OLD | NEW |
---|---|
(Empty) | |
1 /* | |
2 * Copyright 2015 Google Inc. | |
3 * | |
4 * Use of this source code is governed by a BSD-style license that can be | |
5 * found in the LICENSE file. | |
6 */ | |
7 | |
8 #include "GrTessellatingPathRenderer.h" | |
9 | |
10 #include "GrDefaultGeoProcFactory.h" | |
11 #include "GrPathUtils.h" | |
12 #include "SkChunkAlloc.h" | |
13 #include "SkGeometry.h" | |
14 | |
15 #include <stdio.h> | |
16 | |
17 /* | |
18 * This path renderer tessellates the path into triangles, uploads the triangles to a | |
19 * vertex buffer, and renders them with a single draw call. It does not currentl y do | |
20 * antialiasing, so it must be used in conjunction with multisampling. | |
21 * | |
22 * There are six stages to the algorithm: | |
23 * | |
24 * 1) Linearize the path contours into piecewise linear segments (path_to_contou rs()). | |
25 * 2) Sort the vertices in Y (and secondarily in X) (merge_sort()). | |
egdaniel
2015/01/29 19:31:19
step 2 and 3 here are actually reversed in the cod
Stephen White
2015/01/29 19:38:29
Good catch; will fix.
| |
26 * 3) Build a mesh of edges connecting the vertices (build_edges()). | |
27 * 4) Simplify the mesh by inserting new vertices at intersecting edges (simplif y()). | |
28 * 5) Tessellate the simplified mesh into monotone polygons (tessellate()). | |
29 * 6) Triangulate the monotone polygons directly into a vertex buffer (polys_to_ triangles()). | |
30 * | |
31 * The vertex sorting in step (2) is a merge sort, since it plays well with the linked list | |
32 * of vertices (and the necessity of inserting new vertices on intersection). | |
33 * | |
34 * Stages (4) and (5) use an active edge list, which a list of all edges for whi ch the | |
35 * sweep line has crossed the top vertex, but not the bottom vertex. It's sorte d | |
36 * left-to-right based on the point where both edges are active (when both top v ertices | |
37 * have been seen, so the "lower" top vertex of the two). If the top vertices ar e equal | |
38 * (shared), it's sorted based on the last point where both edges are active, so the | |
39 * "upper" bottom vertex. | |
40 * | |
41 * The most complex step is the simplification (4). It's based on the Bentley-Ot tman | |
42 * line-sweep algorithm, but due to floating point inaccuracy, the intersection points are | |
43 * not exact and may violate the mesh topology or active edge list ordering. We | |
44 * accommodate this by adjusting the topology of the mesh and AEL to match the i ntersection | |
45 * points. This occurs in three ways: | |
46 * | |
47 * A) Intersections may cause a shortened edge to no longer be ordered with resp ect to its | |
48 * neighbouring edges at the top or bottom vertex. This is handled by merging the | |
49 * edges (merge_collinear_edges()). | |
50 * B) Intersections may cause an edge to violate the left-to-right ordering of t he | |
51 * active edge list. This is handled by splitting the neighbour edge on the | |
52 * intersected vertex (cleanup_active_edges()). | |
53 * C) Shortening an edge may cause an active edge to become inactive or an inact ive edge | |
54 * to become active. This is handled by removing or inserting the edge in the active | |
55 * edge list (fix_active_state()). | |
56 * | |
57 * The tessellation steps (5) and (6) are based on "Triangulating Simple Polygon s and | |
58 * Equivalent Problems" (Fournier and Montuno); also a line-sweep algorithm. Not e that it | |
59 * currently uses a linked list for the active edge list, rather than a 2-3 tree as the | |
60 * paper describes. The 2-3 tree gives O(lg N) lookups, but insertion and remova l also | |
61 * become O(lg N). In all the test cases, it was found that the cost of frequent O(lg N) | |
62 * insertions and removals was greater than the cost of infrequent O(N) lookups with the | |
63 * linked list implementation. With the latter, all removals are O(1), and most insertions | |
64 * are O(1), since we know the adjacent edge in the active edge list based on th e topology. | |
65 * Only type 2 vertices (see paper) require the O(N) lookups, and these are much less | |
66 * frequent. There may be other data structures worth investigating, however. | |
67 * | |
68 * Note that there is a compile-time flag (SWEEP_IN_X) which changes the orienta tion of the | |
69 * line sweep algorithms. When SWEEP_IN_X is unset, we sort vertices based on in creasing | |
70 * Y coordinate, and secondarily by increasing X coordinate. When SWEEP_IN_X is set, we sort by | |
71 * increasing X coordinate, but secondarily by *decreasing* Y coordinate. This i s so that the | |
72 * "left" and "right" orientation in the code remains correct (edges to the left are increasing | |
73 * in Y; edges to the right are decreasing in Y). That is, the setting rotates 9 0 degrees | |
74 * counterclockwise, rather that transposing. | |
75 * | |
76 * The choice is arbitrary, but most test cases are wider than they are tall, so the | |
77 * default is to sweep in X. In the future, we may want to make this a runtime p arameter | |
78 * and base it on the aspect ratio of the clip bounds. | |
79 */ | |
80 #define LOGGING_ENABLED 0 | |
81 #define WIREFRAME 0 | |
82 #define SWEEP_IN_X 1 | |
83 | |
84 #if LOGGING_ENABLED | |
85 #define LOG printf | |
86 #else | |
87 #define LOG(...) | |
88 #endif | |
89 | |
90 #define ALLOC_NEW(Type, args, alloc) \ | |
91 SkNEW_PLACEMENT_ARGS(alloc.allocThrow(sizeof(Type)), Type, args) | |
92 | |
93 namespace { | |
94 | |
95 struct Vertex; | |
96 struct Edge; | |
97 struct Poly; | |
98 | |
99 template <class T, T* T::*Prev, T* T::*Next> | |
100 void insert(T* t, T* prev, T* next, T** head, T** tail) | |
101 { | |
102 t->*Prev = prev; | |
103 t->*Next = next; | |
104 if (prev) { | |
105 prev->*Next = t; | |
106 } else if (head) { | |
107 *head = t; | |
108 } | |
109 if (next) { | |
110 next->*Prev = t; | |
111 } else if (tail) { | |
112 *tail = t; | |
113 } | |
114 } | |
115 | |
116 template <class T, T* T::*Prev, T* T::*Next> | |
117 void remove(T* t, T** head, T** tail) | |
118 { | |
119 if (t->*Prev) { | |
120 t->*Prev->*Next = t->*Next; | |
121 } else if (head) { | |
122 *head = t->*Next; | |
123 } | |
124 if (t->*Next) { | |
125 t->*Next->*Prev = t->*Prev; | |
126 } else if (tail) { | |
127 *tail = t->*Prev; | |
128 } | |
129 t->*Prev = t->*Next = NULL; | |
130 } | |
131 | |
132 struct Vertex { | |
133 Vertex(const SkPoint& point) | |
134 : fPoint(point), fPrev(NULL), fNext(NULL) | |
135 , fFirstEdgeAbove(NULL), fLastEdgeAbove(NULL) | |
136 , fFirstEdgeBelow(NULL), fLastEdgeBelow(NULL) | |
137 , fInterior(false) | |
138 , fProcessed(false) | |
139 #if LOGGING_ENABLED | |
140 , fID (-1.0f) | |
141 #endif | |
142 {} | |
143 SkPoint fPoint; | |
