Index: src/gpu/GrTessellatingPathRenderer.cpp |
diff --git a/src/gpu/GrTessellatingPathRenderer.cpp b/src/gpu/GrTessellatingPathRenderer.cpp |
new file mode 100644 |
index 0000000000000000000000000000000000000000..7f3e9a7199fe88b0972866b0f8c81020daaa489a |
--- /dev/null |
+++ b/src/gpu/GrTessellatingPathRenderer.cpp |
@@ -0,0 +1,1513 @@ |
+/* |
+ * Copyright 2014 Google Inc. |
+ * |
+ * Use of this source code is governed by a BSD-style license that can be |
+ * found in the LICENSE file. |
+ */ |
+ |
+#include "GrTessellatingPathRenderer.h" |
+ |
+#include "GrDefaultGeoProcFactory.h" |
+#include "GrPathUtils.h" |
+#include "SkChunkAlloc.h" |
+#include "SkGeometry.h" |
+#include "SkStroke.h" |
+ |
+#include <stdio.h> // FIXME |
+ |
+#define LOGGING_ENABLED 0 |
+ |
+#if LOGGING_ENABLED |
+#define LOG printf |
+#else |
+#define LOG(...) |
+#endif |
+ |
+#define ALLOC_NEW(Type, args, alloc) \ |
+ SkNEW_PLACEMENT_ARGS(alloc.allocThrow(sizeof(Type)), Type, args) |
+ |
+bool GrTessellatingPathRenderer::gWireframe = false; |
+ |
+namespace { |
+ |
+struct Vertex; |
+struct Edge; |
+struct Poly; |
+ |
+template <class T, T* T::*Prev, T* T::*Next> |
+void insert(T* t, T* prev, T* next, T** head, T** tail) |
+{ |
+ t->*Prev = prev; |
+ t->*Next = next; |
+ if (prev) { |
+ prev->*Next = t; |
+ } else if (head) { |
+ *head = t; |
+ } |
+ if (next) { |
+ next->*Prev = t; |
+ } else if (tail) { |
+ *tail = t; |
+ } |
+} |
+ |
+template <class T, T* T::*Prev, T* T::*Next> |
+void remove(T* t, T** head, T** tail) |
+{ |
+ if (t->*Prev) { |
+ t->*Prev->*Next = t->*Next; |
+ } else if (head) { |
+ *head = t->*Next; |
+ } |
+ if (t->*Next) { |
+ t->*Next->*Prev = t->*Prev; |
+ } else if (tail) { |
+ *tail = t->*Prev; |
+ } |
+ t->*Prev = t->*Next = NULL; |
+} |
+ |
+struct Vertex { |
+ Vertex(const SkPoint& point) |
+ : fPoint(point), fPrev(NULL), fNext(NULL) |
+ , fFirstEdgeAbove(NULL), fLastEdgeAbove(NULL) |
+ , fFirstEdgeBelow(NULL), fLastEdgeBelow(NULL) |
+ , fInterior(false) |
+ , fProcessed(false) |
+#if LOGGING_ENABLED |
+ , fID (-1.0f) |
+#endif |
+ {} |
+ SkPoint fPoint; |
+ Vertex* fPrev; |
+ Vertex* fNext; |
+ Edge* fFirstEdgeAbove; |
+ Edge* fLastEdgeAbove; |
+ Edge* fFirstEdgeBelow; |
+ Edge* fLastEdgeBelow; |
+ bool fInterior; |
+ bool fProcessed; |
+#if LOGGING_ENABLED |
+ float fID; |
+#endif |
+}; |
+ |
+bool operator<(const SkPoint& a, const SkPoint& b) { |
+ SkScalar valuea = a.fY; |
+ SkScalar valueb = b.fY; |
+ |
+ if (valuea == valueb) { |
+ valuea = a.fX; |
+ valueb = b.fX; |
+ } |
+ |
+ return valuea < valueb; |
+} |
+ |
+bool operator>(const SkPoint& a, const SkPoint& b) { |
+ SkScalar valuea = a.fY; |
+ SkScalar valueb = b.fY; |
+ |
+ if (valuea == valueb) { |
+ valuea = a.fX; |
+ valueb = b.fX; |
+ } |
+ |
+ return valuea > valueb; |
+} |
+ |
+inline void* emit_vertex(Vertex* v, GrColor color, bool antiAlias, bool tweakAlpha, void* data) { |
+ if (antiAlias) { |
+ uint32_t alpha = v->fInterior ? 0xFF000000 : 0; |
+ if (tweakAlpha) { |
+ struct Vert { |
+ SkPoint fPosition; |
+ GrColor fColor; |
+ }; |
+ Vert* d = static_cast<Vert*>(data); |
+ d->fPosition = v->fPoint; |
+ d->fColor = (color & 0x00FFFFFF) | alpha; |
+ d++; |
+ return d; |
+ } else { |
+ struct VertSeparateAlpha { |
+ SkPoint fPosition; |
+ GrColor fColor; |
+ float fAlpha; |
+ }; |
+ VertSeparateAlpha* d = static_cast<VertSeparateAlpha*>(data); |
+ d->fPosition = v->fPoint; |
+ d->fColor = color; |
+ d->fAlpha = (alpha >> 24) / 255.0f; |
+ d++; |
+ return d; |
+ } |
+ } else { |
+ SkPoint* d = static_cast<SkPoint*>(data); |
+ *d++ = v->fPoint; |
+ return d; |
+ } |
+} |
+ |
+void* emit_triangle(Vertex* v0, Vertex* v1, Vertex* v2, GrColor color, bool antiAlias, bool tweakAlpha, void* data) { |
+ if (GrTessellatingPathRenderer::gWireframe) { |
+ data = emit_vertex(v0, color, antiAlias, tweakAlpha, data); |
+ data = emit_vertex(v1, color, antiAlias, tweakAlpha, data); |
+ data = emit_vertex(v1, color, antiAlias, tweakAlpha, data); |
+ data = emit_vertex(v2, color, antiAlias, tweakAlpha, data); |
+ data = emit_vertex(v2, color, antiAlias, tweakAlpha, data); |
+ data = emit_vertex(v0, color, antiAlias, tweakAlpha, data); |
+ } else { |
+ data = emit_vertex(v0, color, antiAlias, tweakAlpha, data); |
+ data = emit_vertex(v1, color, antiAlias, tweakAlpha, data); |
+ data = emit_vertex(v2, color, antiAlias, tweakAlpha, data); |
+ } |
+ return data; |
+} |
+ |
+Vertex* new_boundary(const SkPoint& point, SkChunkAlloc& alloc) { |
+ LOG("*** created boundary at point %g, %g\n", point.fX, point.fY); |
+ return ALLOC_NEW(Vertex, (point), alloc); |
+} |
+ |
+bool boundary_is_closed(Vertex* head) { |
+ for (Vertex* v = head; v; v = v->fNext) { |
+ if (v->fNext == head) { |
+ return true; |
+ } |
+ } |
+ return false; |
+} |
+ |
+void reverse_boundary(Vertex* head) { |
+ for (Vertex* v = head; v;) { |
+ SkTSwap(v->fPrev, v->fNext); |
+ v->fInterior = true; |
+ v = v->fNext; |
+ if (v == head) { |
+ break; |
+ } |
+ } |
+} |
+ |
+void end_boundary(const SkPoint& point, Vertex* prev, Vertex* next, bool interior, SkTDArray<Vertex*>* boundaries, SkChunkAlloc& alloc) { |
+ LOG("stitching together left & right boundaries, %g, %g -> %g, %g -> %g, %g\n", prev->fPoint.fX, prev->fPoint.fY, point.fX, point.fY, next->fPoint.fX, next->fPoint.fY); |
+ Vertex* v = ALLOC_NEW(Vertex, (point), alloc); |
+ v->fPrev = prev; |
+ v->fNext = next; |
+ next->fPrev = prev->fNext = v; |
+ // FIXME: is there a better way? |
+ if (boundary_is_closed(v)) { |
+ LOG("ending %s boundary\n", interior ? "interior" : "exterior"); |
+ if (interior) { |
+ reverse_boundary(v); |
+ } |
+ *(boundaries->append()) = v; |
+ } |
+} |
+ |
+Vertex* add_vertex_to_boundary_left(const SkPoint& point, Vertex* next, SkChunkAlloc& alloc) { |
+ Vertex* v = ALLOC_NEW(Vertex, (point), alloc); |
+ next->fPrev = v; |
+ v->fNext = next; |
+ LOG("adding to boundary left, v %g, %g -> next %g, %g\n", v->fPoint.fX, v->fPoint.fY, next->fPoint.fX, next->fPoint.fY); |
+ return v; |
+} |
+ |
+Vertex* add_vertex_to_boundary_right(const SkPoint& point, Vertex* prev, SkChunkAlloc& alloc) { |
