Index: tools/perf/metrics/gpu_timeline_unittest.py |
diff --git a/tools/perf/metrics/gpu_timeline_unittest.py b/tools/perf/metrics/gpu_timeline_unittest.py |
new file mode 100644 |
index 0000000000000000000000000000000000000000..1fc78bb7225b9433eb0fa84baf59b35393eaeda2 |
--- /dev/null |
+++ b/tools/perf/metrics/gpu_timeline_unittest.py |
@@ -0,0 +1,311 @@ |
+# Copyright 2015 The Chromium Authors. All rights reserved. |
+# Use of this source code is governed by a BSD-style license that can be |
+# found in the LICENSE file. |
+ |
+import unittest |
+ |
+from metrics import test_page_test_results |
+from metrics import gpu_timeline |
+from telemetry.timeline import async_slice as async_slice_module |
+from telemetry.timeline import slice as slice_module |
+from telemetry.timeline import model as model_module |
+from telemetry.web_perf import timeline_interaction_record as tir_module |
+ |
+SERVICE_FRAME_END_CATEGORY, SERVICE_FRAME_END_NAME = \ |
+ gpu_timeline.SERVICE_FRAME_END_MARKER |
+ |
+DEVICE_FRAME_END_CATEGORY, DEVICE_FRAME_END_NAME = \ |
+ gpu_timeline.DEVICE_FRAME_END_MARKER |
+ |
+INTERACTION_RECORDS = [tir_module.TimelineInteractionRecord("test-record", |
+ 0, |
+ float('inf'))] |
+ |
+ |
+def _CreateGPUSlices(parent_thread, name, start_time, duration, offset=0): |
+ args = { 'gl_category': gpu_timeline.TOPLEVEL_GL_CATEGORY } |
+ return (slice_module.Slice(parent_thread, |
+ gpu_timeline.TOPLEVEL_SERVICE_CATEGORY, |
+ name, start_time, |
+ args=args, |
+ duration=duration, |
+ thread_duration=duration), |
+ async_slice_module.AsyncSlice(gpu_timeline.TOPLEVEL_DEVICE_CATEGORY, |
+ name, start_time + offset, |
+ args=args, |
+ duration=duration)) |
+ |
+def _CreateFrameEndSlices(parent_thread, start_time, duration, offset=0): |
+ args = { 'gl_category': gpu_timeline.TOPLEVEL_GL_CATEGORY } |
+ return (slice_module.Slice(parent_thread, |
+ SERVICE_FRAME_END_CATEGORY, |
+ SERVICE_FRAME_END_NAME, |
+ start_time, |
+ args=args, |
+ duration=duration, |
+ thread_duration=duration), |
+ async_slice_module.AsyncSlice(DEVICE_FRAME_END_CATEGORY, |
+ DEVICE_FRAME_END_NAME, |
+ start_time + offset, |
+ args=args, |
+ duration=duration)) |
+ |
+ |
+def _AddSliceToThread(parent_thread, slice_item): |
+ if isinstance(slice_item, slice_module.Slice): |
+ parent_thread.PushSlice(slice_item) |
+ elif isinstance(slice_item, async_slice_module.AsyncSlice): |
+ parent_thread.AddAsyncSlice(slice_item) |
+ else: |
+ assert False, "Invalid Slice Item Type: %s" % type(slice_item) |
+ |
+ |
+class GPUTimelineTest(unittest.TestCase): |
+ def GetResults(self, metric, model, renderer_thread, interaction_records): |
+ results = test_page_test_results.TestPageTestResults(self) |
+ metric.AddResults(model, renderer_thread, interaction_records, results) |
+ return results |
+ |
+ def testExpectedResults(self): |
+ """Test a simply trace will output all expected results.""" |
+ model = model_module.TimelineModel() |
+ test_thread = model.GetOrCreateProcess(1).GetOrCreateThread(2) |
+ for slice_item in _CreateGPUSlices(test_thread, 'test_item', 100, 10): |
+ _AddSliceToThread(test_thread, slice_item) |
+ model.FinalizeImport() |
+ |
+ metric = gpu_timeline.GPUTimelineMetric() |
+ results = self.GetResults(metric, model=model, renderer_thread=test_thread, |
