Index: source/i18n/ucol.cpp |
diff --git a/source/i18n/ucol.cpp b/source/i18n/ucol.cpp |
index e5703773ca28752fc624958cd92accf192a7ec51..8c7c3f92c6ab578487f7f646040baec39136762a 100644 |
--- a/source/i18n/ucol.cpp |
+++ b/source/i18n/ucol.cpp |
@@ -1,6 +1,6 @@ |
/* |
******************************************************************************* |
-* Copyright (C) 1996-2013, International Business Machines |
+* Copyright (C) 1996-2014, International Business Machines |
* Corporation and others. All Rights Reserved. |
******************************************************************************* |
* file name: ucol.cpp |
@@ -14,484 +14,47 @@ |
* 02/16/2001 synwee Added internal method getPrevSpecialCE |
* 03/01/2001 synwee Added maxexpansion functionality. |
* 03/16/2001 weiv Collation framework is rewritten in C and made UCA compliant |
+* 2012-2014 markus Rewritten in C++ again. |
*/ |
#include "unicode/utypes.h" |
#if !UCONFIG_NO_COLLATION |
+#include "unicode/coll.h" |
+#include "unicode/tblcoll.h" |
#include "unicode/bytestream.h" |
#include "unicode/coleitr.h" |
-#include "unicode/unorm.h" |
-#include "unicode/udata.h" |
+#include "unicode/ucoleitr.h" |
#include "unicode/ustring.h" |
-#include "unicode/utf8.h" |
- |
-#include "ucol_imp.h" |
-#include "bocsu.h" |
- |
-#include "normalizer2impl.h" |
-#include "unorm_it.h" |
-#include "umutex.h" |
#include "cmemory.h" |
-#include "ucln_in.h" |
+#include "collation.h" |
#include "cstring.h" |
-#include "utracimp.h" |
#include "putilimp.h" |
#include "uassert.h" |
-#include "unicode/coll.h" |
- |
-#ifdef UCOL_DEBUG |
-#include <stdio.h> |
-#endif |
+#include "utracimp.h" |
U_NAMESPACE_USE |
-#define LENGTHOF(array) (int32_t)(sizeof(array)/sizeof((array)[0])) |
- |
-#define LAST_BYTE_MASK_ 0xFF |
-#define SECOND_LAST_BYTE_SHIFT_ 8 |
- |
-#define ZERO_CC_LIMIT_ 0xC0 |
- |
-// These are static pointers to the NFC/NFD implementation instance. |
-// Each of them is always the same between calls to u_cleanup |
-// and therefore writing to it is not synchronized. |
-// They are cleaned in ucol_cleanup |
-static const Normalizer2 *g_nfd = NULL; |
-static const Normalizer2Impl *g_nfcImpl = NULL; |
- |
-// These are values from UCA required for |
-// implicit generation and supressing sort key compression |
-// they should regularly be in the UCA, but if one |
-// is running without UCA, it could be a problem |
-static const int32_t maxRegularPrimary = 0x7A; |
-static const int32_t minImplicitPrimary = 0xE0; |
-static const int32_t maxImplicitPrimary = 0xE4; |
- |
-U_CDECL_BEGIN |
-static UBool U_CALLCONV |
-ucol_cleanup(void) |
-{ |
- g_nfd = NULL; |
- g_nfcImpl = NULL; |
- return TRUE; |
-} |
- |
-static int32_t U_CALLCONV |
-_getFoldingOffset(uint32_t data) { |
- return (int32_t)(data&0xFFFFFF); |
-} |
- |
-U_CDECL_END |
- |
-static inline |
-UBool initializeNFD(UErrorCode *status) { |
- if (g_nfd != NULL) { |
- return TRUE; |
- } else { |
- // The result is constant, until the library is reloaded. |
- g_nfd = Normalizer2Factory::getNFDInstance(*status); |
- ucln_i18n_registerCleanup(UCLN_I18N_UCOL, ucol_cleanup); |
- return U_SUCCESS(*status); |
- } |
-} |
- |
-// init FCD data |
-static inline |
-UBool initializeFCD(UErrorCode *status) { |
- if (g_nfcImpl != NULL) { |
- return TRUE; |
- } else { |
- // The result is constant, until the library is reloaded. |
- g_nfcImpl = Normalizer2Factory::getNFCImpl(*status); |
- // Note: Alternatively, we could also store this pointer in each collIterate struct, |
- // same as Normalizer2Factory::getImpl(collIterate->nfd). |
- ucln_i18n_registerCleanup(UCLN_I18N_UCOL, ucol_cleanup); |
- return U_SUCCESS(*status); |
- } |
-} |
- |
-static |
-inline void IInit_collIterate(const UCollator *collator, const UChar *sourceString, |
- int32_t sourceLen, collIterate *s, |
- UErrorCode *status) |
-{ |
- (s)->string = (s)->pos = sourceString; |
- (s)->origFlags = 0; |
- (s)->flags = 0; |
- if (sourceLen >= 0) { |
- s->flags |= UCOL_ITER_HASLEN; |
- (s)->endp = (UChar *)sourceString+sourceLen; |
- } |
- else { |
- /* change to enable easier checking for end of string for fcdpositon */ |
- (s)->endp = NULL; |
- } |
- (s)->extendCEs = NULL; |
- (s)->extendCEsSize = 0; |
- (s)->CEpos = (s)->toReturn = (s)->CEs; |
- (s)->offsetBuffer = NULL; |
- (s)->offsetBufferSize = 0; |
- (s)->offsetReturn = (s)->offsetStore = NULL; |
- (s)->offsetRepeatCount = (s)->offsetRepeatValue = 0; |
- (s)->coll = (collator); |
- if (initializeNFD(status)) { |
- (s)->nfd = g_nfd; |
- } else { |
- return; |
- } |
- (s)->fcdPosition = 0; |
- if(collator->normalizationMode == UCOL_ON) { |
- (s)->flags |= UCOL_ITER_NORM; |
- } |
- if(collator->hiraganaQ == UCOL_ON && collator->strength >= UCOL_QUATERNARY) { |
- (s)->flags |= UCOL_HIRAGANA_Q; |
- } |
- (s)->iterator = NULL; |
- //(s)->iteratorIndex = 0; |
-} |
- |
-U_CAPI void U_EXPORT2 |
-uprv_init_collIterate(const UCollator *collator, const UChar *sourceString, |
- int32_t sourceLen, collIterate *s, |
- UErrorCode *status) { |
- /* Out-of-line version for use from other files. */ |
- IInit_collIterate(collator, sourceString, sourceLen, s, status); |
-} |
- |
-U_CAPI collIterate * U_EXPORT2 |
-uprv_new_collIterate(UErrorCode *status) { |
- if(U_FAILURE(*status)) { |
- return NULL; |
- } |
- collIterate *s = new collIterate; |
- if(s == NULL) { |
- *status = U_MEMORY_ALLOCATION_ERROR; |
- return NULL; |
- } |
- return s; |
-} |
- |
-U_CAPI void U_EXPORT2 |
-uprv_delete_collIterate(collIterate *s) { |
- delete s; |
-} |
- |
-U_CAPI UBool U_EXPORT2 |
-uprv_collIterateAtEnd(collIterate *s) { |
