OLD | NEW |
| (Empty) |
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. | |
2 // Use of this source code is governed by a BSD-style license that can be | |
3 // found in the LICENSE file. | |
4 | |
5 #include "ui/gfx/icon_util.h" | |
6 | |
7 #include "base/files/file_util.h" | |
8 #include "base/files/important_file_writer.h" | |
9 #include "base/logging.h" | |
10 #include "base/memory/scoped_ptr.h" | |
11 #include "base/win/resource_util.h" | |
12 #include "base/win/scoped_gdi_object.h" | |
13 #include "base/win/scoped_handle.h" | |
14 #include "base/win/scoped_hdc.h" | |
15 #include "skia/ext/image_operations.h" | |
16 #include "third_party/skia/include/core/SkBitmap.h" | |
17 #include "ui/gfx/gdi_util.h" | |
18 #include "ui/gfx/image/image.h" | |
19 #include "ui/gfx/image/image_family.h" | |
20 #include "ui/gfx/size.h" | |
21 | |
22 namespace { | |
23 | |
24 struct ScopedICONINFO : ICONINFO { | |
25 ScopedICONINFO() { | |
26 hbmColor = NULL; | |
27 hbmMask = NULL; | |
28 } | |
29 | |
30 ~ScopedICONINFO() { | |
31 if (hbmColor) | |
32 ::DeleteObject(hbmColor); | |
33 if (hbmMask) | |
34 ::DeleteObject(hbmMask); | |
35 } | |
36 }; | |
37 | |
38 // Creates a new ImageFamily, |resized_image_family|, based on the images in | |
39 // |image_family|, but containing images of specific dimensions desirable for | |
40 // Windows icons. For each desired image dimension, it chooses the most | |
41 // appropriate image for that size, and resizes it to the desired size. | |
42 // Returns true on success, false on failure. Failure can occur if | |
43 // |image_family| is empty, all images in the family have size 0x0, or an image | |
44 // has no allocated pixel data. | |
45 // |resized_image_family| must be empty. | |
46 bool BuildResizedImageFamily(const gfx::ImageFamily& image_family, | |
47 gfx::ImageFamily* resized_image_family) { | |
48 DCHECK(resized_image_family); | |
49 DCHECK(resized_image_family->empty()); | |
50 | |
51 for (size_t i = 0; i < IconUtil::kNumIconDimensions; ++i) { | |
52 int dimension = IconUtil::kIconDimensions[i]; | |
53 gfx::Size size(dimension, dimension); | |
54 const gfx::Image* best = image_family.GetBest(size); | |
55 if (!best || best->IsEmpty()) { | |
56 // Either |image_family| is empty, or all images have size 0x0. | |
57 return false; | |
58 } | |
59 | |
60 // Optimize for the "Large icons" view in Windows Vista+. This view displays | |
61 // icons at full size if only if there is a 256x256 (kLargeIconSize) image | |
62 // in the .ico file. Otherwise, it shrinks icons to 48x48 (kMediumIconSize). | |
63 if (dimension > IconUtil::kMediumIconSize && | |
64 best->Width() <= IconUtil::kMediumIconSize && | |
65 best->Height() <= IconUtil::kMediumIconSize) { | |
66 // There is no source icon larger than 48x48, so do not create any | |
67 // images larger than 48x48. kIconDimensions is sorted in ascending | |
68 // order, so it is safe to break here. | |
69 break; | |
70 } | |
71 | |
72 if (best->Size() == size) { | |
73 resized_image_family->Add(*best); | |
74 } else { | |
75 // There is no |dimension|x|dimension| source image. | |
76 // Resize this one to the desired size, and insert it. | |
77 SkBitmap best_bitmap = best->AsBitmap(); | |
78 // Only kARGB_8888 images are supported. | |
79 // This will also filter out images with no pixels. | |
80 if (best_bitmap.colorType() != kN32_SkColorType) | |
81 return false; | |
82 SkBitmap resized_bitmap = skia::ImageOperations::Resize( | |
83 best_bitmap, skia::ImageOperations::RESIZE_LANCZOS3, | |
84 dimension, dimension); | |
85 resized_image_family->Add(gfx::Image::CreateFrom1xBitmap(resized_bitmap)); | |
86 } | |
87 } | |
88 return true; | |
89 } | |
90 | |
91 // Creates a set of bitmaps from an image family. | |
