Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(933)

Unified Diff: src/pathops/SkPathOpsTSect.h

Issue 853223002: new files for pathops geometric intersection (Closed) Base URL: https://skia.googlesource.com/skia.git@master
Patch Set: remove visualizer tool so cl contains only pure adds Created 5 years, 11 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « src/pathops/SkPathOpsTQuadSect.cpp ('k') | tests/PathOpsBuildUseTest.cpp » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: src/pathops/SkPathOpsTSect.h
diff --git a/src/pathops/SkPathOpsTSect.h b/src/pathops/SkPathOpsTSect.h
new file mode 100644
index 0000000000000000000000000000000000000000..4e7d3b1795c765ae964391e88990d1d1d548dae3
--- /dev/null
+++ b/src/pathops/SkPathOpsTSect.h
@@ -0,0 +1,1211 @@
+/*
+ * Copyright 2014 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+#include "SkChunkAlloc.h"
+#include "SkPathOpsRect.h"
+#include "SkPathOpsQuad.h"
+#include "SkIntersections.h"
+#include "SkTArray.h"
+
+/* TCurve is either SkDQuadratic or SkDCubic */
+template<typename TCurve>
+class SkTCoincident {
+public:
+ bool isCoincident() const {
+ return fCoincident;
+ }
+
+ void init() {
+ fCoincident = false;
+ SkDEBUGCODE(fPerpPt.fX = fPerpPt.fY = SK_ScalarNaN);
+ SkDEBUGCODE(fPerpT = SK_ScalarNaN);
+ }
+
+ void markCoincident() {
+ if (!fCoincident) {
+ fPerpT = -1;
+ }
+ fCoincident = true;
+ }
+
+ const SkDPoint& perpPt() const {
+ return fPerpPt;
+ }
+
+ double perpT() const {
+ return fPerpT;
+ }
+
+ void setPerp(const TCurve& c1, double t, const SkDPoint& cPt, const TCurve& );
+
+private:
+ SkDPoint fPerpPt;
+ double fPerpT; // perpendicular intersection on opposite curve
+ bool fCoincident;
+};
+
+template<typename TCurve> class SkTSect;
+
+/* Curve is either TCurve or SkDCubic */
+template<typename TCurve>
+class SkTSpan {
+public:
+ void init(const TCurve& );
+ void initBounds(const TCurve& );
+
+ double closestBoundedT(const SkDPoint& pt) const;
+
+ bool contains(double t) const {
+ return !! const_cast<SkTSpan*>(this)->innerFind(t);
+ }
+
+ bool contains(const SkTSpan* span) const;
+
+ double endT() const {
+ return fEndT;
+ }
+
+ SkTSpan* find(double t) {
+ SkTSpan* result = innerFind(t);
+ SkASSERT(result);
+ return result;
+ }
+
+ bool intersects(const SkTSpan* span, bool* check);
+
+ const SkTSpan* next() const {
+ return fNext;
+ }
+
+ const TCurve& part() const {
+ return fPart;
+ }
+
+ void reset() {
+ fBounded.reset();
+ }
+
+ bool split(SkTSpan* work) {
+ return splitAt(work, (work->fStartT + work->fEndT) * 0.5);
+ }
+
+ bool splitAt(SkTSpan* work, double t);
+
+ double startT() const {
+ return fStartT;
+ }
+
+ bool tightBoundsIntersects(const SkTSpan* span) const;
+
+ // implementation is for testing only
+ void dump() const {
+ dump(NULL);
+ }
+
+private:
+ SkTSpan* innerFind(double t);
+ bool linearIntersects(const TCurve& ) const;
+
+ // implementation is for testing only
+#if DEBUG_T_SECT
+ int debugID(const SkTSect<TCurve>* ) const { return fDebugID; }
+#else
+ int debugID(const SkTSect<TCurve>* ) const;
+#endif
+ void dump(const SkTSect<TCurve>* ) const;
+ void dumpID(const SkTSect<TCurve>* ) const;
+
+#if DEBUG_T_SECT
+ void validate() const;
+#endif
+
+ TCurve fPart;
+ SkTCoincident<TCurve> fCoinStart;
+ SkTCoincident<TCurve> fCoinEnd;
+ SkSTArray<4, SkTSpan*, true> fBounded;
+ SkTSpan* fPrev;
+ SkTSpan* fNext;
+ SkDRect fBounds;
+ double fStartT;
+ double fEndT;
+ double fBoundsMax;
+ bool fCollapsed;
+ bool fHasPerp;
+ bool fIsLinear;
+#if DEBUG_T_SECT
+ int fDebugID;
+ bool fDebugDeleted;
+#endif
+ friend class SkTSect<TCurve>;
+};
+
+template<typename TCurve>
+class SkTSect {
+public:
+ SkTSect(const TCurve& c PATH_OPS_DEBUG_PARAMS(int id));
+ static void BinarySearch(SkTSect* sect1, SkTSect* sect2, SkIntersections* intersections);
+
+ // for testing only
+ void dump() const;
+ void dumpBoth(const SkTSect& opp) const;
+ void dumpBoth(const SkTSect* opp) const;
+ void dumpCurves() const;
+
+private:
+ enum {
+ kZeroS1Set = 1,
+ kOneS1Set = 2,
+ kZeroS2Set = 4,
+ kOneS2Set = 8
+ };
+
+ SkTSpan<TCurve>* addOne();
+ bool binarySearchCoin(const SkTSect& , double tStart, double tStep, double* t, double* oppT);
+ SkTSpan<TCurve>* boundsMax() const;
+ void coincidentCheck(SkTSect* sect2);
+ static int EndsEqual(const SkTSect* sect1, const SkTSect* sect2, SkIntersections* );