- return s == NULL || s->pos == s->endp; |
-} |
- |
-/** |
-* Backup the state of the collIterate struct data |
-* @param data collIterate to backup |
-* @param backup storage |
-*/ |
-static |
-inline void backupState(const collIterate *data, collIterateState *backup) |
-{ |
- backup->fcdPosition = data->fcdPosition; |
- backup->flags = data->flags; |
- backup->origFlags = data->origFlags; |
- backup->pos = data->pos; |
- backup->bufferaddress = data->writableBuffer.getBuffer(); |
- backup->buffersize = data->writableBuffer.length(); |
- backup->iteratorMove = 0; |
- backup->iteratorIndex = 0; |
- if(data->iterator != NULL) { |
- //backup->iteratorIndex = data->iterator->getIndex(data->iterator, UITER_CURRENT); |
- backup->iteratorIndex = data->iterator->getState(data->iterator); |
- // no we try to fixup if we're using a normalizing iterator and we get UITER_NO_STATE |
- if(backup->iteratorIndex == UITER_NO_STATE) { |
- while((backup->iteratorIndex = data->iterator->getState(data->iterator)) == UITER_NO_STATE) { |
- backup->iteratorMove++; |
- data->iterator->move(data->iterator, -1, UITER_CURRENT); |
- } |
- data->iterator->move(data->iterator, backup->iteratorMove, UITER_CURRENT); |
- } |
- } |
-} |
- |
-/** |
-* Loads the state into the collIterate struct data |
-* @param data collIterate to backup |
-* @param backup storage |
-* @param forwards boolean to indicate if forwards iteration is used, |
-* false indicates backwards iteration |
-*/ |
-static |
-inline void loadState(collIterate *data, const collIterateState *backup, |
- UBool forwards) |
-{ |
- UErrorCode status = U_ZERO_ERROR; |
- data->flags = backup->flags; |
- data->origFlags = backup->origFlags; |
- if(data->iterator != NULL) { |
- //data->iterator->move(data->iterator, backup->iteratorIndex, UITER_ZERO); |
- data->iterator->setState(data->iterator, backup->iteratorIndex, &status); |
- if(backup->iteratorMove != 0) { |
- data->iterator->move(data->iterator, backup->iteratorMove, UITER_CURRENT); |
- } |
- } |
- data->pos = backup->pos; |
- |
- if ((data->flags & UCOL_ITER_INNORMBUF) && |
- data->writableBuffer.getBuffer() != backup->bufferaddress) { |
- /* |
- this is when a new buffer has been reallocated and we'll have to |
- calculate the new position. |
- note the new buffer has to contain the contents of the old buffer. |
- */ |
- if (forwards) { |
- data->pos = data->writableBuffer.getTerminatedBuffer() + |
- (data->pos - backup->bufferaddress); |
- } |
- else { |
- /* backwards direction */ |
- int32_t temp = backup->buffersize - |
- (int32_t)(data->pos - backup->bufferaddress); |
- data->pos = data->writableBuffer.getTerminatedBuffer() + (data->writableBuffer.length() - temp); |
- } |
- } |
- if ((data->flags & UCOL_ITER_INNORMBUF) == 0) { |
- /* |
- this is alittle tricky. |
- if we are initially not in the normalization buffer, even if we |
- normalize in the later stage, the data in the buffer will be |
- ignored, since we skip back up to the data string. |
- however if we are already in the normalization buffer, any |
- further normalization will pull data into the normalization |
- buffer and modify the fcdPosition. |
- since we are keeping the data in the buffer for use, the |
- fcdPosition can not be reverted back. |
- arrgghh.... |
- */ |
- data->fcdPosition = backup->fcdPosition; |
- } |
-} |
- |
-static UBool |
-reallocCEs(collIterate *data, int32_t newCapacity) { |
- uint32_t *oldCEs = data->extendCEs; |
- if(oldCEs == NULL) { |
- oldCEs = data->CEs; |
- } |
- int32_t length = data->CEpos - oldCEs; |
- uint32_t *newCEs = (uint32_t *)uprv_malloc(newCapacity * 4); |
- if(newCEs == NULL) { |
- return FALSE; |
- } |
- uprv_memcpy(newCEs, oldCEs, length * 4); |
- uprv_free(data->extendCEs); |
- data->extendCEs = newCEs; |
- data->extendCEsSize = newCapacity; |
- data->CEpos = newCEs + length; |
- return TRUE; |
-} |
- |
-static UBool |
-increaseCEsCapacity(collIterate *data) { |
- int32_t oldCapacity; |
- if(data->extendCEs != NULL) { |
- oldCapacity = data->extendCEsSize; |
- } else { |
- oldCapacity = LENGTHOF(data->CEs); |
- } |
- return reallocCEs(data, 2 * oldCapacity); |
-} |
- |
-static UBool |
-ensureCEsCapacity(collIterate *data, int32_t minCapacity) { |
- int32_t oldCapacity; |
- if(data->extendCEs != NULL) { |
- oldCapacity = data->extendCEsSize; |
- } else { |
- oldCapacity = LENGTHOF(data->CEs); |
- } |
- if(minCapacity <= oldCapacity) { |
- return TRUE; |
- } |
- oldCapacity *= 2; |
- return reallocCEs(data, minCapacity > oldCapacity ? minCapacity : oldCapacity); |
-} |
- |
-void collIterate::appendOffset(int32_t offset, UErrorCode &errorCode) { |
- if(U_FAILURE(errorCode)) { |
- return; |
- } |
- int32_t length = offsetStore == NULL ? 0 : (int32_t)(offsetStore - offsetBuffer); |
- U_ASSERT(length >= offsetBufferSize || offsetStore != NULL); |
- if(length >= offsetBufferSize) { |
- int32_t newCapacity = 2 * offsetBufferSize + UCOL_EXPAND_CE_BUFFER_SIZE; |
- int32_t *newBuffer = static_cast<int32_t *>(uprv_malloc(newCapacity * 4)); |
- if(newBuffer == NULL) { |
- errorCode = U_MEMORY_ALLOCATION_ERROR; |
- return; |
- } |
- if(length > 0) { |
- uprv_memcpy(newBuffer, offsetBuffer, length * 4); |
- } |
- uprv_free(offsetBuffer); |
- offsetBuffer = newBuffer; |
- offsetStore = offsetBuffer + length; |
- offsetBufferSize = newCapacity; |
- } |
- *offsetStore++ = offset; |
-} |
- |
-/* |
-* collIter_eos() |
-* Checks for a collIterate being positioned at the end of |
-* its source string. |
-* |
-*/ |
-static |
-inline UBool collIter_eos(collIterate *s) { |
- if(s->flags & UCOL_USE_ITERATOR) { |
