge = ALLOC_NEW(Edge, (v, edge->fBottom, edge->fWinding), alloc); |
+ insert_edge_below(newEdge, v); |
+ insert_edge_above(newEdge, edge->fBottom); |
+ set_bottom(edge, v, activeEdges); |
+ cleanup_active_edges(edge, activeEdges, alloc); |
+ fix_active_state(newEdge, activeEdges); |
+ merge_collinear_edges(newEdge, activeEdges); |
+} |
+ |
+void merge_vertices(Vertex* src, Vertex* dst, Vertex** head, SkChunkAlloc& alloc) { |
+ LOG("found coincident verts at %g, %g; merging %g into %g\n", src->fPoint.fX, src->fPoint.fY, |
+ src->fID, dst->fID); |
+ for (Edge* edge = src->fFirstEdgeAbove; edge;) { |
+ Edge* next = edge->fNextEdgeAbove; |
+ set_bottom(edge, dst, NULL); |
+ edge = next; |
+ } |
+ for (Edge* edge = src->fFirstEdgeBelow; edge;) { |
+ Edge* next = edge->fNextEdgeBelow; |
+ set_top(edge, dst, NULL); |
+ edge = next; |
+ } |
+ remove<Vertex, &Vertex::fPrev, &Vertex::fNext>(src, head, NULL); |
+} |
+ |
+Vertex* check_for_intersection(Edge* edge, Edge* other, Edge** activeEdges, SkChunkAlloc& alloc) { |
+ SkPoint p; |
+ if (!edge || !other) { |
+ return NULL; |
+ } |
+ if (edge->intersect(*other, &p)) { |
+ Vertex* v; |
+ LOG("found intersection, pt is %g, %g\n", p.fX, p.fY); |
+ if (p == edge->fTop->fPoint || sweep_lt(p, edge->fTop->fPoint)) { |
+ split_edge(other, edge->fTop, activeEdges, alloc); |
+ v = edge->fTop; |
+ } else if (p == edge->fBottom->fPoint || sweep_gt(p, edge->fBottom->fPoint)) { |
+ split_edge(other, edge->fBottom, activeEdges, alloc); |
+ v = edge->fBottom; |
+ } else if (p == other->fTop->fPoint || sweep_lt(p, other->fTop->fPoint)) { |
+ split_edge(edge, other->fTop, activeEdges, alloc); |
+ v = other->fTop; |
+ } else if (p == other->fBottom->fPoint || sweep_gt(p, other->fBottom->fPoint)) { |
+ split_edge(edge, other->fBottom, activeEdges, alloc); |
+ v = other->fBottom; |
+ } else { |
+ Vertex* nextV = edge->fTop; |
+ while (sweep_lt(p, nextV->fPoint)) { |
+ nextV = nextV->fPrev; |
+ } |
+ while (sweep_lt(nextV->fPoint, p)) { |
+ nextV = nextV->fNext; |
+ } |
+ Vertex* prevV = nextV->fPrev; |
+ if (coincident(prevV->fPoint, p)) { |
+ v = prevV; |
+ } else if (coincident(nextV->fPoint, p)) { |
+ v = nextV; |
+ } else { |
+ v = ALLOC_NEW(Vertex, (p), alloc); |
+ LOG("inserting between %g (%g, %g) and %g (%g, %g)\n", |
+ prevV->fID, prevV->fPoint.fX, prevV->fPoint.fY, |
+ nextV->fID, nextV->fPoint.fX, nextV->fPoint.fY); |
+#if LOGGING_ENABLED |
+ v->fID = (nextV->fID + prevV->fID) * 0.5f; |
+#endif |
+ v->fPrev = prevV; |
+ v->fNext = nextV; |
+ prevV->fNext = v; |
+ nextV->fPrev = v; |
+ } |
+ split_edge(edge, v, activeEdges, alloc); |
+ split_edge(other, v, activeEdges, alloc); |
+ } |
+#ifdef SK_DEBUG |
+ validate_connectivity(v); |
+#endif |
+ return v; |
+ } |
+ return NULL; |
+} |
+ |
+void sanitize_contours(Vertex** contours, int contourCnt) { |
+ for (int i = 0; i < contourCnt; ++i) { |
+ SkASSERT(contours[i]); |