+ bool intersects(SkTSpan<TCurve>* span, const SkTSect* opp,
+ const SkTSpan<TCurve>* oppSpan) const;
+ void onCurveCheck(SkTSect* sect2, SkTSpan<TCurve>* first, SkTSpan<TCurve>* last);
+ void recoverCollapsed();
+ void removeSpan(SkTSpan<TCurve>* span);
+ void removeOne(const SkTSpan<TCurve>* test, SkTSpan<TCurve>* span);
+ void removeSpans(SkTSpan<TCurve>* span, SkTSect* opp);
+ void setPerp(const TCurve& opp, SkTSpan<TCurve>* first, SkTSpan<TCurve>* last);
+ const SkTSpan<TCurve>* tail() const;
+ void trim(SkTSpan<TCurve>* span, SkTSect* opp);
+
+#if DEBUG_T_SECT
+ int debugID() const { return fDebugID; }
+ void validate() const;
+#else
+ int debugID() const { return 0; }
+#endif
+ const TCurve& fCurve;
+ SkChunkAlloc fHeap;
+ SkTSpan<TCurve>* fHead;
+ SkTSpan<TCurve>* fDeleted;
+ int fActiveCount;
+#if DEBUG_T_SECT
+ int fDebugID;
+ int fDebugCount;
+ int fDebugAllocatedCount;
+#endif
+ friend class SkTSpan<TCurve>; // only used by debug id
+};
+
+#define COINCIDENT_SPAN_COUNT 9
+
+template<typename TCurve>
+void SkTCoincident<TCurve>::setPerp(const TCurve& c1, double t,
+ const SkDPoint& cPt, const TCurve& c2) {
+ SkDVector dxdy = c1.dxdyAtT(t);
+ SkDLine perp = {{ cPt, {cPt.fX + dxdy.fY, cPt.fY - dxdy.fX} }};
+ SkIntersections i;
+ int used = i.intersectRay(c2, perp);
+ // only keep closest
+ if (used == 0) {
+ fPerpT = -1;
+ return;
+ }
+ fPerpT = i[0][0];
+ fPerpPt = i.pt(0);
+ SkASSERT(used <= 2);
+ if (used == 2) {
+ double distSq = (fPerpPt - cPt).lengthSquared();
+ double dist2Sq = (i.pt(1) - cPt).lengthSquared();
+ if (dist2Sq < distSq) {
+ fPerpT = i[0][1];
+ fPerpPt = i.pt(1);
+ }
+ }
+ fCoincident = cPt.approximatelyEqual(fPerpPt);
+#if DEBUG_T_SECT
+ if (fCoincident) {
+ SkDebugf(""); // allow setting breakpoint
+ }
+#endif
+}
+
+template<typename TCurve>
+void SkTSpan<TCurve>::init(const TCurve& c) {
+ fPrev = fNext = NULL;
+ fIsLinear = false;
+ fStartT = 0;
+ fEndT = 1;
+ initBounds(c);
+}
+
+template<typename TCurve>
+void SkTSpan<TCurve>::initBounds(const TCurve& c) {
+ fPart = c.subDivide(fStartT, fEndT);
+ fBounds.setBounds(fPart);
+ fCoinStart.init();
+ fCoinEnd.init();
+ fBoundsMax = SkTMax(fBounds.width(), fBounds.height());
+ fCollapsed = fPart.collapsed();
+ fHasPerp = false;
+#if DEBUG_T_SECT
+ fDebugDeleted = false;
+ if (fCollapsed) {
+ SkDebugf(""); // for convenient breakpoints
+ }
+#endif
+}
+
+template<typename TCurve>
+double SkTSpan<TCurve>::closestBoundedT(const SkDPoint& pt) const {
+ int count = fBounded.count();
+ double result = -1;
+ double closest = FLT_MAX;
+ for (int index = 0; index < count; ++index) {
+ const SkTSpan* test = fBounded[index];
+ double startDist = test->fPart[0].distanceSquared(pt);
+ if (closest > startDist) {
+ closest = startDist;
+ result = test->fStartT;
+ }
+ double endDist = test->fPart[TCurve::kPointLast].distanceSquared(pt);
+ if (closest > endDist) {
+ closest = endDist;
+ result = test->fEndT;
+ }
+ }
+ SkASSERT(between(0, result, 1));
+ return result;
+}
+
+template<typename TCurve>
+bool SkTSpan<TCurve>::contains(const SkTSpan* span) const {
+ int count = fBounded.count();
+ for (int index = 0; index < count; ++index) {
+ const SkTSpan* test = fBounded[index];
+ if (span == test) {
+ return true;
+ }
+ }
+ return false;
+}
+
+template<typename TCurve>
+SkTSpan<TCurve>* SkTSpan<TCurve>::innerFind(double t) {
+ SkTSpan* work = this;
+ do {
+ if (between(work->fStartT, t, work->fEndT)) {
+ return work;
+ }
+ } while ((work = work->fNext));
+ return NULL;
+}
+
+// OPTIMIZE ? If at_most_end_pts_in_common detects that one quad is near linear,
+// use line intersection to guess a better split than 0.5
+// OPTIMIZE Once at_most_end_pts_in_common detects linear, mark span so all future splits are linear
+template<typename TCurve>
+bool SkTSpan<TCurve>::intersects(const SkTSpan* span, bool* check) {
+ if (!fBounds.intersects(span->fBounds)) {
+ *check = false; // no need to check to see if the bounds have end points in common
+ return false;
+ }
+ if (!fIsLinear && fPart.hullIntersects(span->fPart, check)) {
+ if (!*check) {
+ return true;
+ }
+ fIsLinear = true;
+ }
+ if (fIsLinear) {
+ *check = false;
+ return linearIntersects(span->fPart);
+ }
+ return *check;
+}
+
+template<typename TCurve>
+bool SkTSpan<TCurve>::linearIntersects(const TCurve& q2) const {