+ Vertex* v = ALLOC_NEW(Vertex, (point), alloc); |
+ prev->fNext = v; |
+ v->fPrev = prev; |
+ LOG("adding to boundary right, prev %g, %g -> v %g, %g\n", prev->fPoint.fX, prev->fPoint.fY, v->fPoint.fX, v->fPoint.fY); |
+ return v; |
+} |
+ |
+struct Edge { |
+ Edge(Vertex* top, Vertex* bottom, int winding) : |
+ fWinding(winding), |
+ fTop(top), |
+ fBottom(bottom), |
+ fLeft(NULL), fRight(NULL), |
+ fPrevEdgeAbove(NULL), fNextEdgeAbove(NULL), |
+ fPrevEdgeBelow(NULL), fNextEdgeBelow(NULL), |
+ fLeftPoly(NULL), fRightPoly(NULL), |
+ fLeftBoundary(NULL), fRightBoundary(NULL), |
+ fDX(static_cast<double>(fBottom->fPoint.fX) - fTop->fPoint.fX), |
+ fDY(static_cast<double>(fBottom->fPoint.fY) - fTop->fPoint.fY), |
+ fC(static_cast<double>(fTop->fPoint.fY) * fBottom->fPoint.fX - static_cast<double>(fTop->fPoint.fX) * fBottom->fPoint.fY) {} |
+ int fWinding; |
+ Vertex* fTop; |
+ Vertex* fBottom; |
+ Edge* fLeft; |
+ Edge* fRight; |
+ Edge* fPrevEdgeAbove; |
+ Edge* fNextEdgeAbove; |
+ Edge* fPrevEdgeBelow; |
+ Edge* fNextEdgeBelow; |
+ Poly* fLeftPoly; |
+ Poly* fRightPoly; |
+ Vertex* fLeftBoundary; |
+ Vertex* fRightBoundary; |
+ double fDX; |
+ double fDY; |
+ double fC; |
+ double dist(const SkPoint& p) const { |
+ return fDY * p.fX - fDX * p.fY + fC; |
+ } |
+ bool isRightOf(Vertex* v) const { |
+ return v != fTop && v != fBottom && dist(v->fPoint) < 0.0; |
+ } |
+ bool isLeftOf(Vertex* v) const { |
+ return v != fTop && v != fBottom && dist(v->fPoint) > 0.0; |
+ } |
+ void recompute() { |
+ fDX = static_cast<double>(fBottom->fPoint.fX) - fTop->fPoint.fX; |
+ fDY = static_cast<double>(fBottom->fPoint.fY) - fTop->fPoint.fY; |
+ fC = static_cast<double>(fTop->fPoint.fY) * fBottom->fPoint.fX - static_cast<double>(fTop->fPoint.fX) * fBottom->fPoint.fY; |
+ } |
+ bool intersect(const Edge& other, SkPoint* p) { |
+ LOG("intersecting %g -> %g with %g -> %g\n", |
+ fTop->fID, fBottom->fID, |
+ other.fTop->fID, other.fBottom->fID); |
+ if (fTop == other.fTop || fBottom == other.fBottom) { |
+ return false; |
+ } |
+ double denom = fDX * other.fDY - fDY * other.fDX; |
+ if (denom == 0.0) { |
+ return false; |
+ } |
+ double dx = static_cast<double>(fTop->fPoint.fX) - other.fTop->fPoint.fX; |
+ double dy = static_cast<double>(fTop->fPoint.fY) - other.fTop->fPoint.fY; |
+ double sNumer = dy * other.fDX - dx * other.fDY; |
+ double tNumer = dy * fDX - dx * fDY; |
+ if (denom > 0.0 ? (sNumer < 0.0 || sNumer > denom || tNumer < 0.0 || tNumer > denom) |
+ : (sNumer > 0.0 || sNumer < denom || tNumer > 0.0 || tNumer < denom)) { |
+ return false; |
+ } |
+ double s = sNumer / denom; |
+ p->fX = fTop->fPoint.fX + s * fDX; |
+ p->fY = fTop->fPoint.fY + s * fDY; |
+ return true; |
+ } |
+ bool isActive(Edge** activeEdges) const { |
+ return activeEdges && (fLeft || fRight || *activeEdges == this); |
+ } |
+}; |
+ |
+struct Poly { |
+ Poly(int winding) : fWinding(winding), fHead(NULL), fTail(NULL), fActive(NULL), fNext(NULL), fPartner(NULL), fCount(0) |
+ { |
+#if LOGGING_ENABLED |
+ static int gID = 0; |
+ fID = gID++; |
+ LOG("*** created Poly %d\n", fID); |
+#endif |
+ } |
+ typedef enum { kNeither_Side, kLeft_Side, kRight_Side } Side; |
+ struct MonotonePoly { |
+ MonotonePoly() : fSide(kNeither_Side), fHead(NULL), fTail(NULL), fPrev(NULL), fNext(NULL) {} |
+ Side fSide; |
+ Vertex* fHead; |
+ Vertex* fTail; |
+ MonotonePoly* fPrev; |
+ MonotonePoly* fNext; |
+ bool addVertex(Vertex* v, Side side, SkChunkAlloc& alloc) { |
+ Vertex* newV = ALLOC_NEW(Vertex, (v->fPoint), alloc); |
+ newV->fInterior = v->fInterior; |
+ bool done = false; |
+ if (fSide == kNeither_Side) { |
+ fSide = side; |
+ } else { |
+ done = side != fSide; |
+ } |
+ if (fHead == NULL) { |
+ fHead = fTail = newV; |
+ } else if (fSide == kRight_Side) { |
+ newV->fPrev = fTail; |
+ fTail->fNext = newV; |
+ fTail = newV; |
+ } else { |
+ newV->fNext = fHead; |
+ fHead->fPrev = newV; |
+ fHead = newV; |
+ } |
+ return done; |
+ } |
+ |
+ void* emit(bool antiAlias, bool tweakAlpha, GrColor color, void* data) { |
+ Vertex* first = fHead; |
+ Vertex* v = first->fNext; |
+ while (v != fTail) { |
+ SkASSERT(v && v->fPrev && v->fNext); |
+#ifdef SK_DEBUG |
+ validate(); |
+#endif |
+ Vertex* prev = v->fPrev; |
+ Vertex* curr = v; |
+ Vertex* next = v->fNext; |
+ double ax = static_cast<double>(curr->fPoint.fX) - prev->fPoint.fX; |
+ double ay = static_cast<double>(curr->fPoint.fY) - prev->fPoint.fY; |
+ double bx = static_cast<double>(next->fPoint.fX) - curr->fPoint.fX; |
+ double by = static_cast<double>(next->fPoint.fY) - curr->fPoint.fY; |
+ if (ax * by - ay * bx >= 0.0) { |
+ data = emit_triangle(prev, curr, next, color, antiAlias, tweakAlpha, data); |
+ v->fPrev->fNext = v->fNext; |
+ v->fNext->fPrev = v->fPrev; |
+ if (v->fPrev == first) { |
+ v = v->fNext; |
+ } else { |
+ v = v->fPrev; |
+ } |
+ } else { |
+ v = v->fNext; |
+ SkASSERT(v != fTail); |
+ } |
+ } |
+ return data; |
+ } |
+ |
+#ifdef SK_DEBUG |
+ void validate() { |
+ int winding = fHead->fPoint < fTail->fPoint ? 1 : -1; |
+ Vertex* top = winding < 0 ? fTail : fHead; |
+ Vertex* bottom = winding < 0 ? fHead : fTail; |
+ Edge e(top, bottom, winding); |
+ for (Vertex* v = fHead->fNext; v != fTail; v = v->fNext) { |
+ if (fSide == kRight_Side) { |
+ SkASSERT(!e.isRightOf(v)); |
+ } else if (fSide == Poly::kLeft_Side) { |
+ SkASSERT(!e.isLeftOf(v)); |
+ } |
+ } |
+ } |
+#endif |
+ }; |
+ Poly* addVertex(Vertex* v, Side side, SkChunkAlloc& alloc) { |
+ LOG("addVertex() to %d at %g (%g, %g), %s side\n", fID, v->fID, v->fPoint.fX, v->fPoint.fY, |
+ side == kLeft_Side ? "left" : side == kRight_Side ? "right" : "neither"); |
+ Poly* partner = fPartner; |
+ Poly* poly = this; |
+ if (partner) { |
+ fPartner = partner->fPartner = NULL; |
+ } |
+ if (!fActive) { |
+ fActive = ALLOC_NEW(MonotonePoly, (), alloc); |
+ } |
+ if (fActive->addVertex(v, side, alloc)) { |
+#ifdef SK_DEBUG |
+ fActive->validate(); |
+#endif |
+ if (fTail) { |
+ fActive->fPrev = fTail; |
+ fTail->fNext = fActive; |
+ fTail = fActive; |
+ } else { |