92 // All images smaller than 256x256 are converted to SkBitmaps, and inserted into | |
93 // |bitmaps| in order of aspect ratio (thinnest to widest), and then ascending | |
94 // size order. If an image of exactly 256x256 is specified, it is converted into | |
95 // PNG format and stored in |png_bytes|. Images with width or height larger than | |
96 // 256 are ignored. | |
97 // |bitmaps| must be an empty vector, and not NULL. | |
98 // Returns true on success, false on failure. This fails if any image in | |
99 // |image_family| is not a 32-bit ARGB image, or is otherwise invalid. | |
100 bool ConvertImageFamilyToBitmaps( | |
101 const gfx::ImageFamily& image_family, | |
102 std::vector<SkBitmap>* bitmaps, | |
103 scoped_refptr<base::RefCountedMemory>* png_bytes) { | |
104 DCHECK(bitmaps != NULL); | |
105 DCHECK(bitmaps->empty()); | |
106 | |
107 for (gfx::ImageFamily::const_iterator it = image_family.begin(); | |
108 it != image_family.end(); ++it) { | |
109 const gfx::Image& image = *it; | |
110 | |
111 // All images should have one of the kIconDimensions sizes. | |
112 DCHECK_GT(image.Width(), 0); | |
113 DCHECK_LE(image.Width(), IconUtil::kLargeIconSize); | |
114 DCHECK_GT(image.Height(), 0); | |
115 DCHECK_LE(image.Height(), IconUtil::kLargeIconSize); | |
116 | |
117 SkBitmap bitmap = image.AsBitmap(); | |
118 | |
119 // Only 32 bit ARGB bitmaps are supported. We also make sure the bitmap has | |
120 // been properly initialized. | |
121 SkAutoLockPixels bitmap_lock(bitmap); | |
122 if ((bitmap.colorType() != kN32_SkColorType) || | |
123 (bitmap.getPixels() == NULL)) { | |
124 return false; | |
125 } | |
126 | |
127 // Special case: Icons exactly 256x256 are stored in PNG format. | |
128 if (image.Width() == IconUtil::kLargeIconSize && | |
129 image.Height() == IconUtil::kLargeIconSize) { | |
130 *png_bytes = image.As1xPNGBytes(); | |
131 } else { | |
132 bitmaps->push_back(bitmap); | |
133 } | |
134 } | |
135 | |
136 return true; | |
137 } | |
138 | |
139 } // namespace | |
140 | |
141 // The icon images appear in the icon file in same order in which their | |
142 // corresponding dimensions appear in this array, so it is important to keep | |
143 // this array sorted. Also note that the maximum icon image size we can handle | |
144 // is 256 by 256. See: | |
145 // http://msdn.microsoft.com/en-us/library/windows/desktop/aa511280.aspx#size | |
146 const int IconUtil::kIconDimensions[] = { | |
147 8, // Recommended by the MSDN as a nice to have icon size. | |
148 10, // Used by the Shell (e.g. for shortcuts). | |
149 14, // Recommended by the MSDN as a nice to have icon size. | |
150 16, // Toolbar, Application and Shell icon sizes. | |
151 22, // Recommended by the MSDN as a nice to have icon size. | |
152 24, // Used by the Shell (e.g. for shortcuts). | |
153 32, // Toolbar, Dialog and Wizard icon size. | |
154 40, // Quick Launch. | |
155 48, // Alt+Tab icon size. | |
156 64, // Recommended by the MSDN as a nice to have icon size. | |
157 96, // Recommended by the MSDN as a nice to have icon size. | |
158 128, // Used by the Shell (e.g. for shortcuts). | |
159 256 // Used by Vista onwards for large icons. | |
160 }; | |
161 | |
162 const size_t IconUtil::kNumIconDimensions = arraysize(kIconDimensions); | |
163 const size_t IconUtil::kNumIconDimensionsUpToMediumSize = 9; | |
164 | |
165 HICON IconUtil::CreateHICONFromSkBitmap(const SkBitmap& bitmap) { | |
166 // Only 32 bit ARGB bitmaps are supported. We also try to perform as many | |
167 // validations as we can on the bitmap. | |
168 SkAutoLockPixels bitmap_lock(bitmap); | |
169 if ((bitmap.colorType() != kN32_SkColorType) || | |
170 (bitmap.width() <= 0) || (bitmap.height() <= 0) || | |
171 (bitmap.getPixels() == NULL)) | |