- return !(s->iterator->hasNext(s->iterator)); |
- } |
- if ((s->flags & UCOL_ITER_HASLEN) == 0 && *s->pos != 0) { |
- // Null terminated string, but not at null, so not at end. |
- // Whether in main or normalization buffer doesn't matter. |
- return FALSE; |
- } |
- |
- // String with length. Can't be in normalization buffer, which is always |
- // null termintated. |
- if (s->flags & UCOL_ITER_HASLEN) { |
- return (s->pos == s->endp); |
- } |
- |
- // We are at a null termination, could be either normalization buffer or main string. |
- if ((s->flags & UCOL_ITER_INNORMBUF) == 0) { |
- // At null at end of main string. |
- return TRUE; |
- } |
- |
- // At null at end of normalization buffer. Need to check whether there there are |
- // any characters left in the main buffer. |
- if(s->origFlags & UCOL_USE_ITERATOR) { |
- return !(s->iterator->hasNext(s->iterator)); |
- } else if ((s->origFlags & UCOL_ITER_HASLEN) == 0) { |
- // Null terminated main string. fcdPosition is the 'return' position into main buf. |
- return (*s->fcdPosition == 0); |
- } |
- else { |
- // Main string with an end pointer. |
- return s->fcdPosition == s->endp; |
- } |
-} |
- |
-/* |
-* collIter_bos() |
-* Checks for a collIterate being positioned at the start of |
-* its source string. |
-* |
-*/ |
-static |
-inline UBool collIter_bos(collIterate *source) { |
- // if we're going backwards, we need to know whether there is more in the |
- // iterator, even if we are in the side buffer |
- if(source->flags & UCOL_USE_ITERATOR || source->origFlags & UCOL_USE_ITERATOR) { |
- return !source->iterator->hasPrevious(source->iterator); |
- } |
- if (source->pos <= source->string || |
- ((source->flags & UCOL_ITER_INNORMBUF) && |
- *(source->pos - 1) == 0 && source->fcdPosition == NULL)) { |
- return TRUE; |
- } |
- return FALSE; |
-} |
- |
-/*static |
-inline UBool collIter_SimpleBos(collIterate *source) { |
- // if we're going backwards, we need to know whether there is more in the |
- // iterator, even if we are in the side buffer |
- if(source->flags & UCOL_USE_ITERATOR || source->origFlags & UCOL_USE_ITERATOR) { |
- return !source->iterator->hasPrevious(source->iterator); |
- } |
- if (source->pos == source->string) { |
- return TRUE; |
- } |
- return FALSE; |
-}*/ |
- //return (data->pos == data->string) || |
- |
- |
-/****************************************************************************/ |
-/* Following are the open/close functions */ |
-/* */ |
-/****************************************************************************/ |
- |
-static UCollator* |
-ucol_initFromBinary(const uint8_t *bin, int32_t length, |
+U_CAPI UCollator* U_EXPORT2 |
+ucol_openBinary(const uint8_t *bin, int32_t length, |
const UCollator *base, |
- UCollator *fillIn, |
UErrorCode *status) |
{ |
- UCollator *result = fillIn; |
- if(U_FAILURE(*status)) { |
- return NULL; |
- } |
- /* |
- if(base == NULL) { |
- // we don't support null base yet |
- *status = U_ILLEGAL_ARGUMENT_ERROR; |
+ if(U_FAILURE(*status)) { return NULL; } |
+ RuleBasedCollator *coll = new RuleBasedCollator( |
+ bin, length, |
+ RuleBasedCollator::rbcFromUCollator(base), |
+ *status); |
+ if(coll == NULL) { |
+ *status = U_MEMORY_ALLOCATION_ERROR; |
return NULL; |
} |
- */ |
- // We need these and we could be running without UCA |
- uprv_uca_initImplicitConstants(status); |
- UCATableHeader *colData = (UCATableHeader *)bin; |
- // do we want version check here? We're trying to figure out whether collators are compatible |
- if((base && (uprv_memcmp(colData->UCAVersion, base->image->UCAVersion, sizeof(UVersionInfo)) != 0 || |
- uprv_memcmp(colData->UCDVersion, base->image->UCDVersion, sizeof(UVersionInfo)) != 0)) || |
- colData->version[0] != UCOL_BUILDER_VERSION) |
- { |
- *status = U_COLLATOR_VERSION_MISMATCH; |
+ if(U_FAILURE(*status)) { |
+ delete coll; |
return NULL; |
} |
- else { |
- if((uint32_t)length > (paddedsize(sizeof(UCATableHeader)) + paddedsize(sizeof(UColOptionSet)))) { |
- result = ucol_initCollator((const UCATableHeader *)bin, result, base, status); |
- if(U_FAILURE(*status)){ |
- return NULL; |
- } |
- result->hasRealData = TRUE; |
- } |
- else { |
- if(base) { |
- result = ucol_initCollator(base->image, result, base, status); |
- ucol_setOptionsFromHeader(result, (UColOptionSet *)(bin+((const UCATableHeader *)bin)->options), status); |
- if(U_FAILURE(*status)){ |
- return NULL; |
- } |
- result->hasRealData = FALSE; |
- } |
- else { |
- *status = U_USELESS_COLLATOR_ERROR; |
- return NULL; |
- } |
- } |
- result->freeImageOnClose = FALSE; |
- } |
- result->actualLocale = NULL; |
- result->validLocale = NULL; |
- result->requestedLocale = NULL; |
- result->rules = NULL; |
- result->rulesLength = 0; |
- result->freeRulesOnClose = FALSE; |
- result->ucaRules = NULL; |
- return result; |
-} |
- |
-U_CAPI UCollator* U_EXPORT2 |
-ucol_openBinary(const uint8_t *bin, int32_t length, |
- const UCollator *base, |
- UErrorCode *status) |
-{ |
- return ucol_initFromBinary(bin, length, base, NULL, status); |
+ return coll->toUCollator(); |
} |
U_CAPI int32_t U_EXPORT2 |
@@ -499,79 +62,20 @@ ucol_cloneBinary(const UCollator *coll, |
uint8_t *buffer, int32_t capacity, |
UErrorCode *status) |
{ |
- int32_t length = 0; |
if(U_FAILURE(*status)) { |
- return length; |
- } |
- if(capacity < 0) { |
- *status = U_ILLEGAL_ARGUMENT_ERROR; |
- return length; |
+ return 0; |
} |
- if(coll->hasRealData == TRUE) { |
- length = coll->image->size; |
- if(length <= capacity) { |
- uprv_memcpy(buffer, coll->image, length); |
- } else { |
- *status = U_BUFFER_OVERFLOW_ERROR; |
- } |
- } else { |