+ for (Vertex* v = contours[i];;) { |
+ if (coincident(v->fPrev->fPoint, v->fPoint)) { |
+ LOG("vertex %g,%g coincident; removing\n", v->fPoint.fX, v->fPoint.fY); |
+ if (v->fPrev == v) { |
+ contours[i] = NULL; |
+ break; |
+ } |
+ v->fPrev->fNext = v->fNext; |
+ v->fNext->fPrev = v->fPrev; |
+ if (contours[i] == v) { |
+ contours[i] = v->fNext; |
+ } |
+ v = v->fPrev; |
+ } else { |
+ v = v->fNext; |
+ if (v == contours[i]) break; |
+ } |
+ } |
+ } |
+} |
+ |
+void merge_coincident_vertices(Vertex** vertices, SkChunkAlloc& alloc) { |
+ for (Vertex* v = (*vertices)->fNext; v != NULL; v = v->fNext) { |
+ if (sweep_lt(v->fPoint, v->fPrev->fPoint)) { |
+ v->fPoint = v->fPrev->fPoint; |
+ } |
+ if (coincident(v->fPrev->fPoint, v->fPoint)) { |
+ merge_vertices(v->fPrev, v, vertices, alloc); |
+ } |
+ } |
+} |
+ |
+// Stage 2: convert the contours to a mesh of edges connecting the vertices. |
+ |
+Vertex* build_edges(Vertex** contours, int contourCnt, SkChunkAlloc& alloc) { |
+ Vertex* vertices = NULL; |
+ Vertex* prev = NULL; |
+ for (int i = 0; i < contourCnt; ++i) { |
+ for (Vertex* v = contours[i]; v != NULL;) { |
+ Vertex* vNext = v->fNext; |
+ Edge* edge = new_edge(v->fPrev, v, alloc); |
+ if (edge->fWinding > 0) { |
+ insert_edge_below(edge, v->fPrev); |
+ insert_edge_above(edge, v); |
+ } else { |
+ insert_edge_below(edge, v); |
+ insert_edge_above(edge, v->fPrev); |
+ } |
+ merge_collinear_edges(edge, NULL); |
+ if (prev) { |
+ prev->fNext = v; |
+ v->fPrev = prev; |
+ } else { |
+ vertices = v; |
+ } |
+ prev = v; |
+ v = vNext; |
+ if (v == contours[i]) break; |
+ } |
+ } |
+ if (prev) { |
+ prev->fNext = vertices->fPrev = NULL; |
+ } |
+ return vertices; |
+} |
+ |
+// Stage 3: sort the vertices by increasing Y (or X if SWEEP_IN_X is on). |
+ |
+Vertex* sorted_merge(Vertex* a, Vertex* b); |
+ |
+void front_back_split(Vertex* v, Vertex** pFront, Vertex** pBack) { |
+ Vertex* fast; |
+ Vertex* slow; |
+ if (!v || !v->fNext) { |
+ *pFront = v; |
+ *pBack = NULL; |
+ } else { |
+ slow = v; |
+ fast = v->fNext; |
+ |
+ while (fast != NULL) { |
+ fast = fast->fNext; |
+ if (fast != NULL) { |
+ slow = slow->fNext; |
+ fast = fast->fNext; |
+ } |
+ } |
+ |
+ *pFront = v; |
+ *pBack = slow->fNext; |
+ slow->fNext->fPrev = NULL; |
+ slow->fNext = NULL; |
+ } |
+} |
+ |
+void merge_sort(Vertex** head) { |
+ if (!*head || !(*head)->fNext) { |
+ return; |
+ } |
+ |
+ Vertex* a; |
+ Vertex* b; |
+ front_back_split(*head, &a, &b); |
+ |
+ merge_sort(&a); |
+ merge_sort(&b); |
+ |
+ *head = sorted_merge(a, b); |
+} |
+ |
+Vertex* sorted_merge(Vertex* a, Vertex* b) { |
+ if (!a) { |
+ return b; |
+ } else if (!b) { |
+ return a; |
+ } |
+ |
+ Vertex* result = NULL; |
+ |
+ if (sweep_lt(a->fPoint, b->fPoint)) { |
+ result = a; |
+ result->fNext = sorted_merge(a->fNext, b); |
+ } else { |
+ result = b; |
+ result->fNext = sorted_merge(a, b->fNext); |
+ } |