144 Vertex* fPrev; | |
145 Vertex* fNext; | |
146 Edge* fFirstEdgeAbove; | |
147 Edge* fLastEdgeAbove; | |
148 Edge* fFirstEdgeBelow; | |
149 Edge* fLastEdgeBelow; | |
150 bool fInterior; | |
151 bool fProcessed; | |
152 #if LOGGING_ENABLED | |
153 float fID; | |
154 #endif | |
155 }; | |
156 | |
157 bool operator<(const SkPoint& a, const SkPoint& b) { | |
158 #if SWEEP_IN_X | |
159 return a.fX == b.fX ? a.fY > b.fY : a.fX < b.fX; | |
160 #else | |
161 return a.fY == b.fY ? a.fX < b.fX : a.fY < b.fY; | |
162 #endif | |
163 } | |
164 | |
165 bool operator>(const SkPoint& a, const SkPoint& b) { | |
166 #if SWEEP_IN_X | |
167 return a.fX == b.fX ? a.fY < b.fY : a.fX > b.fX; | |
168 #else | |
169 return a.fY == b.fY ? a.fX > b.fX : a.fY > b.fY; | |
170 #endif | |
171 } | |
172 | |
173 inline void* emit_vertex(Vertex* v, void* data) { | |
174 SkPoint* d = static_cast<SkPoint*>(data); | |
175 *d++ = v->fPoint; | |
176 return d; | |
177 } | |
178 | |
179 void* emit_triangle(Vertex* v0, Vertex* v1, Vertex* v2, void* data) { | |
180 #if WIREFRAME | |
181 data = emit_vertex(v0, data); | |
182 data = emit_vertex(v1, data); | |
183 data = emit_vertex(v1, data); | |
184 data = emit_vertex(v2, data); | |
185 data = emit_vertex(v2, data); | |
186 data = emit_vertex(v0, data); | |
187 #else | |
188 data = emit_vertex(v0, data); | |
189 data = emit_vertex(v1, data); | |
190 data = emit_vertex(v2, data); | |
191 #endif | |
192 return data; | |
193 } | |
194 | |
195 struct Edge { | |
196 Edge(Vertex* top, Vertex* bottom, int winding) | |
197 : fWinding(winding) | |
198 , fTop(top) | |
199 , fBottom(bottom) | |
200 , fLeft(NULL) | |
201 , fRight(NULL) | |
202 , fPrevEdgeAbove(NULL) | |
203 , fNextEdgeAbove(NULL) | |
204 , fPrevEdgeBelow(NULL) | |
205 , fNextEdgeBelow(NULL) | |
206 , fLeftPoly(NULL) | |
207 , fRightPoly(NULL) { | |
208 recompute(); | |
209 } | |
210 int fWinding; | |
211 Vertex* fTop; | |
212 Vertex* fBottom; | |
213 Edge* fLeft; | |
214 Edge* fRight; | |
215 Edge* fPrevEdgeAbove; | |
216 Edge* fNextEdgeAbove; | |
217 Edge* fPrevEdgeBelow; | |
218 Edge* fNextEdgeBelow; | |
219 Poly* fLeftPoly; | |
220 Poly* fRightPoly; | |
221 double fDX; | |
222 double fDY; | |
223 double fC; | |
224 double dist(const SkPoint& p) const { | |
225 return fDY * p.fX - fDX * p.fY + fC; | |
226 } | |
227 bool isRightOf(Vertex* v) const { | |
228 return dist(v->fPoint) < 0.0; | |
229 } | |
230 bool isLeftOf(Vertex* v) const { | |
231 return dist(v->fPoint) > 0.0; | |
232 } | |
233 void recompute() { | |
234 fDX = static_cast<double>(fBottom->fPoint.fX) - fTop->fPoint.fX; | |
235 fDY = static_cast<double>(fBottom->fPoint.fY) - fTop->fPoint.fY; | |
236 fC = static_cast<double>(fTop->fPoint.fY) * fBottom->fPoint.fX - | |
237 static_cast<double>(fTop->fPoint.fX) * fBottom->fPoint.fY; | |
238 } | |
239 bool intersect(const Edge& other, SkPoint* p) { | |
240 LOG("intersecting %g -> %g with %g -> %g\n", | |
241 fTop->fID, fBottom->fID, | |
242 other.fTop->fID, other.fBottom->fID); | |
243 if (fTop == other.fTop || fBottom == other.fBottom) { | |
244 return false; | |
245 } | |
246 double denom = fDX * other.fDY - fDY * other.fDX; | |
247 if (denom == 0.0) { | |
248 return false; | |
249 } | |
250 double dx = static_cast<double>(fTop->fPoint.fX) - other.fTop->fPoint.fX ; | |
251 double dy = static_cast<double>(fTop->fPoint.fY) - other.fTop->fPoint.fY ; | |
252 double sNumer = dy * other.fDX - dx * other.fDY; | |
253 double tNumer = dy * fDX - dx * fDY; | |
254 if (denom > 0.0 ? (sNumer < 0.0 || sNumer > denom || tNumer < 0.0 || tNu mer > denom) | |
255 : (sNumer > 0.0 || sNumer < denom || tNumer > 0.0 || tNu mer < denom)) { | |
256 return false; | |
257 } | |
258 double s = sNumer / denom; | |
259 p->fX = SkDoubleToScalar(fTop->fPoint.fX + s * fDX); | |
260 p->fY = SkDoubleToScalar(fTop->fPoint.fY + s * fDY); | |
261 return true; | |
262 } | |
263 bool isActive(Edge** activeEdges) const { | |
264 return activeEdges && (fLeft || fRight || *activeEdges == this); | |
265 } | |
266 }; | |
267 | |
268 struct Poly { | |
269 Poly(int winding) | |
270 : fWinding(winding) | |
271 , fHead(NULL) | |
272 , fTail(NULL) | |
273 , fActive(NULL) | |
274 , fNext(NULL) | |
275 , fPartner(NULL) | |
276 , fCount(0) | |
277 { | |
278 #if LOGGING_ENABLED | |
279 static int gID = 0; | |
280 fID = gID++; | |
281 LOG("*** created Poly %d\n", fID); | |
282 #endif | |
283 } | |
284 typedef enum { kNeither_Side, kLeft_Side, kRight_Side } Side; | |
285 struct MonotonePoly { | |
286 MonotonePoly() | |
287 : fSide(kNeither_Side) | |
288 , fHead(NULL) | |
289 , fTail(NULL) | |
290 , fPrev(NULL) | |
291 , fNext(NULL) {} | |
292 Side fSide; | |
293 Vertex* fHead; | |
294 Vertex* fTail; | |
295 MonotonePoly* fPrev; | |
296 MonotonePoly* fNext; | |
297 bool addVertex(Vertex* v, Side side, SkChunkAlloc& alloc) { | |
298 Vertex* newV = ALLOC_NEW(Vertex, (v->fPoint), alloc); | |
299 newV->fInterior = v->fInterior; | |
300 bool done = false; | |
301 if (fSide == kNeither_Side) { | |
302 fSide = side; | |
303 } else { | |
304 done = side != fSide; | |
305 } | |
306 if (fHead == NULL) { | |
307 fHead = fTail = newV; | |
308 } else if (fSide == kRight_Side) { | |
309 newV->fPrev = fTail; | |
310 fTail->fNext = newV; | |
311 fTail = newV; | |
312 } else { | |
313 newV->fNext = fHead; | |
314 fHead->fPrev = newV; | |
315 fHead = newV; | |
316 } | |
317 return done; | |
318 } | |
319 | |
320 void* emit(void* data) { | |
321 Vertex* first = fHead; | |
322 Vertex* v = first->fNext; | |
323 while (v != fTail) { | |
324 SkASSERT(v && v->fPrev && v->fNext); | |
325 #ifdef SK_DEBUG | |
326 validate(); | |
327 #endif | |
328 Vertex* prev = v->fPrev; | |
329 Vertex* curr = v; | |
330 Vertex* next = v->fNext; | |
331 double ax = static_cast<double>(curr->fPoint.fX) - prev->fPoint. fX; | |
332 double ay = static_cast<double>(curr->fPoint.fY) - prev->fPoint. fY; | |
333 double bx = static_cast<double>(next->fPoint.fX) - curr->fPoint. fX; | |
334 double by = static_cast<double>(next->fPoint.fY) - curr->fPoint. fY; | |
335 if (ax * by - ay * bx >= 0.0) { | |
336 data = emit_triangle(prev, curr, next, data); | |
337 v->fPrev->fNext = v->fNext; | |
338 v->fNext->fPrev = v->fPrev; | |
339 if (v->fPrev == first) { | |
340 v = v->fNext; | |
341 } else { | |
342 v = v->fPrev; | |
343 } | |
344 } else { | |
345 v = v->fNext; | |
346 SkASSERT(v != fTail); | |
347 } | |
348 } | |
349 return data; | |
350 } | |
351 | |
352 #ifdef SK_DEBUG | |
353 void validate() { | |
354 int winding = fHead->fPoint < fTail->fPoint ? 1 : -1; | |
355 Vertex* top = winding < 0 ? fTail : fHead; | |
356 Vertex* bottom = winding < 0 ? fHead : fTail; | |
357 Edge e(top, bottom, winding); | |
358 for (Vertex* v = fHead->fNext; v != fTail; v = v->fNext) { | |
