OLD | NEW |
---|---|
(Empty) | |
1 /* | |
2 * Copyright 2015 Google Inc. | |
3 * | |
4 * Use of this source code is governed by a BSD-style license that can be | |
5 * found in the LICENSE file. | |
6 */ | |
7 | |
8 #include "GrTessellatingPathRenderer.h" | |
9 | |
10 #include "GrDefaultGeoProcFactory.h" | |
11 #include "GrPathUtils.h" | |
12 #include "SkChunkAlloc.h" | |
13 #include "SkGeometry.h" | |
14 | |
15 #include <stdio.h> | |
16 | |
17 /* | |
18 * This path renderer tessellates the path into triangles, uploads the triangles to a | |
19 * vertex buffer, and renders them with a single draw call. It does not currentl y do | |
20 * antialiasing, so it must be used in conjunction with multisampling. | |
21 * | |
22 * There are six stages to the algorithm: | |
23 * | |
24 * 1) Linearize the path contours into piecewise linear segments (path_to_contou rs()). | |
25 * 2) Build a mesh of edges connecting the vertices (build_edges()). | |
26 * 3) Sort the vertices in Y (and secondarily in X) (merge_sort()). | |
27 * 4) Simplify the mesh by inserting new vertices at intersecting edges (simplif y()). | |
28 * 5) Tessellate the simplified mesh into monotone polygons (tessellate()). | |
29 * 6) Triangulate the monotone polygons directly into a vertex buffer (polys_to_ triangles()). | |
30 * | |
31 * The vertex sorting in step (3) is a merge sort, since it plays well with the linked list | |
32 * of vertices (and the necessity of inserting new vertices on intersection). | |
33 * | |
34 * Stages (4) and (5) use an active edge list, which a list of all edges for whi ch the | |
35 * sweep line has crossed the top vertex, but not the bottom vertex. It's sorte d | |
36 * left-to-right based on the point where both edges are active (when both top v ertices | |
37 * have been seen, so the "lower" top vertex of the two). If the top vertices ar e equal | |
38 * (shared), it's sorted based on the last point where both edges are active, so the | |
39 * "upper" bottom vertex. | |
40 * | |
41 * The most complex step is the simplification (4). It's based on the Bentley-Ot tman | |
42 * line-sweep algorithm, but due to floating point inaccuracy, the intersection points are | |
43 * not exact and may violate the mesh topology or active edge list ordering. We | |
44 * accommodate this by adjusting the topology of the mesh and AEL to match the i ntersection | |
45 * points. This occurs in three ways: | |
46 * | |
47 * A) Intersections may cause a shortened edge to no longer be ordered with resp ect to its | |
48 * neighbouring edges at the top or bottom vertex. This is handled by merging the | |
49 * edges (merge_collinear_edges()). | |
50 * B) Intersections may cause an edge to violate the left-to-right ordering of t he | |
51 * active edge list. This is handled by splitting the neighbour edge on the | |
52 * intersected vertex (cleanup_active_edges()). | |
53 * C) Shortening an edge may cause an active edge to become inactive or an inact ive edge | |
54 * to become active. This is handled by removing or inserting the edge in the active | |
55 * edge list (fix_active_state()). | |
56 * | |
57 * The tessellation steps (5) and (6) are based on "Triangulating Simple Polygon s and | |
58 * Equivalent Problems" (Fournier and Montuno); also a line-sweep algorithm. Not e that it | |
59 * currently uses a linked list for the active edge list, rather than a 2-3 tree as the | |
60 * paper describes. The 2-3 tree gives O(lg N) lookups, but insertion and remova l also | |
61 * become O(lg N). In all the test cases, it was found that the cost of frequent O(lg N) | |
62 * insertions and removals was greater than the cost of infrequent O(N) lookups with the | |
63 * linked list implementation. With the latter, all removals are O(1), and most insertions | |
64 * are O(1), since we know the adjacent edge in the active edge list based on th e topology. | |
65 * Only type 2 vertices (see paper) require the O(N) lookups, and these are much less | |
66 * frequent. There may be other data structures worth investigating, however. | |
67 * | |
68 * Note that there is a compile-time flag (SWEEP_IN_X) which changes the orienta tion of the | |
69 * line sweep algorithms. When SWEEP_IN_X is unset, we sort vertices based on in creasing | |
70 * Y coordinate, and secondarily by increasing X coordinate. When SWEEP_IN_X is set, we sort by | |
71 * increasing X coordinate, but secondarily by *decreasing* Y coordinate. This i s so that the | |
72 * "left" and "right" orientation in the code remains correct (edges to the left are increasing | |
73 * in Y; edges to the right are decreasing in Y). That is, the setting rotates 9 0 degrees | |
74 * counterclockwise, rather that transposing. | |
75 * | |
76 * The choice is arbitrary, but most test cases are wider than they are tall, so the | |
77 * default is to sweep in X. In the future, we may want to make this a runtime p arameter | |
78 * and base it on the aspect ratio of the clip bounds. | |
79 */ | |
80 #define LOGGING_ENABLED 0 | |
81 #define WIREFRAME 0 | |
82 #define SWEEP_IN_X 1 | |
83 | |
84 #if LOGGING_ENABLED | |
85 #define LOG printf | |
86 #else | |
87 #define LOG(...) | |
88 #endif | |
89 | |
90 #define ALLOC_NEW(Type, args, alloc) \ | |
91 SkNEW_PLACEMENT_ARGS(alloc.allocThrow(sizeof(Type)), Type, args) | |
92 | |
93 namespace { | |
94 | |
95 struct Vertex; | |
96 struct Edge; | |
97 struct Poly; | |
98 | |
99 template <class T, T* T::*Prev, T* T::*Next> | |
100 void insert(T* t, T* prev, T* next, T** head, T** tail) { | |
101 t->*Prev = prev; | |
102 t->*Next = next; | |
103 if (prev) { | |
104 prev->*Next = t; | |
105 } else if (head) { | |
106 *head = t; | |
107 } | |
108 if (next) { | |
109 next->*Prev = t; | |
110 } else if (tail) { | |
111 *tail = t; | |
112 } | |
113 } | |
114 | |
115 template <class T, T* T::*Prev, T* T::*Next> | |
116 void remove(T* t, T** head, T** tail) { | |
117 if (t->*Prev) { | |
118 t->*Prev->*Next = t->*Next; | |
119 } else if (head) { | |
120 *head = t->*Next; | |
121 } | |
122 if (t->*Next) { | |
123 t->*Next->*Prev = t->*Prev; | |
124 } else if (tail) { | |
125 *tail = t->*Prev; | |
126 } | |
127 t->*Prev = t->*Next = NULL; | |
128 } | |
129 | |
130 /** | |
131 * Vertices are used in three ways: first, the path contours are converted into a | |
132 * circularly-linked list of Vertices for each contour. After edge construction, the same Vertices | |
133 * are re-ordered by the merge sort according to the sweep_lt comparator (usuall y, increasing | |
134 * in Y) using the same fPrev/fNext pointers that were used for the contours, to avoid | |
135 * reallocation. Finally, MonotonePolys are built containing a circularly-linked list of | |
136 * Vertices. (Currently, those Vertices are newly-allocated for the MonotonePoly s, since | |
137 * an individual Vertex from the path mesh may belong to multiple | |
138 * MonotonePolys, so the original Vertices cannot be re-used. | |
139 */ | |
140 | |
141 struct Vertex { | |
142 Vertex(const SkPoint& point) | |
143 : fPoint(point), fPrev(NULL), fNext(NULL) | |
144 , fFirstEdgeAbove(NULL), fLastEdgeAbove(NULL) | |
145 , fFirstEdgeBelow(NULL), fLastEdgeBelow(NULL) | |
146 , fProcessed(false) | |
147 #if LOGGING_ENABLED | |
148 , fID (-1.0f) | |
149 #endif | |
150 {} | |
151 SkPoint fPoint; // Vertex position | |
152 Vertex* fPrev; // Linked list of contours, then Y-sorted vertices . | |
153 Vertex* fNext; // " | |
154 Edge* fFirstEdgeAbove; // Linked list of edges above this vertex. | |
155 Edge* fLastEdgeAbove; // " | |
156 Edge* fFirstEdgeBelow; // Linked list of edges below this vertex. | |
157 Edge* fLastEdgeBelow; // " | |
