OLD | NEW |
| (Empty) |
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. | |
2 // Use of this source code is governed by a BSD-style license that can be | |
3 // found in the LICENSE file. | |
4 | |
5 #include "ui/gfx/skbitmap_operations.h" | |
6 | |
7 #include <algorithm> | |
8 #include <string.h> | |
9 | |
10 #include "base/logging.h" | |
11 #include "skia/ext/refptr.h" | |
12 #include "third_party/skia/include/core/SkBitmap.h" | |
13 #include "third_party/skia/include/core/SkCanvas.h" | |
14 #include "third_party/skia/include/core/SkColorFilter.h" | |
15 #include "third_party/skia/include/core/SkColorPriv.h" | |
16 #include "third_party/skia/include/core/SkUnPreMultiply.h" | |
17 #include "third_party/skia/include/effects/SkBlurImageFilter.h" | |
18 #include "ui/gfx/insets.h" | |
19 #include "ui/gfx/point.h" | |
20 #include "ui/gfx/size.h" | |
21 | |
22 // static | |
23 SkBitmap SkBitmapOperations::CreateInvertedBitmap(const SkBitmap& image) { | |
24 DCHECK(image.colorType() == kN32_SkColorType); | |
25 | |
26 SkAutoLockPixels lock_image(image); | |
27 | |
28 SkBitmap inverted; | |
29 inverted.allocN32Pixels(image.width(), image.height()); | |
30 | |
31 for (int y = 0; y < image.height(); ++y) { | |
32 uint32* image_row = image.getAddr32(0, y); | |
33 uint32* dst_row = inverted.getAddr32(0, y); | |
34 | |
35 for (int x = 0; x < image.width(); ++x) { | |
36 uint32 image_pixel = image_row[x]; | |
37 dst_row[x] = (image_pixel & 0xFF000000) | | |
38 (0x00FFFFFF - (image_pixel & 0x00FFFFFF)); | |
39 } | |
40 } | |
41 | |
42 return inverted; | |
43 } | |
44 | |
45 // static | |
46 SkBitmap SkBitmapOperations::CreateBlendedBitmap(const SkBitmap& first, | |
47 const SkBitmap& second, | |
48 double alpha) { | |
49 DCHECK((alpha >= 0) && (alpha <= 1)); | |
50 DCHECK(first.width() == second.width()); | |
51 DCHECK(first.height() == second.height()); | |
52 DCHECK(first.bytesPerPixel() == second.bytesPerPixel()); | |
53 DCHECK(first.colorType() == kN32_SkColorType); | |
54 | |
55 // Optimize for case where we won't need to blend anything. | |
56 static const double alpha_min = 1.0 / 255; | |
57 static const double alpha_max = 254.0 / 255; | |
58 if (alpha < alpha_min) | |
59 return first; | |
60 else if (alpha > alpha_max) | |
61 return second; | |
62 | |
63 SkAutoLockPixels lock_first(first); | |
64 SkAutoLockPixels lock_second(second); | |
65 | |
66 SkBitmap blended; | |
67 blended.allocN32Pixels(first.width(), first.height()); | |
68 | |
69 double first_alpha = 1 - alpha; | |
70 | |
71 for (int y = 0; y < first.height(); ++y) { | |
72 uint32* first_row = first.getAddr32(0, y); | |
73 uint32* second_row = second.getAddr32(0, y); | |
74 uint32* dst_row = blended.getAddr32(0, y); | |
75 | |
76 for (int x = 0; x < first.width(); ++x) { | |
77 uint32 first_pixel = first_row[x]; | |
78 uint32 second_pixel = second_row[x]; | |
79 | |
80 int a = static_cast<int>((SkColorGetA(first_pixel) * first_alpha) + | |
81 (SkColorGetA(second_pixel) * alpha)); | |
82 int r = static_cast<int>((SkColorGetR(first_pixel) * first_alpha) + | |
83 (SkColorGetR(second_pixel) * alpha)); | |
84 int g = static_cast<int>((SkColorGetG(first_pixel) * first_alpha) + | |
85 (SkColorGetG(second_pixel) * alpha)); | |
86 int b = static_cast<int>((SkColorGetB(first_pixel) * first_alpha) + | |
87 (SkColorGetB(second_pixel) * alpha)); | |
88 | |
89 dst_row[x] = SkColorSetARGB(a, r, g, b); | |
90 } | |
91 } | |
92 | |
93 return blended; | |
94 } | |
95 | |
96 // static | |
97 SkBitmap SkBitmapOperations::CreateMaskedBitmap(const SkBitmap& rgb, | |
98 const SkBitmap& alpha) { | |
99 DCHECK(rgb.width() == alpha.width()); | |
100 DCHECK(rgb.height() == alpha.height()); | |
101 DCHECK(rgb.bytesPerPixel() == alpha.bytesPerPixel()); | |
102 DCHECK(rgb.colorType() == kN32_SkColorType); | |
103 DCHECK(alpha.colorType() == kN32_SkColorType); | |
104 | |
105 SkBitmap masked; | |