359 if (fSide == kRight_Side) { | |
360 SkASSERT(!e.isRightOf(v)); | |
361 } else if (fSide == Poly::kLeft_Side) { | |
362 SkASSERT(!e.isLeftOf(v)); | |
363 } | |
364 } | |
365 } | |
366 #endif | |
367 }; | |
368 Poly* addVertex(Vertex* v, Side side, SkChunkAlloc& alloc) { | |
369 LOG("addVertex() to %d at %g (%g, %g), %s side\n", fID, v->fID, v->fPoin t.fX, v->fPoint.fY, | |
370 side == kLeft_Side ? "left" : side == kRight_Side ? "right" : "ne ither"); | |
371 Poly* partner = fPartner; | |
372 Poly* poly = this; | |
373 if (partner) { | |
374 fPartner = partner->fPartner = NULL; | |
375 } | |
376 if (!fActive) { | |
377 fActive = ALLOC_NEW(MonotonePoly, (), alloc); | |
378 } | |
379 if (fActive->addVertex(v, side, alloc)) { | |
380 #ifdef SK_DEBUG | |
381 fActive->validate(); | |
382 #endif | |
383 if (fTail) { | |
384 fActive->fPrev = fTail; | |
385 fTail->fNext = fActive; | |
386 fTail = fActive; | |
387 } else { | |
388 fHead = fTail = fActive; | |
389 } | |
390 if (partner) { | |
391 partner->addVertex(v, side, alloc); | |
392 poly = partner; | |
393 } else { | |
394 Vertex* prev = fActive->fSide == Poly::kLeft_Side ? | |
395 fActive->fHead->fNext : fActive->fTail->fPrev; | |
396 fActive = ALLOC_NEW(MonotonePoly, , alloc); | |
397 fActive->addVertex(prev, Poly::kNeither_Side, alloc); | |
398 fActive->addVertex(v, side, alloc); | |
399 } | |
400 } | |
401 fCount++; | |
402 return poly; | |
403 } | |
404 void end(Vertex* v, SkChunkAlloc& alloc) { | |
405 LOG("end() %d at %g, %g\n", fID, v->fPoint.fX, v->fPoint.fY); | |
406 if (fPartner) { | |
407 fPartner = fPartner->fPartner = NULL; | |
408 } | |
409 addVertex(v, fActive->fSide == kLeft_Side ? kRight_Side : kLeft_Side, al loc); | |
410 } | |
411 void* emit(void *data) { | |
412 if (fCount < 3) { | |
413 return data; | |
414 } | |
415 LOG("emit() %d, size %d\n", fID, fCount); | |
416 for (MonotonePoly* m = fHead; m != NULL; m = m->fNext) { | |
417 data = m->emit(data); | |
418 } | |
419 return data; | |
420 } | |
421 int fWinding; | |
422 MonotonePoly* fHead; | |
423 MonotonePoly* fTail; | |
424 MonotonePoly* fActive; | |
425 Poly* fNext; | |
426 Poly* fPartner; | |
427 int fCount; | |
428 #if LOGGING_ENABLED | |
429 int fID; | |
430 #endif | |
431 }; | |
432 | |
433 bool coincident(const SkPoint& a, const SkPoint& b) { | |
434 return a == b; | |
435 } | |
436 | |
437 Poly* new_poly(Poly** head, Vertex* v, int winding, SkChunkAlloc& alloc) { | |
438 Poly* poly = ALLOC_NEW(Poly, (winding), alloc); | |
439 poly->addVertex(v, Poly::kNeither_Side, alloc); | |
440 poly->fNext = *head; | |
441 *head = poly; | |
442 return poly; | |
443 } | |
444 | |
445 #ifdef SK_DEBUG | |
446 void validate_edges(Edge* head) { | |
447 for (Edge* e = head; e != NULL; e = e->fRight) { | |
448 SkASSERT(e->fTop != e->fBottom); | |
449 if (e->fLeft) { | |
450 SkASSERT(e->fLeft->fRight == e); | |
451 if (e->fTop->fPoint > e->fLeft->fTop->fPoint) { | |
452 SkASSERT(e->fLeft->isLeftOf(e->fTop)); | |
453 } | |
454 if (e->fBottom->fPoint < e->fLeft->fBottom->fPoint) { | |
455 SkASSERT(e->fLeft->isLeftOf(e->fBottom)); | |
456 } | |
457 } else { | |
458 SkASSERT(e == head); | |
459 } | |
460 if (e->fRight) { | |
461 SkASSERT(e->fRight->fLeft == e); | |
462 if (e->fTop->fPoint > e->fRight->fTop->fPoint) { | |
463 SkASSERT(e->fRight->isRightOf(e->fTop)); | |
464 } | |
465 if (e->fBottom->fPoint < e->fRight->fBottom->fPoint) { | |
466 SkASSERT(e->fRight->isRightOf(e->fBottom)); | |
467 } | |
468 } | |
469 } | |
470 } | |
471 | |
472 void validate_connectivity(Vertex* v) { | |
473 for (Edge* e = v->fFirstEdgeAbove; e != NULL; e = e->fNextEdgeAbove) { | |
474 SkASSERT(e->fBottom == v); | |
475 if (e->fPrevEdgeAbove) { | |
476 SkASSERT(e->fPrevEdgeAbove->fNextEdgeAbove == e); | |
477 SkASSERT(e->fPrevEdgeAbove->isLeftOf(e->fTop)); | |
478 } else { | |
479 SkASSERT(e == v->fFirstEdgeAbove); | |
480 } | |
481 if (e->fNextEdgeAbove) { | |
482 SkASSERT(e->fNextEdgeAbove->fPrevEdgeAbove == e); | |
483 SkASSERT(e->fNextEdgeAbove->isRightOf(e->fTop)); | |
484 } else { | |
485 SkASSERT(e == v->fLastEdgeAbove); | |
486 } | |
487 } | |
488 for (Edge* e = v->fFirstEdgeBelow; e != NULL; e = e->fNextEdgeBelow) { | |
489 SkASSERT(e->fTop == v); | |
490 if (e->fPrevEdgeBelow) { | |
491 SkASSERT(e->fPrevEdgeBelow->fNextEdgeBelow == e); | |
492 SkASSERT(e->fPrevEdgeBelow->isLeftOf(e->fBottom)); | |
493 } else { | |
494 SkASSERT(e == v->fFirstEdgeBelow); | |
495 } | |
496 if (e->fNextEdgeBelow) { | |
497 SkASSERT(e->fNextEdgeBelow->fPrevEdgeBelow == e); | |
498 SkASSERT(e->fNextEdgeBelow->isRightOf(e->fBottom)); | |
499 } else { | |
500 SkASSERT(e == v->fLastEdgeBelow); | |
501 } | |
502 } | |
503 } | |
504 #endif | |
505 | |
506 Vertex* append_point_to_contour(const SkPoint& p, Vertex* prev, Vertex** head, | |
507 SkChunkAlloc& alloc) { | |
508 Vertex* v = ALLOC_NEW(Vertex, (p), alloc); | |
509 #if LOGGING_ENABLED | |
510 static float gID = 0.0f; | |
511 v->fID = gID++; | |
512 #endif | |
513 if (prev) { | |
514 prev->fNext = v; | |
515 v->fPrev = prev; | |
516 } else { | |
517 *head = v; | |
518 } | |
519 return v; | |
520 } | |
521 | |
522 Vertex* generate_quadratic_points(const SkPoint& p0, | |
523 const SkPoint& p1, | |
524 const SkPoint& p2, | |
525 SkScalar tolSqd, | |
526 Vertex* prev, | |
527 Vertex** head, | |
528 int pointsLeft, | |
529 SkChunkAlloc& alloc) { | |
530 SkScalar d = p1.distanceToLineSegmentBetweenSqd(p0, p2); | |
531 if (pointsLeft < 2 || d < tolSqd || !SkScalarIsFinite(d)) { | |
532 return append_point_to_contour(p2, prev, head, alloc); | |
533 } | |
534 | |
535 SkPoint q[] = { | |
536 { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) }, | |
537 { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) }, | |
538 }; | |
539 SkPoint r = { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) } ; | |
540 | |
541 pointsLeft >>= 1; | |
542 prev = generate_quadratic_points(p0, q[0], r, tolSqd, prev, head, pointsLeft , alloc); | |
543 prev = generate_quadratic_points(r, q[1], p2, tolSqd, prev, head, pointsLeft , alloc); | |
544 return prev; | |
545 } | |
546 | |
547 Vertex* generate_cubic_points(const SkPoint& p0, | |
548 const SkPoint& p1, | |
549 const SkPoint& p2, | |
550 const SkPoint& p3, | |
551 SkScalar tolSqd, | |
552 Vertex* prev, | |
553 Vertex** head, | |
554 int pointsLeft, | |
555 SkChunkAlloc& alloc) { | |
556 SkScalar d1 = p1.distanceToLineSegmentBetweenSqd(p0, p3); | |
557 SkScalar d2 = p2.distanceToLineSegmentBetweenSqd(p0, p3); | |
558 if (pointsLeft < 2 || (d1 < tolSqd && d2 < tolSqd) || !SkScalarIsFinite(d1) || !SkScalarIsFinite(d2)) { | |
559 return append_point_to_contour(p3, prev, head, alloc); | |
560 } | |
561 SkPoint q[] = { | |