172 return NULL; | |
173 | |
174 // We start by creating a DIB which we'll use later on in order to create | |
175 // the HICON. We use BITMAPV5HEADER since the bitmap we are about to convert | |
176 // may contain an alpha channel and the V5 header allows us to specify the | |
177 // alpha mask for the DIB. | |
178 BITMAPV5HEADER bitmap_header; | |
179 InitializeBitmapHeader(&bitmap_header, bitmap.width(), bitmap.height()); | |
180 | |
181 void* bits = NULL; | |
182 HBITMAP dib; | |
183 | |
184 { | |
185 base::win::ScopedGetDC hdc(NULL); | |
186 dib = ::CreateDIBSection(hdc, reinterpret_cast<BITMAPINFO*>(&bitmap_header), | |
187 DIB_RGB_COLORS, &bits, NULL, 0); | |
188 } | |
189 if (!dib || !bits) | |
190 return NULL; | |
191 | |
192 memcpy(bits, bitmap.getPixels(), bitmap.width() * bitmap.height() * 4); | |
193 | |
194 // Icons are generally created using an AND and XOR masks where the AND | |
195 // specifies boolean transparency (the pixel is either opaque or | |
196 // transparent) and the XOR mask contains the actual image pixels. If the XOR | |
197 // mask bitmap has an alpha channel, the AND monochrome bitmap won't | |
198 // actually be used for computing the pixel transparency. Even though all our | |
199 // bitmap has an alpha channel, Windows might not agree when all alpha values | |
200 // are zero. So the monochrome bitmap is created with all pixels transparent | |
201 // for this case. Otherwise, it is created with all pixels opaque. | |
202 bool bitmap_has_alpha_channel = PixelsHaveAlpha( | |
203 static_cast<const uint32*>(bitmap.getPixels()), | |
204 bitmap.width() * bitmap.height()); | |
205 | |
206 scoped_ptr<uint8[]> mask_bits; | |
207 if (!bitmap_has_alpha_channel) { | |
208 // Bytes per line with paddings to make it word alignment. | |
209 size_t bytes_per_line = (bitmap.width() + 0xF) / 16 * 2; | |
210 size_t mask_bits_size = bytes_per_line * bitmap.height(); | |
211 | |
212 mask_bits.reset(new uint8[mask_bits_size]); | |
213 DCHECK(mask_bits.get()); | |
214 | |
215 // Make all pixels transparent. | |
216 memset(mask_bits.get(), 0xFF, mask_bits_size); | |
217 } | |
218 | |
219 HBITMAP mono_bitmap = ::CreateBitmap(bitmap.width(), bitmap.height(), 1, 1, | |
220 reinterpret_cast<LPVOID>(mask_bits.get())); | |
221 DCHECK(mono_bitmap); | |
222 | |
223 ICONINFO icon_info; | |
224 icon_info.fIcon = TRUE; | |
225 icon_info.xHotspot = 0; | |
226 icon_info.yHotspot = 0; | |
227 icon_info.hbmMask = mono_bitmap; | |
228 icon_info.hbmColor = dib; | |
229 HICON icon = ::CreateIconIndirect(&icon_info); | |
230 ::DeleteObject(dib); | |
231 ::DeleteObject(mono_bitmap); | |
232 return icon; | |
233 } | |
234 | |
235 SkBitmap* IconUtil::CreateSkBitmapFromHICON(HICON icon, const gfx::Size& s) { | |
236 // We start with validating parameters. | |
237 if (!icon || s.IsEmpty()) | |
238 return NULL; | |
239 ScopedICONINFO icon_info; | |
240 if (!::GetIconInfo(icon, &icon_info)) | |
241 return NULL; | |
242 if (!icon_info.fIcon) | |
243 return NULL; | |
244 return new SkBitmap(CreateSkBitmapFromHICONHelper(icon, s)); | |
245 } | |
246 | |
247 scoped_ptr<SkBitmap> IconUtil::CreateSkBitmapFromIconResource(HMODULE module, | |
248 int resource_id, | |
249 int size) { | |
250 DCHECK_LE(size, kLargeIconSize); | |
251 | |
252 // For everything except the Vista+ 256x256 icons, use |LoadImage()|. | |
253 if (size != kLargeIconSize) { | |
254 HICON icon_handle = | |
255 static_cast<HICON>(LoadImage(module, MAKEINTRESOURCE(resource_id), | |
256 IMAGE_ICON, size, size, | |
257 LR_DEFAULTCOLOR | LR_DEFAULTSIZE)); | |
258 scoped_ptr<SkBitmap> bitmap(IconUtil::CreateSkBitmapFromHICON(icon_handle)); | |
259 DestroyIcon(icon_handle); | |
260 return bitmap.Pass(); | |
261 } | |
262 | |