158 bool fProcessed; // Has this vertex been seen in simplify()? | |
159 #if LOGGING_ENABLED | |
160 float fID; // Identifier used for logging. | |
161 #endif | |
162 }; | |
163 | |
164 /******************************************************************************* ********/ | |
165 | |
166 bool sweep_lt(const SkPoint& a, const SkPoint& b) { | |
167 #if SWEEP_IN_X | |
168 return a.fX == b.fX ? a.fY > b.fY : a.fX < b.fX; | |
169 #else | |
170 return a.fY == b.fY ? a.fX < b.fX : a.fY < b.fY; | |
171 #endif | |
172 } | |
173 | |
174 bool sweep_gt(const SkPoint& a, const SkPoint& b) { | |
175 #if SWEEP_IN_X | |
176 return a.fX == b.fX ? a.fY < b.fY : a.fX > b.fX; | |
177 #else | |
178 return a.fY == b.fY ? a.fX > b.fX : a.fY > b.fY; | |
179 #endif | |
180 } | |
181 | |
182 inline void* emit_vertex(Vertex* v, void* data) { | |
183 SkPoint* d = static_cast<SkPoint*>(data); | |
184 *d++ = v->fPoint; | |
185 return d; | |
186 } | |
187 | |
188 void* emit_triangle(Vertex* v0, Vertex* v1, Vertex* v2, void* data) { | |
189 #if WIREFRAME | |
190 data = emit_vertex(v0, data); | |
191 data = emit_vertex(v1, data); | |
192 data = emit_vertex(v1, data); | |
193 data = emit_vertex(v2, data); | |
194 data = emit_vertex(v2, data); | |
195 data = emit_vertex(v0, data); | |
196 #else | |
197 data = emit_vertex(v0, data); | |
198 data = emit_vertex(v1, data); | |
199 data = emit_vertex(v2, data); | |
200 #endif | |
201 return data; | |
202 } | |
203 | |
204 /** | |
205 * An Edge joins a top Vertex to a bottom Vertex. Edge ordering for the list of "edges above" and | |
206 * "edge below" a vertex as well as for the active edge list is handled by isLef tOf()/isRightOf(). | |
207 * Note that an Edge will give occasionally dist() != 0 for its own endpoints (b ecause floating | |
208 * point). For speed, that case is only tested by the callers which require it ( e.g., | |
209 * cleanup_active_edges()). Edges also handle checking for intersection with oth er edges. | |
210 * Currently, this converts the edges to the parametric form, in order to avoid doing a division | |
211 * until an intersection has been confirmed. This is slightly slower in the "fou nd" case, but | |
212 * a lot faster in the "not found" case. | |
213 */ | |
214 | |
215 struct Edge { | |
216 Edge(Vertex* top, Vertex* bottom, int winding) | |
217 : fWinding(winding) | |
218 , fTop(top) | |
219 , fBottom(bottom) | |
220 , fLeft(NULL) | |
221 , fRight(NULL) | |
222 , fPrevEdgeAbove(NULL) | |
223 , fNextEdgeAbove(NULL) | |
224 , fPrevEdgeBelow(NULL) | |
225 , fNextEdgeBelow(NULL) | |
226 , fLeftPoly(NULL) | |
227 , fRightPoly(NULL) { | |
228 recompute(); | |
229 } | |
230 int fWinding; // 1 == edge goes downward; -1 = edge goes upwar d. | |
231 Vertex* fTop; // The top vertex in vertex-sort-order (sweep_lt ). | |
232 Vertex* fBottom; // The bottom vertex in vertex-sort-order. | |
233 Edge* fLeft; // The linked list of edges in the active edge l ist. | |
234 Edge* fRight; // " | |
235 Edge* fPrevEdgeAbove; // The linked list of edges in the bottom Vertex 's "edges above". | |
236 Edge* fNextEdgeAbove; // " | |
237 Edge* fPrevEdgeBelow; // The linked list of edges in the top Vertex's "edges below". | |
238 Edge* fNextEdgeBelow; // " | |
239 Poly* fLeftPoly; // The Poly to the left of this edge, if any. | |
240 Poly* fRightPoly; // The Poly to the right of this edge, if any. | |
241 double fDX; // The line equation for this edge, in implicit form. | |
reed2
2015/02/24 16:30:01
Did you try using SkScalar first, and it failed fo
Stephen White
2015/02/24 18:45:16
Added a comment.
| |
242 double fDY; // fDY * x + fDX * y + fC = 0, for point (x, y) on the line. | |
243 double fC; | |
244 double dist(const SkPoint& p) const { | |
245 return fDY * p.fX - fDX * p.fY + fC; | |
246 } | |
247 bool isRightOf(Vertex* v) const { | |
248 return dist(v->fPoint) < 0.0; | |
249 } | |
250 bool isLeftOf(Vertex* v) const { | |
251 return dist(v->fPoint) > 0.0; | |
252 } | |
253 void recompute() { | |
254 fDX = static_cast<double>(fBottom->fPoint.fX) - fTop->fPoint.fX; | |
255 fDY = static_cast<double>(fBottom->fPoint.fY) - fTop->fPoint.fY; | |
256 fC = static_cast<double>(fTop->fPoint.fY) * fBottom->fPoint.fX - | |
257 static_cast<double>(fTop->fPoint.fX) * fBottom->fPoint.fY; | |
258 } | |
259 bool intersect(const Edge& other, SkPoint* p) { | |
260 LOG("intersecting %g -> %g with %g -> %g\n", | |
261 fTop->fID, fBottom->fID, | |
262 other.fTop->fID, other.fBottom->fID); | |
263 if (fTop == other.fTop || fBottom == other.fBottom) { | |
264 return false; | |
265 } | |
266 double denom = fDX * other.fDY - fDY * other.fDX; | |
267 if (denom == 0.0) { | |
268 return false; | |
269 } | |
270 double dx = static_cast<double>(fTop->fPoint.fX) - other.fTop->fPoint.fX ; | |
271 double dy = static_cast<double>(fTop->fPoint.fY) - other.fTop->fPoint.fY ; | |
272 double sNumer = dy * other.fDX - dx * other.fDY; | |
273 double tNumer = dy * fDX - dx * fDY; | |
274 if (denom > 0.0 ? (sNumer < 0.0 || sNumer > denom || tNumer < 0.0 || tNu mer > denom) | |
reed2
2015/02/24 16:30:01
// We check that the result of the divide (sNumer
Stephen White
2015/02/24 18:45:16
See the comment above "struct Edge {". It would be
| |
275 : (sNumer > 0.0 || sNumer < denom || tNumer > 0.0 || tNu mer < denom)) { | |
276 return false; | |
277 } | |
278 double s = sNumer / denom; | |
279 p->fX = SkDoubleToScalar(fTop->fPoint.fX + s * fDX); | |
280 p->fY = SkDoubleToScalar(fTop->fPoint.fY + s * fDY); | |
281 return true; | |
282 } | |
283 bool isActive(Edge** activeEdges) const { | |
284 return activeEdges && (fLeft || fRight || *activeEdges == this); | |
285 } | |
286 }; | |
287 | |
288 /******************************************************************************* ********/ | |
289 | |
290 struct Poly { | |
291 Poly(int winding) | |
292 : fWinding(winding) | |
293 , fHead(NULL) | |
294 , fTail(NULL) | |
295 , fActive(NULL) | |
296 , fNext(NULL) | |
297 , fPartner(NULL) | |
298 , fCount(0) | |
299 { | |
300 #if LOGGING_ENABLED | |
301 static int gID = 0; | |
302 fID = gID++; | |
303 LOG("*** created Poly %d\n", fID); | |
304 #endif | |
305 } | |
306 typedef enum { kNeither_Side, kLeft_Side, kRight_Side } Side; | |
307 struct MonotonePoly { | |
308 MonotonePoly() | |
309 : fSide(kNeither_Side) | |
310 , fHead(NULL) | |
311 , fTail(NULL) | |
312 , fPrev(NULL) | |
313 , fNext(NULL) {} | |
314 Side fSide; | |
315 Vertex* fHead; | |
316 Vertex* fTail; | |
317 MonotonePoly* fPrev; | |
318 MonotonePoly* fNext; | |
319 bool addVertex(Vertex* v, Side side, SkChunkAlloc& alloc) { | |
320 Vertex* newV = ALLOC_NEW(Vertex, (v->fPoint), alloc); | |
321 bool done = false; | |
322 if (fSide == kNeither_Side) { | |
323 fSide = side; | |
324 } else { | |
325 done = side != fSide; | |
326 } | |
327 if (fHead == NULL) { | |
328 fHead = fTail = newV; | |
329 } else if (fSide == kRight_Side) { | |
330 newV->fPrev = fTail; | |
331 fTail->fNext = newV; | |
332 fTail = newV; | |
333 } else { | |
334 newV->fNext = fHead; | |
335 fHead->fPrev = newV; | |
336 fHead = newV; | |
337 } | |
338 return done; | |
339 } | |
340 | |
341 void* emit(void* data) { | |
342 Vertex* first = fHead; | |
343 Vertex* v = first->fNext; | |
344 while (v != fTail) { | |
345 SkASSERT(v && v->fPrev && v->fNext); | |
346 #ifdef SK_DEBUG | |
347 validate(); | |
348 #endif | |
349 Vertex* prev = v->fPrev; | |
350 Vertex* curr = v; | |
351 Vertex* next = v->fNext; | |
352 double ax = static_cast<double>(curr->fPoint.fX) - prev->fPoint. fX; | |
353 double ay = static_cast<double>(curr->fPoint.fY) - prev->fPoint. fY; | |
354 double bx = static_cast<double>(next->fPoint.fX) - curr->fPoint. fX; | |
