OLD | NEW |
---|---|
(Empty) | |
1 /* | |
2 * Copyright 2015 Google Inc. | |
3 * | |
4 * Use of this source code is governed by a BSD-style license that can be | |
5 * found in the LICENSE file. | |
6 */ | |
7 | |
8 #include "GrTessellatingPathRenderer.h" | |
9 | |
10 #include "GrDefaultGeoProcFactory.h" | |
11 #include "GrPathUtils.h" | |
12 #include "SkChunkAlloc.h" | |
13 #include "SkGeometry.h" | |
14 | |
15 #include <stdio.h> | |
16 | |
17 /* | |
18 * This path renderer tessellates the path into triangles, uploads the triangles to a | |
19 * vertex buffer, and renders them with a single draw call. It does not currentl y do | |
20 * antialiasing, so it must be used in conjunction with multisampling. | |
21 * | |
22 * There are six stages to the algorithm: | |
23 * | |
24 * 1) Linearize the path contours into piecewise linear segments (path_to_contou rs()). | |
25 * 2) Sort the vertices in Y (and secondarily in X) (merge_sort()). | |
26 * 3) Build a mesh of edges connecting the vertices (build_edges()). | |
27 * 4) Simplify the mesh by inserting new vertices at intersecting edges (simplif y()). | |
28 * 5) Tessellate the simplified mesh into monotone polygons (tessellate()). | |
29 * 6) Triangulate the monotone polygons directly into a vertex buffer (polys_to_ triangles()). | |
30 * | |
31 * The vertex sorting in step (2) is a merge sort, since it plays well with the linked list | |
32 * of vertices (and the necessity of inserting new vertices on intersection). | |
33 * | |
34 * The most complex step is the simplification (4). It's based on the Bentley-Ot tman | |
35 * line-sweep algorithm, but due to floating point inaccuracy, the intersection points are | |
36 * not exact and may violate the mesh topology or active edge list ordering. We | |
egdaniel
2015/01/27 15:03:43
I'm sure it is in the paper, but since you referen
Stephen White
2015/01/27 16:46:18
Done.
| |
37 * accommodate this by adjusting the topology of the mesh and AEL to match the i ntersection | |
38 * points. This occurs in three ways: | |
39 * | |
40 * A) Intersections may cause a shortened edge to no longer be ordered with resp ect to its | |
41 * neighbouring edges at the top or bottom vertex. This is handled by merging the | |
42 * edges (merge_collinear_edges()). | |
43 * B) Intersections may cause an edge to violate the left-to-right ordering of t he | |
44 * active edge list. This is handled by splitting the neighbour edge on the | |
45 * intersected vertex (cleanup_active_edges()). | |
46 * C) Shortening an edge may cause an active edge to become inactive or an inact ive edge | |
47 * to become active. This is handled by removing or inserting the edge in the active | |
48 * edge list (fix_active_state()). | |
49 * | |
50 * The tessellation steps (5) and (6) are based on "Triangulating Simple Polygon s and | |
51 * Equivalent Problems" (Fournier and Montuno); also a line-sweep algorithm. Not e that it | |
52 * currently uses a linked list for the active edge list, rather than a 2-3 tree as the | |
53 * paper describes. The 2-3 tree gives O(lg N) lookups, but insertion and remova l also | |
54 * become O(lg N). In all the test cases, it was found that the cost of frequent O(lg N) | |
55 * insertions and removals was greater than the cost of infrequent O(N) lookups with the | |
56 * linked list implementation. With the latter, all removals are O(1), and most insertions | |
57 * are O(1), since we know the adjacent edge in the active edge list based on th e topology. | |
58 * Only type 2 vertices (see paper) require the O(N) lookups, and these are much less | |
59 * frequent. There may be other data structures worth investigating, however. | |
60 * | |
61 * Note that there is a compile-time flag (SWEEP_IN_X) which changes the orienta tion of the | |
62 * line sweep algorithms. The choice is arbitrary, but most test cases are wider than they | |
63 * are tall, so the default is to sweep in X. In the future, we may want to make this a | |
64 * runtime parameter and base it on the aspect ratio of the clip bounds. | |
65 */ | |
66 #define LOGGING_ENABLED 0 | |
67 #define SWEEP_IN_X 1 | |
68 | |
69 #if LOGGING_ENABLED | |
70 #define LOG printf | |
71 #else | |
72 #define LOG(...) | |
73 #endif | |
74 | |
75 #define ALLOC_NEW(Type, args, alloc) \ | |
76 SkNEW_PLACEMENT_ARGS(alloc.allocThrow(sizeof(Type)), Type, args) | |
77 | |
78 bool GrTessellatingPathRenderer::gWireframe = false; | |
79 | |
80 namespace { | |
81 | |
82 struct Vertex; | |
83 struct Edge; | |
84 struct Poly; | |
85 | |
86 template <class T, T* T::*Prev, T* T::*Next> | |
87 void insert(T* t, T* prev, T* next, T** head, T** tail) | |
88 { | |
89 t->*Prev = prev; | |
90 t->*Next = next; | |
91 if (prev) { | |
92 prev->*Next = t; | |
93 } else if (head) { | |
94 *head = t; | |
95 } | |
96 if (next) { | |
97 next->*Prev = t; | |
98 } else if (tail) { | |
99 *tail = t; | |
100 } | |
101 } | |
102 | |
103 template <class T, T* T::*Prev, T* T::*Next> | |
104 void remove(T* t, T** head, T** tail) | |
105 { | |
106 if (t->*Prev) { | |
107 t->*Prev->*Next = t->*Next; | |
108 } else if (head) { | |
109 *head = t->*Next; | |
110 } | |
111 if (t->*Next) { | |
112 t->*Next->*Prev = t->*Prev; | |
113 } else if (tail) { | |
114 *tail = t->*Prev; | |
115 } | |
116 t->*Prev = t->*Next = NULL; | |
117 } | |
118 | |
119 struct Vertex { | |
120 Vertex(const SkPoint& point) | |
121 : fPoint(point), fPrev(NULL), fNext(NULL) | |
122 , fFirstEdgeAbove(NULL), fLastEdgeAbove(NULL) | |
123 , fFirstEdgeBelow(NULL), fLastEdgeBelow(NULL) | |
124 , fInterior(false) | |
125 , fProcessed(false) | |
126 #if LOGGING_ENABLED | |
127 , fID (-1.0f) | |
128 #endif | |
129 {} | |
130 SkPoint fPoint; | |
131 Vertex* fPrev; | |
132 Vertex* fNext; | |
133 Edge* fFirstEdgeAbove; | |
134 Edge* fLastEdgeAbove; | |
135 Edge* fFirstEdgeBelow; | |
136 Edge* fLastEdgeBelow; | |
137 bool fInterior; | |
138 bool fProcessed; | |
139 #if LOGGING_ENABLED | |
140 float fID; | |
141 #endif | |
142 }; | |
143 | |
144 bool operator<(const SkPoint& a, const SkPoint& b) { | |
145 #if SWEEP_IN_X | |
146 return a.fX == b.fX ? a.fY > b.fY : a.fX < b.fX; | |
147 #else | |
148 return a.fY == b.fY ? a.fX < b.fX : a.fY < b.fY; | |
149 #endif | |
150 } | |
151 | |
152 bool operator>(const SkPoint& a, const SkPoint& b) { | |
153 #if SWEEP_IN_X | |
154 return a.fX == b.fX ? a.fY < b.fY : a.fX > b.fX; | |
155 #else | |
156 return a.fY == b.fY ? a.fX > b.fX : a.fY > b.fY; | |
157 #endif | |
158 } | |
159 | |
160 inline void* emit_vertex(Vertex* v, void* data) { | |