106 masked.allocN32Pixels(rgb.width(), rgb.height()); | |
107 | |
108 SkAutoLockPixels lock_rgb(rgb); | |
109 SkAutoLockPixels lock_alpha(alpha); | |
110 SkAutoLockPixels lock_masked(masked); | |
111 | |
112 for (int y = 0; y < masked.height(); ++y) { | |
113 uint32* rgb_row = rgb.getAddr32(0, y); | |
114 uint32* alpha_row = alpha.getAddr32(0, y); | |
115 uint32* dst_row = masked.getAddr32(0, y); | |
116 | |
117 for (int x = 0; x < masked.width(); ++x) { | |
118 SkColor rgb_pixel = SkUnPreMultiply::PMColorToColor(rgb_row[x]); | |
119 SkColor alpha_pixel = SkUnPreMultiply::PMColorToColor(alpha_row[x]); | |
120 int alpha = SkAlphaMul(SkColorGetA(rgb_pixel), | |
121 SkAlpha255To256(SkColorGetA(alpha_pixel))); | |
122 int alpha_256 = SkAlpha255To256(alpha); | |
123 dst_row[x] = SkColorSetARGB(alpha, | |
124 SkAlphaMul(SkColorGetR(rgb_pixel), alpha_256), | |
125 SkAlphaMul(SkColorGetG(rgb_pixel), alpha_256), | |
126 SkAlphaMul(SkColorGetB(rgb_pixel), | |
127 alpha_256)); | |
128 } | |
129 } | |
130 | |
131 return masked; | |
132 } | |
133 | |
134 // static | |
135 SkBitmap SkBitmapOperations::CreateButtonBackground(SkColor color, | |
136 const SkBitmap& image, | |
137 const SkBitmap& mask) { | |
138 DCHECK(image.colorType() == kN32_SkColorType); | |
139 DCHECK(mask.colorType() == kN32_SkColorType); | |
140 | |
141 SkBitmap background; | |
142 background.allocN32Pixels(mask.width(), mask.height()); | |
143 | |
144 double bg_a = SkColorGetA(color); | |
145 double bg_r = SkColorGetR(color); | |
146 double bg_g = SkColorGetG(color); | |
147 double bg_b = SkColorGetB(color); | |
148 | |
149 SkAutoLockPixels lock_mask(mask); | |
150 SkAutoLockPixels lock_image(image); | |
151 SkAutoLockPixels lock_background(background); | |
152 | |
153 for (int y = 0; y < mask.height(); ++y) { | |
154 uint32* dst_row = background.getAddr32(0, y); | |
155 uint32* image_row = image.getAddr32(0, y % image.height()); | |
156 uint32* mask_row = mask.getAddr32(0, y); | |
157 | |
158 for (int x = 0; x < mask.width(); ++x) { | |
159 uint32 image_pixel = image_row[x % image.width()]; | |
160 | |
161 double img_a = SkColorGetA(image_pixel); | |
162 double img_r = SkColorGetR(image_pixel); | |
163 double img_g = SkColorGetG(image_pixel); | |
164 double img_b = SkColorGetB(image_pixel); | |
165 | |
166 double img_alpha = static_cast<double>(img_a) / 255.0; | |
167 double img_inv = 1 - img_alpha; | |
168 | |
169 double mask_a = static_cast<double>(SkColorGetA(mask_row[x])) / 255.0; | |
170 | |
171 dst_row[x] = SkColorSetARGB( | |
172 static_cast<int>(std::min(255.0, bg_a + img_a) * mask_a), | |
173 static_cast<int>(((bg_r * img_inv) + (img_r * img_alpha)) * mask_a), | |
174 static_cast<int>(((bg_g * img_inv) + (img_g * img_alpha)) * mask_a), | |
175 static_cast<int>(((bg_b * img_inv) + (img_b * img_alpha)) * mask_a)); | |
176 } | |
177 } | |
178 | |
179 return background; | |
180 } | |
181 | |
182 namespace { | |
183 namespace HSLShift { | |
184 | |
185 // TODO(viettrungluu): Some things have yet to be optimized at all. | |
186 | |
187 // Notes on and conventions used in the following code | |
188 // | |
189 // Conventions: | |
190 // - R, G, B, A = obvious; as variables: |r|, |g|, |b|, |a| (see also below) | |
191 // - H, S, L = obvious; as variables: |h|, |s|, |l| (see also below) | |
192 // - variables derived from S, L shift parameters: |sdec| and |sinc| for S | |
193 // increase and decrease factors, |ldec| and |linc| for L (see also below) | |
194 // | |
195 // To try to optimize HSL shifts, we do several things: | |
196 // - Avoid unpremultiplying (then processing) then premultiplying. This means | |
197 // that R, G, B values (and also L, but not H and S) should be treated as | |
198 // having a range of 0..A (where A is alpha). | |
199 // - Do things in integer/fixed-point. This avoids costly conversions between | |
200 // floating-point and integer, though I should study the tradeoff more | |