+ result->fNext->fPrev = result; |
+ return result; |
+} |
+ |
+// Stage 4: Simplify the mesh by inserting new vertices at intersecting edges. |
+ |
+void simplify(Vertex* vertices, SkChunkAlloc& alloc) { |
+ LOG("simplifying complex polygons\n"); |
+ Edge* activeEdges = NULL; |
+ for (Vertex* v = vertices; v != NULL; v = v->fNext) { |
+ if (!v->fFirstEdgeAbove && !v->fFirstEdgeBelow) { |
+ continue; |
+ } |
+#if LOGGING_ENABLED |
+ LOG("\nvertex %g: (%g,%g)\n", v->fID, v->fPoint.fX, v->fPoint.fY); |
+#endif |
+#ifdef SK_DEBUG |
+ validate_connectivity(v); |
+#endif |
+ Edge* leftEnclosingEdge = NULL; |
+ Edge* rightEnclosingEdge = NULL; |
+ bool restartChecks; |
+ do { |
+ restartChecks = false; |
+ find_enclosing_edges(v, activeEdges, &leftEnclosingEdge, &rightEnclosingEdge); |
+ if (v->fFirstEdgeBelow) { |
+ for (Edge* edge = v->fFirstEdgeBelow; edge != NULL; edge = edge->fNextEdgeBelow) { |
+ if (check_for_intersection(edge, leftEnclosingEdge, &activeEdges, alloc)) { |
+ restartChecks = true; |
+ break; |
+ } |
+ if (check_for_intersection(edge, rightEnclosingEdge, &activeEdges, alloc)) { |
+ restartChecks = true; |
+ break; |
+ } |
+ } |
+ } else { |
+ if (Vertex* pv = check_for_intersection(leftEnclosingEdge, rightEnclosingEdge, |
+ &activeEdges, alloc)) { |
+ if (sweep_lt(pv->fPoint, v->fPoint)) { |
+ v = pv; |
+ } |
+ restartChecks = true; |
+ } |
+ |
+ } |
+ } while (restartChecks); |
+ SkASSERT(!leftEnclosingEdge || leftEnclosingEdge->isLeftOf(v)); |
+ SkASSERT(!rightEnclosingEdge || rightEnclosingEdge->isRightOf(v)); |
+#ifdef SK_DEBUG |
+ validate_edges(activeEdges); |
+#endif |
+ for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) { |
+ remove_edge(e, &activeEdges); |
+ } |
+ Edge* leftEdge = leftEnclosingEdge; |
+ for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) { |
+ insert_edge(e, leftEdge, &activeEdges); |
+ leftEdge = e; |
+ } |
+ v->fProcessed = true; |
+ } |
+} |
+ |
+// Stage 5: Tessellate the simplified mesh into monotone polygons. |
+ |
+Poly* tessellate(Vertex* vertices, SkChunkAlloc& alloc) { |
+ LOG("tessellating simple polygons\n"); |
+ Edge* activeEdges = NULL; |
+ Poly* polys = NULL; |
+ for (Vertex* v = vertices; v != NULL; v = v->fNext) { |
+ if (!v->fFirstEdgeAbove && !v->fFirstEdgeBelow) { |
+ continue; |
+ } |
+#if LOGGING_ENABLED |
+ LOG("\nvertex %g: (%g,%g)\n", v->fID, v->fPoint.fX, v->fPoint.fY); |
+#endif |
+#ifdef SK_DEBUG |
+ validate_connectivity(v); |
+#endif |
+ Edge* leftEnclosingEdge = NULL; |
+ Edge* rightEnclosingEdge = NULL; |
+ find_enclosing_edges(v, activeEdges, &leftEnclosingEdge, &rightEnclosingEdge); |
+ SkASSERT(!leftEnclosingEdge || leftEnclosingEdge->isLeftOf(v)); |
+ SkASSERT(!rightEnclosingEdge || rightEnclosingEdge->isRightOf(v)); |
+#ifdef SK_DEBUG |
+ validate_edges(activeEdges); |
+#endif |
+ Poly* leftPoly = NULL; |
+ Poly* rightPoly = NULL; |
+ if (v->fFirstEdgeAbove) { |