355 double by = static_cast<double>(next->fPoint.fY) - curr->fPoint. fY; | |
356 if (ax * by - ay * bx >= 0.0) { | |
357 data = emit_triangle(prev, curr, next, data); | |
358 v->fPrev->fNext = v->fNext; | |
359 v->fNext->fPrev = v->fPrev; | |
360 if (v->fPrev == first) { | |
361 v = v->fNext; | |
362 } else { | |
363 v = v->fPrev; | |
364 } | |
365 } else { | |
366 v = v->fNext; | |
367 SkASSERT(v != fTail); | |
368 } | |
369 } | |
370 return data; | |
371 } | |
372 | |
373 #ifdef SK_DEBUG | |
374 void validate() { | |
375 int winding = sweep_lt(fHead->fPoint, fTail->fPoint) ? 1 : -1; | |
376 Vertex* top = winding < 0 ? fTail : fHead; | |
377 Vertex* bottom = winding < 0 ? fHead : fTail; | |
378 Edge e(top, bottom, winding); | |
379 for (Vertex* v = fHead->fNext; v != fTail; v = v->fNext) { | |
380 if (fSide == kRight_Side) { | |
381 SkASSERT(!e.isRightOf(v)); | |
382 } else if (fSide == Poly::kLeft_Side) { | |
383 SkASSERT(!e.isLeftOf(v)); | |
384 } | |
385 } | |
386 } | |
387 #endif | |
388 }; | |
389 Poly* addVertex(Vertex* v, Side side, SkChunkAlloc& alloc) { | |
390 LOG("addVertex() to %d at %g (%g, %g), %s side\n", fID, v->fID, v->fPoin t.fX, v->fPoint.fY, | |
391 side == kLeft_Side ? "left" : side == kRight_Side ? "right" : "ne ither"); | |
392 Poly* partner = fPartner; | |
393 Poly* poly = this; | |
394 if (partner) { | |
395 fPartner = partner->fPartner = NULL; | |
396 } | |
397 if (!fActive) { | |
398 fActive = ALLOC_NEW(MonotonePoly, (), alloc); | |
399 } | |
400 if (fActive->addVertex(v, side, alloc)) { | |
401 #ifdef SK_DEBUG | |
402 fActive->validate(); | |
403 #endif | |
404 if (fTail) { | |
405 fActive->fPrev = fTail; | |
406 fTail->fNext = fActive; | |
407 fTail = fActive; | |
408 } else { | |
409 fHead = fTail = fActive; | |
410 } | |
411 if (partner) { | |
412 partner->addVertex(v, side, alloc); | |
413 poly = partner; | |
414 } else { | |
415 Vertex* prev = fActive->fSide == Poly::kLeft_Side ? | |
416 fActive->fHead->fNext : fActive->fTail->fPrev; | |
417 fActive = ALLOC_NEW(MonotonePoly, , alloc); | |
418 fActive->addVertex(prev, Poly::kNeither_Side, alloc); | |
419 fActive->addVertex(v, side, alloc); | |
420 } | |
421 } | |
422 fCount++; | |
423 return poly; | |
424 } | |
425 void end(Vertex* v, SkChunkAlloc& alloc) { | |
426 LOG("end() %d at %g, %g\n", fID, v->fPoint.fX, v->fPoint.fY); | |
427 if (fPartner) { | |
428 fPartner = fPartner->fPartner = NULL; | |
429 } | |
430 addVertex(v, fActive->fSide == kLeft_Side ? kRight_Side : kLeft_Side, al loc); | |
431 } | |
432 void* emit(void *data) { | |
433 if (fCount < 3) { | |
434 return data; | |
435 } | |
436 LOG("emit() %d, size %d\n", fID, fCount); | |
437 for (MonotonePoly* m = fHead; m != NULL; m = m->fNext) { | |
438 data = m->emit(data); | |
439 } | |
440 return data; | |
441 } | |
442 int fWinding; | |
443 MonotonePoly* fHead; | |
444 MonotonePoly* fTail; | |
445 MonotonePoly* fActive; | |
446 Poly* fNext; | |
447 Poly* fPartner; | |
448 int fCount; | |
449 #if LOGGING_ENABLED | |
450 int fID; | |
451 #endif | |
452 }; | |
453 | |
454 /******************************************************************************* ********/ | |
455 | |
456 bool coincident(const SkPoint& a, const SkPoint& b) { | |
457 return a == b; | |
458 } | |
459 | |
460 Poly* new_poly(Poly** head, Vertex* v, int winding, SkChunkAlloc& alloc) { | |
461 Poly* poly = ALLOC_NEW(Poly, (winding), alloc); | |
462 poly->addVertex(v, Poly::kNeither_Side, alloc); | |
463 poly->fNext = *head; | |
464 *head = poly; | |
465 return poly; | |
466 } | |
467 | |
468 #ifdef SK_DEBUG | |
469 void validate_edges(Edge* head) { | |
470 for (Edge* e = head; e != NULL; e = e->fRight) { | |
471 SkASSERT(e->fTop != e->fBottom); | |
472 if (e->fLeft) { | |
473 SkASSERT(e->fLeft->fRight == e); | |
474 if (sweep_gt(e->fTop->fPoint, e->fLeft->fTop->fPoint)) { | |
475 SkASSERT(e->fLeft->isLeftOf(e->fTop)); | |
476 } | |
477 if (sweep_lt(e->fBottom->fPoint, e->fLeft->fBottom->fPoint)) { | |
478 SkASSERT(e->fLeft->isLeftOf(e->fBottom)); | |
479 } | |
480 } else { | |
481 SkASSERT(e == head); | |
482 } | |
483 if (e->fRight) { | |
484 SkASSERT(e->fRight->fLeft == e); | |
485 if (sweep_gt(e->fTop->fPoint, e->fRight->fTop->fPoint)) { | |
486 SkASSERT(e->fRight->isRightOf(e->fTop)); | |
487 } | |
488 if (sweep_lt(e->fBottom->fPoint, e->fRight->fBottom->fPoint)) { | |
489 SkASSERT(e->fRight->isRightOf(e->fBottom)); | |
490 } | |
491 } | |
492 } | |
493 } | |
494 | |
495 void validate_connectivity(Vertex* v) { | |
496 for (Edge* e = v->fFirstEdgeAbove; e != NULL; e = e->fNextEdgeAbove) { | |
497 SkASSERT(e->fBottom == v); | |
498 if (e->fPrevEdgeAbove) { | |
499 SkASSERT(e->fPrevEdgeAbove->fNextEdgeAbove == e); | |
500 SkASSERT(e->fPrevEdgeAbove->isLeftOf(e->fTop)); | |
501 } else { | |
502 SkASSERT(e == v->fFirstEdgeAbove); | |
503 } | |
504 if (e->fNextEdgeAbove) { | |
505 SkASSERT(e->fNextEdgeAbove->fPrevEdgeAbove == e); | |
506 SkASSERT(e->fNextEdgeAbove->isRightOf(e->fTop)); | |
507 } else { | |
508 SkASSERT(e == v->fLastEdgeAbove); | |
509 } | |
510 } | |
511 for (Edge* e = v->fFirstEdgeBelow; e != NULL; e = e->fNextEdgeBelow) { | |
512 SkASSERT(e->fTop == v); | |
513 if (e->fPrevEdgeBelow) { | |
514 SkASSERT(e->fPrevEdgeBelow->fNextEdgeBelow == e); | |
515 SkASSERT(e->fPrevEdgeBelow->isLeftOf(e->fBottom)); | |
516 } else { | |
517 SkASSERT(e == v->fFirstEdgeBelow); | |
518 } | |
519 if (e->fNextEdgeBelow) { | |
520 SkASSERT(e->fNextEdgeBelow->fPrevEdgeBelow == e); | |
521 SkASSERT(e->fNextEdgeBelow->isRightOf(e->fBottom)); | |
522 } else { | |
523 SkASSERT(e == v->fLastEdgeBelow); | |
524 } | |
525 } | |
526 } | |
527 #endif | |
528 | |
529 Vertex* append_point_to_contour(const SkPoint& p, Vertex* prev, Vertex** head, | |
530 SkChunkAlloc& alloc) { | |
531 Vertex* v = ALLOC_NEW(Vertex, (p), alloc); | |
532 #if LOGGING_ENABLED | |
533 static float gID = 0.0f; | |
534 v->fID = gID++; | |
535 #endif | |
536 if (prev) { | |
537 prev->fNext = v; | |
538 v->fPrev = prev; | |
539 } else { | |
540 *head = v; | |
541 } | |
542 return v; | |
543 } | |
544 | |
545 Vertex* generate_quadratic_points(const SkPoint& p0, | |
546 const SkPoint& p1, | |
547 const SkPoint& p2, | |
548 SkScalar tolSqd, | |
549 Vertex* prev, | |
550 Vertex** head, | |
551 int pointsLeft, | |
552 SkChunkAlloc& alloc) { | |
553 SkScalar d = p1.distanceToLineSegmentBetweenSqd(p0, p2); | |
554 if (pointsLeft < 2 || d < tolSqd || !SkScalarIsFinite(d)) { | |
555 return append_point_to_contour(p2, prev, head, alloc); | |
556 } | |
557 | |
558 SkPoint q[] = { | |
559 { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) }, | |
560 { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) }, | |
561 }; | |
562 SkPoint r = { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) } ; | |
563 | |
564 pointsLeft >>= 1; | |
565 prev = generate_quadratic_points(p0, q[0], r, tolSqd, prev, head, pointsLeft , alloc); | |
566 prev = generate_quadratic_points(r, q[1], p2, tolSqd, prev, head, pointsLeft , alloc); | |
567 return prev; | |
568 } | |
569 | |
570 Vertex* generate_cubic_points(const SkPoint& p0, | |
571 const SkPoint& p1, | |
572 const SkPoint& p2, | |
573 const SkPoint& p3, | |
574 SkScalar tolSqd, | |
575 Vertex* prev, | |
576 Vertex** head, | |
577 int pointsLeft, | |
578 SkChunkAlloc& alloc) { | |
579 SkScalar d1 = p1.distanceToLineSegmentBetweenSqd(p0, p3); | |
580 SkScalar d2 = p2.distanceToLineSegmentBetweenSqd(p0, p3); | |
581 if (pointsLeft < 2 || (d1 < tolSqd && d2 < tolSqd) || !SkScalarIsFinite(d1) || !SkScalarIsFinite(d2)) { | |
582 return append_point_to_contour(p3, prev, head, alloc); | |
583 } | |
584 SkPoint q[] = { | |
reed2
2015/02/24 16:30:01
nit: can q[] and r[] be const?