562 { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) }, | |
563 { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) }, | |
564 { SkScalarAve(p2.fX, p3.fX), SkScalarAve(p2.fY, p3.fY) } | |
565 }; | |
566 SkPoint r[] = { | |
567 { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) }, | |
568 { SkScalarAve(q[1].fX, q[2].fX), SkScalarAve(q[1].fY, q[2].fY) } | |
569 }; | |
570 SkPoint s = { SkScalarAve(r[0].fX, r[1].fX), SkScalarAve(r[0].fY, r[1].fY) } ; | |
571 pointsLeft >>= 1; | |
572 prev = generate_cubic_points(p0, q[0], r[0], s, tolSqd, prev, head, pointsLe ft, alloc); | |
573 prev = generate_cubic_points(s, r[1], q[2], p3, tolSqd, prev, head, pointsLe ft, alloc); | |
574 return prev; | |
575 } | |
576 | |
577 void path_to_contours(const SkPath& path, SkScalar tolerance, const SkRect& clip Bounds, | |
578 Vertex** contours, SkChunkAlloc& alloc) { | |
579 | |
580 SkScalar toleranceSqd = tolerance * tolerance; | |
581 | |
582 SkPoint pts[4]; | |
583 bool done = false; | |
584 SkPath::Iter iter(path, false); | |
585 Vertex* prev = NULL; | |
586 Vertex* head = NULL; | |
587 if (path.isInverseFillType()) { | |
588 SkPoint quad[4]; | |
589 clipBounds.toQuad(quad); | |
590 for (int i = 3; i >= 0; i--) { | |
591 prev = append_point_to_contour(quad[i], prev, &head, alloc); | |
592 } | |
593 head->fPrev = prev; | |
594 prev->fNext = head; | |
595 *contours++ = head; | |
596 head = prev = NULL; | |
597 } | |
598 while (!done) { | |
599 SkPath::Verb verb = iter.next(pts); | |
600 switch (verb) { | |
601 case SkPath::kConic_Verb: { | |
602 SkScalar weight = iter.conicWeight(); | |
603 SkAutoConicToQuads converter; | |
604 const SkPoint* quadPts = converter.computeQuads(pts, weight, tol eranceSqd); | |
605 for (int i = 0; i < converter.countQuads(); ++i) { | |
606 int pointsLeft = GrPathUtils::quadraticPointCount(quadPts, t oleranceSqd); | |
607 prev = generate_quadratic_points(quadPts[0], quadPts[1], qua dPts[2], | |
608 toleranceSqd, prev, &head, pointsLeft, alloc); | |
609 quadPts += 2; | |
610 } | |
611 break; | |
612 } | |
613 case SkPath::kMove_Verb: | |
614 if (head) { | |
615 head->fPrev = prev; | |
616 prev->fNext = head; | |
617 *contours++ = head; | |
618 } | |
619 head = prev = NULL; | |
620 prev = append_point_to_contour(pts[0], prev, &head, alloc); | |
621 break; | |
622 case SkPath::kLine_Verb: { | |
623 prev = append_point_to_contour(pts[1], prev, &head, alloc); | |
624 break; | |
625 } | |
626 case SkPath::kQuad_Verb: { | |
627 int pointsLeft = GrPathUtils::quadraticPointCount(pts, tolerance Sqd); | |
628 prev = generate_quadratic_points(pts[0], pts[1], pts[2], toleran ceSqd, prev, | |
629 &head, pointsLeft, alloc); | |
630 break; | |
631 } | |
632 case SkPath::kCubic_Verb: { | |
633 int pointsLeft = GrPathUtils::cubicPointCount(pts, toleranceSqd) ; | |
634 prev = generate_cubic_points(pts[0], pts[1], pts[2], pts[3], | |
635 toleranceSqd, prev, &head, pointsLeft, alloc); | |
636 break; | |
637 } | |
638 case SkPath::kClose_Verb: | |
639 if (head) { | |
640 head->fPrev = prev; | |
641 prev->fNext = head; | |
642 *contours++ = head; | |
643 } | |
644 head = prev = NULL; | |
645 break; | |
646 case SkPath::kDone_Verb: | |
647 if (head) { | |
648 head->fPrev = prev; | |
649 prev->fNext = head; | |
650 *contours++ = head; | |
651 } | |
652 done = true; | |
653 break; | |
654 } | |
655 } | |
656 } | |
657 | |
658 inline bool apply_fill_type(SkPath::FillType fillType, int winding) { | |
659 switch (fillType) { | |
660 case SkPath::kWinding_FillType: | |
661 return winding != 0; | |
662 case SkPath::kEvenOdd_FillType: | |
663 return (winding & 1) != 0; | |
664 case SkPath::kInverseWinding_FillType: | |
665 return winding == 1; | |
666 case SkPath::kInverseEvenOdd_FillType: | |
667 return (winding & 1) == 1; | |
668 default: | |
669 SkASSERT(false); | |
670 return false; | |
671 } | |
672 } | |
673 | |
674 Edge* new_edge(Vertex* prev, Vertex* next, SkChunkAlloc& alloc) { | |
675 int winding = prev->fPoint < next->fPoint ? 1 : -1; | |
676 Vertex* top = winding < 0 ? next : prev; | |
677 Vertex* bottom = winding < 0 ? prev : next; | |
678 return ALLOC_NEW(Edge, (top, bottom, winding), alloc); | |
679 } | |
680 | |
681 void remove_edge(Edge* edge, Edge** head) { | |
682 LOG("removing edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID); | |
683 SkASSERT(edge->isActive(head)); | |
684 remove<Edge, &Edge::fLeft, &Edge::fRight>(edge, head, NULL); | |
685 } | |
686 | |
687 void insert_edge(Edge* edge, Edge* prev, Edge** head) { | |
688 LOG("inserting edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID); | |
689 SkASSERT(!edge->isActive(head)); | |
690 Edge* next = prev ? prev->fRight : *head; | |
691 insert<Edge, &Edge::fLeft, &Edge::fRight>(edge, prev, next, head, NULL); | |
692 } | |
693 | |
694 void find_enclosing_edges(Vertex* v, Edge* head, Edge** left, Edge** right) { | |
695 if (v->fFirstEdgeAbove) { | |
696 *left = v->fFirstEdgeAbove->fLeft; | |
697 *right = v->fLastEdgeAbove->fRight; | |
698 return; | |
699 } | |
700 Edge* prev = NULL; | |
701 Edge* next; | |
702 for (next = head; next != NULL; next = next->fRight) { | |
703 if (next->isRightOf(v)) { | |
704 break; | |
705 } | |
706 prev = next; | |
707 } | |
708 *left = prev; | |
709 *right = next; | |
710 return; | |
711 } | |
712 | |
713 void find_enclosing_edges(Edge* edge, Edge* head, Edge** left, Edge** right) { | |
714 Edge* prev = NULL; | |
715 Edge* next; | |
716 for (next = head; next != NULL; next = next->fRight) { | |
717 if ((edge->fTop->fPoint > next->fTop->fPoint && next->isRightOf(edge->fT op)) || | |
718 (next->fTop->fPoint > edge->fTop->fPoint && edge->isLeftOf(next->fTo p)) || | |
719 (edge->fBottom->fPoint < next->fBottom->fPoint && next->isRightOf(ed ge->fBottom)) || | |
720 (next->fBottom->fPoint < edge->fBottom->fPoint && edge->isLeftOf(nex t->fBottom))) { | |
721 break; | |
722 } | |
723 prev = next; | |
724 } | |
725 *left = prev; | |
726 *right = next; | |
727 return; | |
728 } | |
729 | |
730 void fix_active_state(Edge* edge, Edge** activeEdges) { | |
731 if (edge->isActive(activeEdges)) { | |
732 if (edge->fBottom->fProcessed || !edge->fTop->fProcessed) { | |
733 remove_edge(edge, activeEdges); | |
734 } | |
735 } else if (edge->fTop->fProcessed && !edge->fBottom->fProcessed) { | |
736 Edge* left; | |
737 Edge* right; | |
738 find_enclosing_edges(edge, *activeEdges, &left, &right); | |
739 insert_edge(edge, left, activeEdges); | |
740 } | |
741 } | |
742 | |
743 void insert_edge_above(Edge* edge, Vertex* v) { | |
744 if (edge->fTop->fPoint == edge->fBottom->fPoint || | |
745 edge->fTop->fPoint > edge->fBottom->fPoint) { | |
746 SkASSERT(false); | |
747 return; | |
748 } | |