161 SkPoint* d = static_cast<SkPoint*>(data); | |
162 *d++ = v->fPoint; | |
163 return d; | |
164 } | |
165 | |
166 void* emit_triangle(Vertex* v0, Vertex* v1, Vertex* v2, void* data) { | |
167 if (GrTessellatingPathRenderer::gWireframe) { | |
jvanverth1
2015/01/26 21:49:45
Is this for testing? You're injecting a conditiona
Stephen White
2015/01/27 15:26:29
It never showed up as hot in profiling. Changed it
| |
168 data = emit_vertex(v0, data); | |
169 data = emit_vertex(v1, data); | |
170 data = emit_vertex(v1, data); | |
171 data = emit_vertex(v2, data); | |
172 data = emit_vertex(v2, data); | |
173 data = emit_vertex(v0, data); | |
174 } else { | |
175 data = emit_vertex(v0, data); | |
176 data = emit_vertex(v1, data); | |
177 data = emit_vertex(v2, data); | |
178 } | |
179 return data; | |
180 } | |
181 | |
182 struct Edge { | |
183 Edge(Vertex* top, Vertex* bottom, int winding) | |
184 : fWinding(winding) | |
185 , fTop(top) | |
186 , fBottom(bottom) | |
187 , fLeft(NULL) | |
188 , fRight(NULL) | |
189 , fPrevEdgeAbove(NULL) | |
190 , fNextEdgeAbove(NULL) | |
191 , fPrevEdgeBelow(NULL) | |
192 , fNextEdgeBelow(NULL) | |
193 , fLeftPoly(NULL) | |
194 , fRightPoly(NULL) { | |
195 recompute(); | |
196 } | |
197 int fWinding; | |
198 Vertex* fTop; | |
199 Vertex* fBottom; | |
200 Edge* fLeft; | |
201 Edge* fRight; | |
202 Edge* fPrevEdgeAbove; | |
203 Edge* fNextEdgeAbove; | |
204 Edge* fPrevEdgeBelow; | |
205 Edge* fNextEdgeBelow; | |
206 Poly* fLeftPoly; | |
207 Poly* fRightPoly; | |
208 double fDX; | |
209 double fDY; | |
210 double fC; | |
211 double dist(const SkPoint& p) const { | |
212 return fDY * p.fX - fDX * p.fY + fC; | |
213 } | |
214 bool isRightOf(Vertex* v) const { | |
215 return dist(v->fPoint) < 0.0; | |
216 } | |
217 bool isLeftOf(Vertex* v) const { | |
218 return dist(v->fPoint) > 0.0; | |
219 } | |
220 void recompute() { | |
221 fDX = static_cast<double>(fBottom->fPoint.fX) - fTop->fPoint.fX; | |
222 fDY = static_cast<double>(fBottom->fPoint.fY) - fTop->fPoint.fY; | |
223 fC = static_cast<double>(fTop->fPoint.fY) * fBottom->fPoint.fX - | |
224 static_cast<double>(fTop->fPoint.fX) * fBottom->fPoint.fY; | |
225 } | |
226 bool intersect(const Edge& other, SkPoint* p) { | |
227 LOG("intersecting %g -> %g with %g -> %g\n", | |
228 fTop->fID, fBottom->fID, | |
229 other.fTop->fID, other.fBottom->fID); | |
230 if (fTop == other.fTop || fBottom == other.fBottom) { | |
231 return false; | |
232 } | |
233 double denom = fDX * other.fDY - fDY * other.fDX; | |
234 if (denom == 0.0) { | |
235 return false; | |
236 } | |
237 double dx = static_cast<double>(fTop->fPoint.fX) - other.fTop->fPoint.fX ; | |
238 double dy = static_cast<double>(fTop->fPoint.fY) - other.fTop->fPoint.fY ; | |
239 double sNumer = dy * other.fDX - dx * other.fDY; | |
240 double tNumer = dy * fDX - dx * fDY; | |
241 if (denom > 0.0 ? (sNumer < 0.0 || sNumer > denom || tNumer < 0.0 || tNu mer > denom) | |
242 : (sNumer > 0.0 || sNumer < denom || tNumer > 0.0 || tNu mer < denom)) { | |
243 return false; | |
244 } | |
245 double s = sNumer / denom; | |
246 p->fX = SkDoubleToScalar(fTop->fPoint.fX + s * fDX); | |
247 p->fY = SkDoubleToScalar(fTop->fPoint.fY + s * fDY); | |
248 return true; | |
249 } | |
250 bool isActive(Edge** activeEdges) const { | |
251 return activeEdges && (fLeft || fRight || *activeEdges == this); | |
252 } | |
253 }; | |
254 | |
255 struct Poly { | |
256 Poly(int winding) | |
257 : fWinding(winding) | |
258 , fHead(NULL) | |
259 , fTail(NULL) | |
260 , fActive(NULL) | |
261 , fNext(NULL) | |
262 , fPartner(NULL) | |
263 , fCount(0) | |
264 { | |
265 #if LOGGING_ENABLED | |
266 static int gID = 0; | |
267 fID = gID++; | |
268 LOG("*** created Poly %d\n", fID); | |
269 #endif | |
270 } | |
271 typedef enum { kNeither_Side, kLeft_Side, kRight_Side } Side; | |
272 struct MonotonePoly { | |
273 MonotonePoly() | |
274 : fSide(kNeither_Side) | |
275 , fHead(NULL) | |
276 , fTail(NULL) | |
277 , fPrev(NULL) | |
278 , fNext(NULL) {} | |
279 Side fSide; | |
280 Vertex* fHead; | |
281 Vertex* fTail; | |
282 MonotonePoly* fPrev; | |
283 MonotonePoly* fNext; | |
284 bool addVertex(Vertex* v, Side side, SkChunkAlloc& alloc) { | |
285 Vertex* newV = ALLOC_NEW(Vertex, (v->fPoint), alloc); | |
286 newV->fInterior = v->fInterior; | |
287 bool done = false; | |
288 if (fSide == kNeither_Side) { | |
289 fSide = side; | |
290 } else { | |
291 done = side != fSide; | |
292 } | |
293 if (fHead == NULL) { | |
294 fHead = fTail = newV; | |
295 } else if (fSide == kRight_Side) { | |
296 newV->fPrev = fTail; | |
297 fTail->fNext = newV; | |
298 fTail = newV; | |
299 } else { | |
300 newV->fNext = fHead; | |
301 fHead->fPrev = newV; | |
302 fHead = newV; | |
303 } | |
304 return done; | |
305 } | |
306 | |
307 void* emit(void* data) { | |
308 Vertex* first = fHead; | |
309 Vertex* v = first->fNext; | |
310 while (v != fTail) { | |
311 SkASSERT(v && v->fPrev && v->fNext); | |
312 #ifdef SK_DEBUG | |
313 validate(); | |
314 #endif | |
315 Vertex* prev = v->fPrev; | |
316 Vertex* curr = v; | |
317 Vertex* next = v->fNext; | |
318 double ax = static_cast<double>(curr->fPoint.fX) - prev->fPoint. fX; | |
319 double ay = static_cast<double>(curr->fPoint.fY) - prev->fPoint. fY; | |
320 double bx = static_cast<double>(next->fPoint.fX) - curr->fPoint. fX; | |
321 double by = static_cast<double>(next->fPoint.fY) - curr->fPoint. fY; | |
322 if (ax * by - ay * bx >= 0.0) { | |
323 data = emit_triangle(prev, curr, next, data); | |
324 v->fPrev->fNext = v->fNext; | |
325 v->fNext->fPrev = v->fPrev; | |
326 if (v->fPrev == first) { | |
327 v = v->fNext; | |
328 } else { | |
329 v = v->fPrev; | |
330 } | |
331 } else { | |
332 v = v->fNext; | |
333 SkASSERT(v != fTail); | |
334 } | |
335 } | |
336 return data; | |
337 } | |
338 | |
339 #ifdef SK_DEBUG | |
340 void validate() { | |
341 int winding = fHead->fPoint < fTail->fPoint ? 1 : -1; | |
342 Vertex* top = winding < 0 ? fTail : fHead; | |
343 Vertex* bottom = winding < 0 ? fHead : fTail; | |
344 Edge e(top, bottom, winding); | |
345 for (Vertex* v = fHead->fNext; v != fTail; v = v->fNext) { | |
346 if (fSide == kRight_Side) { | |
347 SkASSERT(!e.isRightOf(v)); | |
348 } else if (fSide == Poly::kLeft_Side) { | |
349 SkASSERT(!e.isLeftOf(v)); | |
350 } | |
351 } | |
352 } | |
353 #endif | |
354 }; | |
355 Poly* addVertex(Vertex* v, Side side, SkChunkAlloc& alloc) { | |
356 LOG("addVertex() to %d at %g (%g, %g), %s side\n", fID, v->fID, v->fPoin t.fX, v->fPoint.fY, | |
357 side == kLeft_Side ? "left" : side == kRight_Side ? "right" : "ne ither"); | |