Stephen White
2015/02/24 18:45:16
Done.
| |
585 { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) }, | |
586 { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) }, | |
587 { SkScalarAve(p2.fX, p3.fX), SkScalarAve(p2.fY, p3.fY) } | |
588 }; | |
589 SkPoint r[] = { | |
590 { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) }, | |
591 { SkScalarAve(q[1].fX, q[2].fX), SkScalarAve(q[1].fY, q[2].fY) } | |
592 }; | |
593 SkPoint s = { SkScalarAve(r[0].fX, r[1].fX), SkScalarAve(r[0].fY, r[1].fY) } ; | |
594 pointsLeft >>= 1; | |
595 prev = generate_cubic_points(p0, q[0], r[0], s, tolSqd, prev, head, pointsLe ft, alloc); | |
596 prev = generate_cubic_points(s, r[1], q[2], p3, tolSqd, prev, head, pointsLe ft, alloc); | |
597 return prev; | |
598 } | |
599 | |
600 // Stage 1: convert the input path to a set of linear contours (linked list of V ertices). | |
601 | |
602 void path_to_contours(const SkPath& path, SkScalar tolerance, const SkRect& clip Bounds, | |
603 Vertex** contours, SkChunkAlloc& alloc) { | |
604 | |
605 SkScalar toleranceSqd = tolerance * tolerance; | |
606 | |
607 SkPoint pts[4]; | |
608 bool done = false; | |
609 SkPath::Iter iter(path, false); | |
610 Vertex* prev = NULL; | |
611 Vertex* head = NULL; | |
612 if (path.isInverseFillType()) { | |
613 SkPoint quad[4]; | |
614 clipBounds.toQuad(quad); | |
615 for (int i = 3; i >= 0; i--) { | |
616 prev = append_point_to_contour(quad[i], prev, &head, alloc); | |
617 } | |
618 head->fPrev = prev; | |
619 prev->fNext = head; | |
620 *contours++ = head; | |
621 head = prev = NULL; | |
622 } | |
623 SkAutoConicToQuads converter; | |
624 while (!done) { | |
625 SkPath::Verb verb = iter.next(pts); | |
626 switch (verb) { | |
627 case SkPath::kConic_Verb: { | |
628 SkScalar weight = iter.conicWeight(); | |
629 const SkPoint* quadPts = converter.computeQuads(pts, weight, tol eranceSqd); | |
630 for (int i = 0; i < converter.countQuads(); ++i) { | |
631 int pointsLeft = GrPathUtils::quadraticPointCount(quadPts, t oleranceSqd); | |
632 prev = generate_quadratic_points(quadPts[0], quadPts[1], qua dPts[2], | |
633 toleranceSqd, prev, &head, pointsLeft, alloc); | |
634 quadPts += 2; | |
635 } | |
636 break; | |
637 } | |
638 case SkPath::kMove_Verb: | |
639 if (head) { | |
640 head->fPrev = prev; | |
641 prev->fNext = head; | |
642 *contours++ = head; | |
643 } | |
644 head = prev = NULL; | |
645 prev = append_point_to_contour(pts[0], prev, &head, alloc); | |
646 break; | |
647 case SkPath::kLine_Verb: { | |
648 prev = append_point_to_contour(pts[1], prev, &head, alloc); | |
649 break; | |
650 } | |
651 case SkPath::kQuad_Verb: { | |
652 int pointsLeft = GrPathUtils::quadraticPointCount(pts, tolerance Sqd); | |
653 prev = generate_quadratic_points(pts[0], pts[1], pts[2], toleran ceSqd, prev, | |
654 &head, pointsLeft, alloc); | |
655 break; | |
656 } | |
657 case SkPath::kCubic_Verb: { | |
658 int pointsLeft = GrPathUtils::cubicPointCount(pts, toleranceSqd) ; | |
659 prev = generate_cubic_points(pts[0], pts[1], pts[2], pts[3], | |
660 toleranceSqd, prev, &head, pointsLeft, alloc); | |
661 break; | |
662 } | |
663 case SkPath::kClose_Verb: | |
664 if (head) { | |
665 head->fPrev = prev; | |
666 prev->fNext = head; | |
667 *contours++ = head; | |
668 } | |
669 head = prev = NULL; | |
670 break; | |
671 case SkPath::kDone_Verb: | |
672 if (head) { | |
673 head->fPrev = prev; | |
674 prev->fNext = head; | |
675 *contours++ = head; | |
676 } | |
677 done = true; | |
678 break; | |
679 } | |
680 } | |
681 } | |
682 | |
683 inline bool apply_fill_type(SkPath::FillType fillType, int winding) { | |
684 switch (fillType) { | |
685 case SkPath::kWinding_FillType: | |
686 return winding != 0; | |
687 case SkPath::kEvenOdd_FillType: | |
688 return (winding & 1) != 0; | |
689 case SkPath::kInverseWinding_FillType: | |
690 return winding == 1; | |
691 case SkPath::kInverseEvenOdd_FillType: | |
692 return (winding & 1) == 1; | |
693 default: | |
694 SkASSERT(false); | |
695 return false; | |
696 } | |
697 } | |
698 | |
699 Edge* new_edge(Vertex* prev, Vertex* next, SkChunkAlloc& alloc) { | |
700 int winding = sweep_lt(prev->fPoint, next->fPoint) ? 1 : -1; | |
701 Vertex* top = winding < 0 ? next : prev; | |
702 Vertex* bottom = winding < 0 ? prev : next; | |
703 return ALLOC_NEW(Edge, (top, bottom, winding), alloc); | |
704 } | |
705 | |
706 void remove_edge(Edge* edge, Edge** head) { | |
707 LOG("removing edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID); | |
708 SkASSERT(edge->isActive(head)); | |
709 remove<Edge, &Edge::fLeft, &Edge::fRight>(edge, head, NULL); | |
710 } | |
711 | |
712 void insert_edge(Edge* edge, Edge* prev, Edge** head) { | |
713 LOG("inserting edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID); | |
714 SkASSERT(!edge->isActive(head)); | |
715 Edge* next = prev ? prev->fRight : *head; | |
716 insert<Edge, &Edge::fLeft, &Edge::fRight>(edge, prev, next, head, NULL); | |
717 } | |
718 | |
719 void find_enclosing_edges(Vertex* v, Edge* head, Edge** left, Edge** right) { | |
720 if (v->fFirstEdgeAbove) { | |
721 *left = v->fFirstEdgeAbove->fLeft; | |
722 *right = v->fLastEdgeAbove->fRight; | |
723 return; | |
724 } | |
725 Edge* prev = NULL; | |
726 Edge* next; | |
727 for (next = head; next != NULL; next = next->fRight) { | |
728 if (next->isRightOf(v)) { | |
729 break; | |
730 } | |
731 prev = next; | |
732 } | |
733 *left = prev; | |
734 *right = next; | |
735 return; | |
736 } | |
737 | |
738 void find_enclosing_edges(Edge* edge, Edge* head, Edge** left, Edge** right) { | |
739 Edge* prev = NULL; | |
740 Edge* next; | |
741 for (next = head; next != NULL; next = next->fRight) { | |
742 if ((sweep_gt(edge->fTop->fPoint, next->fTop->fPoint) && next->isRightOf (edge->fTop)) || | |
743 (sweep_gt(next->fTop->fPoint, edge->fTop->fPoint) && edge->isLeftOf( next->fTop)) || | |
744 (sweep_lt(edge->fBottom->fPoint, next->fBottom->fPoint) && | |
745 next->isRightOf(edge->fBottom)) || | |
746 (sweep_lt(next->fBottom->fPoint, edge->fBottom->fPoint) && | |
747 edge->isLeftOf(next->fBottom))) { | |
748 break; | |
749 } | |
750 prev = next; | |
751 } | |
752 *left = prev; | |
753 *right = next; | |
754 return; | |
755 } | |
756 | |
757 void fix_active_state(Edge* edge, Edge** activeEdges) { | |
758 if (edge->isActive(activeEdges)) { | |
759 if (edge->fBottom->fProcessed || !edge->fTop->fProcessed) { | |
760 remove_edge(edge, activeEdges); | |
761 } | |
762 } else if (edge->fTop->fProcessed && !edge->fBottom->fProcessed) { | |
763 Edge* left; | |
764 Edge* right; | |
765 find_enclosing_edges(edge, *activeEdges, &left, &right); | |
766 insert_edge(edge, left, activeEdges); | |
767 } | |
768 } | |
769 | |
770 void insert_edge_above(Edge* edge, Vertex* v) { | |
771 if (edge->fTop->fPoint == edge->fBottom->fPoint || | |
772 sweep_gt(edge->fTop->fPoint, edge->fBottom->fPoint)) { | |
773 SkASSERT(false); | |
774 return; | |
775 } | |
776 LOG("insert edge (%g -> %g) above vertex %g\n", edge->fTop->fID, edge->fBott om->fID, v->fID); | |