749 LOG("insert edge (%g -> %g) above vertex %g\n", edge->fTop->fID, edge->fBott om->fID, v->fID); | |
750 Edge* prev = NULL; | |
751 Edge* next; | |
752 for (next = v->fFirstEdgeAbove; next; next = next->fNextEdgeAbove) { | |
753 if (next->isRightOf(edge->fTop)) { | |
754 break; | |
755 } | |
756 prev = next; | |
757 } | |
758 insert<Edge, &Edge::fPrevEdgeAbove, &Edge::fNextEdgeAbove>( | |
759 edge, prev, next, &v->fFirstEdgeAbove, &v->fLastEdgeAbove); | |
760 } | |
761 | |
762 void insert_edge_below(Edge* edge, Vertex* v) { | |
763 if (edge->fTop->fPoint == edge->fBottom->fPoint || | |
764 edge->fTop->fPoint > edge->fBottom->fPoint) { | |
765 SkASSERT(false); | |
766 return; | |
767 } | |
768 LOG("insert edge (%g -> %g) below vertex %g\n", edge->fTop->fID, edge->fBott om->fID, v->fID); | |
769 Edge* prev = NULL; | |
770 Edge* next; | |
771 for (next = v->fFirstEdgeBelow; next; next = next->fNextEdgeBelow) { | |
772 if (next->isRightOf(edge->fBottom)) { | |
773 break; | |
774 } | |
775 prev = next; | |
776 } | |
777 insert<Edge, &Edge::fPrevEdgeBelow, &Edge::fNextEdgeBelow>( | |
778 edge, prev, next, &v->fFirstEdgeBelow, &v->fLastEdgeBelow); | |
779 } | |
780 | |
781 void remove_edge_above(Edge* edge) { | |
782 LOG("removing edge (%g -> %g) above vertex %g\n", edge->fTop->fID, edge->fBo ttom->fID, | |
783 edge->fBottom->fID); | |
784 remove<Edge, &Edge::fPrevEdgeAbove, &Edge::fNextEdgeAbove>( | |
785 edge, &edge->fBottom->fFirstEdgeAbove, &edge->fBottom->fLastEdgeAbove); | |
786 } | |
787 | |
788 void remove_edge_below(Edge* edge) { | |
789 LOG("removing edge (%g -> %g) below vertex %g\n", edge->fTop->fID, edge->fBo ttom->fID, | |
790 edge->fTop->fID); | |
791 remove<Edge, &Edge::fPrevEdgeBelow, &Edge::fNextEdgeBelow>( | |
792 edge, &edge->fTop->fFirstEdgeBelow, &edge->fTop->fLastEdgeBelow); | |
793 } | |
794 | |
795 void erase_edge_if_zero_winding(Edge* edge, Edge** head) { | |
796 if (edge->fWinding != 0) { | |
797 return; | |
798 } | |
799 LOG("erasing edge (%g -> %g)\n", edge->fTop->fID, edge->fBottom->fID); | |
800 remove_edge_above(edge); | |
801 remove_edge_below(edge); | |
802 if (edge->isActive(head)) { | |
803 remove_edge(edge, head); | |
804 } | |
805 } | |
806 | |
807 void merge_collinear_edges(Edge* edge, Edge** activeEdges); | |
808 | |
809 void set_top(Edge* edge, Vertex* v, Edge** activeEdges) { | |
810 remove_edge_below(edge); | |
811 edge->fTop = v; | |
812 edge->recompute(); | |
813 insert_edge_below(edge, v); | |
814 fix_active_state(edge, activeEdges); | |
815 merge_collinear_edges(edge, activeEdges); | |
816 } | |
817 | |
818 void set_bottom(Edge* edge, Vertex* v, Edge** activeEdges) { | |
819 remove_edge_above(edge); | |
820 edge->fBottom = v; | |
821 edge->recompute(); | |
822 insert_edge_above(edge, v); | |
823 fix_active_state(edge, activeEdges); | |
824 merge_collinear_edges(edge, activeEdges); | |
825 } | |
826 | |
827 void merge_edges_above(Edge* edge, Edge* other, Edge** activeEdges) { | |
828 if (coincident(edge->fTop->fPoint, other->fTop->fPoint)) { | |
829 LOG("merging coincident above edges (%g, %g) -> (%g, %g)\n", | |
830 edge->fTop->fPoint.fX, edge->fTop->fPoint.fY, | |
831 edge->fBottom->fPoint.fX, edge->fBottom->fPoint.fY); | |
832 other->fWinding += edge->fWinding; | |
833 erase_edge_if_zero_winding(other, activeEdges); | |
834 edge->fWinding = 0; | |
835 erase_edge_if_zero_winding(edge, activeEdges); | |
836 } else if (edge->fTop->fPoint < other->fTop->fPoint) { | |
837 other->fWinding += edge->fWinding; | |
838 erase_edge_if_zero_winding(other, activeEdges); | |
839 set_bottom(edge, other->fTop, activeEdges); | |
840 } else { | |
841 edge->fWinding += other->fWinding; | |
842 erase_edge_if_zero_winding(edge, activeEdges); | |
843 set_bottom(other, edge->fTop, activeEdges); | |
844 } | |
845 } | |
846 | |
847 void merge_edges_below(Edge* edge, Edge* other, Edge** activeEdges) { | |
848 if (coincident(edge->fBottom->fPoint, other->fBottom->fPoint)) { | |
849 LOG("merging coincident below edges (%g, %g) -> (%g, %g)\n", | |
850 edge->fTop->fPoint.fX, edge->fTop->fPoint.fY, | |
851 edge->fBottom->fPoint.fX, edge->fBottom->fPoint.fY); | |
852 other->fWinding += edge->fWinding; | |
853 erase_edge_if_zero_winding(other, activeEdges); | |
854 edge->fWinding = 0; | |
855 erase_edge_if_zero_winding(edge, activeEdges); | |
856 } else if (edge->fBottom->fPoint < other->fBottom->fPoint) { | |
857 edge->fWinding += other->fWinding; | |
858 erase_edge_if_zero_winding(edge, activeEdges); | |
859 set_top(other, edge->fBottom, activeEdges); | |
860 } else { | |
861 other->fWinding += edge->fWinding; | |
862 erase_edge_if_zero_winding(other, activeEdges); | |
863 set_top(edge, other->fBottom, activeEdges); | |
864 } | |
865 } | |
866 | |
867 void merge_collinear_edges(Edge* edge, Edge** activeEdges) { | |
868 if (edge->fPrevEdgeAbove && (edge->fTop == edge->fPrevEdgeAbove->fTop || | |
869 !edge->fPrevEdgeAbove->isLeftOf(edge->fTop))) { | |
870 merge_edges_above(edge, edge->fPrevEdgeAbove, activeEdges); | |
871 } else if (edge->fNextEdgeAbove && (edge->fTop == edge->fNextEdgeAbove->fTop || | |
872 !edge->isLeftOf(edge->fNextEdgeAbove->fT op))) { | |
873 merge_edges_above(edge, edge->fNextEdgeAbove, activeEdges); | |
874 } | |
875 if (edge->fPrevEdgeBelow && (edge->fBottom == edge->fPrevEdgeBelow->fBottom || | |
876 !edge->fPrevEdgeBelow->isLeftOf(edge->fBottom)) ) { | |
877 merge_edges_below(edge, edge->fPrevEdgeBelow, activeEdges); | |
878 } else if (edge->fNextEdgeBelow && (edge->fBottom == edge->fNextEdgeBelow->f Bottom || | |
879 !edge->isLeftOf(edge->fNextEdgeBelow->fB ottom))) { | |
880 merge_edges_below(edge, edge->fNextEdgeBelow, activeEdges); | |
881 } | |
882 } | |
883 | |
884 void split_edge(Edge* edge, Vertex* v, Edge** activeEdges, SkChunkAlloc& alloc); | |
885 | |
886 void cleanup_active_edges(Edge* edge, Edge** activeEdges, SkChunkAlloc& alloc) { | |
887 Vertex* top = edge->fTop; | |
888 Vertex* bottom = edge->fBottom; | |
889 if (edge->fLeft) { | |
890 Vertex* leftTop = edge->fLeft->fTop; | |
891 Vertex* leftBottom = edge->fLeft->fBottom; | |
892 if (top->fPoint > leftTop->fPoint && !edge->fLeft->isLeftOf(top)) { | |
893 split_edge(edge->fLeft, edge->fTop, activeEdges, alloc); | |
894 } else if (leftTop->fPoint > top->fPoint && !edge->isRightOf(leftTop)) { | |
895 split_edge(edge, leftTop, activeEdges, alloc); | |
896 } else if (bottom->fPoint < leftBottom->fPoint && !edge->fLeft->isLeftOf (bottom)) { | |
897 split_edge(edge->fLeft, bottom, activeEdges, alloc); | |
898 } else if (leftBottom->fPoint < bottom->fPoint && !edge->isRightOf(leftB ottom)) { | |
899 split_edge(edge, leftBottom, activeEdges, alloc); | |
900 } | |
901 } | |
902 if (edge->fRight) { | |
903 Vertex* rightTop = edge->fRight->fTop; | |