+ fHead = fTail = fActive; |
+ } |
+ if (partner) { |
+ partner->addVertex(v, side, alloc); |
+ poly = partner; |
+ } else { |
+ Vertex* prev = fActive->fSide == Poly::kLeft_Side ? fActive->fHead->fNext : fActive->fTail->fPrev; |
+ fActive = ALLOC_NEW(MonotonePoly, , alloc); |
+ fActive->addVertex(prev, Poly::kNeither_Side, alloc); |
+ fActive->addVertex(v, side, alloc); |
+ } |
+ } |
+ fCount++; |
+ return poly; |
+ } |
+ void end(Vertex* v, SkChunkAlloc& alloc) { |
+ LOG("end() %d at %g, %g\n", fID, v->fPoint.fX, v->fPoint.fY); |
+ if (fPartner) { |
+ fPartner = fPartner->fPartner = NULL; |
+ } |
+ addVertex(v, fActive->fSide == kLeft_Side ? kRight_Side : kLeft_Side, alloc); |
+ } |
+ void* emit(bool antiAlias, bool tweakAlpha, GrColor color, void *data) { |
+ if (fCount < 3) { |
+ return data; |
+ } |
+ LOG("emit() %d, size %d\n", fID, fCount); |
+ for (MonotonePoly* m = fHead; m != NULL; m = m->fNext) { |
+ data = m->emit(antiAlias, tweakAlpha, color, data); |
+ } |
+ return data; |
+ } |
+ int fWinding; |
+ MonotonePoly* fHead; |
+ MonotonePoly* fTail; |
+ MonotonePoly* fActive; |
+ Poly* fNext; |
+ Poly* fPartner; |
+ int fCount; |
+#if LOGGING_ENABLED |
+ int fID; |
+#endif |
+}; |
+ |
+bool coincident(const SkPoint& a, const SkPoint& b) { |
+ return a == b; |
+} |
+ |
+Poly* new_poly(Poly** head, Vertex* v, int winding, SkChunkAlloc& alloc) { |
+ Poly* poly = ALLOC_NEW(Poly, (winding), alloc); |
+ poly->addVertex(v, Poly::kNeither_Side, alloc); |
+ poly->fNext = *head; |
+ *head = poly; |
+ return poly; |
+} |
+ |
+#ifdef SK_DEBUG |
+void validate_edges(Edge* head) { |
+ for (Edge* e = head; e != NULL; e = e->fRight) { |
+ SkASSERT(e->fTop != e->fBottom); |
+ if (e->fLeft) { |
+ SkASSERT(e->fLeft->fRight == e); |
+ if (e->fTop->fPoint > e->fLeft->fTop->fPoint) { |
+ SkASSERT(e->fLeft->isLeftOf(e->fTop)); |
+ } |
+ if (e->fBottom->fPoint < e->fLeft->fBottom->fPoint) { |
+ SkASSERT(e->fLeft->isLeftOf(e->fBottom)); |
+ } |
+ } else { |
+ SkASSERT(e == head); |
+ } |
+ if (e->fRight) { |
+ SkASSERT(e->fRight->fLeft == e); |
+ if (e->fTop->fPoint > e->fRight->fTop->fPoint) { |
+ SkASSERT(e->fRight->isRightOf(e->fTop)); |
+ } |
+ if (e->fBottom->fPoint < e->fRight->fBottom->fPoint) { |
+ SkASSERT(e->fRight->isRightOf(e->fBottom)); |
+ } |
+ } |
+ } |
+} |
+ |
+void validate_connectivity(Vertex* v) { |
+ for (Edge* e = v->fFirstEdgeAbove; e != NULL; e = e->fNextEdgeAbove) { |
+ SkASSERT(e->fBottom == v); |
+ if (e->fPrevEdgeAbove) { |
+ SkASSERT(e->fPrevEdgeAbove->fNextEdgeAbove == e); |
+ SkASSERT(e->fPrevEdgeAbove->isLeftOf(e->fTop)); |
+ } else { |
+ SkASSERT(e == v->fFirstEdgeAbove); |
+ } |
+ if (e->fNextEdgeAbove) { |
+ SkASSERT(e->fNextEdgeAbove->fPrevEdgeAbove == e); |
+ SkASSERT(e->fNextEdgeAbove->isRightOf(e->fTop)); |
+ } else { |
+ SkASSERT(e == v->fLastEdgeAbove); |
+ } |
+ } |
+ for (Edge* e = v->fFirstEdgeBelow; e != NULL; e = e->fNextEdgeBelow) { |
+ SkASSERT(e->fTop == v); |
+ if (e->fPrevEdgeBelow) { |
+ SkASSERT(e->fPrevEdgeBelow->fNextEdgeBelow == e); |
+ SkASSERT(e->fPrevEdgeBelow->isLeftOf(e->fBottom)); |
+ } else { |
+ SkASSERT(e == v->fFirstEdgeBelow); |
+ } |
+ if (e->fNextEdgeBelow) { |
+ SkASSERT(e->fNextEdgeBelow->fPrevEdgeBelow == e); |
+ SkASSERT(e->fNextEdgeBelow->isRightOf(e->fBottom)); |
+ } else { |
+ SkASSERT(e == v->fLastEdgeBelow); |
+ } |
+ } |
+} |
+#endif |
+ |
+Vertex* append_point_to_contour(const SkPoint& p, Vertex* prev, Vertex** head, SkChunkAlloc& alloc) { |
+ Vertex* v = ALLOC_NEW(Vertex, (p), alloc); |
+#if LOGGING_ENABLED |
+ static float gID = 0.0f; |
+ v->fID = gID++; |
+#endif |
+ if (prev) { |
+ prev->fNext = v; |
+ v->fPrev = prev; |
+ } else { |
+ *head = v; |
+ } |
+ return v; |
+} |
+ |
+Vertex* generate_quadratic_points(const SkPoint& p0, |
+ const SkPoint& p1, |
+ const SkPoint& p2, |
+ SkScalar tolSqd, |
+ Vertex* prev, |
+ Vertex** head, |
+ SkChunkAlloc& alloc) { |
+ if ((p1.distanceToLineSegmentBetweenSqd(p0, p2)) < tolSqd) { |
+ return append_point_to_contour(p2, prev, head, alloc); |
+ } |
+ |
+ SkPoint q[] = { |
+ { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) }, |
+ { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) }, |
+ }; |
+ SkPoint r = { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) }; |
+ |
+ prev = generate_quadratic_points(p0, q[0], r, tolSqd, prev, head, alloc); |
+ prev = generate_quadratic_points(r, q[1], p2, tolSqd, prev, head, alloc); |
+ return prev; |
+} |
+ |
+Vertex* generate_cubic_points(const SkPoint& p0, |
+ const SkPoint& p1, |
+ const SkPoint& p2, |
+ const SkPoint& p3, |
+ SkScalar tolSqd, |
+ Vertex* prev, |
+ Vertex** head, |
+ SkChunkAlloc& alloc) { |
+ if ((p1.distanceToLineSegmentBetweenSqd(p0, p3) < tolSqd && |
+ p2.distanceToLineSegmentBetweenSqd(p0, p3) < tolSqd)) { |
+ return append_point_to_contour(p3, prev, head, alloc); |
+ } |
+ SkPoint q[] = { |
+ { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) }, |
+ { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) }, |
+ { SkScalarAve(p2.fX, p3.fX), SkScalarAve(p2.fY, p3.fY) } |
+ }; |
+ SkPoint r[] = { |
+ { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) }, |
+ { SkScalarAve(q[1].fX, q[2].fX), SkScalarAve(q[1].fY, q[2].fY) } |
+ }; |
+ SkPoint s = { SkScalarAve(r[0].fX, r[1].fX), SkScalarAve(r[0].fY, r[1].fY) }; |
+ prev = generate_cubic_points(p0, q[0], r[0], s, tolSqd, prev, head, alloc); |
+ prev = generate_cubic_points(s, r[1], q[2], p3, tolSqd, prev, head, alloc); |
+ return prev; |
+} |
+ |
+void path_to_contours(const SkPath& path, SkScalar srcSpaceTol, const SkRect& clipBounds, Vertex** contours, SkChunkAlloc& alloc) { |
+ |
+ SkScalar srcSpaceTolSqd = srcSpaceTol * srcSpaceTol; |
+ |
+ SkPoint pts[4]; |
+ bool done = false; |
+ SkPath::Iter iter(path, false); |
+ Vertex* prev = NULL; |
+ Vertex* head = NULL; |
+ if (path.isInverseFillType()) { |
+ SkPoint quad[4]; |
+ clipBounds.toQuad(quad); |
+ for (int i = 3; i >= 0; i--) { |
+ prev = append_point_to_contour(quad[i], prev, &head, alloc); |
+ } |
+ head->fPrev = prev; |
+ prev->fNext = head; |
+ *contours++ = head; |