777 Edge* prev = NULL; | |
778 Edge* next; | |
779 for (next = v->fFirstEdgeAbove; next; next = next->fNextEdgeAbove) { | |
780 if (next->isRightOf(edge->fTop)) { | |
781 break; | |
782 } | |
783 prev = next; | |
784 } | |
785 insert<Edge, &Edge::fPrevEdgeAbove, &Edge::fNextEdgeAbove>( | |
786 edge, prev, next, &v->fFirstEdgeAbove, &v->fLastEdgeAbove); | |
787 } | |
788 | |
789 void insert_edge_below(Edge* edge, Vertex* v) { | |
790 if (edge->fTop->fPoint == edge->fBottom->fPoint || | |
791 sweep_gt(edge->fTop->fPoint, edge->fBottom->fPoint)) { | |
792 SkASSERT(false); | |
793 return; | |
794 } | |
795 LOG("insert edge (%g -> %g) below vertex %g\n", edge->fTop->fID, edge->fBott om->fID, v->fID); | |
796 Edge* prev = NULL; | |
797 Edge* next; | |
798 for (next = v->fFirstEdgeBelow; next; next = next->fNextEdgeBelow) { | |
799 if (next->isRightOf(edge->fBottom)) { | |
800 break; | |
801 } | |
802 prev = next; | |
803 } | |
804 insert<Edge, &Edge::fPrevEdgeBelow, &Edge::fNextEdgeBelow>( | |
805 edge, prev, next, &v->fFirstEdgeBelow, &v->fLastEdgeBelow); | |
806 } | |
807 | |
808 void remove_edge_above(Edge* edge) { | |
809 LOG("removing edge (%g -> %g) above vertex %g\n", edge->fTop->fID, edge->fBo ttom->fID, | |
810 edge->fBottom->fID); | |
811 remove<Edge, &Edge::fPrevEdgeAbove, &Edge::fNextEdgeAbove>( | |
812 edge, &edge->fBottom->fFirstEdgeAbove, &edge->fBottom->fLastEdgeAbove); | |
813 } | |
814 | |
815 void remove_edge_below(Edge* edge) { | |
816 LOG("removing edge (%g -> %g) below vertex %g\n", edge->fTop->fID, edge->fBo ttom->fID, | |
817 edge->fTop->fID); | |
818 remove<Edge, &Edge::fPrevEdgeBelow, &Edge::fNextEdgeBelow>( | |
819 edge, &edge->fTop->fFirstEdgeBelow, &edge->fTop->fLastEdgeBelow); | |
820 } | |
821 | |
822 void erase_edge_if_zero_winding(Edge* edge, Edge** head) { | |
823 if (edge->fWinding != 0) { | |
824 return; | |
825 } | |
826 LOG("erasing edge (%g -> %g)\n", edge->fTop->fID, edge->fBottom->fID); | |
827 remove_edge_above(edge); | |
828 remove_edge_below(edge); | |
829 if (edge->isActive(head)) { | |
830 remove_edge(edge, head); | |
831 } | |
832 } | |
833 | |
834 void merge_collinear_edges(Edge* edge, Edge** activeEdges); | |
835 | |
836 void set_top(Edge* edge, Vertex* v, Edge** activeEdges) { | |
837 remove_edge_below(edge); | |
838 edge->fTop = v; | |
839 edge->recompute(); | |
840 insert_edge_below(edge, v); | |
841 fix_active_state(edge, activeEdges); | |
842 merge_collinear_edges(edge, activeEdges); | |
843 } | |
844 | |
845 void set_bottom(Edge* edge, Vertex* v, Edge** activeEdges) { | |
846 remove_edge_above(edge); | |
847 edge->fBottom = v; | |
848 edge->recompute(); | |
849 insert_edge_above(edge, v); | |
850 fix_active_state(edge, activeEdges); | |
851 merge_collinear_edges(edge, activeEdges); | |
852 } | |
853 | |
854 void merge_edges_above(Edge* edge, Edge* other, Edge** activeEdges) { | |
855 if (coincident(edge->fTop->fPoint, other->fTop->fPoint)) { | |
856 LOG("merging coincident above edges (%g, %g) -> (%g, %g)\n", | |
857 edge->fTop->fPoint.fX, edge->fTop->fPoint.fY, | |
858 edge->fBottom->fPoint.fX, edge->fBottom->fPoint.fY); | |
859 other->fWinding += edge->fWinding; | |
860 erase_edge_if_zero_winding(other, activeEdges); | |
861 edge->fWinding = 0; | |
862 erase_edge_if_zero_winding(edge, activeEdges); | |
863 } else if (sweep_lt(edge->fTop->fPoint, other->fTop->fPoint)) { | |
864 other->fWinding += edge->fWinding; | |
865 erase_edge_if_zero_winding(other, activeEdges); | |
866 set_bottom(edge, other->fTop, activeEdges); | |
867 } else { | |
868 edge->fWinding += other->fWinding; | |
869 erase_edge_if_zero_winding(edge, activeEdges); | |
870 set_bottom(other, edge->fTop, activeEdges); | |
871 } | |
872 } | |
873 | |
874 void merge_edges_below(Edge* edge, Edge* other, Edge** activeEdges) { | |
875 if (coincident(edge->fBottom->fPoint, other->fBottom->fPoint)) { | |
876 LOG("merging coincident below edges (%g, %g) -> (%g, %g)\n", | |
877 edge->fTop->fPoint.fX, edge->fTop->fPoint.fY, | |
878 edge->fBottom->fPoint.fX, edge->fBottom->fPoint.fY); | |
879 other->fWinding += edge->fWinding; | |
880 erase_edge_if_zero_winding(other, activeEdges); | |
881 edge->fWinding = 0; | |
882 erase_edge_if_zero_winding(edge, activeEdges); | |
883 } else if (sweep_lt(edge->fBottom->fPoint, other->fBottom->fPoint)) { | |
884 edge->fWinding += other->fWinding; | |
885 erase_edge_if_zero_winding(edge, activeEdges); | |
886 set_top(other, edge->fBottom, activeEdges); | |
887 } else { | |
888 other->fWinding += edge->fWinding; | |
889 erase_edge_if_zero_winding(other, activeEdges); | |
890 set_top(edge, other->fBottom, activeEdges); | |
891 } | |
892 } | |
893 | |
894 void merge_collinear_edges(Edge* edge, Edge** activeEdges) { | |
895 if (edge->fPrevEdgeAbove && (edge->fTop == edge->fPrevEdgeAbove->fTop || | |
896 !edge->fPrevEdgeAbove->isLeftOf(edge->fTop))) { | |
897 merge_edges_above(edge, edge->fPrevEdgeAbove, activeEdges); | |
898 } else if (edge->fNextEdgeAbove && (edge->fTop == edge->fNextEdgeAbove->fTop || | |
899 !edge->isLeftOf(edge->fNextEdgeAbove->fT op))) { | |
900 merge_edges_above(edge, edge->fNextEdgeAbove, activeEdges); | |
901 } | |
902 if (edge->fPrevEdgeBelow && (edge->fBottom == edge->fPrevEdgeBelow->fBottom || | |
903 !edge->fPrevEdgeBelow->isLeftOf(edge->fBottom)) ) { | |
904 merge_edges_below(edge, edge->fPrevEdgeBelow, activeEdges); | |
905 } else if (edge->fNextEdgeBelow && (edge->fBottom == edge->fNextEdgeBelow->f Bottom || | |
906 !edge->isLeftOf(edge->fNextEdgeBelow->fB ottom))) { | |
907 merge_edges_below(edge, edge->fNextEdgeBelow, activeEdges); | |
908 } | |
909 } | |
910 | |
911 void split_edge(Edge* edge, Vertex* v, Edge** activeEdges, SkChunkAlloc& alloc); | |
912 | |
913 void cleanup_active_edges(Edge* edge, Edge** activeEdges, SkChunkAlloc& alloc) { | |
914 Vertex* top = edge->fTop; | |
915 Vertex* bottom = edge->fBottom; | |
916 if (edge->fLeft) { | |
917 Vertex* leftTop = edge->fLeft->fTop; | |
918 Vertex* leftBottom = edge->fLeft->fBottom; | |
919 if (sweep_gt(top->fPoint, leftTop->fPoint) && !edge->fLeft->isLeftOf(top )) { | |
920 split_edge(edge->fLeft, edge->fTop, activeEdges, alloc); | |
921 } else if (sweep_gt(leftTop->fPoint, top->fPoint) && !edge->isRightOf(le ftTop)) { | |
922 split_edge(edge, leftTop, activeEdges, alloc); | |
923 } else if (sweep_lt(bottom->fPoint, leftBottom->fPoint) && !edge->fLeft- >isLeftOf(bottom)) { | |
924 split_edge(edge->fLeft, bottom, activeEdges, alloc); | |
925 } else if (sweep_lt(leftBottom->fPoint, bottom->fPoint) && !edge->isRigh tOf(leftBottom)) { | |
926 split_edge(edge, leftBottom, activeEdges, alloc); | |
927 } | |
928 } | |
929 if (edge->fRight) { | |
930 Vertex* rightTop = edge->fRight->fTop; | |
931 Vertex* rightBottom = edge->fRight->fBottom; | |
932 if (sweep_gt(top->fPoint, rightTop->fPoint) && !edge->fRight->isRightOf( top)) { | |
933 split_edge(edge->fRight, top, activeEdges, alloc); | |