263 // For Vista+ 256x256 PNG icons, read the resource directly and find | |
264 // the corresponding icon entry to get its PNG bytes. | |
265 void* icon_dir_data = NULL; | |
266 size_t icon_dir_size = 0; | |
267 if (!base::win::GetResourceFromModule(module, resource_id, RT_GROUP_ICON, | |
268 &icon_dir_data, &icon_dir_size)) { | |
269 return scoped_ptr<SkBitmap>(); | |
270 } | |
271 DCHECK(icon_dir_data); | |
272 DCHECK_GE(icon_dir_size, sizeof(GRPICONDIR)); | |
273 | |
274 const GRPICONDIR* icon_dir = | |
275 reinterpret_cast<const GRPICONDIR*>(icon_dir_data); | |
276 const GRPICONDIRENTRY* large_icon_entry = NULL; | |
277 for (size_t i = 0; i < icon_dir->idCount; ++i) { | |
278 const GRPICONDIRENTRY* entry = &icon_dir->idEntries[i]; | |
279 // 256x256 icons are stored with width and height set to 0. | |
280 // See: http://en.wikipedia.org/wiki/ICO_(file_format) | |
281 if (entry->bWidth == 0 && entry->bHeight == 0) { | |
282 large_icon_entry = entry; | |
283 break; | |
284 } | |
285 } | |
286 if (!large_icon_entry) | |
287 return scoped_ptr<SkBitmap>(); | |
288 | |
289 void* png_data = NULL; | |
290 size_t png_size = 0; | |
291 if (!base::win::GetResourceFromModule(module, large_icon_entry->nID, RT_ICON, | |
292 &png_data, &png_size)) { | |
293 return scoped_ptr<SkBitmap>(); | |
294 } | |
295 DCHECK(png_data); | |
296 DCHECK_EQ(png_size, large_icon_entry->dwBytesInRes); | |
297 | |
298 gfx::Image image = gfx::Image::CreateFrom1xPNGBytes( | |
299 new base::RefCountedStaticMemory(png_data, png_size)); | |
300 return scoped_ptr<SkBitmap>(new SkBitmap(image.AsBitmap())); | |
301 } | |
302 | |
303 SkBitmap* IconUtil::CreateSkBitmapFromHICON(HICON icon) { | |
304 // We start with validating parameters. | |
305 if (!icon) | |
306 return NULL; | |
307 | |
308 ScopedICONINFO icon_info; | |
309 BITMAP bitmap_info = { 0 }; | |
310 | |
311 if (!::GetIconInfo(icon, &icon_info)) | |
312 return NULL; | |
313 | |
314 if (!::GetObject(icon_info.hbmMask, sizeof(bitmap_info), &bitmap_info)) | |
315 return NULL; | |
316 | |
317 gfx::Size icon_size(bitmap_info.bmWidth, bitmap_info.bmHeight); | |
318 return new SkBitmap(CreateSkBitmapFromHICONHelper(icon, icon_size)); | |
319 } | |
320 | |
321 HICON IconUtil::CreateCursorFromDIB(const gfx::Size& icon_size, | |
322 const gfx::Point& hotspot, | |
323 const void* dib_bits, | |
324 size_t dib_size) { | |
325 BITMAPINFO icon_bitmap_info = {0}; | |
326 gfx::CreateBitmapHeader( | |
327 icon_size.width(), | |
328 icon_size.height(), | |
329 reinterpret_cast<BITMAPINFOHEADER*>(&icon_bitmap_info)); | |
330 | |
331 base::win::ScopedGetDC dc(NULL); | |
332 base::win::ScopedCreateDC working_dc(CreateCompatibleDC(dc)); | |
333 base::win::ScopedGDIObject<HBITMAP> bitmap_handle( | |
334 CreateDIBSection(dc, | |
335 &icon_bitmap_info, | |
336 DIB_RGB_COLORS, | |
337 0, | |
338 0, | |
339 0)); | |
340 if (dib_size > 0) { | |
341 SetDIBits(0, | |
342 bitmap_handle, | |
343 0, | |
344 icon_size.height(), | |
345 dib_bits, | |
346 &icon_bitmap_info, | |
347 DIB_RGB_COLORS); | |
348 } | |
349 | |
350 HBITMAP old_bitmap = reinterpret_cast<HBITMAP>( | |
351 SelectObject(working_dc.Get(), bitmap_handle)); | |
352 SetBkMode(working_dc.Get(), TRANSPARENT); | |
353 SelectObject(working_dc.Get(), old_bitmap); | |
354 | |
355 base::win::ScopedGDIObject<HBITMAP> mask( | |
356 CreateBitmap(icon_size.width(), | |
357 icon_size.height(), | |
358 1, | |
359 1, | |
360 NULL)); | |
361 ICONINFO ii = {0}; | |
362 ii.fIcon = FALSE; | |
363 ii.xHotspot = hotspot.x(); | |
364 ii.yHotspot = hotspot.y(); | |
365 ii.hbmMask = mask; | |
366 ii.hbmColor = bitmap_handle; | |
367 | |
368 return CreateIconIndirect(&ii); | |
369 } | |
370 | |
371 SkBitmap IconUtil::CreateSkBitmapFromHICONHelper(HICON icon, | |
372 const gfx::Size& s) { | |