+ head = prev = NULL; |
+ } |
+ while (!done) { |
+ SkPath::Verb verb = iter.next(pts); |
+ switch (verb) { |
+ case SkPath::kConic_Verb: { |
+ SkScalar weight = iter.conicWeight(); |
+ SkAutoConicToQuads converter; |
+ const SkPoint* quadPts = converter.computeQuads(pts, weight, srcSpaceTolSqd); |
+ for (int i = 0; i < converter.countQuads(); ++i) { |
+ prev = generate_quadratic_points(quadPts[0], quadPts[1], quadPts[2], srcSpaceTolSqd, prev, &head, alloc); |
+ quadPts += 2; |
+ } |
+ break; |
+ } |
+ case SkPath::kMove_Verb: |
+ if (head) { |
+ head->fPrev = prev; |
+ prev->fNext = head; |
+ *contours++ = head; |
+ } |
+ head = prev = NULL; |
+ prev = append_point_to_contour(pts[0], prev, &head, alloc); |
+ break; |
+ case SkPath::kLine_Verb: { |
+ prev = append_point_to_contour(pts[1], prev, &head, alloc); |
+ break; |
+ } |
+ case SkPath::kQuad_Verb: { |
+ prev = generate_quadratic_points(pts[0], pts[1], pts[2], srcSpaceTolSqd, prev, &head, alloc); |
+ break; |
+ } |
+ case SkPath::kCubic_Verb: { |
+ prev = generate_cubic_points(pts[0], pts[1], pts[2], pts[3], |
+ srcSpaceTolSqd, prev, &head, alloc); |
+ break; |
+ } |
+ case SkPath::kClose_Verb: |
+ if (head) { |
+ head->fPrev = prev; |
+ prev->fNext = head; |
+ *contours++ = head; |
+ } |
+ head = prev = NULL; |
+ break; |
+ case SkPath::kDone_Verb: |
+ if (head) { |
+ head->fPrev = prev; |
+ prev->fNext = head; |
+ *contours++ = head; |
+ } |
+ done = true; |
+ break; |
+ } |
+ } |
+} |
+ |
+void close_all_path_contours(const SkPath& src, SkPath* dst) { |
+ SkPath::Iter iter(src, true); |
+ SkPoint pts[4]; |
+ SkPath::Verb verb; |
+ while ((verb = iter.next(pts)) != SkPath::kDone_Verb) { |
+ switch (verb) { |
+ case SkPath::kMove_Verb: |
+ dst->moveTo(pts[0]); |
+ break; |
+ case SkPath::kLine_Verb: |
+ dst->lineTo(pts[1]); |
+ break; |
+ case SkPath::kQuad_Verb: |
+ dst->quadTo(pts[1], pts[2]); |
+ break; |
+ case SkPath::kCubic_Verb: |
+ dst->cubicTo(pts[1], pts[2], pts[3]); |
+ break; |
+ case SkPath::kClose_Verb: |
+ dst->close(); |
+ break; |
+ case SkPath::kConic_Verb: |
+ case SkPath::kDone_Verb: |
+ SkASSERT(false); |
+ break; |
+ } |
+ } |
+} |
+ |
+inline bool apply_fill_type(SkPath::FillType fillType, int winding) { |
+ switch (fillType) { |
+ case SkPath::kWinding_FillType: |
+ return winding != 0; |
+ case SkPath::kEvenOdd_FillType: |
+ return (winding & 1) != 0; |
+ case SkPath::kInverseWinding_FillType: |
+ return winding == 1; |
+ case SkPath::kInverseEvenOdd_FillType: |
+ return (winding & 1) == 1; |
+ default: |
+ SkASSERT(false); |
+ return false; |
+ } |
+} |
+ |
+Edge* new_edge(Vertex* prev, Vertex* next, SkChunkAlloc& alloc) { |
+ int winding = prev->fPoint < next->fPoint ? 1 : -1; |
+ Vertex* top = winding < 0 ? next : prev; |
+ Vertex* bottom = winding < 0 ? prev : next; |
+ return ALLOC_NEW(Edge, (top, bottom, winding), alloc); |
+} |
+ |
+void remove_edge(Edge* edge, Edge** head) { |
+ LOG("removing edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID); |
+ SkASSERT(edge->isActive(head)); |
+ remove<Edge, &Edge::fLeft, &Edge::fRight>(edge, head, NULL); |
+} |
+ |
+void insert_edge(Edge* edge, Edge* prev, Edge** head) { |
+ LOG("inserting edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID); |
+ SkASSERT(!edge->isActive(head)); |
+ Edge* next = prev ? prev->fRight : *head; |
+ insert<Edge, &Edge::fLeft, &Edge::fRight>(edge, prev, next, head, NULL); |
+} |
+ |
+void find_enclosing_edges(Vertex* v, Edge* head, Edge** left, Edge** right) { |
+ if (v->fFirstEdgeAbove) { |
+ *left = v->fFirstEdgeAbove->fLeft; |
+ *right = v->fLastEdgeAbove->fRight; |
+ return; |
+ } |
+ Edge* prev = NULL; |
+ Edge* next; |
+ for (next = head; next != NULL; next = next->fRight) { |
+ if (next->isRightOf(v)) { |
+ break; |
+ } |
+ prev = next; |
+ } |
+ *left = prev; |
+ *right = next; |
+ return; |
+} |
+ |
+void find_enclosing_edges(Edge* edge, Edge* head, Edge** left, Edge** right) { |
+ Edge* prev = NULL; |
+ Edge* next; |
+ for (next = head; next != NULL; next = next->fRight) { |
+ if ((edge->fTop->fPoint > next->fTop->fPoint && next->isRightOf(edge->fTop)) || |
+ (next->fTop->fPoint > edge->fTop->fPoint && edge->isLeftOf(next->fTop)) || |
+ (edge->fBottom->fPoint < next->fBottom->fPoint && next->isRightOf(edge->fBottom)) || |
+ (next->fBottom->fPoint < edge->fBottom->fPoint && edge->isLeftOf(next->fBottom))) { |
+ break; |
+ } |
+ prev = next; |
+ } |
+ *left = prev; |
+ *right = next; |
+ return; |
+} |
+ |
+void fix_active_state(Edge* edge, Edge** activeEdges) { |
+ if (edge->isActive(activeEdges)) { |
+ if (edge->fBottom->fProcessed || !edge->fTop->fProcessed) { |
+ remove_edge(edge, activeEdges); |
+ } |
+ } else if (edge->fTop->fProcessed && !edge->fBottom->fProcessed) { |
+ Edge* left; |
+ Edge* right; |
+ find_enclosing_edges(edge, *activeEdges, &left, &right); |
+ insert_edge(edge, left, activeEdges); |
+ } |
+} |
+ |
+void insert_edge_above(Edge* edge, Vertex* v) { |
+ if (edge->fTop->fPoint == edge->fBottom->fPoint || edge->fTop->fPoint > edge->fBottom->fPoint) { |
+ SkASSERT(false); |
+ return; |
+ } |
+ LOG("insert edge (%g -> %g) above vertex %g (%g, %g)\n", edge->fTop->fID, edge->fBottom->fID, v->fID, v->fPoint.fX, v->fPoint.fY); |
+ Edge* prev = NULL; |
+ Edge* next; |
+ for (next = v->fFirstEdgeAbove; next; next = next->fNextEdgeAbove) { |
+ if (next->isRightOf(edge->fTop)) { |
+ break; |
+ } |
+ prev = next; |
+ } |
+ insert<Edge, &Edge::fPrevEdgeAbove, &Edge::fNextEdgeAbove>(edge, prev, next, &v->fFirstEdgeAbove, &v->fLastEdgeAbove); |
+} |
+ |
+void insert_edge_below(Edge* edge, Vertex* v) { |
+ if (edge->fTop->fPoint == edge->fBottom->fPoint || edge->fTop->fPoint > edge->fBottom->fPoint) { |
+ SkASSERT(false); |
+ return; |
+ } |
+ LOG("insert edge (%g -> %g) below vertex %g (%g, %g)\n", edge->fTop->fID, edge->fBottom->fID, v->fID, v->fPoint.fX, v->fPoint.fY); |
+ Edge* prev = NULL; |
+ Edge* next; |
+ for (next = v->fFirstEdgeBelow; next; next = next->fNextEdgeBelow) { |
+ if (next->isRightOf(edge->fBottom)) { |
+ break; |
+ } |
+ prev = next; |
+ } |