- length = (int32_t)(paddedsize(sizeof(UCATableHeader))+paddedsize(sizeof(UColOptionSet))); |
- if(length <= capacity) { |
- /* build the UCATableHeader with minimal entries */ |
- /* do not copy the header from the UCA file because its values are wrong! */ |
- /* uprv_memcpy(result, UCA->image, sizeof(UCATableHeader)); */ |
- |
- /* reset everything */ |
- uprv_memset(buffer, 0, length); |
- |
- /* set the tailoring-specific values */ |
- UCATableHeader *myData = (UCATableHeader *)buffer; |
- myData->size = length; |
- |
- /* offset for the options, the only part of the data that is present after the header */ |
- myData->options = sizeof(UCATableHeader); |
- |
- /* need to always set the expansion value for an upper bound of the options */ |
- myData->expansion = myData->options + sizeof(UColOptionSet); |
- |
- myData->magic = UCOL_HEADER_MAGIC; |
- myData->isBigEndian = U_IS_BIG_ENDIAN; |
- myData->charSetFamily = U_CHARSET_FAMILY; |
- |
- /* copy UCA's version; genrb will override all but the builder version with tailoring data */ |
- uprv_memcpy(myData->version, coll->image->version, sizeof(UVersionInfo)); |
- |
- uprv_memcpy(myData->UCAVersion, coll->image->UCAVersion, sizeof(UVersionInfo)); |
- uprv_memcpy(myData->UCDVersion, coll->image->UCDVersion, sizeof(UVersionInfo)); |
- uprv_memcpy(myData->formatVersion, coll->image->formatVersion, sizeof(UVersionInfo)); |
- myData->jamoSpecial = coll->image->jamoSpecial; |
- |
- /* copy the collator options */ |
- uprv_memcpy(buffer+paddedsize(sizeof(UCATableHeader)), coll->options, sizeof(UColOptionSet)); |
- } else { |
- *status = U_BUFFER_OVERFLOW_ERROR; |
- } |
+ const RuleBasedCollator *rbc = RuleBasedCollator::rbcFromUCollator(coll); |
+ if(rbc == NULL && coll != NULL) { |
+ *status = U_UNSUPPORTED_ERROR; |
+ return 0; |
} |
- return length; |
+ return rbc->cloneBinary(buffer, capacity, *status); |
} |
U_CAPI UCollator* U_EXPORT2 |
ucol_safeClone(const UCollator *coll, void * /*stackBuffer*/, int32_t * pBufferSize, UErrorCode *status) |
{ |
- UCollator * localCollator; |
- int32_t bufferSizeNeeded = (int32_t)sizeof(UCollator); |
- int32_t imageSize = 0; |
- int32_t rulesSize = 0; |
- int32_t rulesPadding = 0; |
- int32_t defaultReorderCodesSize = 0; |
- int32_t reorderCodesSize = 0; |
- uint8_t *image; |
- UChar *rules; |
- int32_t* defaultReorderCodes; |
- int32_t* reorderCodes; |
- uint8_t* leadBytePermutationTable; |
- UBool imageAllocated = FALSE; |
- |
if (status == NULL || U_FAILURE(*status)){ |
return NULL; |
} |
@@ -579,25 +83,6 @@ ucol_safeClone(const UCollator *coll, void * /*stackBuffer*/, int32_t * pBufferS |
*status = U_ILLEGAL_ARGUMENT_ERROR; |
return NULL; |
} |
- |
- if (coll->rules && coll->freeRulesOnClose) { |
- rulesSize = (int32_t)(coll->rulesLength + 1)*sizeof(UChar); |
- rulesPadding = (int32_t)(bufferSizeNeeded % sizeof(UChar)); |
- bufferSizeNeeded += rulesSize + rulesPadding; |
- } |
- // no padding for alignment needed from here since the next two are 4 byte quantities |
- if (coll->defaultReorderCodes) { |
- defaultReorderCodesSize = coll->defaultReorderCodesLength * sizeof(int32_t); |
- bufferSizeNeeded += defaultReorderCodesSize; |
- } |
- if (coll->reorderCodes) { |
- reorderCodesSize = coll->reorderCodesLength * sizeof(int32_t); |
- bufferSizeNeeded += reorderCodesSize; |
- } |
- if (coll->leadBytePermutationTable) { |
- bufferSizeNeeded += 256 * sizeof(uint8_t); |
- } |
- |
if (pBufferSize != NULL) { |
int32_t inputSize = *pBufferSize; |
*pBufferSize = 1; |
@@ -605,86 +90,13 @@ ucol_safeClone(const UCollator *coll, void * /*stackBuffer*/, int32_t * pBufferS |
return NULL; // preflighting for deprecated functionality |
} |
} |
- |
- char *stackBufferChars = (char *)uprv_malloc(bufferSizeNeeded); |
- // Null pointer check. |
- if (stackBufferChars == NULL) { |
+ Collator *newColl = Collator::fromUCollator(coll)->clone(); |
+ if (newColl == NULL) { |
*status = U_MEMORY_ALLOCATION_ERROR; |
- return NULL; |
- } |
- *status = U_SAFECLONE_ALLOCATED_WARNING; |
- |
- localCollator = (UCollator *)stackBufferChars; |
- rules = (UChar *)(stackBufferChars + sizeof(UCollator) + rulesPadding); |
- defaultReorderCodes = (int32_t*)((uint8_t*)rules + rulesSize); |
- reorderCodes = (int32_t*)((uint8_t*)defaultReorderCodes + defaultReorderCodesSize); |
- leadBytePermutationTable = (uint8_t*)reorderCodes + reorderCodesSize; |
- |
- { |
- UErrorCode tempStatus = U_ZERO_ERROR; |
- imageSize = ucol_cloneBinary(coll, NULL, 0, &tempStatus); |
- } |
- if (coll->freeImageOnClose) { |
- image = (uint8_t *)uprv_malloc(imageSize); |
- // Null pointer check |
- if (image == NULL) { |
- *status = U_MEMORY_ALLOCATION_ERROR; |
- return NULL; |
- } |
- ucol_cloneBinary(coll, image, imageSize, status); |
- imageAllocated = TRUE; |
- } |
- else { |
- image = (uint8_t *)coll->image; |
- } |
- localCollator = ucol_initFromBinary(image, imageSize, coll->UCA, localCollator, status); |
- if (U_FAILURE(*status)) { |
- return NULL; |
- } |
- |
- if (coll->rules) { |
- if (coll->freeRulesOnClose) { |
- localCollator->rules = u_strcpy(rules, coll->rules); |
- //bufferEnd += rulesSize; |
- } |
- else { |
- localCollator->rules = coll->rules; |
- } |
- localCollator->freeRulesOnClose = FALSE; |
- localCollator->rulesLength = coll->rulesLength; |
- } |
- |
- // collator reordering |
- if (coll->defaultReorderCodes) { |
- localCollator->defaultReorderCodes = |
- (int32_t*) uprv_memcpy(defaultReorderCodes, coll->defaultReorderCodes, coll->defaultReorderCodesLength * sizeof(int32_t)); |
- localCollator->defaultReorderCodesLength = coll->defaultReorderCodesLength; |
