Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(16)

Unified Diff: tools/perf/metrics/gpu_timeline.py

Issue 854833003: Added GPU performance metrics. (Closed) Base URL: https://chromium.googlesource.com/chromium/src.git@master
Patch Set: Get Metrics callback now returns a list of metrics Created 5 years, 11 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
Index: tools/perf/metrics/gpu_timeline.py
diff --git a/tools/perf/metrics/gpu_timeline.py b/tools/perf/metrics/gpu_timeline.py
new file mode 100644
index 0000000000000000000000000000000000000000..78e2dee9a7b4b56b9298a19762329406b87d4661
--- /dev/null
+++ b/tools/perf/metrics/gpu_timeline.py
@@ -0,0 +1,217 @@
+# Copyright 2015 The Chromium Authors. All rights reserved.
+# Use of this source code is governed by a BSD-style license that can be
+# found in the LICENSE file.
+import collections
+import math
+import sys
+
+from telemetry.timeline import model as model_module
+from telemetry.timeline import async_slice as async_slice_module
+from telemetry.value import scalar
+from telemetry.value import list_of_scalar_values
+from telemetry.web_perf.metrics import timeline_based_metric
+
+TOPLEVEL_GL_CATEGORY = 'gpu_toplevel'
+TOPLEVEL_SERVICE_CATEGORY = 'disabled-by-default-gpu.service'
+TOPLEVEL_DEVICE_CATEGORY = 'disabled-by-default-gpu.device'
+
+SERVICE_FRAME_END_MARKER = (TOPLEVEL_SERVICE_CATEGORY, 'SwapBuffer')
+DEVICE_FRAME_END_MARKER = (TOPLEVEL_DEVICE_CATEGORY, 'SwapBuffer')
+
+TRACKED_NAMES = { 'RenderCompositor': 'render_compositor',
+ 'BrowserCompositor': 'browser_compositor',
+ 'Compositor': 'browser_compositor' }
+
+GPU_SERVICE_DEVICE_VARIANCE = 5
+
+
+def CalculateFrameTimes(events_per_frame):
+ """Given a list of events per frame, returns a list of frame times."""
+ times_per_frame = []
+ for event_list in events_per_frame:
+ # Prefer to use thread_duration but use duration as fallback.
+ event_times = [(event.thread_duration or event.duration)
+ for event in event_list]
+ times_per_frame.append(sum(event_times))
+ return times_per_frame
+
+
+def TimelineName(name, source_type, value_type):
+ """Constructs the standard name given in the timeline.
+
+ Args:
+ name: The name of the timeline, for example "total", or "render_compositor".
+ source_type: One of "cpu", "gpu" or None. None is only used for total times.
+ value_type: the type of value. For example "mean", "stddev"...etc.
+ """
+ if source_type:
+ return '%s_%s_%s_time' % (name, value_type, source_type)
+ else:
+ return '%s_%s_time' % (name, value_type)
+
+
+class GPUTimelineMetric(timeline_based_metric.TimelineBasedMetric):
+ """Computes GPU based metrics."""
+
+ def __init__(self):
+ super(GPUTimelineMetric, self).__init__()
+
+ def AddResults(self, model, _, interaction_records, results):
nednguyen 2015/01/24 00:32:22 Does this implementation support overlapped intera
David Yen 2015/01/24 00:41:10 Done.
+ service_times = self._CalculateGPUTimelineData(model)
+ for value_item, durations in service_times.iteritems():
+ count = len(durations)
+ avg = 0.0
+ stddev = 0.0
+ maximum = 0.0
+ if count:
+ avg = sum(durations) / count
+ stddev = math.sqrt(sum((d - avg) ** 2 for d in durations) / count)
+ maximum = max(durations)
+
+ name, src = value_item
+
+ if src:
+ frame_times_name = '%s_%s_frame_times' % (name, src)
+ else:
+ frame_times_name = '%s_frame_times' % (name)
+
+ if durations:
+ results.AddValue(list_of_scalar_values.ListOfScalarValues(
+ results.current_page, frame_times_name, 'ms', durations))
+
+ results.AddValue(scalar.ScalarValue(results.current_page,
+ TimelineName(name, src, 'max'),
+ 'ms', maximum))
+ results.AddValue(scalar.ScalarValue(results.current_page,
+ TimelineName(name, src, 'mean'),
+ 'ms', avg))
+ results.AddValue(scalar.ScalarValue(results.current_page,
+ TimelineName(name, src, 'stddev'),
+ 'ms', stddev))
+
+ def _CalculateGPUTimelineData(self, model):
+ """Uses the model and calculates the times for various values for each
+ frame. The return value will be a dictionary of the following format:
+ {
+ EVENT_NAME1: [FRAME0_TIME, FRAME1_TIME...etc.],
+ EVENT_NAME2: [FRAME0_TIME, FRAME1_TIME...etc.],
+ }
+
+ Event Names:
+ mean_frame - Mean time each frame is calculated to be.
+ mean_gpu_service-cpu: Mean time the GPU service took per frame.
+ mean_gpu_device-gpu: Mean time the GPU device took per frame.