+ insert<Edge, &Edge::fPrevEdgeBelow, &Edge::fNextEdgeBelow>(edge, prev, next, &v->fFirstEdgeBelow, &v->fLastEdgeBelow); |
+} |
+ |
+void remove_edge_above(Edge* edge) { |
+ LOG("removing edge (%g -> %g) above vertex %g\n", edge->fTop->fID, edge->fBottom->fID, edge->fBottom->fID); |
+ remove<Edge, &Edge::fPrevEdgeAbove, &Edge::fNextEdgeAbove>(edge, &edge->fBottom->fFirstEdgeAbove, &edge->fBottom->fLastEdgeAbove); |
+} |
+ |
+void remove_edge_below(Edge* edge) { |
+ LOG("removing edge (%g -> %g) below vertex %g\n", edge->fTop->fID, edge->fBottom->fID, edge->fTop->fID); |
+ remove<Edge, &Edge::fPrevEdgeBelow, &Edge::fNextEdgeBelow>(edge, &edge->fTop->fFirstEdgeBelow, &edge->fTop->fLastEdgeBelow); |
+} |
+ |
+void erase_edge_if_zero_winding(Edge* edge, Edge** head) { |
+ if (edge->fWinding != 0) { |
+ return; |
+ } |
+ LOG("erasing edge (%g -> %g)\n", edge->fTop->fID, edge->fBottom->fID); |
+ remove_edge_above(edge); |
+ remove_edge_below(edge); |
+ if (edge->isActive(head)) { |
+ remove_edge(edge, head); |
+ } |
+} |
+ |
+void merge_collinear_edges(Edge* edge, Edge** activeEdges); |
+ |
+void set_top(Edge* edge, Vertex* v, Edge** activeEdges) { |
+ remove_edge_below(edge); |
+ edge->fTop = v; |
+ edge->recompute(); |
+ insert_edge_below(edge, v); |
+ fix_active_state(edge, activeEdges); |
+ merge_collinear_edges(edge, activeEdges); |
+} |
+ |
+void set_bottom(Edge* edge, Vertex* v, Edge** activeEdges) { |
+ remove_edge_above(edge); |
+ edge->fBottom = v; |
+ edge->recompute(); |
+ insert_edge_above(edge, v); |
+ fix_active_state(edge, activeEdges); |
+ merge_collinear_edges(edge, activeEdges); |
+} |
+ |
+void merge_edges_above(Edge* edge, Edge* other, Edge** activeEdges) { |
+ if (coincident(edge->fTop->fPoint, other->fTop->fPoint)) { |
+ LOG("merging coincident above edges (%g, %g) -> (%g, %g)\n", |
+ edge->fTop->fPoint.fX, edge->fTop->fPoint.fY, |
+ edge->fBottom->fPoint.fX, edge->fBottom->fPoint.fY); |
+ other->fWinding += edge->fWinding; |
+ erase_edge_if_zero_winding(other, activeEdges); |
+ edge->fWinding = 0; |
+ erase_edge_if_zero_winding(edge, activeEdges); |
+ } else if (edge->fTop->fPoint < other->fTop->fPoint) { |
+ other->fWinding += edge->fWinding; |
+ erase_edge_if_zero_winding(other, activeEdges); |
+ set_bottom(edge, other->fTop, activeEdges); |
+ } else { |
+ edge->fWinding += other->fWinding; |
+ erase_edge_if_zero_winding(edge, activeEdges); |
+ set_bottom(other, edge->fTop, activeEdges); |
+ } |
+} |
+ |
+void merge_edges_below(Edge* edge, Edge* other, Edge** activeEdges) { |
+ if (coincident(edge->fBottom->fPoint, other->fBottom->fPoint)) { |
+ LOG("merging coincident below edges (%g, %g) -> (%g, %g)\n", |
+ edge->fTop->fPoint.fX, edge->fTop->fPoint.fY, |
+ edge->fBottom->fPoint.fX, edge->fBottom->fPoint.fY); |
+ other->fWinding += edge->fWinding; |
+ erase_edge_if_zero_winding(other, activeEdges); |
+ edge->fWinding = 0; |
+ erase_edge_if_zero_winding(edge, activeEdges); |
+ } else if (edge->fBottom->fPoint < other->fBottom->fPoint) { |
+ edge->fWinding += other->fWinding; |
+ erase_edge_if_zero_winding(edge, activeEdges); |
+ set_top(other, edge->fBottom, activeEdges); |
+ } else { |
+ other->fWinding += edge->fWinding; |
+ erase_edge_if_zero_winding(other, activeEdges); |
+ set_top(edge, other->fBottom, activeEdges); |
+ } |
+} |
+ |
+void merge_collinear_edges(Edge* edge, Edge** activeEdges) { |
+ if (edge->fPrevEdgeAbove && !edge->fPrevEdgeAbove->isLeftOf(edge->fTop)) { |
+ merge_edges_above(edge, edge->fPrevEdgeAbove, activeEdges); |
+ } else if (edge->fNextEdgeAbove && !edge->isLeftOf(edge->fNextEdgeAbove->fTop)) { |
+ merge_edges_above(edge, edge->fNextEdgeAbove, activeEdges); |
+ } |
+ if (edge->fPrevEdgeBelow && !edge->fPrevEdgeBelow->isLeftOf(edge->fBottom)) { |
+ merge_edges_below(edge, edge->fPrevEdgeBelow, activeEdges); |
+ } else if (edge->fNextEdgeBelow && !edge->isLeftOf(edge->fNextEdgeBelow->fBottom)) { |
+ merge_edges_below(edge, edge->fNextEdgeBelow, activeEdges); |
+ } |
+} |
+ |
+void split_edge(Edge* edge, Vertex* v, Edge** activeEdges, SkChunkAlloc& alloc); |
+ |
+void cleanup_active_edges(Edge* edge, Edge** activeEdges, SkChunkAlloc& alloc) { |
+ Vertex* top = edge->fTop; |
+ Vertex* bottom = edge->fBottom; |
+ if (edge->fLeft) { |
+ Vertex* leftTop = edge->fLeft->fTop; |
+ Vertex* leftBottom = edge->fLeft->fBottom; |
+ if (top->fPoint > leftTop->fPoint && !edge->fLeft->isLeftOf(top)) { |
+ split_edge(edge->fLeft, edge->fTop, activeEdges, alloc); |
+ } else if (leftTop->fPoint > top->fPoint && !edge->isRightOf(leftTop)) { |
+ split_edge(edge, leftTop, activeEdges, alloc); |
+ } else if (bottom->fPoint < leftBottom->fPoint && !edge->fLeft->isLeftOf(bottom)) { |
+ split_edge(edge->fLeft, bottom, activeEdges, alloc); |
+ } else if (leftBottom->fPoint < bottom->fPoint && !edge->isRightOf(leftBottom)) { |
+ split_edge(edge, leftBottom, activeEdges, alloc); |
+ } |
+ } |
+ if (edge->fRight) { |
+ Vertex* rightTop = edge->fRight->fTop; |
+ Vertex* rightBottom = edge->fRight->fBottom; |
+ if (top->fPoint > rightTop->fPoint && !edge->fRight->isRightOf(top)) { |
+ split_edge(edge->fRight, top, activeEdges, alloc); |
+ } else if (rightTop->fPoint > top->fPoint && !edge->isLeftOf(rightTop)) { |
+ split_edge(edge, rightTop, activeEdges, alloc); |
+ } else if (bottom->fPoint < rightBottom->fPoint && !edge->fRight->isRightOf(bottom)) { |
+ split_edge(edge->fRight, bottom, activeEdges, alloc); |
+ } else if (rightBottom->fPoint < bottom->fPoint && !edge->isLeftOf(rightBottom)) { |
+ split_edge(edge, rightBottom, activeEdges, alloc); |
+ } |
+ } |
+} |
+ |
+void split_edge(Edge* edge, Vertex* v, Edge** activeEdges, SkChunkAlloc& alloc) { |
+ LOG("splitting edge (%g -> %g) at vertex %g (%g, %g)\n", |
+ edge->fTop->fID, edge->fBottom->fID, |
+ v->fID, v->fPoint.fX, v->fPoint.fY); |
+ Edge* newEdge = ALLOC_NEW(Edge, (v, edge->fBottom, edge->fWinding), alloc); |
+ insert_edge_below(newEdge, v); |
+ insert_edge_above(newEdge, edge->fBottom); |
+ set_bottom(edge, v, activeEdges); |
+ cleanup_active_edges(edge, activeEdges, alloc); |