201 // carefully (presumably, at some point of processing complexity, converting | |
202 // and processing using simpler floating-point code will begin to win in | |
203 // performance). Also to be studied is the speed/type of floating point | |
204 // conversions; see, e.g., <http://www.stereopsis.com/sree/fpu2006.html>. | |
205 // | |
206 // Conventions for fixed-point arithmetic | |
207 // - Each function has a constant denominator (called |den|, which should be a | |
208 // power of 2), appropriate for the computations done in that function. | |
209 // - A value |x| is then typically represented by a numerator, named |x_num|, | |
210 // so that its actual value is |x_num / den| (casting to floating-point | |
211 // before division). | |
212 // - To obtain |x_num| from |x|, simply multiply by |den|, i.e., |x_num = x * | |
213 // den| (casting appropriately). | |
214 // - When necessary, a value |x| may also be represented as a numerator over | |
215 // the denominator squared (set |den2 = den * den|). In such a case, the | |
216 // corresponding variable is called |x_num2| (so that its actual value is | |
217 // |x_num^2 / den2|. | |
218 // - The representation of the product of |x| and |y| is be called |x_y_num| if | |
219 // |x * y == x_y_num / den|, and |xy_num2| if |x * y == x_y_num2 / den2|. In | |
220 // the latter case, notice that one can calculate |x_y_num2 = x_num * y_num|. | |
221 | |
222 // Routine used to process a line; typically specialized for specific kinds of | |
223 // HSL shifts (to optimize). | |
224 typedef void (*LineProcessor)(const color_utils::HSL&, | |
225 const SkPMColor*, | |
226 SkPMColor*, | |
227 int width); | |
228 | |
229 enum OperationOnH { kOpHNone = 0, kOpHShift, kNumHOps }; | |
230 enum OperationOnS { kOpSNone = 0, kOpSDec, kOpSInc, kNumSOps }; | |
231 enum OperationOnL { kOpLNone = 0, kOpLDec, kOpLInc, kNumLOps }; | |
232 | |
233 // Epsilon used to judge when shift values are close enough to various critical | |
234 // values (typically 0.5, which yields a no-op for S and L shifts. 1/256 should | |
235 // be small enough, but let's play it safe> | |
236 const double epsilon = 0.0005; | |
237 | |
238 // Line processor: default/universal (i.e., old-school). | |
239 void LineProcDefault(const color_utils::HSL& hsl_shift, | |
240 const SkPMColor* in, | |
241 SkPMColor* out, | |
242 int width) { | |
243 for (int x = 0; x < width; x++) { | |
244 out[x] = SkPreMultiplyColor(color_utils::HSLShift( | |
245 SkUnPreMultiply::PMColorToColor(in[x]), hsl_shift)); | |
246 } | |
247 } | |
248 | |
249 // Line processor: no-op (i.e., copy). | |
250 void LineProcCopy(const color_utils::HSL& hsl_shift, | |
251 const SkPMColor* in, | |
252 SkPMColor* out, | |
253 int width) { | |
254 DCHECK(hsl_shift.h < 0); | |
255 DCHECK(hsl_shift.s < 0 || fabs(hsl_shift.s - 0.5) < HSLShift::epsilon); | |
256 DCHECK(hsl_shift.l < 0 || fabs(hsl_shift.l - 0.5) < HSLShift::epsilon); | |
257 memcpy(out, in, static_cast<size_t>(width) * sizeof(out[0])); | |
258 } | |
259 | |
260 // Line processor: H no-op, S no-op, L decrease. | |
261 void LineProcHnopSnopLdec(const color_utils::HSL& hsl_shift, | |
262 const SkPMColor* in, | |
263 SkPMColor* out, | |
264 int width) { | |
265 const uint32_t den = 65536; | |
266 | |
267 DCHECK(hsl_shift.h < 0); | |
268 DCHECK(hsl_shift.s < 0 || fabs(hsl_shift.s - 0.5) < HSLShift::epsilon); | |
269 DCHECK(hsl_shift.l <= 0.5 - HSLShift::epsilon && hsl_shift.l >= 0); | |
270 | |
271 uint32_t ldec_num = static_cast<uint32_t>(hsl_shift.l * 2 * den); | |
272 for (int x = 0; x < width; x++) { | |
273 uint32_t a = SkGetPackedA32(in[x]); | |
274 uint32_t r = SkGetPackedR32(in[x]); | |
275 uint32_t g = SkGetPackedG32(in[x]); | |
276 uint32_t b = SkGetPackedB32(in[x]); | |
277 r = r * ldec_num / den; | |
278 g = g * ldec_num / den; | |
279 b = b * ldec_num / den; | |