- localCollator->freeDefaultReorderCodesOnClose = FALSE; |
- } |
- if (coll->reorderCodes) { |
- localCollator->reorderCodes = |
- (int32_t*)uprv_memcpy(reorderCodes, coll->reorderCodes, coll->reorderCodesLength * sizeof(int32_t)); |
- localCollator->reorderCodesLength = coll->reorderCodesLength; |
- localCollator->freeReorderCodesOnClose = FALSE; |
- } |
- if (coll->leadBytePermutationTable) { |
- localCollator->leadBytePermutationTable = |
- (uint8_t*) uprv_memcpy(leadBytePermutationTable, coll->leadBytePermutationTable, 256); |
- localCollator->freeLeadBytePermutationTableOnClose = FALSE; |
- } |
- |
- int32_t i; |
- for(i = 0; i < UCOL_ATTRIBUTE_COUNT; i++) { |
- ucol_setAttribute(localCollator, (UColAttribute)i, ucol_getAttribute(coll, (UColAttribute)i, status), status); |
+ } else { |
+ *status = U_SAFECLONE_ALLOCATED_WARNING; |
} |
- // zero copies of pointers |
- localCollator->actualLocale = NULL; |
- localCollator->validLocale = NULL; |
- localCollator->requestedLocale = NULL; |
- localCollator->ucaRules = coll->ucaRules; // There should only be one copy here. |
- localCollator->freeOnClose = TRUE; |
- localCollator->freeImageOnClose = imageAllocated; |
- return localCollator; |
+ return newColl->toUCollator(); |
} |
U_CAPI void U_EXPORT2 |
@@ -693,7673 +105,304 @@ ucol_close(UCollator *coll) |
UTRACE_ENTRY_OC(UTRACE_UCOL_CLOSE); |
UTRACE_DATA1(UTRACE_INFO, "coll = %p", coll); |
if(coll != NULL) { |
- // these are always owned by each UCollator struct, |
- // so we always free them |
- if(coll->validLocale != NULL) { |
- uprv_free(coll->validLocale); |
- } |
- if(coll->actualLocale != NULL) { |
- uprv_free(coll->actualLocale); |
- } |
- if(coll->requestedLocale != NULL) { |
- uprv_free(coll->requestedLocale); |
- } |
- if(coll->latinOneCEs != NULL) { |
- uprv_free(coll->latinOneCEs); |
- } |
- if(coll->options != NULL && coll->freeOptionsOnClose) { |
- uprv_free(coll->options); |
- } |
- if(coll->rules != NULL && coll->freeRulesOnClose) { |
- uprv_free((UChar *)coll->rules); |
- } |
- if(coll->image != NULL && coll->freeImageOnClose) { |
- uprv_free((UCATableHeader *)coll->image); |
- } |
- |
- if(coll->leadBytePermutationTable != NULL && coll->freeLeadBytePermutationTableOnClose == TRUE) { |
- uprv_free(coll->leadBytePermutationTable); |
- } |
- if(coll->defaultReorderCodes != NULL && coll->freeDefaultReorderCodesOnClose == TRUE) { |
- uprv_free(coll->defaultReorderCodes); |
- } |
- if(coll->reorderCodes != NULL && coll->freeReorderCodesOnClose == TRUE) { |
- uprv_free(coll->reorderCodes); |
- } |
- |
- if(coll->delegate != NULL) { |
- delete (Collator*)coll->delegate; |
- } |
- |
- /* Here, it would be advisable to close: */ |
- /* - UData for UCA (unless we stuff it in the root resb */ |
- /* Again, do we need additional housekeeping... HMMM! */ |
- UTRACE_DATA1(UTRACE_INFO, "coll->freeOnClose: %d", coll->freeOnClose); |
- if(coll->freeOnClose){ |
- /* for safeClone, if freeOnClose is FALSE, |
- don't free the other instance data */ |
- uprv_free(coll); |
- } |
+ delete Collator::fromUCollator(coll); |
} |
UTRACE_EXIT(); |
} |
-void ucol_setOptionsFromHeader(UCollator* result, UColOptionSet * opts, UErrorCode *status) { |
- if(U_FAILURE(*status)) { |
- return; |
- } |
- result->caseFirst = (UColAttributeValue)opts->caseFirst; |
- result->caseLevel = (UColAttributeValue)opts->caseLevel; |
- result->frenchCollation = (UColAttributeValue)opts->frenchCollation; |
- result->normalizationMode = (UColAttributeValue)opts->normalizationMode; |
- if(result->normalizationMode == UCOL_ON && !initializeFCD(status)) { |
- return; |
- } |
- result->strength = (UColAttributeValue)opts->strength; |
- result->variableTopValue = opts->variableTopValue; |
- result->alternateHandling = (UColAttributeValue)opts->alternateHandling; |
- result->hiraganaQ = (UColAttributeValue)opts->hiraganaQ; |
- result->numericCollation = (UColAttributeValue)opts->numericCollation; |
- result->caseFirstisDefault = TRUE; |
- result->caseLevelisDefault = TRUE; |
- result->frenchCollationisDefault = TRUE; |
- result->normalizationModeisDefault = TRUE; |
- result->strengthisDefault = TRUE; |
- result->variableTopValueisDefault = TRUE; |
- result->alternateHandlingisDefault = TRUE; |
- result->hiraganaQisDefault = TRUE; |
- result->numericCollationisDefault = TRUE; |
- |
- ucol_updateInternalState(result, status); |
- |
- result->options = opts; |
-} |
- |
- |
-/** |
-* Approximate determination if a character is at a contraction end. |
-* Guaranteed to be TRUE if a character is at the end of a contraction, |
-* otherwise it is not deterministic. |
-* @param c character to be determined |
-* @param coll collator |
-*/ |
-static |
-inline UBool ucol_contractionEndCP(UChar c, const UCollator *coll) { |
- if (c < coll->minContrEndCP) { |
- return FALSE; |
- } |
- |
- int32_t hash = c; |
- uint8_t htbyte; |
- if (hash >= UCOL_UNSAFECP_TABLE_SIZE*8) { |
- if (U16_IS_TRAIL(c)) { |
- return TRUE; |
+U_CAPI int32_t U_EXPORT2 |
+ucol_mergeSortkeys(const uint8_t *src1, int32_t src1Length, |
+ const uint8_t *src2, int32_t src2Length, |
+ uint8_t *dest, int32_t destCapacity) { |
+ /* check arguments */ |
+ if( src1==NULL || src1Length<-1 || src1Length==0 || (src1Length>0 && src1[src1Length-1]!=0) || |
+ src2==NULL || src2Length<-1 || src2Length==0 || (src2Length>0 && src2[src2Length-1]!=0) || |
+ destCapacity<0 || (destCapacity>0 && dest==NULL) |
+ ) { |
+ /* error, attempt to write a zero byte and return 0 */ |
+ if(dest!=NULL && destCapacity>0) { |
+ *dest=0; |
} |
- hash = (hash & UCOL_UNSAFECP_TABLE_MASK) + 256; |