+ fix_active_state(newEdge, activeEdges); |
+ merge_collinear_edges(newEdge, activeEdges); |
+} |
+ |
+void merge_vertices(Vertex* src, Vertex* dst, Vertex** head, SkChunkAlloc& alloc) { |
+ LOG("found coincident verts at %g, %g; merging %g into %g\n", src->fPoint.fX, src->fPoint.fY, src->fID, dst->fID); |
+ for (Edge* edge = src->fFirstEdgeAbove; edge;) { |
+ Edge* next = edge->fNextEdgeAbove; |
+ set_bottom(edge, dst, NULL); |
+ edge = next; |
+ } |
+ for (Edge* edge = src->fFirstEdgeBelow; edge;) { |
+ Edge* next = edge->fNextEdgeBelow; |
+ set_top(edge, dst, NULL); |
+ edge = next; |
+ } |
+ remove<Vertex, &Vertex::fPrev, &Vertex::fNext>(src, head, NULL); |
+} |
+ |
+Vertex* check_for_intersection(Edge* edge, Edge* other, Edge** activeEdges, SkChunkAlloc& alloc) { |
+ SkPoint p; |
+ if (!edge || !other) { |
+ return NULL; |
+ } |
+ if (edge->intersect(*other, &p)) { |
+ Vertex* v; |
+ LOG("found intersection, pt is %g, %g\n", p.fX, p.fY); |
+ if (p == edge->fTop->fPoint || p < edge->fTop->fPoint) { |
+ split_edge(other, edge->fTop, activeEdges, alloc); |
+ v = edge->fTop; |
+ } else if (p == edge->fBottom->fPoint || p > edge->fBottom->fPoint) { |
+ split_edge(other, edge->fBottom, activeEdges, alloc); |
+ v = edge->fBottom; |
+ } else if (p == other->fTop->fPoint || p < other->fTop->fPoint) { |
+ split_edge(edge, other->fTop, activeEdges, alloc); |
+ v = other->fTop; |
+ } else if (p == other->fBottom->fPoint || p > other->fBottom->fPoint) { |
+ split_edge(edge, other->fBottom, activeEdges, alloc); |
+ v = other->fBottom; |
+ } else { |
+ Vertex* nextV = edge->fTop; |
+ while (p < nextV->fPoint) { |
+ nextV = nextV->fPrev; |
+ } |
+ while (nextV->fPoint < p) { |
+ nextV = nextV->fNext; |
+ } |
+ Vertex* prevV = nextV->fPrev; |
+ if (coincident(prevV->fPoint, p)) { |
+ v = prevV; |
+ } else if (coincident(nextV->fPoint, p)) { |
+ v = nextV; |
+ } else { |
+ v = ALLOC_NEW(Vertex, (p), alloc); |
+ LOG("inserting between %g (%g, %g) and %g (%g, %g)\n", prevV->fID, prevV->fPoint.fX, prevV->fPoint.fY, nextV->fID, nextV->fPoint.fX, nextV->fPoint.fY); |
+#if LOGGING_ENABLED |
+ v->fID = (nextV->fID + prevV->fID) * 0.5f; |
+#endif |
+ v->fPrev = prevV; |
+ v->fNext = nextV; |
+ prevV->fNext = v; |
+ nextV->fPrev = v; |
+ } |
+ split_edge(edge, v, activeEdges, alloc); |
+ split_edge(other, v, activeEdges, alloc); |
+ } |
+#ifdef SK_DEBUG |
+ validate_connectivity(v); |
+#endif |
+ return v; |
+ } |
+ return NULL; |
+} |
+ |
+Vertex* sorted_merge(Vertex* a, Vertex* b); |
+ |
+void front_back_split(Vertex* v, Vertex** pFront, Vertex** pBack) |
+{ |
+ Vertex* fast; |
+ Vertex* slow; |
+ if (!v || !v->fNext) { |
+ *pFront = v; |
+ *pBack = NULL; |
+ } else { |
+ slow = v; |
+ fast = v->fNext; |
+ |
+ while (fast != NULL) { |
+ fast = fast->fNext; |
+ if (fast != NULL) { |
+ slow = slow->fNext; |
+ fast = fast->fNext; |
+ } |
+ } |
+ |
+ *pFront = v; |
+ *pBack = slow->fNext; |
+ slow->fNext->fPrev = NULL; |
+ slow->fNext = NULL; |
+ } |
+} |
+ |
+void merge_sort(Vertex** head) |
+{ |
+ if (!*head || !(*head)->fNext) { |
+ return; |
+ } |
+ |
+ Vertex* a; |
+ Vertex* b; |
+ front_back_split(*head, &a, &b); |
+ |
+ merge_sort(&a); |
+ merge_sort(&b); |
+ |
+ *head = sorted_merge(a, b); |
+} |
+ |
+Vertex* sorted_merge(Vertex* a, Vertex* b) |
+{ |
+ if (!a) { |
+ return b; |
+ } else if (!b) { |
+ return a; |
+ } |
+ |
+ Vertex* result = NULL; |
+ |
+ if (a->fPoint < b->fPoint) { |
+ result = a; |
+ result->fNext = sorted_merge(a->fNext, b); |
+ } else { |
+ result = b; |
+ result->fNext = sorted_merge(a, b->fNext); |
+ } |
+ result->fNext->fPrev = result; |
+ return result; |
+} |
+ |
+void sanitize_contours(Vertex** contours, int contourCnt) { |
+ for (int i = 0; i < contourCnt; ++i) { |
+ SkASSERT(contours[i]); |
+ for (Vertex* v = contours[i];;) { |
+ if (coincident(v->fPrev->fPoint, v->fPoint)) { |
+ LOG("vertex %g,%g coincident; removing\n", v->fPoint.fX, v->fPoint.fY); |
+ if (v->fPrev == v) { |
+ contours[i] = NULL; |
+ break; |
+ } |
+ v->fPrev->fNext = v->fNext; |
+ v->fNext->fPrev = v->fPrev; |
+ if (contours[i] == v) { |
+ contours[i] = v->fNext; |
+ } |
+ v = v->fPrev; |
+ } else { |
+ v = v->fNext; |
+ if (v == contours[i]) break; |
+ } |
+ } |
+ } |
+} |
+ |
+void merge_coincident_vertices(Vertex** headInY, SkChunkAlloc& alloc) { |
+ for (Vertex* v = (*headInY)->fNext; v != NULL; v = v->fNext) { |
+ if (v->fPoint < v->fPrev->fPoint) { |
+ v->fPoint = v->fPrev->fPoint; |
+ } |
+ if (coincident(v->fPrev->fPoint, v->fPoint)) { |
+ merge_vertices(v->fPrev, v, headInY, alloc); |
+ } |
+ } |
+} |
+ |
+Vertex* build_edges(Vertex** contours, int contourCnt, SkChunkAlloc& alloc) { |
+ Vertex* headInY = NULL; |
+ Vertex* prevInY = NULL; |
+ for (int i = 0; i < contourCnt; ++i) { |
+ for (Vertex* v = contours[i]; v != NULL;) { |
+ Vertex* vNext = v->fNext; |
+ Edge* edge = new_edge(v->fPrev, v, alloc); |
+ if (edge->fWinding > 0) { |
+ insert_edge_below(edge, v->fPrev); |
+ insert_edge_above(edge, v); |
+ } else { |
+ insert_edge_below(edge, v); |
+ insert_edge_above(edge, v->fPrev); |
+ } |
+ merge_collinear_edges(edge, NULL); |
+ if (prevInY) { |
+ prevInY->fNext = v; |
+ v->fPrev = prevInY; |
+ } else { |
+ headInY = v; |
+ } |
+ prevInY = v; |
+ v = vNext; |
+ if (v == contours[i]) break; |
+ } |
+ } |
+ if (prevInY) { |
+ prevInY->fNext = headInY->fPrev = NULL; |
+ } |
+ return headInY; |
+} |
+ |
+void simplify(Vertex* headInY, SkChunkAlloc& alloc) { |
+ LOG("simplifying complex polygons\n"); |
+ Edge* activeEdges = NULL; |
+ for (Vertex* v = headInY; v != NULL; v = v->fNext) { |
+ if (!v->fFirstEdgeAbove && !v->fFirstEdgeBelow) { |
+ continue; |
+ } |
+#if LOGGING_ENABLED |
+ LOG("\nvertex %g: (%g,%g)\n", v->fID, v->fPoint.fX, v->fPoint.fY); |
+#endif |
+#ifdef SK_DEBUG |
+ validate_connectivity(v); |
+#endif |
+ Edge* leftEnclosingEdge = NULL; |
+ Edge* rightEnclosingEdge = NULL; |
+ bool restartChecks; |
+ do { |
+ restartChecks = false; |
+ find_enclosing_edges(v, activeEdges, &leftEnclosingEdge, &rightEnclosingEdge); |
+ if (v->fFirstEdgeBelow) { |