280 out[x] = SkPackARGB32(a, r, g, b); | |
281 } | |
282 } | |
283 | |
284 // Line processor: H no-op, S no-op, L increase. | |
285 void LineProcHnopSnopLinc(const color_utils::HSL& hsl_shift, | |
286 const SkPMColor* in, | |
287 SkPMColor* out, | |
288 int width) { | |
289 const uint32_t den = 65536; | |
290 | |
291 DCHECK(hsl_shift.h < 0); | |
292 DCHECK(hsl_shift.s < 0 || fabs(hsl_shift.s - 0.5) < HSLShift::epsilon); | |
293 DCHECK(hsl_shift.l >= 0.5 + HSLShift::epsilon && hsl_shift.l <= 1); | |
294 | |
295 uint32_t linc_num = static_cast<uint32_t>((hsl_shift.l - 0.5) * 2 * den); | |
296 for (int x = 0; x < width; x++) { | |
297 uint32_t a = SkGetPackedA32(in[x]); | |
298 uint32_t r = SkGetPackedR32(in[x]); | |
299 uint32_t g = SkGetPackedG32(in[x]); | |
300 uint32_t b = SkGetPackedB32(in[x]); | |
301 r += (a - r) * linc_num / den; | |
302 g += (a - g) * linc_num / den; | |
303 b += (a - b) * linc_num / den; | |
304 out[x] = SkPackARGB32(a, r, g, b); | |
305 } | |
306 } | |
307 | |
308 // Saturation changes modifications in RGB | |
309 // | |
310 // (Note that as a further complication, the values we deal in are | |
311 // premultiplied, so R/G/B values must be in the range 0..A. For mathematical | |
312 // purposes, one may as well use r=R/A, g=G/A, b=B/A. Without loss of | |
313 // generality, assume that R/G/B values are in the range 0..1.) | |
314 // | |
315 // Let Max = max(R,G,B), Min = min(R,G,B), and Med be the median value. Then L = | |
316 // (Max+Min)/2. If L is to remain constant, Max+Min must also remain constant. | |
317 // | |
318 // For H to remain constant, first, the (numerical) order of R/G/B (from | |
319 // smallest to largest) must remain the same. Second, all the ratios | |
320 // (R-G)/(Max-Min), (R-B)/(Max-Min), (G-B)/(Max-Min) must remain constant (of | |
321 // course, if Max = Min, then S = 0 and no saturation change is well-defined, | |
322 // since H is not well-defined). | |
323 // | |
324 // Let C_max be a colour with value Max, C_min be one with value Min, and C_med | |
325 // the remaining colour. Increasing saturation (to the maximum) is accomplished | |
326 // by increasing the value of C_max while simultaneously decreasing C_min and | |
327 // changing C_med so that the ratios are maintained; for the latter, it suffices | |
328 // to keep (C_med-C_min)/(C_max-C_min) constant (and equal to | |
329 // (Med-Min)/(Max-Min)). | |
330 | |
331 // Line processor: H no-op, S decrease, L no-op. | |
332 void LineProcHnopSdecLnop(const color_utils::HSL& hsl_shift, | |
333 const SkPMColor* in, | |
334 SkPMColor* out, | |
335 int width) { | |
336 DCHECK(hsl_shift.h < 0); | |
337 DCHECK(hsl_shift.s >= 0 && hsl_shift.s <= 0.5 - HSLShift::epsilon); | |
338 DCHECK(hsl_shift.l < 0 || fabs(hsl_shift.l - 0.5) < HSLShift::epsilon); | |
339 | |
340 const int32_t denom = 65536; | |
341 int32_t s_numer = static_cast<int32_t>(hsl_shift.s * 2 * denom); | |
342 for (int x = 0; x < width; x++) { | |
343 int32_t a = static_cast<int32_t>(SkGetPackedA32(in[x])); | |
344 int32_t r = static_cast<int32_t>(SkGetPackedR32(in[x])); | |
345 int32_t g = static_cast<int32_t>(SkGetPackedG32(in[x])); | |
346 int32_t b = static_cast<int32_t>(SkGetPackedB32(in[x])); | |
347 | |
348 int32_t vmax, vmin; | |
349 if (r > g) { // This uses 3 compares rather than 4. | |
350 vmax = std::max(r, b); | |
351 vmin = std::min(g, b); | |
352 } else { | |
353 vmax = std::max(g, b); | |
354 vmin = std::min(r, b); | |
355 } | |
356 | |
357 // Use denom * L to avoid rounding. | |
358 int32_t denom_l = (vmax + vmin) * (denom / 2); | |
359 int32_t s_numer_l = (vmax + vmin) * s_numer / 2; | |
360 | |
361 r = (denom_l + r * s_numer - s_numer_l) / denom; | |
362 g = (denom_l + g * s_numer - s_numer_l) / denom; | |
363 b = (denom_l + b * s_numer - s_numer_l) / denom; | |
364 out[x] = SkPackARGB32(a, r, g, b); | |
365 } | |
366 } | |
367 | |