373 DCHECK(icon); | |
374 DCHECK(!s.IsEmpty()); | |
375 | |
376 // Allocating memory for the SkBitmap object. We are going to create an ARGB | |
377 // bitmap so we should set the configuration appropriately. | |
378 SkBitmap bitmap; | |
379 bitmap.allocN32Pixels(s.width(), s.height()); | |
380 bitmap.eraseARGB(0, 0, 0, 0); | |
381 SkAutoLockPixels bitmap_lock(bitmap); | |
382 | |
383 // Now we should create a DIB so that we can use ::DrawIconEx in order to | |
384 // obtain the icon's image. | |
385 BITMAPV5HEADER h; | |
386 InitializeBitmapHeader(&h, s.width(), s.height()); | |
387 HDC hdc = ::GetDC(NULL); | |
388 uint32* bits; | |
389 HBITMAP dib = ::CreateDIBSection(hdc, reinterpret_cast<BITMAPINFO*>(&h), | |
390 DIB_RGB_COLORS, reinterpret_cast<void**>(&bits), NULL, 0); | |
391 DCHECK(dib); | |
392 HDC dib_dc = CreateCompatibleDC(hdc); | |
393 ::ReleaseDC(NULL, hdc); | |
394 DCHECK(dib_dc); | |
395 HGDIOBJ old_obj = ::SelectObject(dib_dc, dib); | |
396 | |
397 // Windows icons are defined using two different masks. The XOR mask, which | |
398 // represents the icon image and an AND mask which is a monochrome bitmap | |
399 // which indicates the transparency of each pixel. | |
400 // | |
401 // To make things more complex, the icon image itself can be an ARGB bitmap | |
402 // and therefore contain an alpha channel which specifies the transparency | |
403 // for each pixel. Unfortunately, there is no easy way to determine whether | |
404 // or not a bitmap has an alpha channel and therefore constructing the bitmap | |
405 // for the icon is nothing but straightforward. | |
406 // | |
407 // The idea is to read the AND mask but use it only if we know for sure that | |
408 // the icon image does not have an alpha channel. The only way to tell if the | |
409 // bitmap has an alpha channel is by looking through the pixels and checking | |
410 // whether there are non-zero alpha bytes. | |
411 // | |
412 // We start by drawing the AND mask into our DIB. | |
413 size_t num_pixels = s.GetArea(); | |
414 memset(bits, 0, num_pixels * 4); | |
415 ::DrawIconEx(dib_dc, 0, 0, icon, s.width(), s.height(), 0, NULL, DI_MASK); | |
416 | |
417 // Capture boolean opacity. We may not use it if we find out the bitmap has | |
418 // an alpha channel. | |
419 scoped_ptr<bool[]> opaque(new bool[num_pixels]); | |
420 for (size_t i = 0; i < num_pixels; ++i) | |
421 opaque[i] = !bits[i]; | |
422 | |
423 // Then draw the image itself which is really the XOR mask. | |
424 memset(bits, 0, num_pixels * 4); | |
425 ::DrawIconEx(dib_dc, 0, 0, icon, s.width(), s.height(), 0, NULL, DI_NORMAL); | |
426 memcpy(bitmap.getPixels(), static_cast<void*>(bits), num_pixels * 4); | |
427 | |
428 // Finding out whether the bitmap has an alpha channel. | |
429 bool bitmap_has_alpha_channel = PixelsHaveAlpha( | |
430 static_cast<const uint32*>(bitmap.getPixels()), num_pixels); | |
431 | |
432 // If the bitmap does not have an alpha channel, we need to build it using | |
433 // the previously captured AND mask. Otherwise, we are done. | |
434 if (!bitmap_has_alpha_channel) { | |
435 uint32* p = static_cast<uint32*>(bitmap.getPixels()); | |
436 for (size_t i = 0; i < num_pixels; ++p, ++i) { | |
437 DCHECK_EQ((*p & 0xff000000), 0u); | |
438 if (opaque[i]) | |
439 *p |= 0xff000000; | |
440 else | |
441 *p &= 0x00ffffff; | |
442 } | |
443 } | |
444 | |
445 ::SelectObject(dib_dc, old_obj); | |
446 ::DeleteObject(dib); | |
447 ::DeleteDC(dib_dc); | |
448 | |
449 return bitmap; | |
450 } | |
451 | |
452 // static | |
453 bool IconUtil::CreateIconFileFromImageFamily( | |
454 const gfx::ImageFamily& image_family, | |
455 const base::FilePath& icon_path) { | |
456 // Creating a set of bitmaps corresponding to the icon images we'll end up | |