+ leftPoly = v->fFirstEdgeAbove->fLeftPoly; |
+ rightPoly = v->fLastEdgeAbove->fRightPoly; |
+ } else { |
+ leftPoly = leftEnclosingEdge ? leftEnclosingEdge->fRightPoly : NULL; |
+ rightPoly = rightEnclosingEdge ? rightEnclosingEdge->fLeftPoly : NULL; |
+ } |
+#if LOGGING_ENABLED |
+ LOG("edges above:\n"); |
+ for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) { |
+ LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID, |
+ e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRightPoly->fID : -1); |
+ } |
+ LOG("edges below:\n"); |
+ for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) { |
+ LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID, |
+ e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRightPoly->fID : -1); |
+ } |
+#endif |
+ if (v->fFirstEdgeAbove) { |
+ if (leftPoly) { |
+ leftPoly = leftPoly->addVertex(v, Poly::kRight_Side, alloc); |
+ } |
+ if (rightPoly) { |
+ rightPoly = rightPoly->addVertex(v, Poly::kLeft_Side, alloc); |
+ } |
+ for (Edge* e = v->fFirstEdgeAbove; e != v->fLastEdgeAbove; e = e->fNextEdgeAbove) { |
+ Edge* leftEdge = e; |
+ Edge* rightEdge = e->fNextEdgeAbove; |
+ SkASSERT(rightEdge->isRightOf(leftEdge->fTop)); |
+ remove_edge(leftEdge, &activeEdges); |
+ if (leftEdge->fRightPoly) { |
+ leftEdge->fRightPoly->end(v, alloc); |
+ } |
+ if (rightEdge->fLeftPoly && rightEdge->fLeftPoly != leftEdge->fRightPoly) { |
+ rightEdge->fLeftPoly->end(v, alloc); |
+ } |
+ } |
+ remove_edge(v->fLastEdgeAbove, &activeEdges); |
+ if (!v->fFirstEdgeBelow) { |
+ if (leftPoly && rightPoly && leftPoly != rightPoly) { |
+ SkASSERT(leftPoly->fPartner == NULL && rightPoly->fPartner == NULL); |
+ rightPoly->fPartner = leftPoly; |
+ leftPoly->fPartner = rightPoly; |
+ } |
+ } |
+ } |
+ if (v->fFirstEdgeBelow) { |
+ if (!v->fFirstEdgeAbove) { |
+ if (leftPoly && leftPoly == rightPoly) { |
+ // Split the poly. |
+ if (leftPoly->fActive->fSide == Poly::kLeft_Side) { |
+ leftPoly = new_poly(&polys, leftEnclosingEdge->fTop, leftPoly->fWinding, |
+ alloc); |
+ leftPoly->addVertex(v, Poly::kRight_Side, alloc); |
+ rightPoly->addVertex(v, Poly::kLeft_Side, alloc); |
+ leftEnclosingEdge->fRightPoly = leftPoly; |
+ } else { |
+ rightPoly = new_poly(&polys, rightEnclosingEdge->fTop, rightPoly->fWinding, |
+ alloc); |
+ rightPoly->addVertex(v, Poly::kLeft_Side, alloc); |
+ leftPoly->addVertex(v, Poly::kRight_Side, alloc); |
+ rightEnclosingEdge->fLeftPoly = rightPoly; |
+ } |
+ } else { |
+ if (leftPoly) { |
+ leftPoly = leftPoly->addVertex(v, Poly::kRight_Side, alloc); |
+ } |
+ if (rightPoly) { |
+ rightPoly = rightPoly->addVertex(v, Poly::kLeft_Side, alloc); |
+ } |
+ } |
+ } |
+ Edge* leftEdge = v->fFirstEdgeBelow; |
+ leftEdge->fLeftPoly = leftPoly; |
+ insert_edge(leftEdge, leftEnclosingEdge, &activeEdges); |
+ for (Edge* rightEdge = leftEdge->fNextEdgeBelow; rightEdge; |
+ rightEdge = rightEdge->fNextEdgeBelow) { |