+ interaction_records=INTERACTION_RECORDS) |
+ |
+ for source_type in (None, 'cpu', 'gpu'): |
+ results.AssertHasPageSpecificScalarValue( |
+ gpu_timeline.TimelineName('total', source_type, 'max'), 'ms', 10) |
+ results.AssertHasPageSpecificScalarValue( |
+ gpu_timeline.TimelineName('total', source_type, 'mean'), 'ms', 10) |
+ results.AssertHasPageSpecificScalarValue( |
+ gpu_timeline.TimelineName('total', source_type, 'stddev'), 'ms', 0) |
+ |
+ for tracked_name in gpu_timeline.TRACKED_NAMES.values(): |
+ for source_type in ('cpu', 'gpu'): |
+ results.AssertHasPageSpecificScalarValue( |
+ gpu_timeline.TimelineName(tracked_name, source_type, 'max'), |
+ 'ms', 0) |
+ results.AssertHasPageSpecificScalarValue( |
+ gpu_timeline.TimelineName(tracked_name, source_type, 'mean'), |
+ 'ms', 0) |
+ results.AssertHasPageSpecificScalarValue( |
+ gpu_timeline.TimelineName(tracked_name, source_type, 'stddev'), |
+ 'ms', 0) |
+ |
+ def testNoDeviceTraceResults(self): |
+ """Test expected results when missing device traces.""" |
+ model = model_module.TimelineModel() |
+ test_thread = model.GetOrCreateProcess(1).GetOrCreateThread(2) |
+ service_slice, _ = _CreateGPUSlices(test_thread, 'test_item', 100, 10) |
+ _AddSliceToThread(test_thread, service_slice) |
+ model.FinalizeImport() |
+ |
+ metric = gpu_timeline.GPUTimelineMetric() |
+ results = self.GetResults(metric, model=model, renderer_thread=test_thread, |
+ interaction_records=INTERACTION_RECORDS) |
+ |
+ for source_type in (None, 'cpu'): |
+ results.AssertHasPageSpecificScalarValue( |
+ gpu_timeline.TimelineName('total', source_type, 'max'), 'ms', 10) |
+ results.AssertHasPageSpecificScalarValue( |
+ gpu_timeline.TimelineName('total', source_type, 'mean'), 'ms', 10) |
+ results.AssertHasPageSpecificScalarValue( |
+ gpu_timeline.TimelineName('total', source_type, 'stddev'), 'ms', 0) |
+ |
+ self.assertRaises(AssertionError, results.GetPageSpecificValueNamed, |
+ gpu_timeline.TimelineName('total', 'gpu', 'max')) |
+ self.assertRaises(AssertionError, results.GetPageSpecificValueNamed, |
+ gpu_timeline.TimelineName('total', 'gpu', 'mean')) |
+ self.assertRaises(AssertionError, results.GetPageSpecificValueNamed, |
+ gpu_timeline.TimelineName('total', 'gpu', 'stddev')) |
+ |
+ for name in gpu_timeline.TRACKED_NAMES.values(): |
+ results.AssertHasPageSpecificScalarValue( |
+ gpu_timeline.TimelineName(name, 'cpu', 'max'), 'ms', 0) |
+ results.AssertHasPageSpecificScalarValue( |
+ gpu_timeline.TimelineName(name, 'cpu', 'mean'), 'ms', 0) |
+ results.AssertHasPageSpecificScalarValue( |
+ gpu_timeline.TimelineName(name, 'cpu', 'stddev'), 'ms', 0) |
+ |
+ self.assertRaises(AssertionError, results.GetPageSpecificValueNamed, |
+ gpu_timeline.TimelineName(name, 'gpu', 'max')) |
+ self.assertRaises(AssertionError, results.GetPageSpecificValueNamed, |
+ gpu_timeline.TimelineName(name, 'gpu', 'mean')) |
+ self.assertRaises(AssertionError, results.GetPageSpecificValueNamed, |
+ gpu_timeline.TimelineName(name, 'gpu', 'stddev')) |
+ |
+ def testFrameSeparation(self): |
+ """Test frames are correctly calculated using the frame end marker.""" |
+ model = model_module.TimelineModel() |
+ test_thread = model.GetOrCreateProcess(1).GetOrCreateThread(2) |
+ |
+ # First frame is 10 seconds. |
+ for slice_item in _CreateGPUSlices(test_thread, 'test_item', 100, 10): |