368 // Line processor: H no-op, S decrease, L decrease. | |
369 void LineProcHnopSdecLdec(const color_utils::HSL& hsl_shift, | |
370 const SkPMColor* in, | |
371 SkPMColor* out, | |
372 int width) { | |
373 DCHECK(hsl_shift.h < 0); | |
374 DCHECK(hsl_shift.s >= 0 && hsl_shift.s <= 0.5 - HSLShift::epsilon); | |
375 DCHECK(hsl_shift.l >= 0 && hsl_shift.l <= 0.5 - HSLShift::epsilon); | |
376 | |
377 // Can't be too big since we need room for denom*denom and a bit for sign. | |
378 const int32_t denom = 1024; | |
379 int32_t l_numer = static_cast<int32_t>(hsl_shift.l * 2 * denom); | |
380 int32_t s_numer = static_cast<int32_t>(hsl_shift.s * 2 * denom); | |
381 for (int x = 0; x < width; x++) { | |
382 int32_t a = static_cast<int32_t>(SkGetPackedA32(in[x])); | |
383 int32_t r = static_cast<int32_t>(SkGetPackedR32(in[x])); | |
384 int32_t g = static_cast<int32_t>(SkGetPackedG32(in[x])); | |
385 int32_t b = static_cast<int32_t>(SkGetPackedB32(in[x])); | |
386 | |
387 int32_t vmax, vmin; | |
388 if (r > g) { // This uses 3 compares rather than 4. | |
389 vmax = std::max(r, b); | |
390 vmin = std::min(g, b); | |
391 } else { | |
392 vmax = std::max(g, b); | |
393 vmin = std::min(r, b); | |
394 } | |
395 | |
396 // Use denom * L to avoid rounding. | |
397 int32_t denom_l = (vmax + vmin) * (denom / 2); | |
398 int32_t s_numer_l = (vmax + vmin) * s_numer / 2; | |
399 | |
400 r = (denom_l + r * s_numer - s_numer_l) * l_numer / (denom * denom); | |
401 g = (denom_l + g * s_numer - s_numer_l) * l_numer / (denom * denom); | |
402 b = (denom_l + b * s_numer - s_numer_l) * l_numer / (denom * denom); | |
403 out[x] = SkPackARGB32(a, r, g, b); | |
404 } | |
405 } | |
406 | |
407 // Line processor: H no-op, S decrease, L increase. | |
408 void LineProcHnopSdecLinc(const color_utils::HSL& hsl_shift, | |
409 const SkPMColor* in, | |
410 SkPMColor* out, | |
411 int width) { | |
412 DCHECK(hsl_shift.h < 0); | |
413 DCHECK(hsl_shift.s >= 0 && hsl_shift.s <= 0.5 - HSLShift::epsilon); | |
414 DCHECK(hsl_shift.l >= 0.5 + HSLShift::epsilon && hsl_shift.l <= 1); | |
415 | |
416 // Can't be too big since we need room for denom*denom and a bit for sign. | |
417 const int32_t denom = 1024; | |
418 int32_t l_numer = static_cast<int32_t>((hsl_shift.l - 0.5) * 2 * denom); | |
419 int32_t s_numer = static_cast<int32_t>(hsl_shift.s * 2 * denom); | |
420 for (int x = 0; x < width; x++) { | |
421 int32_t a = static_cast<int32_t>(SkGetPackedA32(in[x])); | |
422 int32_t r = static_cast<int32_t>(SkGetPackedR32(in[x])); | |
423 int32_t g = static_cast<int32_t>(SkGetPackedG32(in[x])); | |
424 int32_t b = static_cast<int32_t>(SkGetPackedB32(in[x])); | |
425 | |
426 int32_t vmax, vmin; | |
427 if (r > g) { // This uses 3 compares rather than 4. | |
428 vmax = std::max(r, b); | |
429 vmin = std::min(g, b); | |
430 } else { | |
431 vmax = std::max(g, b); | |
432 vmin = std::min(r, b); | |
433 } | |
434 | |
435 // Use denom * L to avoid rounding. | |
436 int32_t denom_l = (vmax + vmin) * (denom / 2); | |
437 int32_t s_numer_l = (vmax + vmin) * s_numer / 2; | |
438 | |
439 r = denom_l + r * s_numer - s_numer_l; | |
440 g = denom_l + g * s_numer - s_numer_l; | |
441 b = denom_l + b * s_numer - s_numer_l; | |
442 | |
443 r = (r * denom + (a * denom - r) * l_numer) / (denom * denom); | |
444 g = (g * denom + (a * denom - g) * l_numer) / (denom * denom); | |
445 b = (b * denom + (a * denom - b) * l_numer) / (denom * denom); | |
446 out[x] = SkPackARGB32(a, r, g, b); | |
447 } | |
448 } | |
449 | |
450 const LineProcessor kLineProcessors[kNumHOps][kNumSOps][kNumLOps] = { | |
451 { // H: kOpHNone | |
452 { // S: kOpSNone | |
453 LineProcCopy, // L: kOpLNone | |
454 LineProcHnopSnopLdec, // L: kOpLDec | |
455 LineProcHnopSnopLinc // L: kOpLInc | |
456 }, | |
457 { // S: kOpSDec | |
458 LineProcHnopSdecLnop, // L: kOpLNone | |
459 LineProcHnopSdecLdec, // L: kOpLDec | |
460 LineProcHnopSdecLinc // L: kOpLInc | |