+ for (Edge* edge = v->fFirstEdgeBelow; edge != NULL; edge = edge->fNextEdgeBelow) { |
+ if (check_for_intersection(edge, leftEnclosingEdge, &activeEdges, alloc)) { |
+ restartChecks = true; |
+ break; |
+ } |
+ if (check_for_intersection(edge, rightEnclosingEdge, &activeEdges, alloc)) { |
+ restartChecks = true; |
+ break; |
+ } |
+ } |
+ } else { |
+ if (Vertex* pv = check_for_intersection(leftEnclosingEdge, rightEnclosingEdge, &activeEdges, alloc)) { |
+ if (pv->fPoint < v->fPoint) { |
+ v = pv; |
+ } |
+ restartChecks = true; |
+ } |
+ |
+ } |
+ } while (restartChecks); |
+ SkASSERT(!leftEnclosingEdge || leftEnclosingEdge->isLeftOf(v)); |
+ SkASSERT(!rightEnclosingEdge || rightEnclosingEdge->isRightOf(v)); |
+#ifdef SK_DEBUG |
+ validate_edges(activeEdges); |
+#endif |
+ for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) { |
+ remove_edge(e, &activeEdges); |
+ } |
+ Edge* leftEdge = leftEnclosingEdge; |
+ for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) { |
+ insert_edge(e, leftEdge, &activeEdges); |
+ leftEdge = e; |
+ } |
+ v->fProcessed = true; |
+ } |
+} |
+ |
+Poly* tessellate(Vertex* headInY, SkChunkAlloc& alloc, SkTDArray<Vertex*>* boundaries) { |
+ LOG("tessellating simple polygons\n"); |
+ Edge* activeEdges = NULL; |
+ Poly* polys = NULL; |
+ for (Vertex* v = headInY; v != NULL; v = v->fNext) { |
+ if (!v->fFirstEdgeAbove && !v->fFirstEdgeBelow) { |
+ continue; |
+ } |
+#if LOGGING_ENABLED |
+ LOG("\nvertex %g: (%g,%g)\n", v->fID, v->fPoint.fX, v->fPoint.fY); |
+#endif |
+#ifdef SK_DEBUG |
+ validate_connectivity(v); |
+#endif |
+ Edge* leftEnclosingEdge = NULL; |
+ Edge* rightEnclosingEdge = NULL; |
+ find_enclosing_edges(v, activeEdges, &leftEnclosingEdge, &rightEnclosingEdge); |
+ SkASSERT(!leftEnclosingEdge || leftEnclosingEdge->isLeftOf(v)); |
+ SkASSERT(!rightEnclosingEdge || rightEnclosingEdge->isRightOf(v)); |
+#ifdef SK_DEBUG |
+ validate_edges(activeEdges); |
+#endif |
+ Poly* leftPoly = NULL; |
+ Poly* rightPoly = NULL; |
+ Vertex* leftBoundary = NULL; |
+ Vertex* rightBoundary = NULL; |
+ if (v->fFirstEdgeAbove) { |
+ leftPoly = v->fFirstEdgeAbove->fLeftPoly; |
+ rightPoly = v->fLastEdgeAbove->fRightPoly; |
+ leftBoundary = v->fFirstEdgeAbove->fLeftBoundary; |
+ rightBoundary = v->fLastEdgeAbove->fRightBoundary; |
+ } else { |
+ leftPoly = leftEnclosingEdge ? leftEnclosingEdge->fRightPoly : NULL; |
+ rightPoly = rightEnclosingEdge ? rightEnclosingEdge->fLeftPoly : NULL; |
+ } |
+#if LOGGING_ENABLED |
+ LOG("edges above:\n"); |
+ for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) { |
+ LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID, e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRightPoly->fID : -1); |
+ } |
+ LOG("edges below:\n"); |
+ for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) { |
+ LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID, e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRightPoly->fID : -1); |
+ } |
+#endif |
+ if (v->fFirstEdgeAbove) { |
+ if (leftPoly) { |
+ leftPoly = leftPoly->addVertex(v, Poly::kRight_Side, alloc); |
+ } |
+ if (rightPoly) { |
+ rightPoly = rightPoly->addVertex(v, Poly::kLeft_Side, alloc); |
+ } |
+ for (Edge* e = v->fFirstEdgeAbove; e != v->fLastEdgeAbove; e = e->fNextEdgeAbove) { |
+ Edge* leftEdge = e; |
+ Edge* rightEdge = e->fNextEdgeAbove; |
+ SkASSERT(rightEdge->isRightOf(leftEdge->fTop)); |
+ remove_edge(leftEdge, &activeEdges); |
+ if (leftEdge->fRightPoly) { |
+ leftEdge->fRightPoly->end(v, alloc); |
+ } else if (boundaries) { |
+ SkASSERT(leftEdge->fRightBoundary && rightEdge->fLeftBoundary); |
+ if (leftEdge->fRightBoundary && rightEdge->fLeftBoundary) { |
+ end_boundary(v->fPoint, leftEdge->fRightBoundary, rightEdge->fLeftBoundary, true, boundaries, alloc); |
+ } |
+ } |
+ if (rightEdge->fLeftPoly && rightEdge->fLeftPoly != leftEdge->fRightPoly) { |
+ rightEdge->fLeftPoly->end(v, alloc); |
+ } |
+ } |
+ remove_edge(v->fLastEdgeAbove, &activeEdges); |
+ if (!v->fFirstEdgeBelow) { |
+ if (leftPoly && rightPoly && leftPoly != rightPoly) { |
+ SkASSERT(leftPoly->fPartner == NULL && rightPoly->fPartner == NULL); |
+ rightPoly->fPartner = leftPoly; |
+ leftPoly->fPartner = rightPoly; |
+ } |
+ if (leftBoundary) { |
+ SkASSERT(rightBoundary); |
+ if (rightBoundary) { |
+ end_boundary(v->fPoint, rightBoundary, leftBoundary, false, boundaries, alloc); |
+ } |
+ } |
+ } |
+ } |
+ if (v->fFirstEdgeBelow) { |
+ if (!v->fFirstEdgeAbove) { |
+ if (leftPoly && leftPoly == rightPoly) { |
+ // Split the poly. |
+ if (leftPoly->fActive->fSide == Poly::kLeft_Side) { |
+ leftPoly = new_poly(&polys, leftEnclosingEdge->fTop, leftPoly->fWinding, alloc); |
+ leftPoly->addVertex(v, Poly::kRight_Side, alloc); |
+ rightPoly->addVertex(v, Poly::kLeft_Side, alloc); |
+ leftEnclosingEdge->fRightPoly = leftPoly; |
+ } else { |
+ rightPoly = new_poly(&polys, rightEnclosingEdge->fTop, rightPoly->fWinding, alloc); |
+ rightPoly->addVertex(v, Poly::kLeft_Side, alloc); |
+ leftPoly->addVertex(v, Poly::kRight_Side, alloc); |
+ rightEnclosingEdge->fLeftPoly = rightPoly; |
+ } |
+ } else { |
+ if (leftPoly) { |
+ leftPoly = leftPoly->addVertex(v, Poly::kRight_Side, alloc); |
+ } |
+ if (rightPoly) { |
+ rightPoly = rightPoly->addVertex(v, Poly::kLeft_Side, alloc); |
+ } |
+ } |
+ if (boundaries && (!leftPoly && !rightPoly)) { |
+ Vertex* c = new_boundary(v->fPoint, alloc); |
+ leftBoundary = rightBoundary = c; |
+ } |
+ } else if (boundaries) { |
+ if (!leftPoly) { |
+ SkASSERT(leftBoundary); |
+ if (leftBoundary) { |
+ leftBoundary = add_vertex_to_boundary_left(v->fPoint, leftBoundary, alloc); |
+ } |
+ } |
+ if (!rightPoly) { |
+ SkASSERT(rightBoundary); |
+ if (rightBoundary) { |
+ rightBoundary = add_vertex_to_boundary_right(v->fPoint, rightBoundary, alloc); |
+ } |
+ } |
+ } |
+ Edge* leftEdge = v->fFirstEdgeBelow; |
+ leftEdge->fLeftPoly = leftPoly; |
+ leftEdge->fLeftBoundary = leftBoundary; |
+ insert_edge(leftEdge, leftEnclosingEdge, &activeEdges); |
+ for (Edge* rightEdge = leftEdge->fNextEdgeBelow; rightEdge; rightEdge = rightEdge->fNextEdgeBelow) { |