934 } else if (sweep_gt(rightTop->fPoint, top->fPoint) && !edge->isLeftOf(ri ghtTop)) { | |
935 split_edge(edge, rightTop, activeEdges, alloc); | |
936 } else if (sweep_lt(bottom->fPoint, rightBottom->fPoint) && | |
937 !edge->fRight->isRightOf(bottom)) { | |
938 split_edge(edge->fRight, bottom, activeEdges, alloc); | |
939 } else if (sweep_lt(rightBottom->fPoint, bottom->fPoint) && | |
940 !edge->isLeftOf(rightBottom)) { | |
941 split_edge(edge, rightBottom, activeEdges, alloc); | |
942 } | |
943 } | |
944 } | |
945 | |
946 void split_edge(Edge* edge, Vertex* v, Edge** activeEdges, SkChunkAlloc& alloc) { | |
947 LOG("splitting edge (%g -> %g) at vertex %g (%g, %g)\n", | |
948 edge->fTop->fID, edge->fBottom->fID, | |
949 v->fID, v->fPoint.fX, v->fPoint.fY); | |
950 Edge* newEdge = ALLOC_NEW(Edge, (v, edge->fBottom, edge->fWinding), alloc); | |
951 insert_edge_below(newEdge, v); | |
952 insert_edge_above(newEdge, edge->fBottom); | |
953 set_bottom(edge, v, activeEdges); | |
954 cleanup_active_edges(edge, activeEdges, alloc); | |
955 fix_active_state(newEdge, activeEdges); | |
956 merge_collinear_edges(newEdge, activeEdges); | |
957 } | |
958 | |
959 void merge_vertices(Vertex* src, Vertex* dst, Vertex** head, SkChunkAlloc& alloc ) { | |
960 LOG("found coincident verts at %g, %g; merging %g into %g\n", src->fPoint.fX , src->fPoint.fY, | |
961 src->fID, dst->fID); | |
962 for (Edge* edge = src->fFirstEdgeAbove; edge;) { | |
963 Edge* next = edge->fNextEdgeAbove; | |
964 set_bottom(edge, dst, NULL); | |
965 edge = next; | |
966 } | |
967 for (Edge* edge = src->fFirstEdgeBelow; edge;) { | |
968 Edge* next = edge->fNextEdgeBelow; | |
969 set_top(edge, dst, NULL); | |
970 edge = next; | |
971 } | |
972 remove<Vertex, &Vertex::fPrev, &Vertex::fNext>(src, head, NULL); | |
973 } | |
974 | |
975 Vertex* check_for_intersection(Edge* edge, Edge* other, Edge** activeEdges, SkCh unkAlloc& alloc) { | |
976 SkPoint p; | |
977 if (!edge || !other) { | |
978 return NULL; | |
979 } | |
980 if (edge->intersect(*other, &p)) { | |
981 Vertex* v; | |
982 LOG("found intersection, pt is %g, %g\n", p.fX, p.fY); | |
983 if (p == edge->fTop->fPoint || sweep_lt(p, edge->fTop->fPoint)) { | |
984 split_edge(other, edge->fTop, activeEdges, alloc); | |
985 v = edge->fTop; | |
986 } else if (p == edge->fBottom->fPoint || sweep_gt(p, edge->fBottom->fPoi nt)) { | |
987 split_edge(other, edge->fBottom, activeEdges, alloc); | |
988 v = edge->fBottom; | |
989 } else if (p == other->fTop->fPoint || sweep_lt(p, other->fTop->fPoint)) { | |
990 split_edge(edge, other->fTop, activeEdges, alloc); | |
991 v = other->fTop; | |
992 } else if (p == other->fBottom->fPoint || sweep_gt(p, other->fBottom->fP oint)) { | |
993 split_edge(edge, other->fBottom, activeEdges, alloc); | |
994 v = other->fBottom; | |
995 } else { | |
996 Vertex* nextV = edge->fTop; | |
997 while (sweep_lt(p, nextV->fPoint)) { | |
998 nextV = nextV->fPrev; | |
999 } | |
1000 while (sweep_lt(nextV->fPoint, p)) { | |
1001 nextV = nextV->fNext; | |
1002 } | |
1003 Vertex* prevV = nextV->fPrev; | |
1004 if (coincident(prevV->fPoint, p)) { | |
1005 v = prevV; | |
1006 } else if (coincident(nextV->fPoint, p)) { | |
1007 v = nextV; | |
1008 } else { | |
1009 v = ALLOC_NEW(Vertex, (p), alloc); | |
1010 LOG("inserting between %g (%g, %g) and %g (%g, %g)\n", | |
1011 prevV->fID, prevV->fPoint.fX, prevV->fPoint.fY, | |
1012 nextV->fID, nextV->fPoint.fX, nextV->fPoint.fY); | |
1013 #if LOGGING_ENABLED | |
1014 v->fID = (nextV->fID + prevV->fID) * 0.5f; | |
1015 #endif | |
1016 v->fPrev = prevV; | |
1017 v->fNext = nextV; | |
1018 prevV->fNext = v; | |
1019 nextV->fPrev = v; | |
1020 } | |
1021 split_edge(edge, v, activeEdges, alloc); | |
1022 split_edge(other, v, activeEdges, alloc); | |
1023 } | |
1024 #ifdef SK_DEBUG | |
1025 validate_connectivity(v); | |
1026 #endif | |
1027 return v; | |
1028 } | |
1029 return NULL; | |
1030 } | |
1031 | |
1032 void sanitize_contours(Vertex** contours, int contourCnt) { | |
1033 for (int i = 0; i < contourCnt; ++i) { | |
1034 SkASSERT(contours[i]); | |
1035 for (Vertex* v = contours[i];;) { | |
1036 if (coincident(v->fPrev->fPoint, v->fPoint)) { | |
1037 LOG("vertex %g,%g coincident; removing\n", v->fPoint.fX, v->fPoi nt.fY); | |
1038 if (v->fPrev == v) { | |
1039 contours[i] = NULL; | |
1040 break; | |
1041 } | |
1042 v->fPrev->fNext = v->fNext; | |
1043 v->fNext->fPrev = v->fPrev; | |
1044 if (contours[i] == v) { | |
1045 contours[i] = v->fNext; | |
1046 } | |
1047 v = v->fPrev; | |
1048 } else { | |
1049 v = v->fNext; | |
1050 if (v == contours[i]) break; | |
1051 } | |
1052 } | |
1053 } | |
1054 } | |
1055 | |
1056 void merge_coincident_vertices(Vertex** vertices, SkChunkAlloc& alloc) { | |
1057 for (Vertex* v = (*vertices)->fNext; v != NULL; v = v->fNext) { | |
1058 if (sweep_lt(v->fPoint, v->fPrev->fPoint)) { | |
1059 v->fPoint = v->fPrev->fPoint; | |
1060 } | |
1061 if (coincident(v->fPrev->fPoint, v->fPoint)) { | |
1062 merge_vertices(v->fPrev, v, vertices, alloc); | |
1063 } | |
1064 } | |
1065 } | |
1066 | |
1067 // Stage 2: convert the contours to a mesh of edges connecting the vertices. | |
1068 | |
1069 Vertex* build_edges(Vertex** contours, int contourCnt, SkChunkAlloc& alloc) { | |
1070 Vertex* vertices = NULL; | |
1071 Vertex* prev = NULL; | |
1072 for (int i = 0; i < contourCnt; ++i) { | |
1073 for (Vertex* v = contours[i]; v != NULL;) { | |
1074 Vertex* vNext = v->fNext; | |
1075 Edge* edge = new_edge(v->fPrev, v, alloc); | |
1076 if (edge->fWinding > 0) { | |
1077 insert_edge_below(edge, v->fPrev); | |
1078 insert_edge_above(edge, v); | |
1079 } else { | |
1080 insert_edge_below(edge, v); | |
1081 insert_edge_above(edge, v->fPrev); | |
1082 } | |
1083 merge_collinear_edges(edge, NULL); | |
1084 if (prev) { | |
1085 prev->fNext = v; | |
1086 v->fPrev = prev; | |
1087 } else { | |
1088 vertices = v; | |
1089 } | |
1090 prev = v; | |
1091 v = vNext; | |
1092 if (v == contours[i]) break; | |
1093 } | |
1094 } | |
1095 if (prev) { | |
1096 prev->fNext = vertices->fPrev = NULL; | |
1097 } | |
1098 return vertices; | |
1099 } | |
1100 | |
1101 // Stage 3: sort the vertices by increasing Y (or X if SWEEP_IN_X is on). | |
1102 | |
1103 Vertex* sorted_merge(Vertex* a, Vertex* b); | |
1104 | |
1105 void front_back_split(Vertex* v, Vertex** pFront, Vertex** pBack) { | |
1106 Vertex* fast; | |
1107 Vertex* slow; | |
1108 if (!v || !v->fNext) { | |
1109 *pFront = v; | |
1110 *pBack = NULL; | |
1111 } else { | |
1112 slow = v; | |
1113 fast = v->fNext; | |
1114 | |
1115 while (fast != NULL) { | |
1116 fast = fast->fNext; | |
1117 if (fast != NULL) { | |
1118 slow = slow->fNext; | |
1119 fast = fast->fNext; | |
1120 } | |
1121 } | |
1122 | |
1123 *pFront = v; | |
1124 *pBack = slow->fNext; | |
1125 slow->fNext->fPrev = NULL; | |
1126 slow->fNext = NULL; | |
1127 } | |
1128 } | |
1129 | |
1130 void merge_sort(Vertex** head) { | |
1131 if (!*head || !(*head)->fNext) { | |
1132 return; | |
1133 } | |
1134 | |
1135 Vertex* a; | |