+ insert_edge(rightEdge, leftEdge, &activeEdges); |
+ int winding = leftEdge->fLeftPoly ? leftEdge->fLeftPoly->fWinding : 0; |
+ winding += leftEdge->fWinding; |
+ if (winding != 0) { |
+ Poly* poly = new_poly(&polys, v, winding, alloc); |
+ leftEdge->fRightPoly = rightEdge->fLeftPoly = poly; |
+ } |
+ leftEdge = rightEdge; |
+ } |
+ v->fLastEdgeBelow->fRightPoly = rightPoly; |
+ } |
+#ifdef SK_DEBUG |
+ validate_edges(activeEdges); |
+#endif |
+#if LOGGING_ENABLED |
+ LOG("\nactive edges:\n"); |
+ for (Edge* e = activeEdges; e != NULL; e = e->fRight) { |
+ LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID, |
+ e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRightPoly->fID : -1); |
+ } |
+#endif |
+ } |
+ return polys; |
+} |
+ |
+// This is a driver function which calls stages 2-5 in turn. |
+ |
+Poly* contours_to_polys(Vertex** contours, int contourCnt, SkChunkAlloc& alloc) { |
+#if LOGGING_ENABLED |
+ for (int i = 0; i < contourCnt; ++i) { |
+ Vertex* v = contours[i]; |
+ SkASSERT(v); |
+ LOG("path.moveTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY); |
+ for (v = v->fNext; v != contours[i]; v = v->fNext) { |
+ LOG("path.lineTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY); |
+ } |
+ } |
+#endif |
+ sanitize_contours(contours, contourCnt); |
+ Vertex* vertices = build_edges(contours, contourCnt, alloc); |
+ if (!vertices) { |
+ return NULL; |
+ } |
+ |
+ // Sort vertices in Y (secondarily in X). |
+ merge_sort(&vertices); |
+ merge_coincident_vertices(&vertices, alloc); |
+#if LOGGING_ENABLED |
+ for (Vertex* v = vertices; v != NULL; v = v->fNext) { |
+ static float gID = 0.0f; |
+ v->fID = gID++; |
+ } |
+#endif |
+ simplify(vertices, alloc); |
+ return tessellate(vertices, alloc); |
+} |
+ |
+// Stage 6: Triangulate the monotone polygons into a vertex buffer. |
+ |
+void* polys_to_triangles(Poly* polys, SkPath::FillType fillType, void* data) { |
+ void* d = data; |
+ for (Poly* poly = polys; poly; poly = poly->fNext) { |
+ if (apply_fill_type(fillType, poly->fWinding)) { |
+ d = poly->emit(d); |
+ } |
+ } |
+ return d; |
+} |
+ |
+}; |
+ |
+GrTessellatingPathRenderer::GrTessellatingPathRenderer() { |
+} |
+ |
+GrPathRenderer::StencilSupport GrTessellatingPathRenderer::onGetStencilSupport( |
+ const GrDrawTarget*, |
+ const GrPipelineBuilder*, |
+ const SkPath&, |
+ const SkStrokeRec&) const { |
+ return GrPathRenderer::kNoSupport_StencilSupport; |
+} |
+ |
+bool GrTessellatingPathRenderer::canDrawPath(const GrDrawTarget* target, |
+ const GrPipelineBuilder* pipelineBuilder, |
+ const SkMatrix& viewMatrix, |
+ const SkPath& path, |
+ const SkStrokeRec& stroke, |
+ bool antiAlias) const { |
+ // This path renderer can draw all fill styles, but does not do antialiasing. It can do convex |
+ // and concave paths, but we'll leave the convex ones to simpler algorithms. |
+ return stroke.isFillStyle() && !antiAlias && !path.isConvex(); |