+ TRACKED_NAMES_service-cpu: Using the TRACKED_NAMES dictionary, we
+ include service traces per frame for the
+ tracked name.
+ TRACKED_NAMES_device-gpu: Using the TRACKED_NAMES dictionary, we
+ include device traces per frame for the
+ tracked name.
+ """
+ all_service_events = []
+ current_service_frame_end = sys.maxint
+ current_service_events = []
+
+ all_device_events = []
+ current_device_frame_end = sys.maxint
+ current_device_events = []
+
+ tracked_events = {}
+ tracked_events.update(dict([((value, 'cpu'), [])
+ for value in TRACKED_NAMES.itervalues()]))
+ tracked_events.update(dict([((value, 'gpu'), [])
+ for value in TRACKED_NAMES.itervalues()]))
+
+ current_tracked_service_events = collections.defaultdict(list)
+ current_tracked_device_events = collections.defaultdict(list)
+
+ event_iter = model.IterAllEvents(
+ event_type_predicate=model_module.IsSliceOrAsyncSlice)
+ for event in event_iter:
+ # Look for frame end markers
+ if (event.category, event.name) == SERVICE_FRAME_END_MARKER:
+ current_service_frame_end = event.end
+ elif (event.category, event.name) == DEVICE_FRAME_END_MARKER:
+ current_device_frame_end = event.end
+
+ # Track all other toplevel gl category markers
+ elif event.args.get('gl_category', None) == TOPLEVEL_GL_CATEGORY:
+ base_name = event.name
+ dash_index = base_name.rfind('-')
+ if dash_index != -1:
+ base_name = base_name[:dash_index]
+ tracked_name = TRACKED_NAMES.get(base_name, None)
+
+ if event.category == TOPLEVEL_SERVICE_CATEGORY:
+ # Check if frame has ended.
+ if event.start >= current_service_frame_end:
+ if current_service_events:
+ all_service_events.append(current_service_events)
+ for value in TRACKED_NAMES.itervalues():
+ tracked_events[(value, 'cpu')].append(
+ current_tracked_service_events[value])
+ current_service_events = []
+ current_service_frame_end = sys.maxint
+ current_tracked_service_events.clear()
+
+ current_service_events.append(event)
+ if tracked_name:
+ current_tracked_service_events[tracked_name].append(event)
+
+ elif event.category == TOPLEVEL_DEVICE_CATEGORY:
+ # Check if frame has ended.
+ if event.start >= current_device_frame_end:
+ if current_device_events:
+ all_device_events.append(current_device_events)
+ for value in TRACKED_NAMES.itervalues():
+ tracked_events[(value, 'gpu')].append(
+ current_tracked_device_events[value])
+ current_device_events = []
+ current_device_frame_end = sys.maxint
+ current_tracked_device_events.clear()
+
+ current_device_events.append(event)
+ if tracked_name:
+ current_tracked_device_events[tracked_name].append(event)
+
+ # Append Data for Last Frame.
+ if current_service_events:
+ all_service_events.append(current_service_events)
+ for value in TRACKED_NAMES.itervalues():
+ tracked_events[(value, 'cpu')].append(
+ current_tracked_service_events[value])
+ if current_device_events:
+ all_device_events.append(current_device_events)
+ for value in TRACKED_NAMES.itervalues():
+ tracked_events[(value, 'gpu')].append(
+ current_tracked_device_events[value])
+
+ # Calculate Mean Frame Time for the CPU side.
+ frame_times = []
+ if all_service_events:
+ prev_frame_end = all_service_events[0][0].start
+ for event_list in all_service_events:
+ last_service_event_in_frame = event_list[-1]
+ frame_times.append(last_service_event_in_frame.end - prev_frame_end)
+ prev_frame_end = last_service_event_in_frame.end
+
+ # Create the timeline data dictionary for service side traces.
+ total_frame_value = ('total', None)
+ cpu_frame_value = ('total', 'cpu')
+ gpu_frame_value = ('total', 'gpu')
+ timeline_data = {}
+ timeline_data[total_frame_value] = frame_times
+ timeline_data[cpu_frame_value] = CalculateFrameTimes(all_service_events)
+ for value in TRACKED_NAMES.itervalues():
+ cpu_value = (value, 'cpu')
+ timeline_data[cpu_value] = CalculateFrameTimes(tracked_events[cpu_value])
+
+ # Add in GPU side traces if it was supported (IE. device traces exist).
+ if all_device_events:
+ timeline_data[gpu_frame_value] = CalculateFrameTimes(all_device_events)
+ for value in TRACKED_NAMES.itervalues():
+ gpu_value = (value, 'gpu')
+ tracked_gpu_event = tracked_events[gpu_value]
+ timeline_data[gpu_value] = CalculateFrameTimes(tracked_gpu_event)
+
+ return timeline_data

Powered by Google App Engine
This is Rietveld 408576698