358 Poly* partner = fPartner; | |
359 Poly* poly = this; | |
360 if (partner) { | |
361 fPartner = partner->fPartner = NULL; | |
362 } | |
363 if (!fActive) { | |
364 fActive = ALLOC_NEW(MonotonePoly, (), alloc); | |
365 } | |
366 if (fActive->addVertex(v, side, alloc)) { | |
367 #ifdef SK_DEBUG | |
368 fActive->validate(); | |
369 #endif | |
370 if (fTail) { | |
371 fActive->fPrev = fTail; | |
372 fTail->fNext = fActive; | |
373 fTail = fActive; | |
374 } else { | |
375 fHead = fTail = fActive; | |
376 } | |
377 if (partner) { | |
378 partner->addVertex(v, side, alloc); | |
379 poly = partner; | |
380 } else { | |
381 Vertex* prev = fActive->fSide == Poly::kLeft_Side ? | |
382 fActive->fHead->fNext : fActive->fTail->fPrev; | |
383 fActive = ALLOC_NEW(MonotonePoly, , alloc); | |
384 fActive->addVertex(prev, Poly::kNeither_Side, alloc); | |
385 fActive->addVertex(v, side, alloc); | |
386 } | |
387 } | |
388 fCount++; | |
389 return poly; | |
390 } | |
391 void end(Vertex* v, SkChunkAlloc& alloc) { | |
392 LOG("end() %d at %g, %g\n", fID, v->fPoint.fX, v->fPoint.fY); | |
393 if (fPartner) { | |
394 fPartner = fPartner->fPartner = NULL; | |
395 } | |
396 addVertex(v, fActive->fSide == kLeft_Side ? kRight_Side : kLeft_Side, al loc); | |
397 } | |
398 void* emit(void *data) { | |
399 if (fCount < 3) { | |
400 return data; | |
401 } | |
402 LOG("emit() %d, size %d\n", fID, fCount); | |
403 for (MonotonePoly* m = fHead; m != NULL; m = m->fNext) { | |
404 data = m->emit(data); | |
405 } | |
406 return data; | |
407 } | |
408 int fWinding; | |
409 MonotonePoly* fHead; | |
410 MonotonePoly* fTail; | |
411 MonotonePoly* fActive; | |
412 Poly* fNext; | |
413 Poly* fPartner; | |
414 int fCount; | |
415 #if LOGGING_ENABLED | |
416 int fID; | |
417 #endif | |
418 }; | |
419 | |
420 bool coincident(const SkPoint& a, const SkPoint& b) { | |
421 return a == b; | |
422 } | |
423 | |
424 Poly* new_poly(Poly** head, Vertex* v, int winding, SkChunkAlloc& alloc) { | |
425 Poly* poly = ALLOC_NEW(Poly, (winding), alloc); | |
426 poly->addVertex(v, Poly::kNeither_Side, alloc); | |
427 poly->fNext = *head; | |
428 *head = poly; | |
429 return poly; | |
430 } | |
431 | |
432 #ifdef SK_DEBUG | |
433 void validate_edges(Edge* head) { | |
434 for (Edge* e = head; e != NULL; e = e->fRight) { | |
435 SkASSERT(e->fTop != e->fBottom); | |
436 if (e->fLeft) { | |
437 SkASSERT(e->fLeft->fRight == e); | |
438 if (e->fTop->fPoint > e->fLeft->fTop->fPoint) { | |
439 SkASSERT(e->fLeft->isLeftOf(e->fTop)); | |
440 } | |
441 if (e->fBottom->fPoint < e->fLeft->fBottom->fPoint) { | |
442 SkASSERT(e->fLeft->isLeftOf(e->fBottom)); | |
443 } | |
444 } else { | |
445 SkASSERT(e == head); | |
446 } | |
447 if (e->fRight) { | |
448 SkASSERT(e->fRight->fLeft == e); | |
449 if (e->fTop->fPoint > e->fRight->fTop->fPoint) { | |
450 SkASSERT(e->fRight->isRightOf(e->fTop)); | |
451 } | |
452 if (e->fBottom->fPoint < e->fRight->fBottom->fPoint) { | |
453 SkASSERT(e->fRight->isRightOf(e->fBottom)); | |
454 } | |
455 } | |
456 } | |
457 } | |
458 | |
459 void validate_connectivity(Vertex* v) { | |
460 for (Edge* e = v->fFirstEdgeAbove; e != NULL; e = e->fNextEdgeAbove) { | |
461 SkASSERT(e->fBottom == v); | |
462 if (e->fPrevEdgeAbove) { | |
463 SkASSERT(e->fPrevEdgeAbove->fNextEdgeAbove == e); | |
464 SkASSERT(e->fPrevEdgeAbove->isLeftOf(e->fTop)); | |
465 } else { | |
466 SkASSERT(e == v->fFirstEdgeAbove); | |
467 } | |
468 if (e->fNextEdgeAbove) { | |
469 SkASSERT(e->fNextEdgeAbove->fPrevEdgeAbove == e); | |
470 SkASSERT(e->fNextEdgeAbove->isRightOf(e->fTop)); | |
471 } else { | |
472 SkASSERT(e == v->fLastEdgeAbove); | |
473 } | |
474 } | |
475 for (Edge* e = v->fFirstEdgeBelow; e != NULL; e = e->fNextEdgeBelow) { | |
476 SkASSERT(e->fTop == v); | |
477 if (e->fPrevEdgeBelow) { | |
478 SkASSERT(e->fPrevEdgeBelow->fNextEdgeBelow == e); | |
479 SkASSERT(e->fPrevEdgeBelow->isLeftOf(e->fBottom)); | |
480 } else { | |
481 SkASSERT(e == v->fFirstEdgeBelow); | |
482 } | |
483 if (e->fNextEdgeBelow) { | |
484 SkASSERT(e->fNextEdgeBelow->fPrevEdgeBelow == e); | |
485 SkASSERT(e->fNextEdgeBelow->isRightOf(e->fBottom)); | |
486 } else { | |
487 SkASSERT(e == v->fLastEdgeBelow); | |
488 } | |
489 } | |
490 } | |
491 #endif | |
492 | |
493 Vertex* append_point_to_contour(const SkPoint& p, Vertex* prev, Vertex** head, | |
494 SkChunkAlloc& alloc) { | |
495 Vertex* v = ALLOC_NEW(Vertex, (p), alloc); | |
496 #if LOGGING_ENABLED | |
497 static float gID = 0.0f; | |
498 v->fID = gID++; | |
499 #endif | |
500 if (prev) { | |
501 prev->fNext = v; | |
502 v->fPrev = prev; | |
503 } else { | |
504 *head = v; | |
505 } | |
506 return v; | |
507 } | |
508 | |
509 Vertex* generate_quadratic_points(const SkPoint& p0, | |
510 const SkPoint& p1, | |
511 const SkPoint& p2, | |
512 SkScalar tolSqd, | |
513 Vertex* prev, | |
514 Vertex** head, | |
515 SkChunkAlloc& alloc) { | |
516 if ((p1.distanceToLineSegmentBetweenSqd(p0, p2)) < tolSqd) { | |
517 return append_point_to_contour(p2, prev, head, alloc); | |
518 } | |
519 | |
520 SkPoint q[] = { | |
521 { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) }, | |
522 { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) }, | |
523 }; | |
524 SkPoint r = { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) } ; | |
525 | |
526 prev = generate_quadratic_points(p0, q[0], r, tolSqd, prev, head, alloc); | |
527 prev = generate_quadratic_points(r, q[1], p2, tolSqd, prev, head, alloc); | |
528 return prev; | |
529 } | |
530 | |
531 Vertex* generate_cubic_points(const SkPoint& p0, | |
532 const SkPoint& p1, | |
533 const SkPoint& p2, | |
534 const SkPoint& p3, | |
535 SkScalar tolSqd, | |
536 Vertex* prev, | |
537 Vertex** head, | |
538 SkChunkAlloc& alloc) { | |
539 if ((p1.distanceToLineSegmentBetweenSqd(p0, p3) < tolSqd && | |
540 p2.distanceToLineSegmentBetweenSqd(p0, p3) < tolSqd)) { | |
541 return append_point_to_contour(p3, prev, head, alloc); | |
542 } | |
543 SkPoint q[] = { | |
544 { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) }, | |
545 { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) }, | |
546 { SkScalarAve(p2.fX, p3.fX), SkScalarAve(p2.fY, p3.fY) } | |
547 }; | |
548 SkPoint r[] = { | |
549 { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) }, | |
550 { SkScalarAve(q[1].fX, q[2].fX), SkScalarAve(q[1].fY, q[2].fY) } | |
551 }; | |
552 SkPoint s = { SkScalarAve(r[0].fX, r[1].fX), SkScalarAve(r[0].fY, r[1].fY) } ; | |
553 prev = generate_cubic_points(p0, q[0], r[0], s, tolSqd, prev, head, alloc); | |
554 prev = generate_cubic_points(s, r[1], q[2], p3, tolSqd, prev, head, alloc); | |