457 // storing in the icon file. Each bitmap is created by resizing the most | |
458 // appropriate image from |image_family| to the desired size. | |
459 gfx::ImageFamily resized_image_family; | |
460 if (!BuildResizedImageFamily(image_family, &resized_image_family)) | |
461 return false; | |
462 | |
463 std::vector<SkBitmap> bitmaps; | |
464 scoped_refptr<base::RefCountedMemory> png_bytes; | |
465 if (!ConvertImageFamilyToBitmaps(resized_image_family, &bitmaps, &png_bytes)) | |
466 return false; | |
467 | |
468 // Guaranteed true because BuildResizedImageFamily will provide at least one | |
469 // image < 256x256. | |
470 DCHECK(!bitmaps.empty()); | |
471 size_t bitmap_count = bitmaps.size(); // Not including PNG image. | |
472 // Including PNG image, if any. | |
473 size_t image_count = bitmap_count + (png_bytes.get() ? 1 : 0); | |
474 | |
475 // Computing the total size of the buffer we need in order to store the | |
476 // images in the desired icon format. | |
477 size_t buffer_size = ComputeIconFileBufferSize(bitmaps); | |
478 // Account for the bytes needed for the PNG entry. | |
479 if (png_bytes.get()) | |
480 buffer_size += sizeof(ICONDIRENTRY) + png_bytes->size(); | |
481 | |
482 // Setting the information in the structures residing within the buffer. | |
483 // First, we set the information which doesn't require iterating through the | |
484 // bitmap set and then we set the bitmap specific structures. In the latter | |
485 // step we also copy the actual bits. | |
486 std::vector<uint8> buffer(buffer_size); | |
487 ICONDIR* icon_dir = reinterpret_cast<ICONDIR*>(&buffer[0]); | |
488 icon_dir->idType = kResourceTypeIcon; | |
489 icon_dir->idCount = static_cast<WORD>(image_count); | |
490 // - 1 because there is already one ICONDIRENTRY in ICONDIR. | |
491 size_t icon_dir_count = image_count - 1; | |
492 | |
493 size_t offset = sizeof(ICONDIR) + (sizeof(ICONDIRENTRY) * icon_dir_count); | |
494 for (size_t i = 0; i < bitmap_count; i++) { | |
495 ICONIMAGE* image = reinterpret_cast<ICONIMAGE*>(&buffer[offset]); | |
496 DCHECK_LT(offset, buffer_size); | |
497 size_t icon_image_size = 0; | |
498 SetSingleIconImageInformation(bitmaps[i], i, icon_dir, image, offset, | |
499 &icon_image_size); | |
500 DCHECK_GT(icon_image_size, 0U); | |
501 offset += icon_image_size; | |
502 } | |
503 | |
504 // Add the PNG entry, if necessary. | |
505 if (png_bytes.get()) { | |
506 ICONDIRENTRY* entry = &icon_dir->idEntries[bitmap_count]; | |
507 entry->bWidth = 0; | |
508 entry->bHeight = 0; | |
509 entry->wPlanes = 1; | |
510 entry->wBitCount = 32; | |
511 entry->dwBytesInRes = static_cast<DWORD>(png_bytes->size()); | |
512 entry->dwImageOffset = static_cast<DWORD>(offset); | |
513 memcpy(&buffer[offset], png_bytes->front(), png_bytes->size()); | |
514 offset += png_bytes->size(); | |
515 } | |
516 | |
517 DCHECK_EQ(offset, buffer_size); | |
518 | |
519 std::string data(buffer.begin(), buffer.end()); | |
520 return base::ImportantFileWriter::WriteFileAtomically(icon_path, data); | |
521 } | |
522 | |
523 bool IconUtil::PixelsHaveAlpha(const uint32* pixels, size_t num_pixels) { | |
524 for (const uint32* end = pixels + num_pixels; pixels != end; ++pixels) { | |
525 if ((*pixels & 0xff000000) != 0) | |
526 return true; | |
527 } | |
528 | |
529 return false; | |
530 } | |
531 | |
532 void IconUtil::InitializeBitmapHeader(BITMAPV5HEADER* header, int width, | |
533 int height) { | |
534 DCHECK(header); | |
535 memset(header, 0, sizeof(BITMAPV5HEADER)); | |
536 header->bV5Size = sizeof(BITMAPV5HEADER); | |
537 | |
538 // Note that icons are created using top-down DIBs so we must negate the | |
539 // value used for the icon's height. | |
540 header->bV5Width = width; | |
541 header->bV5Height = -height; | |