461 }, | |
462 { // S: kOpSInc | |
463 LineProcDefault, // L: kOpLNone | |
464 LineProcDefault, // L: kOpLDec | |
465 LineProcDefault // L: kOpLInc | |
466 } | |
467 }, | |
468 { // H: kOpHShift | |
469 { // S: kOpSNone | |
470 LineProcDefault, // L: kOpLNone | |
471 LineProcDefault, // L: kOpLDec | |
472 LineProcDefault // L: kOpLInc | |
473 }, | |
474 { // S: kOpSDec | |
475 LineProcDefault, // L: kOpLNone | |
476 LineProcDefault, // L: kOpLDec | |
477 LineProcDefault // L: kOpLInc | |
478 }, | |
479 { // S: kOpSInc | |
480 LineProcDefault, // L: kOpLNone | |
481 LineProcDefault, // L: kOpLDec | |
482 LineProcDefault // L: kOpLInc | |
483 } | |
484 } | |
485 }; | |
486 | |
487 } // namespace HSLShift | |
488 } // namespace | |
489 | |
490 // static | |
491 SkBitmap SkBitmapOperations::CreateHSLShiftedBitmap( | |
492 const SkBitmap& bitmap, | |
493 const color_utils::HSL& hsl_shift) { | |
494 // Default to NOPs. | |
495 HSLShift::OperationOnH H_op = HSLShift::kOpHNone; | |
496 HSLShift::OperationOnS S_op = HSLShift::kOpSNone; | |
497 HSLShift::OperationOnL L_op = HSLShift::kOpLNone; | |
498 | |
499 if (hsl_shift.h >= 0 && hsl_shift.h <= 1) | |
500 H_op = HSLShift::kOpHShift; | |
501 | |
502 // Saturation shift: 0 -> fully desaturate, 0.5 -> NOP, 1 -> fully saturate. | |
503 if (hsl_shift.s >= 0 && hsl_shift.s <= (0.5 - HSLShift::epsilon)) | |
504 S_op = HSLShift::kOpSDec; | |
505 else if (hsl_shift.s >= (0.5 + HSLShift::epsilon)) | |
506 S_op = HSLShift::kOpSInc; | |
507 | |
508 // Lightness shift: 0 -> black, 0.5 -> NOP, 1 -> white. | |
509 if (hsl_shift.l >= 0 && hsl_shift.l <= (0.5 - HSLShift::epsilon)) | |
510 L_op = HSLShift::kOpLDec; | |
511 else if (hsl_shift.l >= (0.5 + HSLShift::epsilon)) | |
512 L_op = HSLShift::kOpLInc; | |
513 | |
514 HSLShift::LineProcessor line_proc = | |
515 HSLShift::kLineProcessors[H_op][S_op][L_op]; | |
516 | |
517 DCHECK(bitmap.empty() == false); | |
518 DCHECK(bitmap.colorType() == kN32_SkColorType); | |
519 | |
520 SkBitmap shifted; | |
521 shifted.allocN32Pixels(bitmap.width(), bitmap.height()); | |
522 | |
523 SkAutoLockPixels lock_bitmap(bitmap); | |
524 SkAutoLockPixels lock_shifted(shifted); | |
525 | |
526 // Loop through the pixels of the original bitmap. | |
527 for (int y = 0; y < bitmap.height(); ++y) { | |
528 SkPMColor* pixels = bitmap.getAddr32(0, y); | |
529 SkPMColor* tinted_pixels = shifted.getAddr32(0, y); | |
530 | |
531 (*line_proc)(hsl_shift, pixels, tinted_pixels, bitmap.width()); | |
532 } | |
533 | |
534 return shifted; | |
535 } | |
536 | |
537 // static | |
538 SkBitmap SkBitmapOperations::CreateTiledBitmap(const SkBitmap& source, | |
539 int src_x, int src_y, | |
540 int dst_w, int dst_h) { | |
541 DCHECK(source.colorType() == kN32_SkColorType); | |
542 | |
543 SkBitmap cropped; | |
544 cropped.allocN32Pixels(dst_w, dst_h); | |
545 | |
546 SkAutoLockPixels lock_source(source); | |
547 SkAutoLockPixels lock_cropped(cropped); | |
548 | |
549 // Loop through the pixels of the original bitmap. | |
550 for (int y = 0; y < dst_h; ++y) { | |
551 int y_pix = (src_y + y) % source.height(); | |
552 while (y_pix < 0) | |
553 y_pix += source.height(); | |
554 | |
555 uint32* source_row = source.getAddr32(0, y_pix); | |
556 uint32* dst_row = cropped.getAddr32(0, y); | |
557 | |
558 for (int x = 0; x < dst_w; ++x) { | |
559 int x_pix = (src_x + x) % source.width(); | |
560 while (x_pix < 0) | |
561 x_pix += source.width(); | |
562 | |
563 dst_row[x] = source_row[x_pix]; | |
564 } | |
565 } | |
566 | |
567 return cropped; | |
568 } | |
569 | |
570 // static | |
571 SkBitmap SkBitmapOperations::DownsampleByTwoUntilSize(const SkBitmap& bitmap, | |
572 int min_w, int min_h) { | |
573 if ((bitmap.width() <= min_w) || (bitmap.height() <= min_h) || | |
574 (min_w < 0) || (min_h < 0)) | |
575 return bitmap; | |
576 | |
577 // Since bitmaps are refcounted, this copy will be fast. | |