555 return prev; | |
556 } | |
557 | |
558 void path_to_contours(const SkPath& path, SkScalar srcSpaceTol, const SkRect& cl ipBounds, | |
559 Vertex** contours, SkChunkAlloc& alloc) { | |
560 | |
561 SkScalar srcSpaceTolSqd = srcSpaceTol * srcSpaceTol; | |
egdaniel
2015/01/27 15:03:43
So it looks like you are using a device space path
Stephen White
2015/01/27 16:46:19
Things are named wrong. Now that we're no longer d
| |
562 | |
563 SkPoint pts[4]; | |
564 bool done = false; | |
565 SkPath::Iter iter(path, false); | |
566 Vertex* prev = NULL; | |
567 Vertex* head = NULL; | |
568 if (path.isInverseFillType()) { | |
569 SkPoint quad[4]; | |
570 clipBounds.toQuad(quad); | |
571 for (int i = 3; i >= 0; i--) { | |
572 prev = append_point_to_contour(quad[i], prev, &head, alloc); | |
573 } | |
574 head->fPrev = prev; | |
575 prev->fNext = head; | |
576 *contours++ = head; | |
577 head = prev = NULL; | |
578 } | |
579 while (!done) { | |
580 SkPath::Verb verb = iter.next(pts); | |
581 switch (verb) { | |
582 case SkPath::kConic_Verb: { | |
583 SkScalar weight = iter.conicWeight(); | |
584 SkAutoConicToQuads converter; | |
585 const SkPoint* quadPts = converter.computeQuads(pts, weight, src SpaceTolSqd); | |
586 for (int i = 0; i < converter.countQuads(); ++i) { | |
587 prev = generate_quadratic_points(quadPts[0], quadPts[1], qua dPts[2], | |
588 srcSpaceTolSqd, prev, &head , alloc); | |
589 quadPts += 2; | |
590 } | |
591 break; | |
592 } | |
593 case SkPath::kMove_Verb: | |
594 if (head) { | |
595 head->fPrev = prev; | |
596 prev->fNext = head; | |
597 *contours++ = head; | |
598 } | |
599 head = prev = NULL; | |
600 prev = append_point_to_contour(pts[0], prev, &head, alloc); | |
601 break; | |
602 case SkPath::kLine_Verb: { | |
603 prev = append_point_to_contour(pts[1], prev, &head, alloc); | |
604 break; | |
605 } | |
606 case SkPath::kQuad_Verb: { | |
607 prev = generate_quadratic_points(pts[0], pts[1], pts[2], srcSpac eTolSqd, prev, | |
608 &head, alloc); | |
609 break; | |
610 } | |
611 case SkPath::kCubic_Verb: { | |
612 prev = generate_cubic_points(pts[0], pts[1], pts[2], pts[3], | |
613 srcSpaceTolSqd, prev, &head, alloc); | |
614 break; | |
615 } | |
616 case SkPath::kClose_Verb: | |
617 if (head) { | |
618 head->fPrev = prev; | |
619 prev->fNext = head; | |
620 *contours++ = head; | |
621 } | |
622 head = prev = NULL; | |
623 break; | |
624 case SkPath::kDone_Verb: | |
625 if (head) { | |
626 head->fPrev = prev; | |
627 prev->fNext = head; | |
628 *contours++ = head; | |
629 } | |
630 done = true; | |
631 break; | |
632 } | |
633 } | |
634 } | |
635 | |
636 inline bool apply_fill_type(SkPath::FillType fillType, int winding) { | |
637 switch (fillType) { | |
638 case SkPath::kWinding_FillType: | |
639 return winding != 0; | |
640 case SkPath::kEvenOdd_FillType: | |
641 return (winding & 1) != 0; | |
642 case SkPath::kInverseWinding_FillType: | |
643 return winding == 1; | |
644 case SkPath::kInverseEvenOdd_FillType: | |
645 return (winding & 1) == 1; | |
646 default: | |
647 SkASSERT(false); | |
648 return false; | |
649 } | |
650 } | |
651 | |
652 Edge* new_edge(Vertex* prev, Vertex* next, SkChunkAlloc& alloc) { | |
653 int winding = prev->fPoint < next->fPoint ? 1 : -1; | |
654 Vertex* top = winding < 0 ? next : prev; | |
655 Vertex* bottom = winding < 0 ? prev : next; | |
656 return ALLOC_NEW(Edge, (top, bottom, winding), alloc); | |
657 } | |
658 | |
659 void remove_edge(Edge* edge, Edge** head) { | |
660 LOG("removing edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID); | |
661 SkASSERT(edge->isActive(head)); | |
662 remove<Edge, &Edge::fLeft, &Edge::fRight>(edge, head, NULL); | |
663 } | |
664 | |
665 void insert_edge(Edge* edge, Edge* prev, Edge** head) { | |
666 LOG("inserting edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID); | |
667 SkASSERT(!edge->isActive(head)); | |
668 Edge* next = prev ? prev->fRight : *head; | |
669 insert<Edge, &Edge::fLeft, &Edge::fRight>(edge, prev, next, head, NULL); | |
670 } | |
671 | |
672 void find_enclosing_edges(Vertex* v, Edge* head, Edge** left, Edge** right) { | |
673 if (v->fFirstEdgeAbove) { | |
674 *left = v->fFirstEdgeAbove->fLeft; | |
675 *right = v->fLastEdgeAbove->fRight; | |
676 return; | |
677 } | |
678 Edge* prev = NULL; | |
679 Edge* next; | |
680 for (next = head; next != NULL; next = next->fRight) { | |
681 if (next->isRightOf(v)) { | |
682 break; | |
683 } | |
684 prev = next; | |
685 } | |
686 *left = prev; | |
687 *right = next; | |
688 return; | |
689 } | |
690 | |
691 void find_enclosing_edges(Edge* edge, Edge* head, Edge** left, Edge** right) { | |
692 Edge* prev = NULL; | |
693 Edge* next; | |
694 for (next = head; next != NULL; next = next->fRight) { | |
695 if ((edge->fTop->fPoint > next->fTop->fPoint && next->isRightOf(edge->fT op)) || | |
696 (next->fTop->fPoint > edge->fTop->fPoint && edge->isLeftOf(next->fTo p)) || | |
697 (edge->fBottom->fPoint < next->fBottom->fPoint && next->isRightOf(ed ge->fBottom)) || | |
698 (next->fBottom->fPoint < edge->fBottom->fPoint && edge->isLeftOf(nex t->fBottom))) { | |
699 break; | |
700 } | |
701 prev = next; | |
702 } | |
703 *left = prev; | |
704 *right = next; | |
705 return; | |
706 } | |
707 | |
708 void fix_active_state(Edge* edge, Edge** activeEdges) { | |
709 if (edge->isActive(activeEdges)) { | |
710 if (edge->fBottom->fProcessed || !edge->fTop->fProcessed) { | |
711 remove_edge(edge, activeEdges); | |
712 } | |
713 } else if (edge->fTop->fProcessed && !edge->fBottom->fProcessed) { | |
714 Edge* left; | |
715 Edge* right; | |
716 find_enclosing_edges(edge, *activeEdges, &left, &right); | |
717 insert_edge(edge, left, activeEdges); | |
718 } | |
719 } | |
720 | |
721 void insert_edge_above(Edge* edge, Vertex* v) { | |
722 if (edge->fTop->fPoint == edge->fBottom->fPoint || | |
723 edge->fTop->fPoint > edge->fBottom->fPoint) { | |
724 SkASSERT(false); | |
725 return; | |
726 } | |
727 LOG("insert edge (%g -> %g) above vertex %g\n", edge->fTop->fID, edge->fBott om->fID, v->fID); | |
728 Edge* prev = NULL; | |
729 Edge* next; | |
730 for (next = v->fFirstEdgeAbove; next; next = next->fNextEdgeAbove) { | |
731 if (next->isRightOf(edge->fTop)) { | |
732 break; | |
733 } | |
734 prev = next; | |
735 } | |
736 insert<Edge, &Edge::fPrevEdgeAbove, &Edge::fNextEdgeAbove>( | |
737 edge, prev, next, &v->fFirstEdgeAbove, &v->fLastEdgeAbove); | |
738 } | |
739 | |
740 void insert_edge_below(Edge* edge, Vertex* v) { | |
741 if (edge->fTop->fPoint == edge->fBottom->fPoint || | |
742 edge->fTop->fPoint > edge->fBottom->fPoint) { | |