542 header->bV5Planes = 1; | |
543 header->bV5Compression = BI_RGB; | |
544 | |
545 // Initializing the bitmap format to 32 bit ARGB. | |
546 header->bV5BitCount = 32; | |
547 header->bV5RedMask = 0x00FF0000; | |
548 header->bV5GreenMask = 0x0000FF00; | |
549 header->bV5BlueMask = 0x000000FF; | |
550 header->bV5AlphaMask = 0xFF000000; | |
551 | |
552 // Use the system color space. The default value is LCS_CALIBRATED_RGB, which | |
553 // causes us to crash if we don't specify the approprite gammas, etc. See | |
554 // <http://msdn.microsoft.com/en-us/library/ms536531(VS.85).aspx> and | |
555 // <http://b/1283121>. | |
556 header->bV5CSType = LCS_WINDOWS_COLOR_SPACE; | |
557 | |
558 // Use a valid value for bV5Intent as 0 is not a valid one. | |
559 // <http://msdn.microsoft.com/en-us/library/dd183381(VS.85).aspx> | |
560 header->bV5Intent = LCS_GM_IMAGES; | |
561 } | |
562 | |
563 void IconUtil::SetSingleIconImageInformation(const SkBitmap& bitmap, | |
564 size_t index, | |
565 ICONDIR* icon_dir, | |
566 ICONIMAGE* icon_image, | |
567 size_t image_offset, | |
568 size_t* image_byte_count) { | |
569 DCHECK(icon_dir != NULL); | |
570 DCHECK(icon_image != NULL); | |
571 DCHECK_GT(image_offset, 0U); | |
572 DCHECK(image_byte_count != NULL); | |
573 DCHECK_LT(bitmap.width(), kLargeIconSize); | |
574 DCHECK_LT(bitmap.height(), kLargeIconSize); | |
575 | |
576 // We start by computing certain image values we'll use later on. | |
577 size_t xor_mask_size, bytes_in_resource; | |
578 ComputeBitmapSizeComponents(bitmap, | |
579 &xor_mask_size, | |
580 &bytes_in_resource); | |
581 | |
582 icon_dir->idEntries[index].bWidth = static_cast<BYTE>(bitmap.width()); | |
583 icon_dir->idEntries[index].bHeight = static_cast<BYTE>(bitmap.height()); | |
584 icon_dir->idEntries[index].wPlanes = 1; | |
585 icon_dir->idEntries[index].wBitCount = 32; | |
586 icon_dir->idEntries[index].dwBytesInRes = bytes_in_resource; | |
587 icon_dir->idEntries[index].dwImageOffset = image_offset; | |
588 icon_image->icHeader.biSize = sizeof(BITMAPINFOHEADER); | |
589 | |
590 // The width field in the BITMAPINFOHEADER structure accounts for the height | |
591 // of both the AND mask and the XOR mask so we need to multiply the bitmap's | |
592 // height by 2. The same does NOT apply to the width field. | |
593 icon_image->icHeader.biHeight = bitmap.height() * 2; | |
594 icon_image->icHeader.biWidth = bitmap.width(); | |
595 icon_image->icHeader.biPlanes = 1; | |
596 icon_image->icHeader.biBitCount = 32; | |
597 | |
598 // We use a helper function for copying to actual bits from the SkBitmap | |
599 // object into the appropriate space in the buffer. We use a helper function | |
600 // (rather than just copying the bits) because there is no way to specify the | |
601 // orientation (bottom-up vs. top-down) of a bitmap residing in a .ico file. | |
602 // Thus, if we just copy the bits, we'll end up with a bottom up bitmap in | |
603 // the .ico file which will result in the icon being displayed upside down. | |
604 // The helper function copies the image into the buffer one scanline at a | |
605 // time. | |
606 // | |
607 // Note that we don't need to initialize the AND mask since the memory | |
608 // allocated for the icon data buffer was initialized to zero. The icon we | |
609 // create will therefore use an AND mask containing only zeros, which is OK | |
610 // because the underlying image has an alpha channel. An AND mask containing | |
611 // only zeros essentially means we'll initially treat all the pixels as | |
612 // opaque. | |
613 unsigned char* image_addr = reinterpret_cast<unsigned char*>(icon_image); | |
614 unsigned char* xor_mask_addr = image_addr + sizeof(BITMAPINFOHEADER); | |