+ _AddSliceToThread(test_thread, slice_item) |
+ |
+ # Mark frame end. |
+ for slice_item in _CreateFrameEndSlices(test_thread, 105, 5): |
+ _AddSliceToThread(test_thread, slice_item) |
+ |
+ # Second frame is 20 seconds. |
+ for slice_item in _CreateGPUSlices(test_thread, 'test_item', 110, 20): |
+ _AddSliceToThread(test_thread, slice_item) |
+ |
+ model.FinalizeImport() |
+ |
+ metric = gpu_timeline.GPUTimelineMetric() |
+ results = self.GetResults(metric, model=model, renderer_thread=test_thread, |
+ interaction_records=INTERACTION_RECORDS) |
+ |
+ for source_type in (None, 'cpu', 'gpu'): |
+ results.AssertHasPageSpecificScalarValue( |
+ gpu_timeline.TimelineName('total', source_type, 'max'), 'ms', 20) |
+ results.AssertHasPageSpecificScalarValue( |
+ gpu_timeline.TimelineName('total', source_type, 'mean'), 'ms', 15) |
+ results.AssertHasPageSpecificScalarValue( |
+ gpu_timeline.TimelineName('total', source_type, 'stddev'), 'ms', 5) |
+ |
+ def testFrameSeparationBeforeMarker(self): |
+ """Test frames are correctly calculated using the frame end marker.""" |
+ model = model_module.TimelineModel() |
+ test_thread = model.GetOrCreateProcess(1).GetOrCreateThread(2) |
+ |
+ # Mark frame end. |
+ for slice_item in _CreateFrameEndSlices(test_thread, 105, 5): |
+ _AddSliceToThread(test_thread, slice_item) |
+ |
+ # First frame is 10 seconds. |
+ for slice_item in _CreateGPUSlices(test_thread, 'test_item', 100, 10): |
+ _AddSliceToThread(test_thread, slice_item) |
+ |
+ # Second frame is 20 seconds. |
+ for slice_item in _CreateGPUSlices(test_thread, 'test_item', 110, 20): |
+ _AddSliceToThread(test_thread, slice_item) |
+ |
+ model.FinalizeImport() |
+ |
+ metric = gpu_timeline.GPUTimelineMetric() |
+ results = self.GetResults(metric, model=model, renderer_thread=test_thread, |
+ interaction_records=INTERACTION_RECORDS) |
+ |
+ for source_type in (None, 'cpu', 'gpu'): |
+ results.AssertHasPageSpecificScalarValue( |
+ gpu_timeline.TimelineName('total', source_type, 'max'), 'ms', 20) |
+ results.AssertHasPageSpecificScalarValue( |
+ gpu_timeline.TimelineName('total', source_type, 'mean'), 'ms', 15) |
+ results.AssertHasPageSpecificScalarValue( |
+ gpu_timeline.TimelineName('total', source_type, 'stddev'), 'ms', 5) |
+ |
+ def testTrackedNameTraces(self): |
+ """Be sure tracked names are being recorded correctly.""" |
+ self.assertGreater(len(gpu_timeline.TRACKED_NAMES), 0) |
+ |
+ marker_name, result_name = gpu_timeline.TRACKED_NAMES.iteritems().next() |
+ |
+ model = model_module.TimelineModel() |
+ test_thread = model.GetOrCreateProcess(1).GetOrCreateThread(2) |
+ for slice_item in _CreateGPUSlices(test_thread, marker_name, 100, 10): |
+ _AddSliceToThread(test_thread, slice_item) |
+ model.FinalizeImport() |
+ |
+ metric = gpu_timeline.GPUTimelineMetric() |
+ results = self.GetResults(metric, model=model, renderer_thread=test_thread, |
+ interaction_records=INTERACTION_RECORDS) |
+ |
+ for source_type in ('cpu', 'gpu'): |
+ results.AssertHasPageSpecificScalarValue( |
+ gpu_timeline.TimelineName(result_name, source_type, 'max'), |
+ 'ms', 10) |
+ results.AssertHasPageSpecificScalarValue( |
+ gpu_timeline.TimelineName(result_name, source_type, 'mean'), |
+ 'ms', 10) |
+ results.AssertHasPageSpecificScalarValue( |