+ return 0; |
} |
- htbyte = coll->contrEndCP[hash>>3]; |
- return (((htbyte >> (hash & 7)) & 1) == 1); |
-} |
- |
- |
-/* |
-* i_getCombiningClass() |
-* A fast, at least partly inline version of u_getCombiningClass() |
-* This is a candidate for further optimization. Used heavily |
-* in contraction processing. |
-*/ |
-static |
-inline uint8_t i_getCombiningClass(UChar32 c, const UCollator *coll) { |
- uint8_t sCC = 0; |
- if ((c >= 0x300 && ucol_unsafeCP(c, coll)) || c > 0xFFFF) { |
- sCC = u_getCombiningClass(c); |
+ /* check lengths and capacity */ |
+ if(src1Length<0) { |
+ src1Length=(int32_t)uprv_strlen((const char *)src1)+1; |
} |
- return sCC; |
-} |
- |
-UCollator* ucol_initCollator(const UCATableHeader *image, UCollator *fillIn, const UCollator *UCA, UErrorCode *status) { |
- UChar c; |
- UCollator *result = fillIn; |
- if(U_FAILURE(*status) || image == NULL) { |
- return NULL; |
+ if(src2Length<0) { |
+ src2Length=(int32_t)uprv_strlen((const char *)src2)+1; |
} |
- if(result == NULL) { |
- result = (UCollator *)uprv_malloc(sizeof(UCollator)); |
- if(result == NULL) { |
- *status = U_MEMORY_ALLOCATION_ERROR; |
- return result; |
- } |
- result->freeOnClose = TRUE; |
- } else { |
- result->freeOnClose = FALSE; |
+ int32_t destLength=src1Length+src2Length; |
+ if(destLength>destCapacity) { |
+ /* the merged sort key does not fit into the destination */ |
+ return destLength; |
} |
- result->delegate = NULL; |
- |
- result->image = image; |
- result->mapping.getFoldingOffset = _getFoldingOffset; |
- const uint8_t *mapping = (uint8_t*)result->image+result->image->mappingPosition; |
- utrie_unserialize(&result->mapping, mapping, result->image->endExpansionCE - result->image->mappingPosition, status); |
- if(U_FAILURE(*status)) { |
- if(result->freeOnClose == TRUE) { |
- uprv_free(result); |
- result = NULL; |
+ /* merge the sort keys with the same number of levels */ |
+ uint8_t *p=dest; |
+ for(;;) { |
+ /* copy level from src1 not including 00 or 01 */ |
+ uint8_t b; |
+ while((b=*src1)>=2) { |
+ ++src1; |
+ *p++=b; |
} |
- return result; |
- } |
- |
- result->latinOneMapping = UTRIE_GET32_LATIN1(&result->mapping); |
- result->contractionCEs = (uint32_t*)((uint8_t*)result->image+result->image->contractionCEs); |
- result->contractionIndex = (UChar*)((uint8_t*)result->image+result->image->contractionIndex); |
- result->expansion = (uint32_t*)((uint8_t*)result->image+result->image->expansion); |
- result->rules = NULL; |
- result->rulesLength = 0; |
- result->freeRulesOnClose = FALSE; |
- result->defaultReorderCodes = NULL; |
- result->defaultReorderCodesLength = 0; |
- result->freeDefaultReorderCodesOnClose = FALSE; |
- result->reorderCodes = NULL; |
- result->reorderCodesLength = 0; |
- result->freeReorderCodesOnClose = FALSE; |
- result->leadBytePermutationTable = NULL; |
- result->freeLeadBytePermutationTableOnClose = FALSE; |
- /* get the version info from UCATableHeader and populate the Collator struct*/ |
- result->dataVersion[0] = result->image->version[0]; /* UCA Builder version*/ |
- result->dataVersion[1] = result->image->version[1]; /* UCA Tailoring rules version*/ |
- result->dataVersion[2] = 0; |
- result->dataVersion[3] = 0; |
+ /* add a 02 merge separator */ |
+ *p++=2; |
- result->unsafeCP = (uint8_t *)result->image + result->image->unsafeCP; |
- result->minUnsafeCP = 0; |
- for (c=0; c<0x300; c++) { // Find the smallest unsafe char. |
- if (ucol_unsafeCP(c, result)) break; |
- } |
- result->minUnsafeCP = c; |
- |
- result->contrEndCP = (uint8_t *)result->image + result->image->contrEndCP; |
- result->minContrEndCP = 0; |
- for (c=0; c<0x300; c++) { // Find the Contraction-ending char. |
- if (ucol_contractionEndCP(c, result)) break; |
- } |
- result->minContrEndCP = c; |
- |
- /* max expansion tables */ |
- result->endExpansionCE = (uint32_t*)((uint8_t*)result->image + |
- result->image->endExpansionCE); |
- result->lastEndExpansionCE = result->endExpansionCE + |
- result->image->endExpansionCECount - 1; |
- result->expansionCESize = (uint8_t*)result->image + |
- result->image->expansionCESize; |
- |
- |
- //result->errorCode = *status; |
- |
- result->latinOneCEs = NULL; |
- |
- result->latinOneRegenTable = FALSE; |
- result->latinOneFailed = FALSE; |
- result->UCA = UCA; |
- |
- /* Normally these will be set correctly later. This is the default if you use UCA or the default. */ |
- result->ucaRules = NULL; |
- result->actualLocale = NULL; |
- result->validLocale = NULL; |
- result->requestedLocale = NULL; |
- result->hasRealData = FALSE; // real data lives in .dat file... |
- result->freeImageOnClose = FALSE; |
- |
- /* set attributes */ |
- ucol_setOptionsFromHeader( |
- result, |
- (UColOptionSet*)((uint8_t*)result->image+result->image->options), |
- status); |
- result->freeOptionsOnClose = FALSE; |
- |
- return result; |
-} |
- |
-/* new Mark's code */ |
- |
-/** |
- * For generation of Implicit CEs |
- * @author Davis |
- * |
- * Cleaned up so that changes can be made more easily. |
- * Old values: |
-# First Implicit: E26A792D |
-# Last Implicit: E3DC70C0 |
-# First CJK: E0030300 |
-# Last CJK: E0A9DD00 |
-# First CJK_A: E0A9DF00 |
-# Last CJK_A: E0DE3100 |
- */ |
-/* Following is a port of Mark's code for new treatment of implicits. |
- * It is positioned here, since ucol_initUCA need to initialize the |
- * variables below according to the data in the fractional UCA. |
- */ |
- |
-/** |
- * Function used to: |
- * a) collapse the 2 different Han ranges from UCA into one (in the right order), and |
- * b) bump any non-CJK characters by 10FFFF. |