+ // looks like q1 is near-linear
+ int start = 0, end = TCurve::kPointCount - 1; // the outside points are usually the extremes
+ if (!fPart.controlsInside()) {
+ double dist = 0; // if there's any question, compute distance to find best outsiders
+ for (int outer = 0; outer < TCurve::kPointCount - 1; ++outer) {
+ for (int inner = outer + 1; inner < TCurve::kPointCount; ++inner) {
+ double test = (fPart[outer] - fPart[inner]).lengthSquared();
+ if (dist > test) {
+ continue;
+ }
+ dist = test;
+ start = outer;
+ end = inner;
+ }
+ }
+ }
+ // see if q2 is on one side of the line formed by the extreme points
+ double origX = fPart[start].fX;
+ double origY = fPart[start].fY;
+ double adj = fPart[end].fX - origX;
+ double opp = fPart[end].fY - origY;
+ double sign;
+ for (int n = 0; n < TCurve::kPointCount; ++n) {
+ double test = (q2[n].fY - origY) * adj - (q2[n].fX - origX) * opp;
+ if (precisely_zero(test)) {
+ return true;
+ }
+ if (n == 0) {
+ sign = test;
+ continue;
+ }
+ if (test * sign < 0) {
+ return true;
+ }
+ }
+ return false;
+}
+
+template<typename TCurve>
+bool SkTSpan<TCurve>::splitAt(SkTSpan* work, double t) {
+ fStartT = t;
+ fEndT = work->fEndT;
+ if (fStartT == fEndT) {
+ fCollapsed = true;
+ return false;
+ }
+ work->fEndT = t;
+ if (work->fStartT == work->fEndT) {
+ work->fCollapsed = true;
+ return false;
+ }
+ fPrev = work;
+ fNext = work->fNext;
+ fIsLinear = work->fIsLinear;
+ work->fNext = this;
+ if (fNext) {
+ fNext->fPrev = this;
+ }
+ fBounded = work->fBounded;
+ int count = fBounded.count();
+ for (int index = 0; index < count; ++index) {
+ fBounded[index]->fBounded.push_back() = this;
+ }
+ return true;
+}
+
+template<typename TCurve>
+bool SkTSpan<TCurve>::tightBoundsIntersects(const SkTSpan* span) const {
+ // skew all to an axis
+ SkDVector v2_0 = fPart[TCurve::kPointLast] - fPart[0];
+ bool skewToXAxis = fabs(v2_0.fX) > fabs(v2_0.fY);
+ double ratio = skewToXAxis ? v2_0.fY / v2_0.fX : v2_0.fX / v2_0.fY;
+ TCurve r1 = fPart;
+ if (skewToXAxis) {
+ r1[1].fY -= (fPart[1].fX - r1[0].fX) * ratio;
+ if (TCurve::IsCubic()) {
+ r1[2].fY -= (fPart[2].fX - r1[0].fX) * ratio;
+ r1[3].fY = r1[0].fY;
+ } else {
+ r1[2].fY = r1[0].fY;
+ }
+ } else {
+ r1[1].fX -= (fPart[1].fY - r1[0].fY) * ratio;
+ if (TCurve::IsCubic()) {
+ r1[2].fX -= (fPart[2].fY - r1[0].fY) * ratio;
+ r1[3].fX = r1[0].fX;
+ } else {
+ r1[2].fX = r1[0].fX;
+ }
+ }
+ // compute the tight skewed bounds
+ SkDRect bounds;
+ bounds.setBounds(r1);
+ // see if opposite ends are within range of tight skewed bounds
+ TCurve r2 = span->fPart;
+ for (int i = 0; i < TCurve::kPointCount; i += 2) {
+ if (skewToXAxis) {
+ r2[i].fY -= (r2[i].fX - r1[0].fX) * ratio;
+ if (between(bounds.fTop, r2[i].fY, bounds.fBottom)) {
+ return true;
+ }
+ } else {
+ r2[i].fX -= (r2[i].fY - r1[0].fY) * ratio;
+ if (between(bounds.fLeft, r2[i].fX, bounds.fRight)) {
+ return true;
+ }
+ }
+ }
+ // see if opposite ends are on either side of tight skewed bounds
+ if ((skewToXAxis ? (r2[0].fY - r1[0].fY) * (r2[TCurve::kPointLast].fY - r1[0].fY)
+ : (r2[0].fX - r1[0].fX) * (r2[TCurve::kPointLast].fX - r1[0].fX)) < 0) {
+ return true;
+ }
+ // compute opposite tight skewed bounds
+ if (skewToXAxis) {
+ r2[1].fY -= (r2[1].fX - r1[0].fX) * ratio;
+ if (TCurve::IsCubic()) {
+ r2[2].fY -= (r2[2].fX - r1[0].fX) * ratio;
+ }
+ } else {
+ r2[1].fX -= (r2[1].fY - r1[0].fY) * ratio;
+ if (TCurve::IsCubic()) {
+ r2[2].fX -= (r2[2].fY - r1[0].fY) * ratio;
+ }
+ }
+ SkDRect sBounds;
+ sBounds.setBounds(r2);
+ // see if tight bounds overlap
+ if (skewToXAxis) {
+ return bounds.fTop <= sBounds.fBottom && sBounds.fTop <= bounds.fBottom;
+ } else {
+ return bounds.fLeft <= sBounds.fRight && sBounds.fLeft <= bounds.fRight;
+ }
+}
+
+#if DEBUG_T_SECT
+template<typename TCurve>
+void SkTSpan<TCurve>::validate() const {
+ SkASSERT(fNext == NULL || fNext != fPrev);
+ SkASSERT(fNext == NULL || this == fNext->fPrev);
+ SkASSERT(fBounds.width() || fBounds.height());
+ SkASSERT(fBoundsMax == SkTMax(fBounds.width(), fBounds.height()));
+ SkASSERT(0 <= fStartT);
+ SkASSERT(fEndT <= 1);
+ SkASSERT(fStartT < fEndT);
+ SkASSERT(fBounded.count() > 0);
+ for (int index = 0; index < fBounded.count(); ++index) {
+ const SkTSpan* overlap = fBounded[index];
+ SkASSERT(((fDebugID ^ overlap->fDebugID) & 1) == 1);