904 Vertex* rightBottom = edge->fRight->fBottom; | |
905 if (top->fPoint > rightTop->fPoint && !edge->fRight->isRightOf(top)) { | |
906 split_edge(edge->fRight, top, activeEdges, alloc); | |
907 } else if (rightTop->fPoint > top->fPoint && !edge->isLeftOf(rightTop)) { | |
908 split_edge(edge, rightTop, activeEdges, alloc); | |
909 } else if (bottom->fPoint < rightBottom->fPoint && !edge->fRight->isRigh tOf(bottom)) { | |
910 split_edge(edge->fRight, bottom, activeEdges, alloc); | |
911 } else if (rightBottom->fPoint < bottom->fPoint && !edge->isLeftOf(right Bottom)) { | |
912 split_edge(edge, rightBottom, activeEdges, alloc); | |
913 } | |
914 } | |
915 } | |
916 | |
917 void split_edge(Edge* edge, Vertex* v, Edge** activeEdges, SkChunkAlloc& alloc) { | |
918 LOG("splitting edge (%g -> %g) at vertex %g (%g, %g)\n", | |
919 edge->fTop->fID, edge->fBottom->fID, | |
920 v->fID, v->fPoint.fX, v->fPoint.fY); | |
921 Edge* newEdge = ALLOC_NEW(Edge, (v, edge->fBottom, edge->fWinding), alloc); | |
922 insert_edge_below(newEdge, v); | |
923 insert_edge_above(newEdge, edge->fBottom); | |
924 set_bottom(edge, v, activeEdges); | |
925 cleanup_active_edges(edge, activeEdges, alloc); | |
926 fix_active_state(newEdge, activeEdges); | |
927 merge_collinear_edges(newEdge, activeEdges); | |
928 } | |
929 | |
930 void merge_vertices(Vertex* src, Vertex* dst, Vertex** head, SkChunkAlloc& alloc ) { | |
931 LOG("found coincident verts at %g, %g; merging %g into %g\n", src->fPoint.fX , src->fPoint.fY, | |
932 src->fID, dst->fID); | |
933 for (Edge* edge = src->fFirstEdgeAbove; edge;) { | |
934 Edge* next = edge->fNextEdgeAbove; | |
935 set_bottom(edge, dst, NULL); | |
936 edge = next; | |
937 } | |
938 for (Edge* edge = src->fFirstEdgeBelow; edge;) { | |
939 Edge* next = edge->fNextEdgeBelow; | |
940 set_top(edge, dst, NULL); | |
941 edge = next; | |
942 } | |
943 remove<Vertex, &Vertex::fPrev, &Vertex::fNext>(src, head, NULL); | |
944 } | |
945 | |
946 Vertex* check_for_intersection(Edge* edge, Edge* other, Edge** activeEdges, SkCh unkAlloc& alloc) { | |
947 SkPoint p; | |
948 if (!edge || !other) { | |
949 return NULL; | |
950 } | |
951 if (edge->intersect(*other, &p)) { | |
952 Vertex* v; | |
953 LOG("found intersection, pt is %g, %g\n", p.fX, p.fY); | |
954 if (p == edge->fTop->fPoint || p < edge->fTop->fPoint) { | |
955 split_edge(other, edge->fTop, activeEdges, alloc); | |
956 v = edge->fTop; | |
957 } else if (p == edge->fBottom->fPoint || p > edge->fBottom->fPoint) { | |
958 split_edge(other, edge->fBottom, activeEdges, alloc); | |
959 v = edge->fBottom; | |
960 } else if (p == other->fTop->fPoint || p < other->fTop->fPoint) { | |
961 split_edge(edge, other->fTop, activeEdges, alloc); | |
962 v = other->fTop; | |
963 } else if (p == other->fBottom->fPoint || p > other->fBottom->fPoint) { | |
964 split_edge(edge, other->fBottom, activeEdges, alloc); | |
965 v = other->fBottom; | |
966 } else { | |
967 Vertex* nextV = edge->fTop; | |
968 while (p < nextV->fPoint) { | |
969 nextV = nextV->fPrev; | |
970 } | |
971 while (nextV->fPoint < p) { | |
972 nextV = nextV->fNext; | |
973 } | |
974 Vertex* prevV = nextV->fPrev; | |
975 if (coincident(prevV->fPoint, p)) { | |
976 v = prevV; | |
977 } else if (coincident(nextV->fPoint, p)) { | |
978 v = nextV; | |
979 } else { | |
980 v = ALLOC_NEW(Vertex, (p), alloc); | |
981 LOG("inserting between %g (%g, %g) and %g (%g, %g)\n", | |
982 prevV->fID, prevV->fPoint.fX, prevV->fPoint.fY, | |
983 nextV->fID, nextV->fPoint.fX, nextV->fPoint.fY); | |
984 #if LOGGING_ENABLED | |
985 v->fID = (nextV->fID + prevV->fID) * 0.5f; | |
986 #endif | |
987 v->fPrev = prevV; | |
988 v->fNext = nextV; | |
989 prevV->fNext = v; | |
990 nextV->fPrev = v; | |
991 } | |
992 split_edge(edge, v, activeEdges, alloc); | |
993 split_edge(other, v, activeEdges, alloc); | |
994 } | |
995 #ifdef SK_DEBUG | |
996 validate_connectivity(v); | |
997 #endif | |
998 return v; | |
999 } | |
1000 return NULL; | |
1001 } | |
1002 | |
1003 Vertex* sorted_merge(Vertex* a, Vertex* b); | |
1004 | |
1005 void front_back_split(Vertex* v, Vertex** pFront, Vertex** pBack) | |
1006 { | |
1007 Vertex* fast; | |
1008 Vertex* slow; | |
1009 if (!v || !v->fNext) { | |
1010 *pFront = v; | |
1011 *pBack = NULL; | |
1012 } else { | |
1013 slow = v; | |
1014 fast = v->fNext; | |
1015 | |
1016 while (fast != NULL) { | |
1017 fast = fast->fNext; | |
1018 if (fast != NULL) { | |
1019 slow = slow->fNext; | |
1020 fast = fast->fNext; | |
1021 } | |
1022 } | |
1023 | |
1024 *pFront = v; | |
1025 *pBack = slow->fNext; | |
1026 slow->fNext->fPrev = NULL; | |
1027 slow->fNext = NULL; | |
1028 } | |
1029 } | |
1030 | |
1031 void merge_sort(Vertex** head) | |
1032 { | |
1033 if (!*head || !(*head)->fNext) { | |
1034 return; | |
1035 } | |
1036 | |
1037 Vertex* a; | |
1038 Vertex* b; | |
1039 front_back_split(*head, &a, &b); | |
1040 | |
1041 merge_sort(&a); | |
1042 merge_sort(&b); | |
1043 | |
1044 *head = sorted_merge(a, b); | |
1045 } | |
1046 | |
1047 Vertex* sorted_merge(Vertex* a, Vertex* b) | |
1048 { | |
1049 if (!a) { | |
1050 return b; | |
1051 } else if (!b) { | |
1052 return a; | |
1053 } | |
1054 | |
1055 Vertex* result = NULL; | |
1056 | |
1057 if (a->fPoint < b->fPoint) { | |
1058 result = a; | |
1059 result->fNext = sorted_merge(a->fNext, b); | |
1060 } else { | |
1061 result = b; | |
1062 result->fNext = sorted_merge(a, b->fNext); | |
1063 } | |
1064 result->fNext->fPrev = result; | |
1065 return result; | |
1066 } | |
1067 | |
1068 void sanitize_contours(Vertex** contours, int contourCnt) { | |
1069 for (int i = 0; i < contourCnt; ++i) { | |
1070 SkASSERT(contours[i]); | |
1071 for (Vertex* v = contours[i];;) { | |
1072 if (coincident(v->fPrev->fPoint, v->fPoint)) { | |
1073 LOG("vertex %g,%g coincident; removing\n", v->fPoint.fX, v->fPoi nt.fY); | |
1074 if (v->fPrev == v) { | |
1075 contours[i] = NULL; | |
1076 break; | |
1077 } | |
1078 v->fPrev->fNext = v->fNext; | |
1079 v->fNext->fPrev = v->fPrev; | |
1080 if (contours[i] == v) { | |
1081 contours[i] = v->fNext; | |
1082 } | |
1083 v = v->fPrev; | |
1084 } else { | |
1085 v = v->fNext; | |
1086 if (v == contours[i]) break; | |
1087 } | |
1088 } | |
1089 } | |
1090 } | |
1091 | |
1092 void merge_coincident_vertices(Vertex** vertices, SkChunkAlloc& alloc) { | |
1093 for (Vertex* v = (*vertices)->fNext; v != NULL; v = v->fNext) { | |
1094 if (v->fPoint < v->fPrev->fPoint) { | |
1095 v->fPoint = v->fPrev->fPoint; | |
1096 } | |
1097 if (coincident(v->fPrev->fPoint, v->fPoint)) { | |
1098 merge_vertices(v->fPrev, v, vertices, alloc); | |
1099 } | |
1100 } | |
1101 } | |
1102 | |
1103 Vertex* build_edges(Vertex** contours, int contourCnt, SkChunkAlloc& alloc) { | |
1104 Vertex* vertices = NULL; | |
