Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(73)

Side by Side Diff: tools/perf/metrics/gpu_timeline.py

Issue 854833003: Added GPU performance metrics. (Closed) Base URL: https://chromium.googlesource.com/chromium/src.git@master
Patch Set: Replaced gpu_times pagetest with standard timeline_based_measurement Created 5 years, 11 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
(Empty)
1 # Copyright 2015 The Chromium Authors. All rights reserved.
2 # Use of this source code is governed by a BSD-style license that can be
3 # found in the LICENSE file.
4 import collections
5 import math
6 import sys
7
8 from telemetry.timeline import model as model_module
9 from telemetry.timeline import async_slice as async_slice_module
10 from telemetry.value import scalar
11 from telemetry.value import list_of_scalar_values
12 from telemetry.web_perf.metrics import timeline_based_metric
13
14 TOPLEVEL_GL_CATEGORY = 'gpu_toplevel'
15 TOPLEVEL_SERVICE_CATEGORY = 'disabled-by-default-gpu.service'
16 TOPLEVEL_DEVICE_CATEGORY = 'disabled-by-default-gpu.device'
17
18 SERVICE_FRAME_END_MARKER = (TOPLEVEL_SERVICE_CATEGORY, 'SwapBuffer')
19 DEVICE_FRAME_END_MARKER = (TOPLEVEL_DEVICE_CATEGORY, 'SwapBuffer')
20
21 TRACKED_NAMES = { 'RenderCompositor': 'render_compositor',
22 'BrowserCompositor': 'browser_compositor',
23 'Compositor': 'browser_compositor' }
24
25 GPU_SERVICE_DEVICE_VARIANCE = 5
26
27
28 def CalculateFrameTimes(events_per_frame):
29 """Given a list of events per frame, returns a list of frame times."""
30 times_per_frame = []
31 for event_list in events_per_frame:
32 # Prefer to use thread_duration but use duration as fallback.
33 event_times = [(event.thread_duration or event.duration)
34 for event in event_list]
35 times_per_frame.append(sum(event_times))
36 return times_per_frame
37
38
39 def TimelineName(name, source_type, value_type):
40 """Constructs the standard name given in the timeline.
41
42 Args:
43 name: The name of the timeline, for example "total", or "render_compositor".
44 source_type: One of "cpu", "gpu" or None. None is only used for total times.
45 value_type: the type of value. For example "mean", "stddev"...etc.
46 """
47 if source_type:
48 return '%s_%s_%s_time' % (name, value_type, source_type)
49 else:
50 return '%s_%s_time' % (name, value_type)
51
52
53 class GPUTimelineMetric(timeline_based_metric.TimelineBasedMetric):
54 """Computes GPU based metrics."""
55
56 def __init__(self):
57 super(GPUTimelineMetric, self).__init__()
58
59 def AddResults(self, model, _, interaction_records, results):
60 service_times = self._CalculateGPUTimelineData(model)
61 for value_item, durations in service_times.iteritems():
62 count = len(durations)
63 avg = 0.0
64 stddev = 0.0
65 maximum = 0.0
66 if count:
67 avg = sum(durations) / count
68 stddev = math.sqrt(sum((d - avg) ** 2 for d in durations) / count)
69 maximum = max(durations)
70
71 name, src = value_item
72
73 if src:
74 frame_times_name = '%s_%s_frame_times' % (name, src)
75 else:
76 frame_times_name = '%s_frame_times' % (name)
77
78 if durations:
79 results.AddValue(list_of_scalar_values.ListOfScalarValues(
80 results.current_page, frame_times_name, 'ms', durations))
81
82 results.AddValue(scalar.ScalarValue(results.current_page,
83 TimelineName(name, src, 'max'),
84 'ms', maximum))
85 results.AddValue(scalar.ScalarValue(results.current_page,
86 TimelineName(name, src, 'mean'),
87 'ms', avg))
88 results.AddValue(scalar.ScalarValue(results.current_page,
89 TimelineName(name, src, 'stddev'),
90 'ms', stddev))
91
92 def _CalculateGPUTimelineData(self, model):
93 """Uses the model and calculates the times for various values for each
94 frame. The return value will be a dictionary of the following format:
95 {
96 EVENT_NAME1: [FRAME0_TIME, FRAME1_TIME...etc.],
97 EVENT_NAME2: [FRAME0_TIME, FRAME1_TIME...etc.],
98 }
99
100 Event Names:
101 mean_frame - Mean time each frame is calculated to be.
102 mean_gpu_service-cpu: Mean time the GPU service took per frame.
103 mean_gpu_device-gpu: Mean time the GPU device took per frame.
104 TRACKED_NAMES_service-cpu: Using the TRACKED_NAMES dictionary, we
105 include service traces per frame for the
106 tracked name.