+ SkASSERT(overlap->contains(this));
+ }
+}
+#endif
+
+template<typename TCurve>
+SkTSect<TCurve>::SkTSect(const TCurve& c PATH_OPS_DEBUG_PARAMS(int id))
+ : fCurve(c)
+ , fHeap(sizeof(SkTSpan<TCurve>) * 4)
+ , fDeleted(NULL)
+ , fActiveCount(0)
+ PATH_OPS_DEBUG_PARAMS(fDebugID(id))
+ PATH_OPS_DEBUG_PARAMS(fDebugCount(0))
+ PATH_OPS_DEBUG_PARAMS(fDebugAllocatedCount(0))
+{
+ fHead = addOne();
+ fHead->init(c);
+}
+
+template<typename TCurve>
+SkTSpan<TCurve>* SkTSect<TCurve>::addOne() {
+ SkTSpan<TCurve>* result;
+ if (fDeleted) {
+ result = fDeleted;
+ result->reset();
+ fDeleted = result->fNext;
+ } else {
+ result = SkNEW_PLACEMENT(fHeap.allocThrow(sizeof(SkTSpan<TCurve>)), SkTSpan<TCurve>);
+#if DEBUG_T_SECT
+ ++fDebugAllocatedCount;
+#endif
+ }
+ ++fActiveCount;
+#if DEBUG_T_SECT
+ result->fDebugID = fDebugCount++ * 2 + fDebugID;
+#endif
+ return result;
+}
+
+template<typename TCurve>
+bool SkTSect<TCurve>::binarySearchCoin(const SkTSect& sect2, double tStart, double tStep,
+ double* resultT, double* oppT) {
+ SkTSpan<TCurve> work;
+ double result = work.fStartT = work.fEndT = tStart;
+ SkDPoint last = fCurve.ptAtT(tStart);
+ SkDPoint oppPt;
+ bool flip = false;
+ SkDEBUGCODE(bool down = tStep < 0);
+ const TCurve& opp = sect2.fCurve;
+ do {
+ tStep *= 0.5;
+ work.fStartT += tStep;
+ if (flip) {
+ tStep = -tStep;
+ flip = false;
+ }
+ work.initBounds(fCurve);
+ if (work.fCollapsed) {
+ return false;
+ }
+ if (last.approximatelyEqual(work.fPart[0])) {
+ break;
+ }
+ last = work.fPart[0];
+ work.fCoinStart.setPerp(fCurve, work.fStartT, last, opp);
+ if (work.fCoinStart.isCoincident()) {
+ double oppTTest = work.fCoinStart.perpT();
+ if (sect2.fHead->contains(oppTTest)) {
+ *oppT = oppTTest;
+ oppPt = work.fCoinStart.perpPt();
+ SkASSERT(down ? result > work.fStartT : result < work.fStartT);
+ result = work.fStartT;
+ continue;
+ }
+ }
+ tStep = -tStep;
+ flip = true;
+ } while (true);
+ if (last.approximatelyEqual(fCurve[0])) {
+ result = 0;
+ } else if (last.approximatelyEqual(fCurve[TCurve::kPointLast])) {
+ result = 1;
+ }
+ if (oppPt.approximatelyEqual(opp[0])) {
+ *oppT = 0;
+ } else if (oppPt.approximatelyEqual(opp[TCurve::kPointLast])) {
+ *oppT = 1;
+ }
+ *resultT = result;
+ return true;
+}
+
+// OPTIMIZE ? keep a sorted list of sizes in the form of a doubly-linked list in quad span
+// so that each quad sect has a pointer to the largest, and can update it as spans
+// are split
+template<typename TCurve>
+SkTSpan<TCurve>* SkTSect<TCurve>::boundsMax() const {
+ SkTSpan<TCurve>* test = fHead;
+ SkTSpan<TCurve>* largest = fHead;
+ bool largestCoin = largest->fCoinStart.isCoincident() && largest->fCoinEnd.isCoincident();
+ while ((test = test->fNext)) {
+ bool testCoin = test->fCoinStart.isCoincident() || test->fCoinEnd.isCoincident();
+ if ((largestCoin && !testCoin) || (largestCoin == testCoin
+ && (largest->fBoundsMax < test->fBoundsMax
+ || (largest->fCollapsed && !test->fCollapsed)))) {
+ largest = test;
+ largestCoin = testCoin;
+ }
+ }
+ return largestCoin ? NULL : largest;
+}
+
+template<typename TCurve>
+void SkTSect<TCurve>::coincidentCheck(SkTSect* sect2) {
+ SkTSpan<TCurve>* first = fHead;
+ SkTSpan<TCurve>* next;
+ do {
+ int consecutive = 1;
+ SkTSpan<TCurve>* last = first;
+ do {
+ next = last->fNext;
+ if (!next) {
+ break;
+ }
+ if (next->fStartT > last->fEndT) {
+ break;
+ }
+ ++consecutive;
+ last = next;
+ } while (true);
+ if (consecutive < COINCIDENT_SPAN_COUNT) {
+ continue;
+ }
+ setPerp(sect2->fCurve, first, last);
+ // check to see if a range of points are on the curve
+ onCurveCheck(sect2, first, last);
+ SkTSpan<TCurve>* removalCandidate = NULL;
+ if (!first->fCoinStart.isCoincident()) {
+ SkTSpan<TCurve>* firstCoin = first->fNext;
+ removalCandidate = first;
+ first = firstCoin;
+ }
+ if (!first->fCoinStart.isCoincident()) {
+ continue;
+ }
+ if (removalCandidate) {
+ removeSpans(removalCandidate, sect2);
+ }
+ if (!last->fCoinStart.isCoincident()) {
+ continue;
+ }
+ if (!last->fCoinEnd.isCoincident()) {
+ if (--consecutive < COINCIDENT_SPAN_COUNT) {
+ continue;
+ }
+ last = last->fPrev;
+ SkASSERT(last->fCoinStart.isCoincident());
+ SkASSERT(last->fCoinEnd.isCoincident());
+ }
+ SkASSERT(between(0, first->fCoinStart.perpT(), 1) || first->fCoinStart.perpT() == -1);
+ if (first->fCoinStart.perpT() < 0) {