1136 Vertex* b; | |
1137 front_back_split(*head, &a, &b); | |
1138 | |
1139 merge_sort(&a); | |
1140 merge_sort(&b); | |
1141 | |
1142 *head = sorted_merge(a, b); | |
1143 } | |
1144 | |
1145 Vertex* sorted_merge(Vertex* a, Vertex* b) { | |
1146 if (!a) { | |
1147 return b; | |
1148 } else if (!b) { | |
1149 return a; | |
1150 } | |
1151 | |
1152 Vertex* result = NULL; | |
1153 | |
1154 if (sweep_lt(a->fPoint, b->fPoint)) { | |
1155 result = a; | |
1156 result->fNext = sorted_merge(a->fNext, b); | |
1157 } else { | |
1158 result = b; | |
1159 result->fNext = sorted_merge(a, b->fNext); | |
1160 } | |
1161 result->fNext->fPrev = result; | |
1162 return result; | |
1163 } | |
1164 | |
1165 // Stage 4: Simplify the mesh by inserting new vertices at intersecting edges. | |
1166 | |
1167 void simplify(Vertex* vertices, SkChunkAlloc& alloc) { | |
1168 LOG("simplifying complex polygons\n"); | |
1169 Edge* activeEdges = NULL; | |
1170 for (Vertex* v = vertices; v != NULL; v = v->fNext) { | |
1171 if (!v->fFirstEdgeAbove && !v->fFirstEdgeBelow) { | |
1172 continue; | |
1173 } | |
1174 #if LOGGING_ENABLED | |
1175 LOG("\nvertex %g: (%g,%g)\n", v->fID, v->fPoint.fX, v->fPoint.fY); | |
1176 #endif | |
1177 #ifdef SK_DEBUG | |
1178 validate_connectivity(v); | |
1179 #endif | |
1180 Edge* leftEnclosingEdge = NULL; | |
1181 Edge* rightEnclosingEdge = NULL; | |
1182 bool restartChecks; | |
1183 do { | |
1184 restartChecks = false; | |
1185 find_enclosing_edges(v, activeEdges, &leftEnclosingEdge, &rightEnclo singEdge); | |
1186 if (v->fFirstEdgeBelow) { | |
1187 for (Edge* edge = v->fFirstEdgeBelow; edge != NULL; edge = edge- >fNextEdgeBelow) { | |
1188 if (check_for_intersection(edge, leftEnclosingEdge, &activeE dges, alloc)) { | |
1189 restartChecks = true; | |
1190 break; | |
1191 } | |
1192 if (check_for_intersection(edge, rightEnclosingEdge, &active Edges, alloc)) { | |
1193 restartChecks = true; | |
1194 break; | |
1195 } | |
1196 } | |
1197 } else { | |
1198 if (Vertex* pv = check_for_intersection(leftEnclosingEdge, right EnclosingEdge, | |
1199 &activeEdges, alloc)) { | |
1200 if (sweep_lt(pv->fPoint, v->fPoint)) { | |
1201 v = pv; | |
1202 } | |
1203 restartChecks = true; | |
1204 } | |
1205 | |
1206 } | |
1207 } while (restartChecks); | |
1208 SkASSERT(!leftEnclosingEdge || leftEnclosingEdge->isLeftOf(v)); | |
1209 SkASSERT(!rightEnclosingEdge || rightEnclosingEdge->isRightOf(v)); | |
1210 #ifdef SK_DEBUG | |
1211 validate_edges(activeEdges); | |
1212 #endif | |
1213 for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) { | |
1214 remove_edge(e, &activeEdges); | |
1215 } | |
1216 Edge* leftEdge = leftEnclosingEdge; | |
1217 for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) { | |
1218 insert_edge(e, leftEdge, &activeEdges); | |
1219 leftEdge = e; | |
1220 } | |
1221 v->fProcessed = true; | |
1222 } | |
1223 } | |
1224 | |
1225 // Stage 5: Tessellate the simplified mesh into monotone polygons. | |
1226 | |
1227 Poly* tessellate(Vertex* vertices, SkChunkAlloc& alloc) { | |
1228 LOG("tessellating simple polygons\n"); | |
1229 Edge* activeEdges = NULL; | |
1230 Poly* polys = NULL; | |
1231 for (Vertex* v = vertices; v != NULL; v = v->fNext) { | |
1232 if (!v->fFirstEdgeAbove && !v->fFirstEdgeBelow) { | |
1233 continue; | |
1234 } | |
1235 #if LOGGING_ENABLED | |
1236 LOG("\nvertex %g: (%g,%g)\n", v->fID, v->fPoint.fX, v->fPoint.fY); | |
1237 #endif | |
1238 #ifdef SK_DEBUG | |
1239 validate_connectivity(v); | |
1240 #endif | |
1241 Edge* leftEnclosingEdge = NULL; | |
1242 Edge* rightEnclosingEdge = NULL; | |
1243 find_enclosing_edges(v, activeEdges, &leftEnclosingEdge, &rightEnclosing Edge); | |
1244 SkASSERT(!leftEnclosingEdge || leftEnclosingEdge->isLeftOf(v)); | |
1245 SkASSERT(!rightEnclosingEdge || rightEnclosingEdge->isRightOf(v)); | |
1246 #ifdef SK_DEBUG | |
1247 validate_edges(activeEdges); | |
1248 #endif | |
1249 Poly* leftPoly = NULL; | |
1250 Poly* rightPoly = NULL; | |
1251 if (v->fFirstEdgeAbove) { | |
1252 leftPoly = v->fFirstEdgeAbove->fLeftPoly; | |
1253 rightPoly = v->fLastEdgeAbove->fRightPoly; | |
1254 } else { | |
1255 leftPoly = leftEnclosingEdge ? leftEnclosingEdge->fRightPoly : NULL; | |
1256 rightPoly = rightEnclosingEdge ? rightEnclosingEdge->fLeftPoly : NUL L; | |
1257 } | |
1258 #if LOGGING_ENABLED | |
1259 LOG("edges above:\n"); | |
1260 for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) { | |
1261 LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID, | |
1262 e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRight Poly->fID : -1); | |
1263 } | |
1264 LOG("edges below:\n"); | |
1265 for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) { | |
1266 LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID, | |
1267 e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRight Poly->fID : -1); | |
1268 } | |
1269 #endif | |
1270 if (v->fFirstEdgeAbove) { | |
1271 if (leftPoly) { | |
1272 leftPoly = leftPoly->addVertex(v, Poly::kRight_Side, alloc); | |
1273 } | |
1274 if (rightPoly) { | |
1275 rightPoly = rightPoly->addVertex(v, Poly::kLeft_Side, alloc); | |
1276 } | |
1277 for (Edge* e = v->fFirstEdgeAbove; e != v->fLastEdgeAbove; e = e->fN extEdgeAbove) { | |
1278 Edge* leftEdge = e; | |
1279 Edge* rightEdge = e->fNextEdgeAbove; | |
1280 SkASSERT(rightEdge->isRightOf(leftEdge->fTop)); | |
1281 remove_edge(leftEdge, &activeEdges); | |
1282 if (leftEdge->fRightPoly) { | |
1283 leftEdge->fRightPoly->end(v, alloc); | |
1284 } | |
1285 if (rightEdge->fLeftPoly && rightEdge->fLeftPoly != leftEdge->fR ightPoly) { | |
1286 rightEdge->fLeftPoly->end(v, alloc); | |
1287 } | |
1288 } | |
1289 remove_edge(v->fLastEdgeAbove, &activeEdges); | |
1290 if (!v->fFirstEdgeBelow) { | |
1291 if (leftPoly && rightPoly && leftPoly != rightPoly) { | |
1292 SkASSERT(leftPoly->fPartner == NULL && rightPoly->fPartner = = NULL); | |
1293 rightPoly->fPartner = leftPoly; | |
1294 leftPoly->fPartner = rightPoly; | |
1295 } | |
1296 } | |
1297 } | |
1298 if (v->fFirstEdgeBelow) { | |
1299 if (!v->fFirstEdgeAbove) { | |
1300 if (leftPoly && leftPoly == rightPoly) { | |
1301 // Split the poly. | |
1302 if (leftPoly->fActive->fSide == Poly::kLeft_Side) { | |
1303 leftPoly = new_poly(&polys, leftEnclosingEdge->fTop, lef tPoly->fWinding, | |
1304 alloc); | |
1305 leftPoly->addVertex(v, Poly::kRight_Side, alloc); | |
1306 rightPoly->addVertex(v, Poly::kLeft_Side, alloc); | |
1307 leftEnclosingEdge->fRightPoly = leftPoly; | |
1308 } else { | |
1309 rightPoly = new_poly(&polys, rightEnclosingEdge->fTop, r ightPoly->fWinding, | |
1310 alloc); | |
1311 rightPoly->addVertex(v, Poly::kLeft_Side, alloc); | |
1312 leftPoly->addVertex(v, Poly::kRight_Side, alloc); | |
1313 rightEnclosingEdge->fLeftPoly = rightPoly; | |
1314 } | |
1315 } else { | |
1316 if (leftPoly) { | |
1317 leftPoly = leftPoly->addVertex(v, Poly::kRight_Side, all oc); | |
1318 } | |
1319 if (rightPoly) { | |
1320 rightPoly = rightPoly->addVertex(v, Poly::kLeft_Side, al loc); | |