107 TRACKED_NAMES_device-gpu: Using the TRACKED_NAMES dictionary, we
108 include device traces per frame for the
109 tracked name.
110 """
111 all_service_events = []
112 current_service_frame_end = sys.maxint
113 current_service_events = []
114
115 all_device_events = []
116 current_device_frame_end = sys.maxint
117 current_device_events = []
118
119 tracked_events = {}
120 tracked_events.update(dict([((value, 'cpu'), [])
121 for value in TRACKED_NAMES.itervalues()]))
122 tracked_events.update(dict([((value, 'gpu'), [])
123 for value in TRACKED_NAMES.itervalues()]))
124
125 current_tracked_service_events = collections.defaultdict(list)
126 current_tracked_device_events = collections.defaultdict(list)
127
128 event_iter = model.IterAllEvents(
129 event_type_predicate=model_module.IsSliceOrAsyncSlice)
130 for event in event_iter:
131 # Look for frame end markers
132 if (event.category, event.name) == SERVICE_FRAME_END_MARKER:
133 current_service_frame_end = event.end
134 elif (event.category, event.name) == DEVICE_FRAME_END_MARKER:
135 current_device_frame_end = event.end
136
137 # Track all other toplevel gl category markers
138 elif event.args.get('gl_category', None) == TOPLEVEL_GL_CATEGORY:
139 base_name = event.name
140 dash_index = base_name.rfind('-')
141 if dash_index != -1:
142 base_name = base_name[:dash_index]
143 tracked_name = TRACKED_NAMES.get(base_name, None)
144
145 if event.category == TOPLEVEL_SERVICE_CATEGORY:
146 # Check if frame has ended.
147 if event.start >= current_service_frame_end:
148 if current_service_events:
149 all_service_events.append(current_service_events)
150 for value in TRACKED_NAMES.itervalues():
151 tracked_events[(value, 'cpu')].append(
152 current_tracked_service_events[value])
153 current_service_events = []
154 current_service_frame_end = sys.maxint
155 current_tracked_service_events.clear()
156
157 current_service_events.append(event)
158 if tracked_name:
159 current_tracked_service_events[tracked_name].append(event)
160
161 elif event.category == TOPLEVEL_DEVICE_CATEGORY:
162 # Check if frame has ended.
163 if event.start >= current_device_frame_end:
164 if current_device_events:
165 all_device_events.append(current_device_events)
166 for value in TRACKED_NAMES.itervalues():
167 tracked_events[(value, 'gpu')].append(
168 current_tracked_device_events[value])
169 current_device_events = []
170 current_device_frame_end = sys.maxint
171 current_tracked_device_events.clear()
172
173 current_device_events.append(event)
174 if tracked_name:
175 current_tracked_device_events[tracked_name].append(event)
176
177 # Append Data for Last Frame.
178 if current_service_events:
179 all_service_events.append(current_service_events)
180 for value in TRACKED_NAMES.itervalues():
181 tracked_events[(value, 'cpu')].append(
182 current_tracked_service_events[value])
183 if current_device_events:
184 all_device_events.append(current_device_events)
185 for value in TRACKED_NAMES.itervalues():
186 tracked_events[(value, 'gpu')].append(
187 current_tracked_device_events[value])
188
189 # Calculate Mean Frame Time for the CPU side.
190 frame_times = []
191 if all_service_events:
192 prev_frame_end = all_service_events[0][0].start
193 for event_list in all_service_events:
194 last_service_event_in_frame = event_list[-1]
195 frame_times.append(last_service_event_in_frame.end - prev_frame_end)
196 prev_frame_end = last_service_event_in_frame.end
197
198 # Create the timeline data dictionary for service side traces.
199 total_frame_value = ('total', None)
200 cpu_frame_value = ('total', 'cpu')
201 gpu_frame_value = ('total', 'gpu')
202 timeline_data = {}
203 timeline_data[total_frame_value] = frame_times
204 timeline_data[cpu_frame_value] = CalculateFrameTimes(all_service_events)
205 for value in TRACKED_NAMES.itervalues():
206 cpu_value = (value, 'cpu')
207 timeline_data[cpu_value] = CalculateFrameTimes(tracked_events[cpu_value])
208
209 # Add in GPU side traces if it was supported (IE. device traces exist).
210 if all_device_events:
211 timeline_data[gpu_frame_value] = CalculateFrameTimes(all_device_events)
212 for value in TRACKED_NAMES.itervalues():
213 gpu_value = (value, 'gpu')
214 tracked_gpu_event = tracked_events[gpu_value]
215 timeline_data[gpu_value] = CalculateFrameTimes(tracked_gpu_event)
216
217 return timeline_data
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698