+ first->fCoinStart.setPerp(fCurve, first->fStartT, first->fPart[0], sect2->fCurve);
+ }
+ SkASSERT(between(0, last->fCoinEnd.perpT(), 1) || last->fCoinEnd.perpT() == -1);
+ if (last->fCoinEnd.perpT() < 0) {
+ last->fCoinEnd.setPerp(fCurve, last->fEndT, last->fPart[TCurve::kPointLast],
+ sect2->fCurve);
+ }
+ SkTSpan<TCurve>* removeMe = first->fNext;
+ while (removeMe != last) {
+ SkTSpan<TCurve>* removeNext = removeMe->fNext;
+ removeSpans(removeMe, sect2);
+ removeMe = removeNext;
+ }
+ } while ((first = next));
+}
+
+template<typename TCurve>
+bool SkTSect<TCurve>::intersects(SkTSpan<TCurve>* span, const SkTSect* opp,
+ const SkTSpan<TCurve>* oppSpan) const {
+ bool check; // we ignore whether the end points are in common or not
+ if (!span->intersects(oppSpan, &check)) {
+ return false;
+ }
+ if (fActiveCount < COINCIDENT_SPAN_COUNT || opp->fActiveCount < COINCIDENT_SPAN_COUNT) {
+ return true;
+ }
+ return span->tightBoundsIntersects(oppSpan);
+}
+
+template<typename TCurve>
+void SkTSect<TCurve>::onCurveCheck(SkTSect* sect2, SkTSpan<TCurve>* first, SkTSpan<TCurve>* last) {
+ SkTSpan<TCurve>* work = first;
+ first = NULL;
+ do {
+ if (work->fCoinStart.isCoincident()) {
+ if (!first) {
+ first = work;
+ }
+ } else if (first) {
+ break;
+ }
+ if (work == last) {
+ break;
+ }
+ work = work->fNext;
+ SkASSERT(work);
+ } while (true);
+ if (!first) {
+ return;
+ }
+ // march outwards to find limit of coincidence from here to previous and next spans
+ double startT = first->fStartT;
+ double oppT;
+ SkTSpan<TCurve>* prev = first->fPrev;
+ if (prev) {
+ double coinStart;
+ if (binarySearchCoin(*sect2, startT, prev->fStartT - startT, &coinStart, &oppT)) {
+ if (coinStart < startT) {
+ SkASSERT(prev->fStartT < coinStart && coinStart < prev->fEndT);
+ SkTSpan<TCurve>* oppStart = sect2->fHead->find(oppT);
+ if (oppStart->fStartT < oppT && oppT < oppStart->fEndT) {
+ // split prev at coinStart if needed
+ SkTSpan<TCurve>* half2 = addOne();
+ half2->splitAt(prev, coinStart);
+ half2->initBounds(fCurve);
+ prev->initBounds(fCurve);
+ prev->fCoinEnd.markCoincident();
+ half2->fCoinStart.markCoincident();
+ half2->fCoinEnd.markCoincident();
+ // find span containing opposite t, and split that too
+ SkTSpan<TCurve>* oppHalf = sect2->addOne();
+ oppHalf->splitAt(oppStart, oppT);
+ oppHalf->initBounds(sect2->fCurve);
+ oppStart->initBounds(sect2->fCurve);
+ } else {
+ SkASSERT(oppStart->fStartT == oppT || oppT == oppStart->fEndT);
+ first->fStartT = coinStart;
+ prev->fEndT = coinStart;
+ first->initBounds(fCurve);
+ prev->initBounds(fCurve);
+ first->fCoinStart.markCoincident();
+ first->fCoinEnd.markCoincident();
+ }
+ }
+ }
+ }
+ if (!work->fCoinEnd.isCoincident()) {
+ if (work->fEndT == 1) {
+ SkDebugf("!");
+ }
+// SkASSERT(work->fEndT < 1);
+ startT = work->fStartT;
+ double coinEnd;
+ if (binarySearchCoin(*sect2, startT, work->fEndT - startT, &coinEnd, &oppT)) {
+ if (coinEnd > startT) {
+ SkTSpan<TCurve>* oppStart = sect2->fHead->find(oppT);
+ if (oppStart->fStartT < oppT && oppT < oppStart->fEndT) {
+ SkASSERT(coinEnd < work->fEndT);
+ // split prev at coinEnd if needed
+ SkTSpan<TCurve>* half2 = addOne();
+ half2->splitAt(work, coinEnd);
+ half2->initBounds(fCurve);
+ work->initBounds(fCurve);
+ work->fCoinStart.markCoincident();
+ work->fCoinEnd.markCoincident();
+ half2->fCoinStart.markCoincident();
+ SkTSpan<TCurve>* oppHalf = sect2->addOne();
+ oppHalf->splitAt(oppStart, oppT);
+ oppHalf->initBounds(sect2->fCurve);
+ oppStart->initBounds(sect2->fCurve);
+ } else {
+ SkASSERT(oppStart->fStartT == oppT || oppT == oppStart->fEndT);
+ SkTSpan<TCurve>* next = work->fNext;
+ bool hasNext = next && work->fEndT == next->fStartT;
+ work->fEndT = coinEnd;
+ work->initBounds(fCurve);
+ work->fCoinStart.markCoincident();
+ work->fCoinEnd.markCoincident();
+ if (hasNext) {
+ next->fStartT = coinEnd;
+ next->initBounds(fCurve);
+ }
+ }
+ }
+ }
+ }
+}
+
+template<typename TCurve>
+void SkTSect<TCurve>::recoverCollapsed() {
+ SkTSpan<TCurve>* deleted = fDeleted;
+ while (deleted) {
+ SkTSpan<TCurve>* delNext = deleted->fNext;
+ if (deleted->fCollapsed) {
+ SkTSpan<TCurve>** spanPtr = &fHead;
+ while (*spanPtr && (*spanPtr)->fEndT <= deleted->fStartT) {
+ spanPtr = &(*spanPtr)->fNext;
+ }
+ deleted->fNext = *spanPtr;
+ *spanPtr = deleted;
+ }
+ deleted = delNext;