578 SkBitmap current = bitmap; | |
579 while ((current.width() >= min_w * 2) && (current.height() >= min_h * 2) && | |
580 (current.width() > 1) && (current.height() > 1)) | |
581 current = DownsampleByTwo(current); | |
582 return current; | |
583 } | |
584 | |
585 // static | |
586 SkBitmap SkBitmapOperations::DownsampleByTwo(const SkBitmap& bitmap) { | |
587 // Handle the nop case. | |
588 if ((bitmap.width() <= 1) || (bitmap.height() <= 1)) | |
589 return bitmap; | |
590 | |
591 SkBitmap result; | |
592 result.allocN32Pixels((bitmap.width() + 1) / 2, (bitmap.height() + 1) / 2); | |
593 | |
594 SkAutoLockPixels lock(bitmap); | |
595 | |
596 const int resultLastX = result.width() - 1; | |
597 const int srcLastX = bitmap.width() - 1; | |
598 | |
599 for (int dest_y = 0; dest_y < result.height(); ++dest_y) { | |
600 const int src_y = dest_y << 1; | |
601 const SkPMColor* SK_RESTRICT cur_src0 = bitmap.getAddr32(0, src_y); | |
602 const SkPMColor* SK_RESTRICT cur_src1 = cur_src0; | |
603 if (src_y + 1 < bitmap.height()) | |
604 cur_src1 = bitmap.getAddr32(0, src_y + 1); | |
605 | |
606 SkPMColor* SK_RESTRICT cur_dst = result.getAddr32(0, dest_y); | |
607 | |
608 for (int dest_x = 0; dest_x <= resultLastX; ++dest_x) { | |
609 // This code is based on downsampleby2_proc32 in SkBitmap.cpp. It is very | |
610 // clever in that it does two channels at once: alpha and green ("ag") | |
611 // and red and blue ("rb"). Each channel gets averaged across 4 pixels | |
612 // to get the result. | |
613 int bump_x = (dest_x << 1) < srcLastX; | |
614 SkPMColor tmp, ag, rb; | |
615 | |
616 // Top left pixel of the 2x2 block. | |
617 tmp = cur_src0[0]; | |
618 ag = (tmp >> 8) & 0xFF00FF; | |
619 rb = tmp & 0xFF00FF; | |
620 | |
621 // Top right pixel of the 2x2 block. | |
622 tmp = cur_src0[bump_x]; | |
623 ag += (tmp >> 8) & 0xFF00FF; | |
624 rb += tmp & 0xFF00FF; | |
625 | |
626 // Bottom left pixel of the 2x2 block. | |
627 tmp = cur_src1[0]; | |
628 ag += (tmp >> 8) & 0xFF00FF; | |
629 rb += tmp & 0xFF00FF; | |
630 | |
631 // Bottom right pixel of the 2x2 block. | |
632 tmp = cur_src1[bump_x]; | |
633 ag += (tmp >> 8) & 0xFF00FF; | |
634 rb += tmp & 0xFF00FF; | |
635 | |
636 // Put the channels back together, dividing each by 4 to get the average. | |
637 // |ag| has the alpha and green channels shifted right by 8 bits from | |
638 // there they should end up, so shifting left by 6 gives them in the | |
639 // correct position divided by 4. | |
640 *cur_dst++ = ((rb >> 2) & 0xFF00FF) | ((ag << 6) & 0xFF00FF00); | |
641 | |
642 cur_src0 += 2; | |
643 cur_src1 += 2; | |
644 } | |
645 } | |
646 | |
647 return result; | |
648 } | |
649 | |
650 // static | |
651 SkBitmap SkBitmapOperations::UnPreMultiply(const SkBitmap& bitmap) { | |
652 if (bitmap.isNull()) | |
653 return bitmap; | |
654 if (bitmap.isOpaque()) | |
655 return bitmap; | |
656 | |
657 SkImageInfo info = bitmap.info(); | |
658 info.fAlphaType = kOpaque_SkAlphaType; | |
659 SkBitmap opaque_bitmap; | |
660 opaque_bitmap.allocPixels(info); | |
661 | |
662 { | |
663 SkAutoLockPixels bitmap_lock(bitmap); | |
664 SkAutoLockPixels opaque_bitmap_lock(opaque_bitmap); | |
665 for (int y = 0; y < opaque_bitmap.height(); y++) { | |
666 for (int x = 0; x < opaque_bitmap.width(); x++) { | |
667 uint32 src_pixel = *bitmap.getAddr32(x, y); | |
668 uint32* dst_pixel = opaque_bitmap.getAddr32(x, y); | |
669 SkColor unmultiplied = SkUnPreMultiply::PMColorToColor(src_pixel); | |
670 *dst_pixel = unmultiplied; | |
671 } | |
672 } | |
673 } | |
674 | |
675 return opaque_bitmap; | |
676 } | |
677 | |
678 // static | |
679 SkBitmap SkBitmapOperations::CreateTransposedBitmap(const SkBitmap& image) { | |
680 DCHECK(image.colorType() == kN32_SkColorType); | |
681 | |
682 SkBitmap transposed; | |
683 transposed.allocN32Pixels(image.height(), image.width()); | |
684 | |
685 SkAutoLockPixels lock_image(image); | |