+ insert_edge(rightEdge, leftEdge, &activeEdges); |
+ int winding = leftEdge->fLeftPoly ? leftEdge->fLeftPoly->fWinding : 0; |
+ winding += leftEdge->fWinding; |
+ if (winding != 0) { |
+ Poly* poly = new_poly(&polys, v, winding, alloc); |
+ leftEdge->fRightPoly = rightEdge->fLeftPoly = poly; |
+ } else if (boundaries) { |
+ leftEdge->fRightBoundary = rightEdge->fLeftBoundary = new_boundary(v->fPoint, alloc); |
+ } |
+ leftEdge = rightEdge; |
+ } |
+ v->fLastEdgeBelow->fRightPoly = rightPoly; |
+ v->fLastEdgeBelow->fRightBoundary = rightBoundary; |
+ } |
+#ifdef SK_DEBUG |
+ validate_edges(activeEdges); |
+#endif |
+#if LOGGING_ENABLED |
+ LOG("\nactive edges:\n"); |
+ for (Edge* e = activeEdges; e != NULL; e = e->fRight) { |
+ LOG("%g -> %g, lpoly %d, rpoly %d, lbound %p, rbound %p\n", e->fTop->fID, e->fBottom->fID, e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRightPoly->fID : -1, e->fLeftBoundary, e->fRightBoundary); |
+ } |
+#endif |
+ } |
+ return polys; |
+} |
+ |
+Poly* contours_to_polys(Vertex** contours, int contourCnt, SkChunkAlloc& alloc, SkTDArray<Vertex*>* boundaries) { |
+#if LOGGING_ENABLED |
+ for (int i = 0; i < contourCnt; ++i) { |
+ Vertex* v = contours[i]; |
+ SkASSERT(v); |
+ LOG("path.moveTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY); |
+ for (v = v->fNext; v != contours[i]; v = v->fNext) { |
+ LOG("path.lineTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY); |
+ } |
+ } |
+#endif |
+ sanitize_contours(contours, contourCnt); |
+ Vertex* headInY = build_edges(contours, contourCnt, alloc); |
+ if (!headInY) { |
+ return NULL; |
+ } |
+ |
+ // Sort vertices in Y (secondarily in X). |
+ merge_sort(&headInY); |
+ merge_coincident_vertices(&headInY, alloc); |
+#if LOGGING_ENABLED |
+ for (Vertex* v = headInY; v != NULL; v = v->fNext) { |
+ static float gID = 0.0f; |
+ v->fID = gID++; |
+ } |
+#endif |
+ simplify(headInY, alloc); |
+ return tessellate(headInY, alloc, boundaries); |
+} |
+ |
+void* polys_to_triangles(Poly* polys, SkPath::FillType fillType, bool antiAlias, bool tweakAlpha, GrColor color, void* data) { |
+ void* d = data; |
+ for (Poly* poly = polys; poly; poly = poly->fNext) { |
+ if (apply_fill_type(fillType, poly->fWinding)) { |
+ d = poly->emit(antiAlias, tweakAlpha, color, d); |
+ } |
+ } |
+ return d; |
+} |
+ |
+}; |
+ |
+GrTessellatingPathRenderer::GrTessellatingPathRenderer() { |
+} |
+ |
+GrPathRenderer::StencilSupport GrTessellatingPathRenderer::onGetStencilSupport( |
+ const GrDrawTarget*, |
+ const GrDrawState*, |
+ const SkPath&, |
+ const SkStrokeRec&) const { |
+ return GrPathRenderer::kNoSupport_StencilSupport; |
+} |
+ |
+bool GrTessellatingPathRenderer::canDrawPath(const GrDrawTarget* target, |
+ const GrDrawState* drawState, |
+ const SkMatrix& viewMatrix, |
+ const SkPath& path, |
+ const SkStrokeRec& stroke, |
+ bool antiAlias) const { |
+ return stroke.isFillStyle() && !antiAlias; |
+} |
+ |
+bool GrTessellatingPathRenderer::onDrawPath(GrDrawTarget* target, |
+ GrDrawState* drawState, |
+ GrColor color, |
+ const SkMatrix& viewM, |
+ const SkPath& path, |
+ const SkStrokeRec& stroke, |
+ bool antiAlias) { |
+ SkASSERT(!antiAlias); |
+ SkPath deviceSpacePath; |
+ path.transform(viewM, &deviceSpacePath); |
+ SkASSERT(target); |
+ const GrRenderTarget* rt = drawState->getRenderTarget(); |
+ if (NULL == rt) { |
+ return false; |
+ } |
+ |
+ SkScalar tol = SK_Scalar1; |
+ |
+ if (antiAlias) { |
+ SkPath closedPath; |
+ close_all_path_contours(deviceSpacePath, &closedPath); |
+ SkStroke stroker; |
+ stroker.setJoin(SkPaint::kMiter_Join); |
+ stroker.setWidth(1.0); |
+ SkPath strokedPath; |
+ stroker.strokePath(closedPath, &strokedPath); |
+ deviceSpacePath = strokedPath; |
+ } |
+ |
+ int contourCnt; |
+ int maxPts = GrPathUtils::worstCasePointCount(deviceSpacePath, &contourCnt, SK_Scalar1); |
+ SkPath::FillType fillType = deviceSpacePath.getFillType(); |
+ if (SkPath::IsInverseFillType(fillType)) { |
+ contourCnt++; |
+ } |
+ |
+ if (maxPts <= 0) { |
+ return false; |
+ } |
+ LOG("got %d pts, %d contours\n", maxPts, contourCnt); |
+ |
+ SkAutoTDeleteArray<Vertex*> contours(SkNEW_ARRAY(Vertex *, contourCnt)); |
+ |
+ SkChunkAlloc alloc(maxPts * (3 * sizeof(Vertex) + sizeof(Edge))); |
+ SkIRect clipBounds; |
+ target->getClip()->getConservativeBounds(rt, &clipBounds); |
+ path_to_contours(deviceSpacePath, tol, SkRect::Make(clipBounds), contours.get(), alloc); |
+ Poly* polys; |
+ bool tweakAlpha = drawState->canTweakAlphaForCoverage(); |
+ uint32_t flags = GrDefaultGeoProcFactory::kPosition_GPType; |
+ if (antiAlias) { |
+ SkTDArray<Vertex*> boundaries; |
+ contours_to_polys(contours.get(), contourCnt, alloc, &boundaries); |
+ LOG("got %d boundaries\n", boundaries.count()); |
+ polys = contours_to_polys(boundaries.begin(), boundaries.count(), alloc, NULL); |
+ flags |= GrDefaultGeoProcFactory::kColor_GPType; |
+ if (!tweakAlpha) { |
+ flags |= GrDefaultGeoProcFactory::kCoverage_GPType; |
+ } |
+ } else { |
+ polys = contours_to_polys(contours.get(), contourCnt, alloc, NULL); |
+ } |
+ SkAutoTUnref<const GrGeometryProcessor> gp(GrDefaultGeoProcFactory::Create(flags, color, SkMatrix::I(), SkMatrix::I())); |
+ int count = 0; |
+ for (Poly* poly = polys; poly; poly = poly->fNext) { |
+ if (apply_fill_type(fillType, poly->fWinding) && poly->fCount >= 3) { |
+ count += (poly->fCount - 2) * (gWireframe ? 6 : 3); |
+ } |
+ } |
+ |
+ int stride = gp->getVertexStride(); |
+ GrDrawTarget::AutoReleaseGeometry arg; |
+ if (!arg.set(target, count, stride, 0)) { |
+ return false; |
+ } |
+ LOG("emitting %d verts\n", count); |
+ void* end = polys_to_triangles(polys, fillType, antiAlias, tweakAlpha, color, arg.vertices()); |
+ int actualCount = (static_cast<char*>(end) - static_cast<char*>(arg.vertices())) / stride; |
+ LOG("actual count: %d\n", actualCount); |
+ SkASSERT(actualCount <= count); |
+ |
+ GrPrimitiveType primitiveType = gWireframe ? kLines_GrPrimitiveType : kTriangles_GrPrimitiveType; |
+ target->drawNonIndexed(drawState, gp, primitiveType, 0, actualCount); |
+ |
+ return true; |
+} |