+ }
+}
+
+template<typename TCurve>
+void SkTSect<TCurve>::removeSpan(SkTSpan<TCurve>* span) {
+ SkTSpan<TCurve>* prev = span->fPrev;
+ SkTSpan<TCurve>* next = span->fNext;
+ if (prev) {
+ prev->fNext = next;
+ if (next) {
+ next->fPrev = prev;
+ }
+ } else {
+ fHead = next;
+ if (next) {
+ next->fPrev = NULL;
+ }
+ }
+ --fActiveCount;
+ span->fNext = fDeleted;
+ fDeleted = span;
+#if DEBUG_T_SECT
+ SkASSERT(!span->fDebugDeleted);
+ span->fDebugDeleted = true;
+#endif
+}
+
+template<typename TCurve>
+void SkTSect<TCurve>::removeOne(const SkTSpan<TCurve>* test, SkTSpan<TCurve>* span) {
+ int last = span->fBounded.count() - 1;
+ for (int index = 0; index <= last; ++index) {
+ if (span->fBounded[index] == test) {
+ span->fBounded.removeShuffle(index);
+ if (!last) {
+ removeSpan(span);
+ }
+ return;
+ }
+ }
+}
+
+template<typename TCurve>
+void SkTSect<TCurve>::removeSpans(SkTSpan<TCurve>* span, SkTSect<TCurve>* opp) {
+ int count = span->fBounded.count();
+ for (int index = 0; index < count; ++index) {
+ SkTSpan<TCurve>* bounded = span->fBounded[0];
+ removeOne(bounded, span); // shuffles last into position 0
+ opp->removeOne(span, bounded);
+ }
+}
+
+template<typename TCurve>
+void SkTSect<TCurve>::setPerp(const TCurve& opp, SkTSpan<TCurve>* first, SkTSpan<TCurve>* last) {
+ SkTSpan<TCurve>* work = first;
+ if (!work->fHasPerp) {
+ work->fCoinStart.setPerp(fCurve, work->fStartT, work->fPart[0], opp);
+ }
+ do {
+ if (!work->fHasPerp) {
+ work->fCoinEnd.setPerp(fCurve, work->fEndT, work->fPart[TCurve::kPointLast], opp);
+ work->fHasPerp = true;
+ }
+ if (work == last) {
+ break;
+ }
+ SkTSpan<TCurve>* last = work;
+ work = work->fNext;
+ SkASSERT(work);
+ if (!work->fHasPerp) {
+ work->fCoinStart = last->fCoinEnd;
+ }
+ } while (true);
+}
+
+template<typename TCurve>
+const SkTSpan<TCurve>* SkTSect<TCurve>::tail() const {
+ const SkTSpan<TCurve>* result = fHead;
+ const SkTSpan<TCurve>* next = fHead;
+ while ((next = next->fNext)) {
+ if (next->fEndT > result->fEndT) {
+ result = next;
+ }
+ }
+ return result;
+}
+
+/* Each span has a range of opposite spans it intersects. After the span is split in two,
+ adjust the range to its new size */
+template<typename TCurve>
+void SkTSect<TCurve>::trim(SkTSpan<TCurve>* span, SkTSect* opp) {
+ span->initBounds(fCurve);
+ int count = span->fBounded.count();
+ for (int index = 0; index < count; ) {
+ SkTSpan<TCurve>* test = span->fBounded[index];
+ bool sects = intersects(span, opp, test);
+ if (sects) {
+ ++index;
+ } else {
+ removeOne(test, span);
+ opp->removeOne(span, test);
+ --count;
+ }
+ }
+}
+
+#if DEBUG_T_SECT
+template<typename TCurve>
+void SkTSect<TCurve>::validate() const {
+ int count = 0;
+ if (fHead) {
+ const SkTSpan<TCurve>* span = fHead;
+ SkASSERT(!span->fPrev);
+ double last = 0;
+ do {
+ span->validate();
+ SkASSERT(span->fStartT >= last);
+ last = span->fEndT;
+ ++count;
+ } while ((span = span->fNext) != NULL);
+ }
+ SkASSERT(count == fActiveCount);
+ SkASSERT(fActiveCount <= fDebugAllocatedCount);
+ int deletedCount = 0;
+ const SkTSpan<TCurve>* deleted = fDeleted;
+ while (deleted) {
+ ++deletedCount;
+ deleted = deleted->fNext;
+ }
+ SkASSERT(fActiveCount + deletedCount == fDebugAllocatedCount);
+}
+#endif
+
+template<typename TCurve>
+int SkTSect<TCurve>::EndsEqual(const SkTSect* sect1, const SkTSect* sect2,
+ SkIntersections* intersections) {
+ int zeroOneSet = 0;
+ // check for zero
+ if (sect1->fCurve[0].approximatelyEqual(sect2->fCurve[0])) {
+ zeroOneSet |= kZeroS1Set | kZeroS2Set;
+ if (sect1->fCurve[0] != sect2->fCurve[0]) {
+ intersections->insertNear(0, 0, sect1->fCurve[0], sect2->fCurve[0]);
+ } else {
+ intersections->insert(0, 0, sect1->fCurve[0]);
+ }
+ }
+ if (sect1->fCurve[0].approximatelyEqual(sect2->fCurve[TCurve::kPointLast])) {
+ zeroOneSet |= kZeroS1Set | kOneS2Set;
+ if (sect1->fCurve[0] != sect2->fCurve[TCurve::kPointLast]) {
+ intersections->insertNear(0, 1, sect1->fCurve[0], sect2->fCurve[TCurve::kPointLast]);
+ } else {
+ intersections->insert(0, 1, sect1->fCurve[0]);
+ }
+ }
+ // check for one
+ if (sect1->fCurve[TCurve::kPointLast].approximatelyEqual(sect2->fCurve[0])) {
+ zeroOneSet |= kOneS1Set | kZeroS2Set;
+ if (sect1->fCurve[TCurve::kPointLast] != sect2->fCurve[0]) {
+ intersections->insertNear(1, 0, sect1->fCurve[TCurve::kPointLast], sect2->fCurve[0]);