- * The relevant blocks are: |
- * A: 4E00..9FFF; CJK Unified Ideographs |
- * F900..FAFF; CJK Compatibility Ideographs |
- * B: 3400..4DBF; CJK Unified Ideographs Extension A |
- * 20000..XX; CJK Unified Ideographs Extension B (and others later on) |
- * As long as |
- * no new B characters are allocated between 4E00 and FAFF, and |
- * no new A characters are outside of this range, |
- * (very high probability) this simple code will work. |
- * The reordered blocks are: |
- * Block1 is CJK |
- * Block2 is CJK_COMPAT_USED |
- * Block3 is CJK_A |
- * (all contiguous) |
- * Any other CJK gets its normal code point |
- * Any non-CJK gets +10FFFF |
- * When we reorder Block1, we make sure that it is at the very start, |
- * so that it will use a 3-byte form. |
- * Warning: the we only pick up the compatibility characters that are |
- * NOT decomposed, so that block is smaller! |
- */ |
- |
-// CONSTANTS |
-static const UChar32 |
- NON_CJK_OFFSET = 0x110000, |
- UCOL_MAX_INPUT = 0x220001; // 2 * Unicode range + 2 |
- |
-/** |
- * Precomputed by initImplicitConstants() |
- */ |
-static int32_t |
- final3Multiplier = 0, |
- final4Multiplier = 0, |
- final3Count = 0, |
- final4Count = 0, |
- medialCount = 0, |
- min3Primary = 0, |
- min4Primary = 0, |
- max4Primary = 0, |
- minTrail = 0, |
- maxTrail = 0, |
- max3Trail = 0, |
- max4Trail = 0, |
- min4Boundary = 0; |
- |
-static const UChar32 |
- // 4E00;<CJK Ideograph, First>;Lo;0;L;;;;;N;;;;; |
- // 9FCC;<CJK Ideograph, Last>;Lo;0;L;;;;;N;;;;; (Unicode 6.1) |
- CJK_BASE = 0x4E00, |
- CJK_LIMIT = 0x9FCC+1, |
- // Unified CJK ideographs in the compatibility ideographs block. |
- CJK_COMPAT_USED_BASE = 0xFA0E, |
- CJK_COMPAT_USED_LIMIT = 0xFA2F+1, |
- // 3400;<CJK Ideograph Extension A, First>;Lo;0;L;;;;;N;;;;; |
- // 4DB5;<CJK Ideograph Extension A, Last>;Lo;0;L;;;;;N;;;;; |
- CJK_A_BASE = 0x3400, |
- CJK_A_LIMIT = 0x4DB5+1, |
- // 20000;<CJK Ideograph Extension B, First>;Lo;0;L;;;;;N;;;;; |
- // 2A6D6;<CJK Ideograph Extension B, Last>;Lo;0;L;;;;;N;;;;; |
- CJK_B_BASE = 0x20000, |
- CJK_B_LIMIT = 0x2A6D6+1, |
- // 2A700;<CJK Ideograph Extension C, First>;Lo;0;L;;;;;N;;;;; |
- // 2B734;<CJK Ideograph Extension C, Last>;Lo;0;L;;;;;N;;;;; |
- CJK_C_BASE = 0x2A700, |
- CJK_C_LIMIT = 0x2B734+1, |
- // 2B740;<CJK Ideograph Extension D, First>;Lo;0;L;;;;;N;;;;; |
- // 2B81D;<CJK Ideograph Extension D, Last>;Lo;0;L;;;;;N;;;;; |
- CJK_D_BASE = 0x2B740, |
- CJK_D_LIMIT = 0x2B81D+1; |
- // when adding to this list, look for all occurrences (in project) |
- // of CJK_C_BASE and CJK_C_LIMIT, etc. to check for code that needs changing!!!! |
- |
-static UChar32 swapCJK(UChar32 i) { |
- if (i < CJK_A_BASE) { |
- // non-CJK |
- } else if (i < CJK_A_LIMIT) { |
- // Extension A has lower code points than the original Unihan+compat |
- // but sorts higher. |
- return i - CJK_A_BASE |
- + (CJK_LIMIT - CJK_BASE) |
- + (CJK_COMPAT_USED_LIMIT - CJK_COMPAT_USED_BASE); |
- } else if (i < CJK_BASE) { |
- // non-CJK |
- } else if (i < CJK_LIMIT) { |
- return i - CJK_BASE; |
- } else if (i < CJK_COMPAT_USED_BASE) { |
- // non-CJK |
- } else if (i < CJK_COMPAT_USED_LIMIT) { |
- return i - CJK_COMPAT_USED_BASE |
- + (CJK_LIMIT - CJK_BASE); |
- } else if (i < CJK_B_BASE) { |
- // non-CJK |
- } else if (i < CJK_B_LIMIT) { |
- return i; // non-BMP-CJK |
- } else if (i < CJK_C_BASE) { |
- // non-CJK |
- } else if (i < CJK_C_LIMIT) { |
- return i; // non-BMP-CJK |
- } else if (i < CJK_D_BASE) { |
- // non-CJK |
- } else if (i < CJK_D_LIMIT) { |
- return i; // non-BMP-CJK |
- } |
- return i + NON_CJK_OFFSET; // non-CJK |
-} |
- |
-U_CAPI UChar32 U_EXPORT2 |
-uprv_uca_getRawFromCodePoint(UChar32 i) { |
- return swapCJK(i)+1; |
-} |
- |
-U_CAPI UChar32 U_EXPORT2 |
-uprv_uca_getCodePointFromRaw(UChar32 i) { |
- i--; |
- UChar32 result = 0; |
- if(i >= NON_CJK_OFFSET) { |
- result = i - NON_CJK_OFFSET; |
- } else if(i >= CJK_B_BASE) { |
- result = i; |
- } else if(i < CJK_A_LIMIT + (CJK_LIMIT - CJK_BASE) + (CJK_COMPAT_USED_LIMIT - CJK_COMPAT_USED_BASE)) { // rest of CJKs, compacted |
- if(i < CJK_LIMIT - CJK_BASE) { |
- result = i + CJK_BASE; |
- } else if(i < (CJK_LIMIT - CJK_BASE) + (CJK_COMPAT_USED_LIMIT - CJK_COMPAT_USED_BASE)) { |
- result = i + CJK_COMPAT_USED_BASE - (CJK_LIMIT - CJK_BASE); |
- } else { |
- result = i + CJK_A_BASE - (CJK_LIMIT - CJK_BASE) - (CJK_COMPAT_USED_LIMIT - CJK_COMPAT_USED_BASE); |
- } |
- } else { |
- result = -1; |
- } |
- return result; |
-} |
- |
-// GET IMPLICIT PRIMARY WEIGHTS |
-// Return value is left justified primary key |
-U_CAPI uint32_t U_EXPORT2 |
-uprv_uca_getImplicitFromRaw(UChar32 cp) { |
- /* |
- if (cp < 0 || cp > UCOL_MAX_INPUT) { |
- throw new IllegalArgumentException("Code point out of range " + Utility.hex(cp)); |
- } |
- */ |
- int32_t last0 = cp - min4Boundary; |
- if (last0 < 0) { |
- int32_t last1 = cp / final3Count; |
- last0 = cp % final3Count; |
- |
- int32_t last2 = last1 / medialCount; |
- last1 %= medialCount; |
- |
- last0 = minTrail + last0*final3Multiplier; // spread out, leaving gap at start |
- last1 = minTrail + last1; // offset |
- last2 = min3Primary + last2; // offset |
- /* |
- if (last2 >= min4Primary) { |
- throw new IllegalArgumentException("4-byte out of range: " + Utility.hex(cp) + ", " + Utility.hex(last2)); |
- } |
- */ |
- return (last2 << 24) + (last1 << 16) + (last0 << 8); |
- } else { |
- int32_t last1 = last0 / final4Count; |
- last0 %= final4Count; |
- |
- int32_t last2 = last1 / medialCount; |
- last1 %= medialCount; |
- |
- int32_t last3 = last2 / medialCount; |
- last2 %= medialCount; |
- |