743 SkASSERT(false); | |
744 return; | |
745 } | |
746 LOG("insert edge (%g -> %g) below vertex %g\n", edge->fTop->fID, edge->fBott om->fID, v->fID); | |
747 Edge* prev = NULL; | |
748 Edge* next; | |
749 for (next = v->fFirstEdgeBelow; next; next = next->fNextEdgeBelow) { | |
750 if (next->isRightOf(edge->fBottom)) { | |
751 break; | |
752 } | |
753 prev = next; | |
754 } | |
755 insert<Edge, &Edge::fPrevEdgeBelow, &Edge::fNextEdgeBelow>( | |
756 edge, prev, next, &v->fFirstEdgeBelow, &v->fLastEdgeBelow); | |
757 } | |
758 | |
759 void remove_edge_above(Edge* edge) { | |
760 LOG("removing edge (%g -> %g) above vertex %g\n", edge->fTop->fID, edge->fBo ttom->fID, | |
761 edge->fBottom->fID); | |
762 remove<Edge, &Edge::fPrevEdgeAbove, &Edge::fNextEdgeAbove>( | |
763 edge, &edge->fBottom->fFirstEdgeAbove, &edge->fBottom->fLastEdgeAbove); | |
764 } | |
765 | |
766 void remove_edge_below(Edge* edge) { | |
767 LOG("removing edge (%g -> %g) below vertex %g\n", edge->fTop->fID, edge->fBo ttom->fID, | |
768 edge->fTop->fID); | |
769 remove<Edge, &Edge::fPrevEdgeBelow, &Edge::fNextEdgeBelow>( | |
770 edge, &edge->fTop->fFirstEdgeBelow, &edge->fTop->fLastEdgeBelow); | |
771 } | |
772 | |
773 void erase_edge_if_zero_winding(Edge* edge, Edge** head) { | |
774 if (edge->fWinding != 0) { | |
775 return; | |
776 } | |
777 LOG("erasing edge (%g -> %g)\n", edge->fTop->fID, edge->fBottom->fID); | |
778 remove_edge_above(edge); | |
779 remove_edge_below(edge); | |
780 if (edge->isActive(head)) { | |
781 remove_edge(edge, head); | |
782 } | |
783 } | |
784 | |
785 void merge_collinear_edges(Edge* edge, Edge** activeEdges); | |
786 | |
787 void set_top(Edge* edge, Vertex* v, Edge** activeEdges) { | |
788 remove_edge_below(edge); | |
789 edge->fTop = v; | |
790 edge->recompute(); | |
791 insert_edge_below(edge, v); | |
792 fix_active_state(edge, activeEdges); | |
793 merge_collinear_edges(edge, activeEdges); | |
794 } | |
795 | |
796 void set_bottom(Edge* edge, Vertex* v, Edge** activeEdges) { | |
797 remove_edge_above(edge); | |
798 edge->fBottom = v; | |
799 edge->recompute(); | |
800 insert_edge_above(edge, v); | |
801 fix_active_state(edge, activeEdges); | |
802 merge_collinear_edges(edge, activeEdges); | |
803 } | |
804 | |
805 void merge_edges_above(Edge* edge, Edge* other, Edge** activeEdges) { | |
806 if (coincident(edge->fTop->fPoint, other->fTop->fPoint)) { | |
807 LOG("merging coincident above edges (%g, %g) -> (%g, %g)\n", | |
808 edge->fTop->fPoint.fX, edge->fTop->fPoint.fY, | |
809 edge->fBottom->fPoint.fX, edge->fBottom->fPoint.fY); | |
810 other->fWinding += edge->fWinding; | |
811 erase_edge_if_zero_winding(other, activeEdges); | |
812 edge->fWinding = 0; | |
813 erase_edge_if_zero_winding(edge, activeEdges); | |
814 } else if (edge->fTop->fPoint < other->fTop->fPoint) { | |
815 other->fWinding += edge->fWinding; | |
816 erase_edge_if_zero_winding(other, activeEdges); | |
817 set_bottom(edge, other->fTop, activeEdges); | |
818 } else { | |
819 edge->fWinding += other->fWinding; | |
820 erase_edge_if_zero_winding(edge, activeEdges); | |
821 set_bottom(other, edge->fTop, activeEdges); | |
822 } | |
823 } | |
824 | |
825 void merge_edges_below(Edge* edge, Edge* other, Edge** activeEdges) { | |
826 if (coincident(edge->fBottom->fPoint, other->fBottom->fPoint)) { | |
827 LOG("merging coincident below edges (%g, %g) -> (%g, %g)\n", | |
828 edge->fTop->fPoint.fX, edge->fTop->fPoint.fY, | |
829 edge->fBottom->fPoint.fX, edge->fBottom->fPoint.fY); | |
830 other->fWinding += edge->fWinding; | |
831 erase_edge_if_zero_winding(other, activeEdges); | |
832 edge->fWinding = 0; | |
833 erase_edge_if_zero_winding(edge, activeEdges); | |
834 } else if (edge->fBottom->fPoint < other->fBottom->fPoint) { | |
835 edge->fWinding += other->fWinding; | |
836 erase_edge_if_zero_winding(edge, activeEdges); | |
837 set_top(other, edge->fBottom, activeEdges); | |
838 } else { | |
839 other->fWinding += edge->fWinding; | |
840 erase_edge_if_zero_winding(other, activeEdges); | |
841 set_top(edge, other->fBottom, activeEdges); | |
842 } | |
843 } | |
844 | |
845 void merge_collinear_edges(Edge* edge, Edge** activeEdges) { | |
846 if (edge->fPrevEdgeAbove && (edge->fTop == edge->fPrevEdgeAbove->fTop || | |
847 !edge->fPrevEdgeAbove->isLeftOf(edge->fTop))) { | |
848 merge_edges_above(edge, edge->fPrevEdgeAbove, activeEdges); | |
849 } else if (edge->fNextEdgeAbove && (edge->fTop == edge->fNextEdgeAbove->fTop || | |
850 !edge->isLeftOf(edge->fNextEdgeAbove->fT op))) { | |
851 merge_edges_above(edge, edge->fNextEdgeAbove, activeEdges); | |
852 } | |
853 if (edge->fPrevEdgeBelow && (edge->fBottom == edge->fPrevEdgeBelow->fBottom || | |
854 !edge->fPrevEdgeBelow->isLeftOf(edge->fBottom)) ) { | |
855 merge_edges_below(edge, edge->fPrevEdgeBelow, activeEdges); | |
856 } else if (edge->fNextEdgeBelow && (edge->fBottom == edge->fNextEdgeBelow->f Bottom || | |
857 !edge->isLeftOf(edge->fNextEdgeBelow->fB ottom))) { | |
858 merge_edges_below(edge, edge->fNextEdgeBelow, activeEdges); | |
859 } | |
860 } | |
861 | |
862 void split_edge(Edge* edge, Vertex* v, Edge** activeEdges, SkChunkAlloc& alloc); | |
863 | |
864 void cleanup_active_edges(Edge* edge, Edge** activeEdges, SkChunkAlloc& alloc) { | |
865 Vertex* top = edge->fTop; | |
866 Vertex* bottom = edge->fBottom; | |
867 if (edge->fLeft) { | |
868 Vertex* leftTop = edge->fLeft->fTop; | |
869 Vertex* leftBottom = edge->fLeft->fBottom; | |
870 if (top->fPoint > leftTop->fPoint && !edge->fLeft->isLeftOf(top)) { | |
871 split_edge(edge->fLeft, edge->fTop, activeEdges, alloc); | |
872 } else if (leftTop->fPoint > top->fPoint && !edge->isRightOf(leftTop)) { | |
873 split_edge(edge, leftTop, activeEdges, alloc); | |
874 } else if (bottom->fPoint < leftBottom->fPoint && !edge->fLeft->isLeftOf (bottom)) { | |
875 split_edge(edge->fLeft, bottom, activeEdges, alloc); | |
876 } else if (leftBottom->fPoint < bottom->fPoint && !edge->isRightOf(leftB ottom)) { | |
877 split_edge(edge, leftBottom, activeEdges, alloc); | |
878 } | |
879 } | |
880 if (edge->fRight) { | |
881 Vertex* rightTop = edge->fRight->fTop; | |
882 Vertex* rightBottom = edge->fRight->fBottom; | |
883 if (top->fPoint > rightTop->fPoint && !edge->fRight->isRightOf(top)) { | |
884 split_edge(edge->fRight, top, activeEdges, alloc); | |
885 } else if (rightTop->fPoint > top->fPoint && !edge->isLeftOf(rightTop)) { | |
886 split_edge(edge, rightTop, activeEdges, alloc); | |
887 } else if (bottom->fPoint < rightBottom->fPoint && !edge->fRight->isRigh tOf(bottom)) { | |