615 CopySkBitmapBitsIntoIconBuffer(bitmap, xor_mask_addr, xor_mask_size); | |
616 *image_byte_count = bytes_in_resource; | |
617 } | |
618 | |
619 void IconUtil::CopySkBitmapBitsIntoIconBuffer(const SkBitmap& bitmap, | |
620 unsigned char* buffer, | |
621 size_t buffer_size) { | |
622 SkAutoLockPixels bitmap_lock(bitmap); | |
623 unsigned char* bitmap_ptr = static_cast<unsigned char*>(bitmap.getPixels()); | |
624 size_t bitmap_size = bitmap.height() * bitmap.width() * 4; | |
625 DCHECK_EQ(buffer_size, bitmap_size); | |
626 for (size_t i = 0; i < bitmap_size; i += bitmap.width() * 4) { | |
627 memcpy(buffer + bitmap_size - bitmap.width() * 4 - i, | |
628 bitmap_ptr + i, | |
629 bitmap.width() * 4); | |
630 } | |
631 } | |
632 | |
633 size_t IconUtil::ComputeIconFileBufferSize(const std::vector<SkBitmap>& set) { | |
634 DCHECK(!set.empty()); | |
635 | |
636 // We start by counting the bytes for the structures that don't depend on the | |
637 // number of icon images. Note that sizeof(ICONDIR) already accounts for a | |
638 // single ICONDIRENTRY structure, which is why we subtract one from the | |
639 // number of bitmaps. | |
640 size_t total_buffer_size = sizeof(ICONDIR); | |
641 size_t bitmap_count = set.size(); | |
642 total_buffer_size += sizeof(ICONDIRENTRY) * (bitmap_count - 1); | |
643 // May not have all icon sizes, but must have at least up to medium icon size. | |
644 DCHECK_GE(bitmap_count, kNumIconDimensionsUpToMediumSize); | |
645 | |
646 // Add the bitmap specific structure sizes. | |
647 for (size_t i = 0; i < bitmap_count; i++) { | |
648 size_t xor_mask_size, bytes_in_resource; | |
649 ComputeBitmapSizeComponents(set[i], | |
650 &xor_mask_size, | |
651 &bytes_in_resource); | |
652 total_buffer_size += bytes_in_resource; | |
653 } | |
654 return total_buffer_size; | |
655 } | |
656 | |
657 void IconUtil::ComputeBitmapSizeComponents(const SkBitmap& bitmap, | |
658 size_t* xor_mask_size, | |
659 size_t* bytes_in_resource) { | |
660 // The XOR mask size is easy to calculate since we only deal with 32bpp | |
661 // images. | |
662 *xor_mask_size = bitmap.width() * bitmap.height() * 4; | |
663 | |
664 // Computing the AND mask is a little trickier since it is a monochrome | |
665 // bitmap (regardless of the number of bits per pixels used in the XOR mask). | |
666 // There are two things we must make sure we do when computing the AND mask | |
667 // size: | |
668 // | |
669 // 1. Make sure the right number of bytes is allocated for each AND mask | |
670 // scan line in case the number of pixels in the image is not divisible by | |
671 // 8. For example, in a 15X15 image, 15 / 8 is one byte short of | |
672 // containing the number of bits we need in order to describe a single | |
673 // image scan line so we need to add a byte. Thus, we need 2 bytes instead | |
674 // of 1 for each scan line. | |
675 // | |
676 // 2. Make sure each scan line in the AND mask is 4 byte aligned (so that the | |
677 // total icon image has a 4 byte alignment). In the 15X15 image example | |
678 // above, we can not use 2 bytes so we increase it to the next multiple of | |
679 // 4 which is 4. | |
680 // | |
681 // Once we compute the size for a singe AND mask scan line, we multiply that | |
682 // number by the image height in order to get the total number of bytes for | |
683 // the AND mask. Thus, for a 15X15 image, we need 15 * 4 which is 60 bytes | |
684 // for the monochrome bitmap representing the AND mask. | |
685 size_t and_line_length = (bitmap.width() + 7) >> 3; | |
686 and_line_length = (and_line_length + 3) & ~3; | |
687 size_t and_mask_size = and_line_length * bitmap.height(); | |
688 size_t masks_size = *xor_mask_size + and_mask_size; | |
689 *bytes_in_resource = masks_size + sizeof(BITMAPINFOHEADER); | |
690 } | |
OLD | NEW |