1105 Vertex* prev = NULL; | |
1106 for (int i = 0; i < contourCnt; ++i) { | |
1107 for (Vertex* v = contours[i]; v != NULL;) { | |
1108 Vertex* vNext = v->fNext; | |
1109 Edge* edge = new_edge(v->fPrev, v, alloc); | |
1110 if (edge->fWinding > 0) { | |
1111 insert_edge_below(edge, v->fPrev); | |
1112 insert_edge_above(edge, v); | |
1113 } else { | |
1114 insert_edge_below(edge, v); | |
1115 insert_edge_above(edge, v->fPrev); | |
1116 } | |
1117 merge_collinear_edges(edge, NULL); | |
1118 if (prev) { | |
1119 prev->fNext = v; | |
1120 v->fPrev = prev; | |
1121 } else { | |
1122 vertices = v; | |
1123 } | |
1124 prev = v; | |
1125 v = vNext; | |
1126 if (v == contours[i]) break; | |
1127 } | |
1128 } | |
1129 if (prev) { | |
1130 prev->fNext = vertices->fPrev = NULL; | |
1131 } | |
1132 return vertices; | |
1133 } | |
1134 | |
1135 void simplify(Vertex* vertices, SkChunkAlloc& alloc) { | |
1136 LOG("simplifying complex polygons\n"); | |
1137 Edge* activeEdges = NULL; | |
1138 for (Vertex* v = vertices; v != NULL; v = v->fNext) { | |
1139 if (!v->fFirstEdgeAbove && !v->fFirstEdgeBelow) { | |
1140 continue; | |
1141 } | |
1142 #if LOGGING_ENABLED | |
1143 LOG("\nvertex %g: (%g,%g)\n", v->fID, v->fPoint.fX, v->fPoint.fY); | |
1144 #endif | |
1145 #ifdef SK_DEBUG | |
1146 validate_connectivity(v); | |
1147 #endif | |
1148 Edge* leftEnclosingEdge = NULL; | |
1149 Edge* rightEnclosingEdge = NULL; | |
1150 bool restartChecks; | |
1151 do { | |
1152 restartChecks = false; | |
1153 find_enclosing_edges(v, activeEdges, &leftEnclosingEdge, &rightEnclo singEdge); | |
1154 if (v->fFirstEdgeBelow) { | |
1155 for (Edge* edge = v->fFirstEdgeBelow; edge != NULL; edge = edge- >fNextEdgeBelow) { | |
1156 if (check_for_intersection(edge, leftEnclosingEdge, &activeE dges, alloc)) { | |
1157 restartChecks = true; | |
1158 break; | |
1159 } | |
1160 if (check_for_intersection(edge, rightEnclosingEdge, &active Edges, alloc)) { | |
1161 restartChecks = true; | |
1162 break; | |
1163 } | |
1164 } | |
1165 } else { | |
1166 if (Vertex* pv = check_for_intersection(leftEnclosingEdge, right EnclosingEdge, | |
1167 &activeEdges, alloc)) { | |
1168 if (pv->fPoint < v->fPoint) { | |
1169 v = pv; | |
1170 } | |
1171 restartChecks = true; | |
1172 } | |
1173 | |
1174 } | |
1175 } while (restartChecks); | |
1176 SkASSERT(!leftEnclosingEdge || leftEnclosingEdge->isLeftOf(v)); | |
1177 SkASSERT(!rightEnclosingEdge || rightEnclosingEdge->isRightOf(v)); | |
1178 #ifdef SK_DEBUG | |
1179 validate_edges(activeEdges); | |
1180 #endif | |
1181 for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) { | |
1182 remove_edge(e, &activeEdges); | |
1183 } | |
1184 Edge* leftEdge = leftEnclosingEdge; | |
1185 for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) { | |
1186 insert_edge(e, leftEdge, &activeEdges); | |
1187 leftEdge = e; | |
1188 } | |
1189 v->fProcessed = true; | |
1190 } | |
1191 } | |
1192 | |
1193 Poly* tessellate(Vertex* vertices, SkChunkAlloc& alloc) { | |
1194 LOG("tessellating simple polygons\n"); | |
1195 Edge* activeEdges = NULL; | |
1196 Poly* polys = NULL; | |
1197 for (Vertex* v = vertices; v != NULL; v = v->fNext) { | |
1198 if (!v->fFirstEdgeAbove && !v->fFirstEdgeBelow) { | |
1199 continue; | |
1200 } | |
1201 #if LOGGING_ENABLED | |
1202 LOG("\nvertex %g: (%g,%g)\n", v->fID, v->fPoint.fX, v->fPoint.fY); | |
1203 #endif | |
1204 #ifdef SK_DEBUG | |
1205 validate_connectivity(v); | |
1206 #endif | |
1207 Edge* leftEnclosingEdge = NULL; | |
1208 Edge* rightEnclosingEdge = NULL; | |
1209 find_enclosing_edges(v, activeEdges, &leftEnclosingEdge, &rightEnclosing Edge); | |
1210 SkASSERT(!leftEnclosingEdge || leftEnclosingEdge->isLeftOf(v)); | |
1211 SkASSERT(!rightEnclosingEdge || rightEnclosingEdge->isRightOf(v)); | |
1212 #ifdef SK_DEBUG | |
1213 validate_edges(activeEdges); | |
1214 #endif | |
1215 Poly* leftPoly = NULL; | |
1216 Poly* rightPoly = NULL; | |
1217 if (v->fFirstEdgeAbove) { | |
1218 leftPoly = v->fFirstEdgeAbove->fLeftPoly; | |
1219 rightPoly = v->fLastEdgeAbove->fRightPoly; | |
1220 } else { | |
1221 leftPoly = leftEnclosingEdge ? leftEnclosingEdge->fRightPoly : NULL; | |
1222 rightPoly = rightEnclosingEdge ? rightEnclosingEdge->fLeftPoly : NUL L; | |
1223 } | |
1224 #if LOGGING_ENABLED | |
1225 LOG("edges above:\n"); | |
1226 for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) { | |
1227 LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID, | |
1228 e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRight Poly->fID : -1); | |
1229 } | |
1230 LOG("edges below:\n"); | |
1231 for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) { | |
1232 LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID, | |
1233 e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRight Poly->fID : -1); | |
1234 } | |
1235 #endif | |
1236 if (v->fFirstEdgeAbove) { | |
1237 if (leftPoly) { | |
1238 leftPoly = leftPoly->addVertex(v, Poly::kRight_Side, alloc); | |
1239 } | |
1240 if (rightPoly) { | |
1241 rightPoly = rightPoly->addVertex(v, Poly::kLeft_Side, alloc); | |
1242 } | |
1243 for (Edge* e = v->fFirstEdgeAbove; e != v->fLastEdgeAbove; e = e->fN extEdgeAbove) { | |
1244 Edge* leftEdge = e; | |
1245 Edge* rightEdge = e->fNextEdgeAbove; | |
1246 SkASSERT(rightEdge->isRightOf(leftEdge->fTop)); | |
1247 remove_edge(leftEdge, &activeEdges); | |
1248 if (leftEdge->fRightPoly) { | |
1249 leftEdge->fRightPoly->end(v, alloc); | |
1250 } | |
1251 if (rightEdge->fLeftPoly && rightEdge->fLeftPoly != leftEdge->fR ightPoly) { | |
1252 rightEdge->fLeftPoly->end(v, alloc); | |
1253 } | |
1254 } | |
1255 remove_edge(v->fLastEdgeAbove, &activeEdges); | |
1256 if (!v->fFirstEdgeBelow) { | |
1257 if (leftPoly && rightPoly && leftPoly != rightPoly) { | |
1258 SkASSERT(leftPoly->fPartner == NULL && rightPoly->fPartner = = NULL); | |
1259 rightPoly->fPartner = leftPoly; | |
1260 leftPoly->fPartner = rightPoly; | |
1261 } | |
1262 } | |
1263 } | |
1264 if (v->fFirstEdgeBelow) { | |
1265 if (!v->fFirstEdgeAbove) { | |
1266 if (leftPoly && leftPoly == rightPoly) { | |
1267 // Split the poly. | |
1268 if (leftPoly->fActive->fSide == Poly::kLeft_Side) { | |
1269 leftPoly = new_poly(&polys, leftEnclosingEdge->fTop, lef tPoly->fWinding, | |
1270 alloc); | |
1271 leftPoly->addVertex(v, Poly::kRight_Side, alloc); | |
1272 rightPoly->addVertex(v, Poly::kLeft_Side, alloc); | |
1273 leftEnclosingEdge->fRightPoly = leftPoly; | |
1274 } else { | |
1275 rightPoly = new_poly(&polys, rightEnclosingEdge->fTop, r ightPoly->fWinding, | |
1276 alloc); | |
1277 rightPoly->addVertex(v, Poly::kLeft_Side, alloc); | |
1278 leftPoly->addVertex(v, Poly::kRight_Side, alloc); | |
1279 rightEnclosingEdge->fLeftPoly = rightPoly; | |
1280 } | |
1281 } else { | |