1321 } | |
1322 } | |
1323 } | |
1324 Edge* leftEdge = v->fFirstEdgeBelow; | |
1325 leftEdge->fLeftPoly = leftPoly; | |
1326 insert_edge(leftEdge, leftEnclosingEdge, &activeEdges); | |
1327 for (Edge* rightEdge = leftEdge->fNextEdgeBelow; rightEdge; | |
1328 rightEdge = rightEdge->fNextEdgeBelow) { | |
1329 insert_edge(rightEdge, leftEdge, &activeEdges); | |
1330 int winding = leftEdge->fLeftPoly ? leftEdge->fLeftPoly->fWindin g : 0; | |
1331 winding += leftEdge->fWinding; | |
1332 if (winding != 0) { | |
1333 Poly* poly = new_poly(&polys, v, winding, alloc); | |
1334 leftEdge->fRightPoly = rightEdge->fLeftPoly = poly; | |
1335 } | |
1336 leftEdge = rightEdge; | |
1337 } | |
1338 v->fLastEdgeBelow->fRightPoly = rightPoly; | |
1339 } | |
1340 #ifdef SK_DEBUG | |
1341 validate_edges(activeEdges); | |
1342 #endif | |
1343 #if LOGGING_ENABLED | |
1344 LOG("\nactive edges:\n"); | |
1345 for (Edge* e = activeEdges; e != NULL; e = e->fRight) { | |
1346 LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID, | |
1347 e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRight Poly->fID : -1); | |
1348 } | |
1349 #endif | |
1350 } | |
1351 return polys; | |
1352 } | |
1353 | |
1354 // This is a driver function which calls stages 2-5 in turn. | |
1355 | |
1356 Poly* contours_to_polys(Vertex** contours, int contourCnt, SkChunkAlloc& alloc) { | |
1357 #if LOGGING_ENABLED | |
1358 for (int i = 0; i < contourCnt; ++i) { | |
1359 Vertex* v = contours[i]; | |
1360 SkASSERT(v); | |
1361 LOG("path.moveTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY); | |
1362 for (v = v->fNext; v != contours[i]; v = v->fNext) { | |
1363 LOG("path.lineTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY); | |
1364 } | |
1365 } | |
1366 #endif | |
1367 sanitize_contours(contours, contourCnt); | |
1368 Vertex* vertices = build_edges(contours, contourCnt, alloc); | |
1369 if (!vertices) { | |
1370 return NULL; | |
1371 } | |
1372 | |
1373 // Sort vertices in Y (secondarily in X). | |
1374 merge_sort(&vertices); | |
1375 merge_coincident_vertices(&vertices, alloc); | |
1376 #if LOGGING_ENABLED | |
1377 for (Vertex* v = vertices; v != NULL; v = v->fNext) { | |
1378 static float gID = 0.0f; | |
1379 v->fID = gID++; | |
1380 } | |
1381 #endif | |
1382 simplify(vertices, alloc); | |
1383 return tessellate(vertices, alloc); | |
1384 } | |
1385 | |
1386 // Stage 6: Triangulate the monotone polygons into a vertex buffer. | |
1387 | |
1388 void* polys_to_triangles(Poly* polys, SkPath::FillType fillType, void* data) { | |
1389 void* d = data; | |
1390 for (Poly* poly = polys; poly; poly = poly->fNext) { | |
1391 if (apply_fill_type(fillType, poly->fWinding)) { | |
1392 d = poly->emit(d); | |
1393 } | |
1394 } | |
1395 return d; | |
1396 } | |
1397 | |
1398 }; | |
1399 | |
1400 GrTessellatingPathRenderer::GrTessellatingPathRenderer() { | |
1401 } | |
1402 | |
1403 GrPathRenderer::StencilSupport GrTessellatingPathRenderer::onGetStencilSupport( | |
1404 const GrDrawTarget*, | |
1405 const GrPipelineBuil der*, | |
1406 const SkPath&, | |
1407 const SkStrokeRec&) const { | |
1408 return GrPathRenderer::kNoSupport_StencilSupport; | |
1409 } | |
1410 | |
1411 bool GrTessellatingPathRenderer::canDrawPath(const GrDrawTarget* target, | |
1412 const GrPipelineBuilder* pipelineBu ilder, | |
1413 const SkMatrix& viewMatrix, | |
1414 const SkPath& path, | |
1415 const SkStrokeRec& stroke, | |
1416 bool antiAlias) const { | |
1417 // This path renderer can draw all fill styles, but does not do antialiasing . It can do convex | |
1418 // and concave paths, but we'll leave the convex ones to simpler algorithms. | |
1419 return stroke.isFillStyle() && !antiAlias && !path.isConvex(); | |
1420 } | |
1421 | |
1422 bool GrTessellatingPathRenderer::onDrawPath(GrDrawTarget* target, | |
1423 GrPipelineBuilder* pipelineBuilder, | |
1424 GrColor color, | |
1425 const SkMatrix& viewM, | |
1426 const SkPath& path, | |
1427 const SkStrokeRec& stroke, | |
1428 bool antiAlias) { | |
1429 SkASSERT(!antiAlias); | |
1430 const GrRenderTarget* rt = pipelineBuilder->getRenderTarget(); | |
1431 if (NULL == rt) { | |
1432 return false; | |
1433 } | |
1434 | |
1435 SkScalar tol = GrPathUtils::scaleToleranceToSrc(SK_Scalar1, viewM, path.getB ounds()); | |
1436 | |
1437 int contourCnt; | |
1438 int maxPts = GrPathUtils::worstCasePointCount(path, &contourCnt, tol); | |
1439 if (maxPts <= 0) { | |
1440 return false; | |
1441 } | |
1442 if (maxPts > ((int)SK_MaxU16 + 1)) { | |
1443 SkDebugf("Path not rendered, too many verts (%d)\n", maxPts); | |
1444 return false; | |
1445 } | |
1446 SkPath::FillType fillType = path.getFillType(); | |
1447 if (SkPath::IsInverseFillType(fillType)) { | |
1448 contourCnt++; | |
1449 } | |
1450 | |
1451 LOG("got %d pts, %d contours\n", maxPts, contourCnt); | |
1452 | |
1453 SkAutoTDeleteArray<Vertex*> contours(SkNEW_ARRAY(Vertex *, contourCnt)); | |
1454 | |
1455 // For the initial size of the chunk allocator, estimate based on the point count: | |
1456 // one vertex per point for the initial passes, plus two for the vertices in the | |
1457 // resulting Polys, since the same point may end up in two Polys. Assume mi nimal | |
1458 // connectivity of one Edge per Vertex (will grow for intersections). | |
1459 SkChunkAlloc alloc(maxPts * (3 * sizeof(Vertex) + sizeof(Edge))); | |
1460 SkIRect clipBoundsI; | |
1461 target->getClip()->getConservativeBounds(rt, &clipBoundsI); | |
1462 SkRect clipBounds = SkRect::Make(clipBoundsI); | |
1463 SkMatrix vmi; | |
1464 if (!viewM.invert(&vmi)) { | |
1465 return false; | |
1466 } | |
1467 vmi.mapRect(&clipBounds); | |
1468 path_to_contours(path, tol, clipBounds, contours.get(), alloc); | |
1469 Poly* polys; | |
1470 uint32_t flags = GrDefaultGeoProcFactory::kPosition_GPType; | |
1471 polys = contours_to_polys(contours.get(), contourCnt, alloc); | |
1472 SkAutoTUnref<const GrGeometryProcessor> gp( | |
1473 GrDefaultGeoProcFactory::Create(flags, color, viewM, SkMatrix::I())); | |
1474 int count = 0; | |
1475 for (Poly* poly = polys; poly; poly = poly->fNext) { | |
1476 if (apply_fill_type(fillType, poly->fWinding) && poly->fCount >= 3) { | |
1477 count += (poly->fCount - 2) * (WIREFRAME ? 6 : 3); | |
1478 } | |
1479 } | |
1480 | |
1481 int stride = gp->getVertexStride(); | |
1482 GrDrawTarget::AutoReleaseGeometry arg; | |
1483 if (!arg.set(target, count, stride, 0)) { | |
1484 return false; | |
1485 } | |
1486 LOG("emitting %d verts\n", count); | |
1487 void* end = polys_to_triangles(polys, fillType, arg.vertices()); | |
1488 int actualCount = (static_cast<char*>(end) - static_cast<char*>(arg.vertices ())) / stride; | |
1489 LOG("actual count: %d\n", actualCount); | |
1490 SkASSERT(actualCount <= count); | |
1491 | |
1492 GrPrimitiveType primitiveType = WIREFRAME ? kLines_GrPrimitiveType | |
1493 : kTriangles_GrPrimitiveType; | |
1494 target->drawNonIndexed(pipelineBuilder, gp, primitiveType, 0, actualCount); | |
1495 | |
1496 return true; | |
1497 } | |
OLD | NEW |