888 split_edge(edge->fRight, bottom, activeEdges, alloc); | |
889 } else if (rightBottom->fPoint < bottom->fPoint && !edge->isLeftOf(right Bottom)) { | |
890 split_edge(edge, rightBottom, activeEdges, alloc); | |
891 } | |
892 } | |
893 } | |
894 | |
895 void split_edge(Edge* edge, Vertex* v, Edge** activeEdges, SkChunkAlloc& alloc) { | |
896 LOG("splitting edge (%g -> %g) at vertex %g (%g, %g)\n", | |
897 edge->fTop->fID, edge->fBottom->fID, | |
898 v->fID, v->fPoint.fX, v->fPoint.fY); | |
899 Edge* newEdge = ALLOC_NEW(Edge, (v, edge->fBottom, edge->fWinding), alloc); | |
900 insert_edge_below(newEdge, v); | |
901 insert_edge_above(newEdge, edge->fBottom); | |
902 set_bottom(edge, v, activeEdges); | |
903 cleanup_active_edges(edge, activeEdges, alloc); | |
904 fix_active_state(newEdge, activeEdges); | |
905 merge_collinear_edges(newEdge, activeEdges); | |
906 } | |
907 | |
908 void merge_vertices(Vertex* src, Vertex* dst, Vertex** head, SkChunkAlloc& alloc ) { | |
909 LOG("found coincident verts at %g, %g; merging %g into %g\n", src->fPoint.fX , src->fPoint.fY, | |
910 src->fID, dst->fID); | |
911 for (Edge* edge = src->fFirstEdgeAbove; edge;) { | |
912 Edge* next = edge->fNextEdgeAbove; | |
913 set_bottom(edge, dst, NULL); | |
914 edge = next; | |
915 } | |
916 for (Edge* edge = src->fFirstEdgeBelow; edge;) { | |
917 Edge* next = edge->fNextEdgeBelow; | |
918 set_top(edge, dst, NULL); | |
919 edge = next; | |
920 } | |
921 remove<Vertex, &Vertex::fPrev, &Vertex::fNext>(src, head, NULL); | |
922 } | |
923 | |
924 Vertex* check_for_intersection(Edge* edge, Edge* other, Edge** activeEdges, SkCh unkAlloc& alloc) { | |
925 SkPoint p; | |
926 if (!edge || !other) { | |
927 return NULL; | |
928 } | |
929 if (edge->intersect(*other, &p)) { | |
930 Vertex* v; | |
931 LOG("found intersection, pt is %g, %g\n", p.fX, p.fY); | |
932 if (p == edge->fTop->fPoint || p < edge->fTop->fPoint) { | |
933 split_edge(other, edge->fTop, activeEdges, alloc); | |
934 v = edge->fTop; | |
935 } else if (p == edge->fBottom->fPoint || p > edge->fBottom->fPoint) { | |
936 split_edge(other, edge->fBottom, activeEdges, alloc); | |
937 v = edge->fBottom; | |
938 } else if (p == other->fTop->fPoint || p < other->fTop->fPoint) { | |
939 split_edge(edge, other->fTop, activeEdges, alloc); | |
940 v = other->fTop; | |
941 } else if (p == other->fBottom->fPoint || p > other->fBottom->fPoint) { | |
942 split_edge(edge, other->fBottom, activeEdges, alloc); | |
943 v = other->fBottom; | |
944 } else { | |
945 Vertex* nextV = edge->fTop; | |
946 while (p < nextV->fPoint) { | |
947 nextV = nextV->fPrev; | |
948 } | |
949 while (nextV->fPoint < p) { | |
950 nextV = nextV->fNext; | |
951 } | |
952 Vertex* prevV = nextV->fPrev; | |
953 if (coincident(prevV->fPoint, p)) { | |
954 v = prevV; | |
955 } else if (coincident(nextV->fPoint, p)) { | |
956 v = nextV; | |
957 } else { | |
958 v = ALLOC_NEW(Vertex, (p), alloc); | |
959 LOG("inserting between %g (%g, %g) and %g (%g, %g)\n", | |
960 prevV->fID, prevV->fPoint.fX, prevV->fPoint.fY, | |
961 nextV->fID, nextV->fPoint.fX, nextV->fPoint.fY); | |
962 #if LOGGING_ENABLED | |
963 v->fID = (nextV->fID + prevV->fID) * 0.5f; | |
964 #endif | |
965 v->fPrev = prevV; | |
966 v->fNext = nextV; | |
967 prevV->fNext = v; | |
968 nextV->fPrev = v; | |
969 } | |
970 split_edge(edge, v, activeEdges, alloc); | |
971 split_edge(other, v, activeEdges, alloc); | |
972 } | |
973 #ifdef SK_DEBUG | |
974 validate_connectivity(v); | |
975 #endif | |
976 return v; | |
977 } | |
978 return NULL; | |
979 } | |
980 | |
981 Vertex* sorted_merge(Vertex* a, Vertex* b); | |
982 | |
983 void front_back_split(Vertex* v, Vertex** pFront, Vertex** pBack) | |
984 { | |
985 Vertex* fast; | |
986 Vertex* slow; | |
987 if (!v || !v->fNext) { | |
988 *pFront = v; | |
989 *pBack = NULL; | |
990 } else { | |
991 slow = v; | |
992 fast = v->fNext; | |
993 | |
994 while (fast != NULL) { | |
995 fast = fast->fNext; | |
996 if (fast != NULL) { | |
997 slow = slow->fNext; | |
998 fast = fast->fNext; | |
999 } | |
1000 } | |
1001 | |
1002 *pFront = v; | |
1003 *pBack = slow->fNext; | |
1004 slow->fNext->fPrev = NULL; | |
1005 slow->fNext = NULL; | |
1006 } | |
1007 } | |
1008 | |
1009 void merge_sort(Vertex** head) | |
1010 { | |
1011 if (!*head || !(*head)->fNext) { | |
1012 return; | |
1013 } | |
1014 | |
1015 Vertex* a; | |
1016 Vertex* b; | |
1017 front_back_split(*head, &a, &b); | |
1018 | |
1019 merge_sort(&a); | |
1020 merge_sort(&b); | |
1021 | |
1022 *head = sorted_merge(a, b); | |
1023 } | |
1024 | |
1025 Vertex* sorted_merge(Vertex* a, Vertex* b) | |
1026 { | |
1027 if (!a) { | |
1028 return b; | |
1029 } else if (!b) { | |
1030 return a; | |
1031 } | |
1032 | |
1033 Vertex* result = NULL; | |
1034 | |
1035 if (a->fPoint < b->fPoint) { | |
1036 result = a; | |
1037 result->fNext = sorted_merge(a->fNext, b); | |
1038 } else { | |
1039 result = b; | |
1040 result->fNext = sorted_merge(a, b->fNext); | |
1041 } | |
1042 result->fNext->fPrev = result; | |
1043 return result; | |
1044 } | |
1045 | |
1046 void sanitize_contours(Vertex** contours, int contourCnt) { | |
1047 for (int i = 0; i < contourCnt; ++i) { | |
1048 SkASSERT(contours[i]); | |
1049 for (Vertex* v = contours[i];;) { | |
1050 if (coincident(v->fPrev->fPoint, v->fPoint)) { | |
1051 LOG("vertex %g,%g coincident; removing\n", v->fPoint.fX, v->fPoi nt.fY); | |
1052 if (v->fPrev == v) { | |
1053 contours[i] = NULL; | |
1054 break; | |
1055 } | |
1056 v->fPrev->fNext = v->fNext; | |
1057 v->fNext->fPrev = v->fPrev; | |
1058 if (contours[i] == v) { | |
1059 contours[i] = v->fNext; | |
1060 } | |
1061 v = v->fPrev; | |
1062 } else { | |
1063 v = v->fNext; | |
1064 if (v == contours[i]) break; | |
1065 } | |
1066 } | |
1067 } | |
1068 } | |
1069 | |
1070 void merge_coincident_vertices(Vertex** vertices, SkChunkAlloc& alloc) { | |
1071 for (Vertex* v = (*vertices)->fNext; v != NULL; v = v->fNext) { | |
1072 if (v->fPoint < v->fPrev->fPoint) { | |
1073 v->fPoint = v->fPrev->fPoint; | |
1074 } | |
1075 if (coincident(v->fPrev->fPoint, v->fPoint)) { | |
1076 merge_vertices(v->fPrev, v, vertices, alloc); | |
1077 } | |
1078 } | |
1079 } | |
1080 | |
1081 Vertex* build_edges(Vertex** contours, int contourCnt, SkChunkAlloc& alloc) { | |
1082 Vertex* vertices = NULL; | |
1083 Vertex* prev = NULL; | |
1084 for (int i = 0; i < contourCnt; ++i) { | |
1085 for (Vertex* v = contours[i]; v != NULL;) { | |
1086 Vertex* vNext = v->fNext; | |
1087 Edge* edge = new_edge(v->fPrev, v, alloc); | |
1088 if (edge->fWinding > 0) { | |
1089 insert_edge_below(edge, v->fPrev); | |