+} |
+ |
+bool GrTessellatingPathRenderer::onDrawPath(GrDrawTarget* target, |
+ GrPipelineBuilder* pipelineBuilder, |
+ GrColor color, |
+ const SkMatrix& viewM, |
+ const SkPath& path, |
+ const SkStrokeRec& stroke, |
+ bool antiAlias) { |
+ SkASSERT(!antiAlias); |
+ const GrRenderTarget* rt = pipelineBuilder->getRenderTarget(); |
+ if (NULL == rt) { |
+ return false; |
+ } |
+ |
+ SkScalar tol = GrPathUtils::scaleToleranceToSrc(SK_Scalar1, viewM, path.getBounds()); |
+ |
+ int contourCnt; |
+ int maxPts = GrPathUtils::worstCasePointCount(path, &contourCnt, tol); |
+ if (maxPts <= 0) { |
+ return false; |
+ } |
+ if (maxPts > ((int)SK_MaxU16 + 1)) { |
+ SkDebugf("Path not rendered, too many verts (%d)\n", maxPts); |
+ return false; |
+ } |
+ SkPath::FillType fillType = path.getFillType(); |
+ if (SkPath::IsInverseFillType(fillType)) { |
+ contourCnt++; |
+ } |
+ |
+ LOG("got %d pts, %d contours\n", maxPts, contourCnt); |
+ |
+ SkAutoTDeleteArray<Vertex*> contours(SkNEW_ARRAY(Vertex *, contourCnt)); |
+ |
+ // For the initial size of the chunk allocator, estimate based on the point count: |
+ // one vertex per point for the initial passes, plus two for the vertices in the |
+ // resulting Polys, since the same point may end up in two Polys. Assume minimal |
+ // connectivity of one Edge per Vertex (will grow for intersections). |
+ SkChunkAlloc alloc(maxPts * (3 * sizeof(Vertex) + sizeof(Edge))); |
+ SkIRect clipBoundsI; |
+ pipelineBuilder->clip().getConservativeBounds(rt, &clipBoundsI); |
+ SkRect clipBounds = SkRect::Make(clipBoundsI); |
+ SkMatrix vmi; |
+ if (!viewM.invert(&vmi)) { |
+ return false; |
+ } |
+ vmi.mapRect(&clipBounds); |
+ path_to_contours(path, tol, clipBounds, contours.get(), alloc); |
+ Poly* polys; |
+ uint32_t flags = GrDefaultGeoProcFactory::kPosition_GPType; |
+ polys = contours_to_polys(contours.get(), contourCnt, alloc); |
+ SkAutoTUnref<const GrGeometryProcessor> gp( |
+ GrDefaultGeoProcFactory::Create(flags, color, viewM, SkMatrix::I())); |
+ int count = 0; |
+ for (Poly* poly = polys; poly; poly = poly->fNext) { |
+ if (apply_fill_type(fillType, poly->fWinding) && poly->fCount >= 3) { |
+ count += (poly->fCount - 2) * (WIREFRAME ? 6 : 3); |
+ } |
+ } |
+ |
+ int stride = gp->getVertexStride(); |
+ GrDrawTarget::AutoReleaseGeometry arg; |
+ if (!arg.set(target, count, stride, 0)) { |
+ return false; |
+ } |
+ LOG("emitting %d verts\n", count); |
+ void* end = polys_to_triangles(polys, fillType, arg.vertices()); |
+ int actualCount = (static_cast<char*>(end) - static_cast<char*>(arg.vertices())) / stride; |
+ LOG("actual count: %d\n", actualCount); |
+ SkASSERT(actualCount <= count); |
+ |
+ GrPrimitiveType primitiveType = WIREFRAME ? kLines_GrPrimitiveType |
+ : kTriangles_GrPrimitiveType; |
+ target->drawNonIndexed(pipelineBuilder, gp, primitiveType, 0, actualCount); |
+ |
+ return true; |
+} |