+ gpu_timeline.TimelineName(result_name, source_type, 'stddev'), |
+ 'ms', 0) |
+ |
+ def testTrackedNameWithContextIDTraces(self): |
+ """Be sure tracked names with context IDs are recorded correctly.""" |
+ self.assertGreater(len(gpu_timeline.TRACKED_NAMES), 0) |
+ |
+ marker_name, result_name = gpu_timeline.TRACKED_NAMES.iteritems().next() |
+ context_id = '-0x1234' |
+ |
+ model = model_module.TimelineModel() |
+ test_thread = model.GetOrCreateProcess(1).GetOrCreateThread(2) |
+ for slice_item in _CreateGPUSlices(test_thread, marker_name + context_id, |
+ 100, 10): |
+ _AddSliceToThread(test_thread, slice_item) |
+ model.FinalizeImport() |
+ |
+ metric = gpu_timeline.GPUTimelineMetric() |
+ results = self.GetResults(metric, model=model, renderer_thread=test_thread, |
+ interaction_records=INTERACTION_RECORDS) |
+ |
+ for source_type in ('cpu', 'gpu'): |
+ results.AssertHasPageSpecificScalarValue( |
+ gpu_timeline.TimelineName(result_name, source_type, 'max'), |
+ 'ms', 10) |
+ results.AssertHasPageSpecificScalarValue( |
+ gpu_timeline.TimelineName(result_name, source_type, 'mean'), |
+ 'ms', 10) |
+ results.AssertHasPageSpecificScalarValue( |
+ gpu_timeline.TimelineName(result_name, source_type, 'stddev'), |
+ 'ms', 0) |
+ |
+ def testOutOfOrderDeviceTraces(self): |
+ """Out of order device traces are still matched up to correct services.""" |
+ self.assertGreaterEqual(len(gpu_timeline.TRACKED_NAMES), 2) |
+ |
+ tracked_names_iter = gpu_timeline.TRACKED_NAMES.iteritems() |
+ marker1_name, result1_name = tracked_names_iter.next() |
+ result2_name = result1_name |
+ while result2_name == result1_name: |
+ marker2_name, result2_name = tracked_names_iter.next() |
+ |
+ model = model_module.TimelineModel() |
+ test_thread = model.GetOrCreateProcess(1).GetOrCreateThread(2) |
+ |
+ # marker1 lasts for 10 seconds. |
+ service_item1, device_item1 = _CreateGPUSlices(test_thread, marker1_name, |
+ 100, 10) |
+ # marker2 lasts for 20 seconds. |
+ service_item2, device_item2 = _CreateGPUSlices(test_thread, marker2_name, |
+ 200, 20) |
+ |
+ # Append out of order |
+ _AddSliceToThread(test_thread, service_item1) |
+ _AddSliceToThread(test_thread, service_item2) |
+ _AddSliceToThread(test_thread, device_item2) |
+ _AddSliceToThread(test_thread, device_item1) |
+ |
+ model.FinalizeImport() |
+ |
+ metric = gpu_timeline.GPUTimelineMetric() |
+ results = self.GetResults(metric, model=model, renderer_thread=test_thread, |
+ interaction_records=INTERACTION_RECORDS) |
+ |
+ for source_type in ('cpu', 'gpu'): |
+ results.AssertHasPageSpecificScalarValue( |
+ gpu_timeline.TimelineName(result1_name, source_type, 'max'), |
+ 'ms', 10) |
+ results.AssertHasPageSpecificScalarValue( |
+ gpu_timeline.TimelineName(result1_name, source_type, 'mean'), |
+ 'ms', 10) |
+ results.AssertHasPageSpecificScalarValue( |
+ gpu_timeline.TimelineName(result1_name, source_type, 'stddev'), |
+ 'ms', 0) |
+ results.AssertHasPageSpecificScalarValue( |
+ gpu_timeline.TimelineName(result2_name, source_type, 'max'), |
+ 'ms', 20) |
+ results.AssertHasPageSpecificScalarValue( |
+ gpu_timeline.TimelineName(result2_name, source_type, 'mean'), |
+ 'ms', 20) |
+ results.AssertHasPageSpecificScalarValue( |
+ gpu_timeline.TimelineName(result2_name, source_type, 'stddev'), |
+ 'ms', 0) |