1090 insert_edge_above(edge, v); | |
1091 } else { | |
1092 insert_edge_below(edge, v); | |
1093 insert_edge_above(edge, v->fPrev); | |
1094 } | |
1095 merge_collinear_edges(edge, NULL); | |
1096 if (prev) { | |
1097 prev->fNext = v; | |
1098 v->fPrev = prev; | |
1099 } else { | |
1100 vertices = v; | |
1101 } | |
1102 prev = v; | |
1103 v = vNext; | |
1104 if (v == contours[i]) break; | |
1105 } | |
1106 } | |
1107 if (prev) { | |
1108 prev->fNext = vertices->fPrev = NULL; | |
1109 } | |
1110 return vertices; | |
1111 } | |
1112 | |
1113 void simplify(Vertex* vertices, SkChunkAlloc& alloc) { | |
1114 LOG("simplifying complex polygons\n"); | |
1115 Edge* activeEdges = NULL; | |
1116 for (Vertex* v = vertices; v != NULL; v = v->fNext) { | |
1117 if (!v->fFirstEdgeAbove && !v->fFirstEdgeBelow) { | |
1118 continue; | |
1119 } | |
1120 #if LOGGING_ENABLED | |
1121 LOG("\nvertex %g: (%g,%g)\n", v->fID, v->fPoint.fX, v->fPoint.fY); | |
1122 #endif | |
1123 #ifdef SK_DEBUG | |
1124 validate_connectivity(v); | |
1125 #endif | |
1126 Edge* leftEnclosingEdge = NULL; | |
1127 Edge* rightEnclosingEdge = NULL; | |
1128 bool restartChecks; | |
1129 do { | |
1130 restartChecks = false; | |
1131 find_enclosing_edges(v, activeEdges, &leftEnclosingEdge, &rightEnclo singEdge); | |
1132 if (v->fFirstEdgeBelow) { | |
1133 for (Edge* edge = v->fFirstEdgeBelow; edge != NULL; edge = edge- >fNextEdgeBelow) { | |
1134 if (check_for_intersection(edge, leftEnclosingEdge, &activeE dges, alloc)) { | |
1135 restartChecks = true; | |
1136 break; | |
1137 } | |
1138 if (check_for_intersection(edge, rightEnclosingEdge, &active Edges, alloc)) { | |
1139 restartChecks = true; | |
1140 break; | |
1141 } | |
1142 } | |
1143 } else { | |
1144 if (Vertex* pv = check_for_intersection(leftEnclosingEdge, right EnclosingEdge, | |
1145 &activeEdges, alloc)) { | |
1146 if (pv->fPoint < v->fPoint) { | |
1147 v = pv; | |
1148 } | |
1149 restartChecks = true; | |
1150 } | |
1151 | |
1152 } | |
1153 } while (restartChecks); | |
1154 SkASSERT(!leftEnclosingEdge || leftEnclosingEdge->isLeftOf(v)); | |
1155 SkASSERT(!rightEnclosingEdge || rightEnclosingEdge->isRightOf(v)); | |
1156 #ifdef SK_DEBUG | |
1157 validate_edges(activeEdges); | |
1158 #endif | |
1159 for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) { | |
1160 remove_edge(e, &activeEdges); | |
1161 } | |
1162 Edge* leftEdge = leftEnclosingEdge; | |
1163 for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) { | |
1164 insert_edge(e, leftEdge, &activeEdges); | |
1165 leftEdge = e; | |
1166 } | |
1167 v->fProcessed = true; | |
1168 } | |
1169 } | |
1170 | |
1171 Poly* tessellate(Vertex* vertices, SkChunkAlloc& alloc) { | |
1172 LOG("tessellating simple polygons\n"); | |
1173 Edge* activeEdges = NULL; | |
1174 Poly* polys = NULL; | |
1175 for (Vertex* v = vertices; v != NULL; v = v->fNext) { | |
1176 if (!v->fFirstEdgeAbove && !v->fFirstEdgeBelow) { | |
1177 continue; | |
1178 } | |
1179 #if LOGGING_ENABLED | |
1180 LOG("\nvertex %g: (%g,%g)\n", v->fID, v->fPoint.fX, v->fPoint.fY); | |
1181 #endif | |
1182 #ifdef SK_DEBUG | |
1183 validate_connectivity(v); | |
1184 #endif | |
1185 Edge* leftEnclosingEdge = NULL; | |
1186 Edge* rightEnclosingEdge = NULL; | |
1187 find_enclosing_edges(v, activeEdges, &leftEnclosingEdge, &rightEnclosing Edge); | |
1188 SkASSERT(!leftEnclosingEdge || leftEnclosingEdge->isLeftOf(v)); | |
1189 SkASSERT(!rightEnclosingEdge || rightEnclosingEdge->isRightOf(v)); | |
1190 #ifdef SK_DEBUG | |
1191 validate_edges(activeEdges); | |
1192 #endif | |
1193 Poly* leftPoly = NULL; | |
1194 Poly* rightPoly = NULL; | |
1195 if (v->fFirstEdgeAbove) { | |
1196 leftPoly = v->fFirstEdgeAbove->fLeftPoly; | |
1197 rightPoly = v->fLastEdgeAbove->fRightPoly; | |
1198 } else { | |
1199 leftPoly = leftEnclosingEdge ? leftEnclosingEdge->fRightPoly : NULL; | |
1200 rightPoly = rightEnclosingEdge ? rightEnclosingEdge->fLeftPoly : NUL L; | |
1201 } | |
1202 #if LOGGING_ENABLED | |
1203 LOG("edges above:\n"); | |
1204 for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) { | |
1205 LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID, | |
1206 e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRight Poly->fID : -1); | |
1207 } | |
1208 LOG("edges below:\n"); | |
1209 for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) { | |
1210 LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID, | |
1211 e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRight Poly->fID : -1); | |
1212 } | |
1213 #endif | |
1214 if (v->fFirstEdgeAbove) { | |
1215 if (leftPoly) { | |
1216 leftPoly = leftPoly->addVertex(v, Poly::kRight_Side, alloc); | |
1217 } | |
1218 if (rightPoly) { | |
1219 rightPoly = rightPoly->addVertex(v, Poly::kLeft_Side, alloc); | |
1220 } | |
1221 for (Edge* e = v->fFirstEdgeAbove; e != v->fLastEdgeAbove; e = e->fN extEdgeAbove) { | |
1222 Edge* leftEdge = e; | |
1223 Edge* rightEdge = e->fNextEdgeAbove; | |
1224 SkASSERT(rightEdge->isRightOf(leftEdge->fTop)); | |
1225 remove_edge(leftEdge, &activeEdges); | |
1226 if (leftEdge->fRightPoly) { | |
1227 leftEdge->fRightPoly->end(v, alloc); | |
1228 } | |
1229 if (rightEdge->fLeftPoly && rightEdge->fLeftPoly != leftEdge->fR ightPoly) { | |
1230 rightEdge->fLeftPoly->end(v, alloc); | |
1231 } | |
1232 } | |
1233 remove_edge(v->fLastEdgeAbove, &activeEdges); | |
1234 if (!v->fFirstEdgeBelow) { | |
1235 if (leftPoly && rightPoly && leftPoly != rightPoly) { | |
1236 SkASSERT(leftPoly->fPartner == NULL && rightPoly->fPartner = = NULL); | |
1237 rightPoly->fPartner = leftPoly; | |
1238 leftPoly->fPartner = rightPoly; | |
1239 } | |
1240 } | |
1241 } | |
1242 if (v->fFirstEdgeBelow) { | |
1243 if (!v->fFirstEdgeAbove) { | |
1244 if (leftPoly && leftPoly == rightPoly) { | |
1245 // Split the poly. | |
1246 if (leftPoly->fActive->fSide == Poly::kLeft_Side) { | |
1247 leftPoly = new_poly(&polys, leftEnclosingEdge->fTop, lef tPoly->fWinding, | |
1248 alloc); | |
1249 leftPoly->addVertex(v, Poly::kRight_Side, alloc); | |
1250 rightPoly->addVertex(v, Poly::kLeft_Side, alloc); | |
1251 leftEnclosingEdge->fRightPoly = leftPoly; | |
1252 } else { | |
1253 rightPoly = new_poly(&polys, rightEnclosingEdge->fTop, r ightPoly->fWinding, | |
1254 alloc); | |
1255 rightPoly->addVertex(v, Poly::kLeft_Side, alloc); | |
1256 leftPoly->addVertex(v, Poly::kRight_Side, alloc); | |
1257 rightEnclosingEdge->fLeftPoly = rightPoly; | |
1258 } | |
1259 } else { | |
1260 if (leftPoly) { | |
1261 leftPoly = leftPoly->addVertex(v, Poly::kRight_Side, all oc); | |
1262 } | |
1263 if (rightPoly) { | |