+ } else {
+ intersections->insert(1, 0, sect1->fCurve[TCurve::kPointLast]);
+ }
+ }
+ if (sect1->fCurve[TCurve::kPointLast].approximatelyEqual(sect2->fCurve[TCurve::kPointLast])) {
+ zeroOneSet |= kOneS1Set | kOneS2Set;
+ if (sect1->fCurve[TCurve::kPointLast] != sect2->fCurve[TCurve::kPointLast]) {
+ intersections->insertNear(1, 1, sect1->fCurve[TCurve::kPointLast],
+ sect2->fCurve[TCurve::kPointLast]);
+ } else {
+ intersections->insert(1, 1, sect1->fCurve[TCurve::kPointLast]);
+ }
+ }
+ return zeroOneSet;
+}
+
+template<typename TCurve>
+struct SkClosestRecord {
+ void addIntersection(SkIntersections* intersections) const {
+ double r1t = fC1Index ? fC1Span->endT() : fC1Span->startT();
+ double r2t = fC2Index ? fC2Span->endT() : fC2Span->startT();
+ intersections->insert(r1t, r2t, fC1Span->part()[fC1Index]);
+ }
+
+ void findEnd(const SkTSpan<TCurve>* span1, const SkTSpan<TCurve>* span2,
+ int c1Index, int c2Index) {
+ const TCurve& c1 = span1->part();
+ const TCurve& c2 = span2->part();
+ if (!c1[c1Index].approximatelyEqual(c2[c2Index])) {
+ return;
+ }
+ double dist = c1[c1Index].distanceSquared(c2[c2Index]);
+ if (fClosest < dist) {
+ return;
+ }
+ fC1Span = span1;
+ fC2Span = span2;
+ fC1StartT = span1->startT();
+ fC1EndT = span1->endT();
+ fC2StartT = span2->startT();
+ fC2EndT = span2->endT();
+ fC1Index = c1Index;
+ fC2Index = c2Index;
+ fClosest = dist;
+ }
+
+ bool matesWith(const SkClosestRecord& mate) const {
+ SkASSERT(fC1Span == mate.fC1Span || fC1Span->endT() <= mate.fC1Span->startT()
+ || mate.fC1Span->endT() <= fC1Span->startT());
+ SkASSERT(fC2Span == mate.fC2Span || fC2Span->endT() <= mate.fC2Span->startT()
+ || mate.fC2Span->endT() <= fC2Span->startT());
+ return fC1Span == mate.fC1Span || fC1Span->endT() == mate.fC1Span->startT()
+ || fC1Span->startT() == mate.fC1Span->endT()
+ || fC2Span == mate.fC2Span
+ || fC2Span->endT() == mate.fC2Span->startT()
+ || fC2Span->startT() == mate.fC2Span->endT();
+ }
+
+ void merge(const SkClosestRecord& mate) {
+ fC1Span = mate.fC1Span;
+ fC2Span = mate.fC2Span;
+ fClosest = mate.fClosest;
+ fC1Index = mate.fC1Index;
+ fC2Index = mate.fC2Index;
+ }
+
+ void reset() {
+ fClosest = FLT_MAX;
+ SkDEBUGCODE(fC1Span = fC2Span = NULL);
+ SkDEBUGCODE(fC1Index = fC2Index = -1);
+ }
+
+ void update(const SkClosestRecord& mate) {
+ fC1StartT = SkTMin(fC1StartT, mate.fC1StartT);
+ fC1EndT = SkTMax(fC1EndT, mate.fC1EndT);
+ fC2StartT = SkTMin(fC2StartT, mate.fC2StartT);
+ fC2EndT = SkTMax(fC2EndT, mate.fC2EndT);
+ }
+
+ const SkTSpan<TCurve>* fC1Span;
+ const SkTSpan<TCurve>* fC2Span;
+ double fC1StartT;
+ double fC1EndT;
+ double fC2StartT;
+ double fC2EndT;
+ double fClosest;
+ int fC1Index;
+ int fC2Index;
+};
+
+template<typename TCurve>
+struct SkClosestSect {
+ SkClosestSect()
+ : fUsed(0) {
+ fClosest.push_back().reset();
+ }
+
+ void find(const SkTSpan<TCurve>* span1, const SkTSpan<TCurve>* span2) {
+ SkClosestRecord<TCurve>* record = &fClosest[fUsed];
+ record->findEnd(span1, span2, 0, 0);
+ record->findEnd(span1, span2, 0, TCurve::kPointLast);
+ record->findEnd(span1, span2, TCurve::kPointLast, 0);
+ record->findEnd(span1, span2, TCurve::kPointLast, TCurve::kPointLast);
+ if (record->fClosest == FLT_MAX) {
+ return;
+ }
+ for (int index = 0; index < fUsed; ++index) {
+ SkClosestRecord<TCurve>* test = &fClosest[index];
+ if (test->matesWith(*record)) {
+ if (test->fClosest > record->fClosest) {
+ test->merge(*record);
+ }
+ test->update(*record);
+ record->reset();
+ return;
+ }
+ }
+ ++fUsed;
+ fClosest.push_back().reset();
+ }
+
+ void finish(SkIntersections* intersections) const {
+ for (int index = 0; index < fUsed; ++index) {
+ const SkClosestRecord<TCurve>& test = fClosest[index];
+ test.addIntersection(intersections);
+ }
+ }
+
+ // this is oversized by one so that an extra record can merge into final one
+ SkSTArray<TCurve::kMaxIntersections + 1, SkClosestRecord<TCurve>, true> fClosest;
+ int fUsed;
+};
+
+// returns true if the rect is too small to consider
+template<typename TCurve>
+void SkTSect<TCurve>::BinarySearch(SkTSect* sect1, SkTSect* sect2, SkIntersections* intersections) {
+ intersections->reset();
+ intersections->setMax(TCurve::kMaxIntersections);
+ SkTSpan<TCurve>* span1 = sect1->fHead;
+ SkTSpan<TCurve>* span2 = sect2->fHead;
+ bool check;