1282 if (leftPoly) { | |
1283 leftPoly = leftPoly->addVertex(v, Poly::kRight_Side, all oc); | |
1284 } | |
1285 if (rightPoly) { | |
1286 rightPoly = rightPoly->addVertex(v, Poly::kLeft_Side, al loc); | |
1287 } | |
1288 } | |
1289 } | |
1290 Edge* leftEdge = v->fFirstEdgeBelow; | |
1291 leftEdge->fLeftPoly = leftPoly; | |
1292 insert_edge(leftEdge, leftEnclosingEdge, &activeEdges); | |
1293 for (Edge* rightEdge = leftEdge->fNextEdgeBelow; rightEdge; | |
1294 rightEdge = rightEdge->fNextEdgeBelow) { | |
1295 insert_edge(rightEdge, leftEdge, &activeEdges); | |
1296 int winding = leftEdge->fLeftPoly ? leftEdge->fLeftPoly->fWindin g : 0; | |
1297 winding += leftEdge->fWinding; | |
1298 if (winding != 0) { | |
1299 Poly* poly = new_poly(&polys, v, winding, alloc); | |
1300 leftEdge->fRightPoly = rightEdge->fLeftPoly = poly; | |
1301 } | |
1302 leftEdge = rightEdge; | |
1303 } | |
1304 v->fLastEdgeBelow->fRightPoly = rightPoly; | |
1305 } | |
1306 #ifdef SK_DEBUG | |
1307 validate_edges(activeEdges); | |
1308 #endif | |
1309 #if LOGGING_ENABLED | |
1310 LOG("\nactive edges:\n"); | |
1311 for (Edge* e = activeEdges; e != NULL; e = e->fRight) { | |
1312 LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID, | |
1313 e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRight Poly->fID : -1); | |
1314 } | |
1315 #endif | |
1316 } | |
1317 return polys; | |
1318 } | |
1319 | |
1320 Poly* contours_to_polys(Vertex** contours, int contourCnt, SkChunkAlloc& alloc) { | |
1321 #if LOGGING_ENABLED | |
1322 for (int i = 0; i < contourCnt; ++i) { | |
1323 Vertex* v = contours[i]; | |
1324 SkASSERT(v); | |
1325 LOG("path.moveTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY); | |
1326 for (v = v->fNext; v != contours[i]; v = v->fNext) { | |
1327 LOG("path.lineTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY); | |
1328 } | |
1329 } | |
1330 #endif | |
1331 sanitize_contours(contours, contourCnt); | |
1332 Vertex* vertices = build_edges(contours, contourCnt, alloc); | |
1333 if (!vertices) { | |
1334 return NULL; | |
1335 } | |
1336 | |
1337 // Sort vertices in Y (secondarily in X). | |
1338 merge_sort(&vertices); | |
1339 merge_coincident_vertices(&vertices, alloc); | |
1340 #if LOGGING_ENABLED | |
1341 for (Vertex* v = vertices; v != NULL; v = v->fNext) { | |
1342 static float gID = 0.0f; | |
1343 v->fID = gID++; | |
1344 } | |
1345 #endif | |
1346 simplify(vertices, alloc); | |
1347 return tessellate(vertices, alloc); | |
1348 } | |
1349 | |
1350 void* polys_to_triangles(Poly* polys, SkPath::FillType fillType, void* data) { | |
1351 void* d = data; | |
1352 for (Poly* poly = polys; poly; poly = poly->fNext) { | |
1353 if (apply_fill_type(fillType, poly->fWinding)) { | |
1354 d = poly->emit(d); | |
1355 } | |
1356 } | |
1357 return d; | |
1358 } | |
1359 | |
1360 }; | |
1361 | |
1362 GrTessellatingPathRenderer::GrTessellatingPathRenderer() { | |
1363 } | |
1364 | |
1365 GrPathRenderer::StencilSupport GrTessellatingPathRenderer::onGetStencilSupport( | |
1366 const GrDrawTarget*, | |
1367 const GrPipelineBuil der*, | |
1368 const SkPath&, | |
1369 const SkStrokeRec&) const { | |
1370 return GrPathRenderer::kNoSupport_StencilSupport; | |
1371 } | |
1372 | |
1373 bool GrTessellatingPathRenderer::canDrawPath(const GrDrawTarget* target, | |
1374 const GrPipelineBuilder* pipelineBu ilder, | |
1375 const SkMatrix& viewMatrix, | |
1376 const SkPath& path, | |
1377 const SkStrokeRec& stroke, | |
1378 bool antiAlias) const { | |
1379 return stroke.isFillStyle() && !antiAlias; | |
1380 } | |
1381 | |
1382 bool GrTessellatingPathRenderer::onDrawPath(GrDrawTarget* target, | |
1383 GrPipelineBuilder* pipelineBuilder, | |
1384 GrColor color, | |
1385 const SkMatrix& viewM, | |
1386 const SkPath& path, | |
1387 const SkStrokeRec& stroke, | |
1388 bool antiAlias) { | |
1389 SkASSERT(!antiAlias); | |
1390 const GrRenderTarget* rt = pipelineBuilder->getRenderTarget(); | |
1391 if (NULL == rt) { | |
1392 return false; | |
1393 } | |
1394 SkPath deviceSpacePath; | |
1395 path.transform(viewM, &deviceSpacePath); | |
1396 SkASSERT(target); | |
1397 | |
1398 SkScalar tol = SK_Scalar1; | |
1399 | |
1400 int contourCnt; | |
1401 int maxPts = GrPathUtils::worstCasePointCount(deviceSpacePath, &contourCnt, SK_Scalar1); | |
1402 if (maxPts <= 0) { | |
1403 return false; | |
1404 } | |
1405 if (maxPts > ((int)SK_MaxU16 + 1)) { | |
1406 SkDebugf("Path not rendered, too many verts (%d)\n", maxPts); | |
1407 return false; | |
1408 } | |
1409 SkPath::FillType fillType = deviceSpacePath.getFillType(); | |
1410 if (SkPath::IsInverseFillType(fillType)) { | |
1411 contourCnt++; | |
1412 } | |
1413 | |
1414 LOG("got %d pts, %d contours\n", maxPts, contourCnt); | |
1415 | |
1416 SkAutoTDeleteArray<Vertex*> contours(SkNEW_ARRAY(Vertex *, contourCnt)); | |
1417 | |
1418 // For the initial size of the chunk allocator, estimate based on the point count: | |
1419 // one vertex per point for the initial passes, plus two for the vertices in the | |
1420 // resulting Polys, since the same point may end up in two Polys. Assume mi nimal | |
1421 // connectivity of one Edge per Vertex (will grow for intersections). | |
1422 SkChunkAlloc alloc(maxPts * (3 * sizeof(Vertex) + sizeof(Edge))); | |
1423 SkIRect clipBounds; | |
1424 target->getClip()->getConservativeBounds(rt, &clipBounds); | |
1425 path_to_contours(deviceSpacePath, tol, SkRect::Make(clipBounds), contours.ge t(), alloc); | |
1426 Poly* polys; | |
1427 uint32_t flags = GrDefaultGeoProcFactory::kPosition_GPType; | |
1428 polys = contours_to_polys(contours.get(), contourCnt, alloc); | |
1429 SkAutoTUnref<const GrGeometryProcessor> gp( | |
1430 GrDefaultGeoProcFactory::Create(flags, color, SkMatrix::I(), SkMatrix::I ())); | |
1431 int count = 0; | |
1432 for (Poly* poly = polys; poly; poly = poly->fNext) { | |
1433 if (apply_fill_type(fillType, poly->fWinding) && poly->fCount >= 3) { | |
1434 count += (poly->fCount - 2) * (WIREFRAME ? 6 : 3); | |
1435 } | |
1436 } | |
1437 | |
1438 int stride = gp->getVertexStride(); | |
1439 GrDrawTarget::AutoReleaseGeometry arg; | |
1440 if (!arg.set(target, count, stride, 0)) { | |
1441 return false; | |
1442 } | |
1443 LOG("emitting %d verts\n", count); | |
1444 void* end = polys_to_triangles(polys, fillType, arg.vertices()); | |
1445 int actualCount = (static_cast<char*>(end) - static_cast<char*>(arg.vertices ())) / stride; | |
1446 LOG("actual count: %d\n", actualCount); | |
1447 SkASSERT(actualCount <= count); | |
1448 | |
1449 GrPrimitiveType primitiveType = WIREFRAME ? kLines_GrPrimitiveType | |
1450 : kTriangles_GrPrimitiveType; | |
1451 target->drawNonIndexed(pipelineBuilder, gp, primitiveType, 0, actualCount); | |
1452 | |
1453 return true; | |
1454 } | |
OLD | NEW |