1264 rightPoly = rightPoly->addVertex(v, Poly::kLeft_Side, al loc); | |
1265 } | |
1266 } | |
1267 } | |
1268 Edge* leftEdge = v->fFirstEdgeBelow; | |
1269 leftEdge->fLeftPoly = leftPoly; | |
1270 insert_edge(leftEdge, leftEnclosingEdge, &activeEdges); | |
1271 for (Edge* rightEdge = leftEdge->fNextEdgeBelow; rightEdge; | |
1272 rightEdge = rightEdge->fNextEdgeBelow) { | |
1273 insert_edge(rightEdge, leftEdge, &activeEdges); | |
1274 int winding = leftEdge->fLeftPoly ? leftEdge->fLeftPoly->fWindin g : 0; | |
1275 winding += leftEdge->fWinding; | |
1276 if (winding != 0) { | |
1277 Poly* poly = new_poly(&polys, v, winding, alloc); | |
1278 leftEdge->fRightPoly = rightEdge->fLeftPoly = poly; | |
1279 } | |
1280 leftEdge = rightEdge; | |
1281 } | |
1282 v->fLastEdgeBelow->fRightPoly = rightPoly; | |
1283 } | |
1284 #ifdef SK_DEBUG | |
1285 validate_edges(activeEdges); | |
1286 #endif | |
1287 #if LOGGING_ENABLED | |
1288 LOG("\nactive edges:\n"); | |
1289 for (Edge* e = activeEdges; e != NULL; e = e->fRight) { | |
1290 LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID, | |
1291 e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRight Poly->fID : -1); | |
1292 } | |
1293 #endif | |
1294 } | |
1295 return polys; | |
1296 } | |
1297 | |
1298 Poly* contours_to_polys(Vertex** contours, int contourCnt, SkChunkAlloc& alloc) { | |
1299 #if LOGGING_ENABLED | |
1300 for (int i = 0; i < contourCnt; ++i) { | |
1301 Vertex* v = contours[i]; | |
1302 SkASSERT(v); | |
1303 LOG("path.moveTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY); | |
1304 for (v = v->fNext; v != contours[i]; v = v->fNext) { | |
1305 LOG("path.lineTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY); | |
1306 } | |
1307 } | |
1308 #endif | |
1309 sanitize_contours(contours, contourCnt); | |
1310 Vertex* vertices = build_edges(contours, contourCnt, alloc); | |
1311 if (!vertices) { | |
1312 return NULL; | |
1313 } | |
1314 | |
1315 // Sort vertices in Y (secondarily in X). | |
1316 merge_sort(&vertices); | |
1317 merge_coincident_vertices(&vertices, alloc); | |
1318 #if LOGGING_ENABLED | |
1319 for (Vertex* v = vertices; v != NULL; v = v->fNext) { | |
1320 static float gID = 0.0f; | |
1321 v->fID = gID++; | |
1322 } | |
1323 #endif | |
1324 simplify(vertices, alloc); | |
1325 return tessellate(vertices, alloc); | |
1326 } | |
1327 | |
1328 void* polys_to_triangles(Poly* polys, SkPath::FillType fillType, void* data) { | |
1329 void* d = data; | |
1330 for (Poly* poly = polys; poly; poly = poly->fNext) { | |
1331 if (apply_fill_type(fillType, poly->fWinding)) { | |
1332 d = poly->emit(d); | |
1333 } | |
1334 } | |
1335 return d; | |
1336 } | |
1337 | |
1338 }; | |
1339 | |
1340 GrTessellatingPathRenderer::GrTessellatingPathRenderer() { | |
1341 } | |
1342 | |
1343 GrPathRenderer::StencilSupport GrTessellatingPathRenderer::onGetStencilSupport( | |
1344 const GrDrawTarget*, | |
1345 const GrPipelineBuil der*, | |
1346 const SkPath&, | |
1347 const SkStrokeRec&) const { | |
1348 return GrPathRenderer::kNoSupport_StencilSupport; | |
1349 } | |
1350 | |
1351 bool GrTessellatingPathRenderer::canDrawPath(const GrDrawTarget* target, | |
1352 const GrPipelineBuilder* pipelineBu ilder, | |
1353 const SkMatrix& viewMatrix, | |
1354 const SkPath& path, | |
1355 const SkStrokeRec& stroke, | |
1356 bool antiAlias) const { | |
1357 return stroke.isFillStyle() && !antiAlias; | |
1358 } | |
1359 | |
1360 bool GrTessellatingPathRenderer::onDrawPath(GrDrawTarget* target, | |
1361 GrPipelineBuilder* pipelineBuilder, | |
1362 GrColor color, | |
1363 const SkMatrix& viewM, | |
1364 const SkPath& path, | |
1365 const SkStrokeRec& stroke, | |
1366 bool antiAlias) { | |
1367 SkASSERT(!antiAlias); | |
1368 SkPath deviceSpacePath; | |
1369 path.transform(viewM, &deviceSpacePath); | |
1370 SkASSERT(target); | |
1371 const GrRenderTarget* rt = pipelineBuilder->getRenderTarget(); | |
1372 if (NULL == rt) { | |
egdaniel
2015/01/27 15:03:43
can this check move before transforming the path i
Stephen White
2015/01/27 16:46:18
Done.
| |
1373 return false; | |
1374 } | |
1375 | |
1376 SkScalar tol = SK_Scalar1; | |
1377 | |
1378 int contourCnt; | |
1379 int maxPts = GrPathUtils::worstCasePointCount(deviceSpacePath, &contourCnt, SK_Scalar1); | |
1380 SkPath::FillType fillType = deviceSpacePath.getFillType(); | |
1381 if (SkPath::IsInverseFillType(fillType)) { | |
1382 contourCnt++; | |
1383 } | |
1384 | |
1385 if (maxPts <= 0) { | |
1386 return false; | |
1387 } | |
1388 LOG("got %d pts, %d contours\n", maxPts, contourCnt); | |
1389 | |
1390 SkAutoTDeleteArray<Vertex*> contours(SkNEW_ARRAY(Vertex *, contourCnt)); | |
1391 | |
1392 SkChunkAlloc alloc(maxPts * (3 * sizeof(Vertex) + sizeof(Edge))); | |
egdaniel
2015/01/27 15:03:43
Where is this coming from? Is this just a general
Stephen White
2015/01/27 16:46:19
It's a heuristic. Added a comment to explain.
| |
1393 SkIRect clipBounds; | |
1394 target->getClip()->getConservativeBounds(rt, &clipBounds); | |
1395 path_to_contours(deviceSpacePath, tol, SkRect::Make(clipBounds), contours.ge t(), alloc); | |
egdaniel
2015/01/27 15:03:43
does this implementation always end up giving you
Stephen White
2015/01/27 16:46:18
worstCasePointCount() always gives you the correct
| |
1396 Poly* polys; | |
1397 uint32_t flags = GrDefaultGeoProcFactory::kPosition_GPType; | |
1398 polys = contours_to_polys(contours.get(), contourCnt, alloc); | |
1399 SkAutoTUnref<const GrGeometryProcessor> gp( | |
1400 GrDefaultGeoProcFactory::Create(flags, color, SkMatrix::I(), SkMatrix::I ())); | |
1401 int count = 0; | |
1402 for (Poly* poly = polys; poly; poly = poly->fNext) { | |
1403 if (apply_fill_type(fillType, poly->fWinding) && poly->fCount >= 3) { | |
1404 count += (poly->fCount - 2) * (gWireframe ? 6 : 3); | |
1405 } | |
1406 } | |
1407 | |
1408 int stride = gp->getVertexStride(); | |
1409 GrDrawTarget::AutoReleaseGeometry arg; | |
1410 if (!arg.set(target, count, stride, 0)) { | |
1411 return false; | |
1412 } | |
1413 LOG("emitting %d verts\n", count); | |
1414 void* end = polys_to_triangles(polys, fillType, arg.vertices()); | |
1415 int actualCount = (static_cast<char*>(end) - static_cast<char*>(arg.vertices ())) / stride; | |
1416 LOG("actual count: %d\n", actualCount); | |
1417 SkASSERT(actualCount <= count); | |
1418 | |
1419 GrPrimitiveType primitiveType = gWireframe ? kLines_GrPrimitiveType | |
1420 : kTriangles_GrPrimitiveType; | |
1421 target->drawNonIndexed(pipelineBuilder, gp, primitiveType, 0, actualCount); | |
1422 | |
1423 return true; | |
1424 } | |
OLD | NEW |