+ if (!span1->intersects(span2, &check)) {
+ return;
+ }
+ if (check) {
+ (void) EndsEqual(sect1, sect2, intersections);
+ return;
+ }
+ span1->fBounded.push_back() = span2;
+ span2->fBounded.push_back() = span1;
+ do {
+ // find the largest bounds
+ SkTSpan<TCurve>* largest1 = sect1->boundsMax();
+ if (!largest1) {
+ break;
+ }
+ SkTSpan<TCurve>* largest2 = sect2->boundsMax();
+ bool split1 = !largest2 || (largest1 && (largest1->fBoundsMax > largest2->fBoundsMax
+ || (!largest1->fCollapsed && largest2->fCollapsed)));
+ // split it
+ SkTSect* splitSect = split1 ? sect1 : sect2;
+ SkTSpan<TCurve>* half1 = split1 ? largest1 : largest2;
+ SkASSERT(half1);
+ if (half1->fCollapsed) {
+ break;
+ }
+ // trim parts that don't intersect the opposite
+ SkTSpan<TCurve>* half2 = splitSect->addOne();
+ SkTSect* unsplitSect = split1 ? sect2 : sect1;
+ if (!half2->split(half1)) {
+ break;
+ }
+ splitSect->trim(half1, unsplitSect);
+ splitSect->trim(half2, unsplitSect);
+ // if there are 9 or more continuous spans on both sects, suspect coincidence
+ if (sect1->fActiveCount >= COINCIDENT_SPAN_COUNT
+ && sect2->fActiveCount >= COINCIDENT_SPAN_COUNT) {
+ sect1->coincidentCheck(sect2);
+ }
+#if DEBUG_T_SECT
+ sect1->validate();
+ sect2->validate();
+#endif
+#if DEBUG_T_SECT_DUMP > 1
+ sect1->dumpBoth(*sect2);
+#endif
+ if (!sect1->fHead || !sect2->fHead) {
+ return;
+ }
+ } while (true);
+ if (sect1->fActiveCount >= 2 && sect2->fActiveCount >= 2) {
+ // check for coincidence
+ SkTSpan<TCurve>* first = sect1->fHead;
+ do {
+ if (!first->fCoinStart.isCoincident()) {
+ continue;
+ }
+ int spanCount = 1;
+ SkTSpan<TCurve>* last = first;
+ while (last->fCoinEnd.isCoincident()) {
+ SkTSpan<TCurve>* next = last->fNext;
+ if (!next || !next->fCoinEnd.isCoincident()) {
+ break;
+ }
+ last = next;
+ ++spanCount;
+ }
+ if (spanCount < 2) {
+ first = last;
+ continue;
+ }
+ int index = intersections->insertCoincident(first->fStartT, first->fCoinStart.perpT(),
+ first->fPart[0]);
+ if (intersections->insertCoincident(last->fEndT, last->fCoinEnd.perpT(),
+ last->fPart[TCurve::kPointLast]) < 0) {
+ intersections->clearCoincidence(index);
+ }
+ } while ((first = first->fNext));
+ }
+ int zeroOneSet = EndsEqual(sect1, sect2, intersections);
+ sect1->recoverCollapsed();
+ sect2->recoverCollapsed();
+ SkTSpan<TCurve>* result1 = sect1->fHead;
+ // check heads and tails for zero and ones and insert them if we haven't already done so
+ const SkTSpan<TCurve>* head1 = result1;
+ if (!(zeroOneSet & kZeroS1Set) && approximately_less_than_zero(head1->fStartT)) {
+ const SkDPoint& start1 = sect1->fCurve[0];
+ double t = head1->closestBoundedT(start1);
+ if (sect2->fCurve.ptAtT(t).approximatelyEqual(start1)) {
+ intersections->insert(0, t, start1);
+ }
+ }
+ const SkTSpan<TCurve>* head2 = sect2->fHead;
+ if (!(zeroOneSet & kZeroS2Set) && approximately_less_than_zero(head2->fStartT)) {
+ const SkDPoint& start2 = sect2->fCurve[0];
+ double t = head2->closestBoundedT(start2);
+ if (sect1->fCurve.ptAtT(t).approximatelyEqual(start2)) {
+ intersections->insert(t, 0, start2);
+ }
+ }
+ const SkTSpan<TCurve>* tail1 = sect1->tail();
+ if (!(zeroOneSet & kOneS1Set) && approximately_greater_than_one(tail1->fEndT)) {
+ const SkDPoint& end1 = sect1->fCurve[TCurve::kPointLast];
+ double t = tail1->closestBoundedT(end1);
+ if (sect2->fCurve.ptAtT(t).approximatelyEqual(end1)) {
+ intersections->insert(1, t, end1);
+ }
+ }
+ const SkTSpan<TCurve>* tail2 = sect2->tail();
+ if (!(zeroOneSet & kOneS2Set) && approximately_greater_than_one(tail2->fEndT)) {
+ const SkDPoint& end2 = sect2->fCurve[TCurve::kPointLast];
+ double t = tail2->closestBoundedT(end2);
+ if (sect1->fCurve.ptAtT(t).approximatelyEqual(end2)) {
+ intersections->insert(t, 1, end2);
+ }
+ }
+ SkClosestSect<TCurve> closest;
+ do {
+ while (result1 && result1->fCoinStart.isCoincident() && result1->fCoinEnd.isCoincident()) {
+ result1 = result1->fNext;
+ }
+ if (!result1) {
+ break;
+ }
+ SkTSpan<TCurve>* result2 = sect2->fHead;
+ while (result2) {
+ closest.find(result1, result2);
+ result2 = result2->fNext;
+ }
+
+ } while ((result1 = result1->fNext));
+ closest.finish(intersections);
+}
« no previous file with comments | « src/pathops/SkPathOpsTQuadSect.cpp ('k') | tests/PathOpsBuildUseTest.cpp » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698