686 SkAutoLockPixels lock_transposed(transposed); | |
687 | |
688 for (int y = 0; y < image.height(); ++y) { | |
689 uint32* image_row = image.getAddr32(0, y); | |
690 for (int x = 0; x < image.width(); ++x) { | |
691 uint32* dst = transposed.getAddr32(y, x); | |
692 *dst = image_row[x]; | |
693 } | |
694 } | |
695 | |
696 return transposed; | |
697 } | |
698 | |
699 // static | |
700 SkBitmap SkBitmapOperations::CreateColorMask(const SkBitmap& bitmap, | |
701 SkColor c) { | |
702 DCHECK(bitmap.colorType() == kN32_SkColorType); | |
703 | |
704 SkBitmap color_mask; | |
705 color_mask.allocN32Pixels(bitmap.width(), bitmap.height()); | |
706 color_mask.eraseARGB(0, 0, 0, 0); | |
707 | |
708 SkCanvas canvas(color_mask); | |
709 | |
710 skia::RefPtr<SkColorFilter> color_filter = skia::AdoptRef( | |
711 SkColorFilter::CreateModeFilter(c, SkXfermode::kSrcIn_Mode)); | |
712 SkPaint paint; | |
713 paint.setColorFilter(color_filter.get()); | |
714 canvas.drawBitmap(bitmap, SkIntToScalar(0), SkIntToScalar(0), &paint); | |
715 return color_mask; | |
716 } | |
717 | |
718 // static | |
719 SkBitmap SkBitmapOperations::CreateDropShadow( | |
720 const SkBitmap& bitmap, | |
721 const gfx::ShadowValues& shadows) { | |
722 DCHECK(bitmap.colorType() == kN32_SkColorType); | |
723 | |
724 // Shadow margin insets are negative values because they grow outside. | |
725 // Negate them here as grow direction is not important and only pixel value | |
726 // is of interest here. | |
727 gfx::Insets shadow_margin = -gfx::ShadowValue::GetMargin(shadows); | |
728 | |
729 SkBitmap image_with_shadow; | |
730 image_with_shadow.allocN32Pixels(bitmap.width() + shadow_margin.width(), | |
731 bitmap.height() + shadow_margin.height()); | |
732 image_with_shadow.eraseARGB(0, 0, 0, 0); | |
733 | |
734 SkCanvas canvas(image_with_shadow); | |
735 canvas.translate(SkIntToScalar(shadow_margin.left()), | |
736 SkIntToScalar(shadow_margin.top())); | |
737 | |
738 SkPaint paint; | |
739 for (size_t i = 0; i < shadows.size(); ++i) { | |
740 const gfx::ShadowValue& shadow = shadows[i]; | |
741 SkBitmap shadow_image = SkBitmapOperations::CreateColorMask(bitmap, | |
742 shadow.color()); | |
743 | |
744 skia::RefPtr<SkBlurImageFilter> filter = | |
745 skia::AdoptRef(SkBlurImageFilter::Create( | |
746 SkDoubleToScalar(shadow.blur()), SkDoubleToScalar(shadow.blur()))); | |
747 paint.setImageFilter(filter.get()); | |
748 | |
749 canvas.saveLayer(0, &paint); | |
750 canvas.drawBitmap(shadow_image, | |
751 SkIntToScalar(shadow.x()), | |
752 SkIntToScalar(shadow.y())); | |
753 canvas.restore(); | |
754 } | |
755 | |
756 canvas.drawBitmap(bitmap, SkIntToScalar(0), SkIntToScalar(0)); | |
757 return image_with_shadow; | |
758 } | |
759 | |
760 // static | |
761 SkBitmap SkBitmapOperations::Rotate(const SkBitmap& source, | |
762 RotationAmount rotation) { | |
763 SkBitmap result; | |
764 SkScalar angle = SkFloatToScalar(0.0f); | |
765 | |
766 switch (rotation) { | |
767 case ROTATION_90_CW: | |
768 angle = SkFloatToScalar(90.0f); | |
769 result.allocN32Pixels(source.height(), source.width()); | |
770 break; | |
771 case ROTATION_180_CW: | |
772 angle = SkFloatToScalar(180.0f); | |
773 result.allocN32Pixels(source.width(), source.height()); | |
774 break; | |
775 case ROTATION_270_CW: | |
776 angle = SkFloatToScalar(270.0f); | |
777 result.allocN32Pixels(source.height(), source.width()); | |
778 break; | |
779 } | |
780 | |
781 SkCanvas canvas(result); | |
782 canvas.clear(SkColorSetARGB(0, 0, 0, 0)); | |
783 | |
784 canvas.translate(SkFloatToScalar(result.width() * 0.5f), | |
785 SkFloatToScalar(result.height() * 0.5f)); | |
786 canvas.rotate(angle); | |
787 canvas.translate(-SkFloatToScalar(source.width() * 0.5f), | |
788 -SkFloatToScalar(source.height() * 0.5f)); | |
789 canvas.drawBitmap(source, 0, 0); | |
790 canvas.flush(); | |
791 | |
792 return result; | |
793 } | |
OLD | NEW |