- last0 = minTrail + last0*final4Multiplier; // spread out, leaving gap at start |
- last1 = minTrail + last1; // offset |
- last2 = minTrail + last2; // offset |
- last3 = min4Primary + last3; // offset |
- /* |
- if (last3 > max4Primary) { |
- throw new IllegalArgumentException("4-byte out of range: " + Utility.hex(cp) + ", " + Utility.hex(last3)); |
- } |
- */ |
- return (last3 << 24) + (last2 << 16) + (last1 << 8) + last0; |
- } |
-} |
- |
-static uint32_t U_EXPORT2 |
-uprv_uca_getImplicitPrimary(UChar32 cp) { |
- //fprintf(stdout, "Incoming: %04x\n", cp); |
- //if (DEBUG) System.out.println("Incoming: " + Utility.hex(cp)); |
- |
- cp = swapCJK(cp); |
- cp++; |
- // we now have a range of numbers from 0 to 21FFFF. |
- |
- //if (DEBUG) System.out.println("CJK swapped: " + Utility.hex(cp)); |
- //fprintf(stdout, "CJK swapped: %04x\n", cp); |
- |
- return uprv_uca_getImplicitFromRaw(cp); |
-} |
- |
-/** |
- * Converts implicit CE into raw integer ("code point") |
- * @param implicit |
- * @return -1 if illegal format |
- */ |
-U_CAPI UChar32 U_EXPORT2 |
-uprv_uca_getRawFromImplicit(uint32_t implicit) { |
- UChar32 result; |
- UChar32 b3 = implicit & 0xFF; |
- UChar32 b2 = (implicit >> 8) & 0xFF; |
- UChar32 b1 = (implicit >> 16) & 0xFF; |
- UChar32 b0 = (implicit >> 24) & 0xFF; |
- |
- // simple parameter checks |
- if (b0 < min3Primary || b0 > max4Primary |
- || b1 < minTrail || b1 > maxTrail) |
- return -1; |
- // normal offsets |
- b1 -= minTrail; |
- |
- // take care of the final values, and compose |
- if (b0 < min4Primary) { |
- if (b2 < minTrail || b2 > max3Trail || b3 != 0) |
- return -1; |
- b2 -= minTrail; |
- UChar32 remainder = b2 % final3Multiplier; |
- if (remainder != 0) |
- return -1; |
- b0 -= min3Primary; |
- b2 /= final3Multiplier; |
- result = ((b0 * medialCount) + b1) * final3Count + b2; |
- } else { |
- if (b2 < minTrail || b2 > maxTrail |
- || b3 < minTrail || b3 > max4Trail) |
- return -1; |
- b2 -= minTrail; |
- b3 -= minTrail; |
- UChar32 remainder = b3 % final4Multiplier; |
- if (remainder != 0) |
- return -1; |
- b3 /= final4Multiplier; |
- b0 -= min4Primary; |
- result = (((b0 * medialCount) + b1) * medialCount + b2) * final4Count + b3 + min4Boundary; |
- } |
- // final check |
- if (result < 0 || result > UCOL_MAX_INPUT) |
- return -1; |
- return result; |
-} |
- |
- |
-static inline int32_t divideAndRoundUp(int a, int b) { |
- return 1 + (a-1)/b; |
-} |
- |
-/* this function is either called from initUCA or from genUCA before |
- * doing canonical closure for the UCA. |
- */ |
- |
-/** |
- * Set up to generate implicits. |
- * Maintenance Note: this function may end up being called more than once, due |
- * to threading races during initialization. Make sure that |
- * none of the Constants is ever transiently assigned an |
- * incorrect value. |
- * @param minPrimary |
- * @param maxPrimary |
- * @param minTrail final byte |
- * @param maxTrail final byte |
- * @param gap3 the gap we leave for tailoring for 3-byte forms |
- * @param gap4 the gap we leave for tailoring for 4-byte forms |
- */ |
-static void initImplicitConstants(int minPrimary, int maxPrimary, |
- int minTrailIn, int maxTrailIn, |
- int gap3, int primaries3count, |
- UErrorCode *status) { |
- // some simple parameter checks |
- if ((minPrimary < 0 || minPrimary >= maxPrimary || maxPrimary > 0xFF) |
- || (minTrailIn < 0 || minTrailIn >= maxTrailIn || maxTrailIn > 0xFF) |
- || (primaries3count < 1)) |
- { |
- *status = U_ILLEGAL_ARGUMENT_ERROR; |
- return; |
- }; |
- |
- minTrail = minTrailIn; |
- maxTrail = maxTrailIn; |
- |
- min3Primary = minPrimary; |
- max4Primary = maxPrimary; |
- // compute constants for use later. |
- // number of values we can use in trailing bytes |
- // leave room for empty values between AND above, e.g. if gap = 2 |
- // range 3..7 => +3 -4 -5 -6 -7: so 1 value |
- // range 3..8 => +3 -4 -5 +6 -7 -8: so 2 values |
- // range 3..9 => +3 -4 -5 +6 -7 -8 -9: so 2 values |
- final3Multiplier = gap3 + 1; |
- final3Count = (maxTrail - minTrail + 1) / final3Multiplier; |
- max3Trail = minTrail + (final3Count - 1) * final3Multiplier; |
- |
- // medials can use full range |
- medialCount = (maxTrail - minTrail + 1); |
- // find out how many values fit in each form |
- int32_t threeByteCount = medialCount * final3Count; |
- // now determine where the 3/4 boundary is. |
- // we use 3 bytes below the boundary, and 4 above |
- int32_t primariesAvailable = maxPrimary - minPrimary + 1; |
- int32_t primaries4count = primariesAvailable - primaries3count; |
- |
- |
- int32_t min3ByteCoverage = primaries3count * threeByteCount; |
- min4Primary = minPrimary + primaries3count; |
- min4Boundary = min3ByteCoverage; |
- // Now expand out the multiplier for the 4 bytes, and redo. |
- |
- int32_t totalNeeded = UCOL_MAX_INPUT - min4Boundary; |
- int32_t neededPerPrimaryByte = divideAndRoundUp(totalNeeded, primaries4count); |
- int32_t neededPerFinalByte = divideAndRoundUp(neededPerPrimaryByte, medialCount * medialCount); |
- int32_t gap4 = (maxTrail - minTrail - 1) / neededPerFinalByte; |
- if (gap4 < 1) { |
- *status = U_ILLEGAL_ARGUMENT_ERROR; |
- return; |
- } |
- final4Multiplier = gap4 + 1; |
- final4Count = neededPerFinalByte; |
- max4Trail = minTrail + (final4Count - 1) * final4Multiplier; |
-} |
- |
- /** |
- * Supply parameters for generating implicit CEs |
- */ |
-U_CAPI void U_EXPORT2 |
-uprv_uca_initImplicitConstants(UErrorCode *status) { |
- // 13 is the largest 4-byte gap we can use without getting 2 four-byte forms. |
- //initImplicitConstants(minPrimary, maxPrimary, 0x04, 0xFE, 1, 1, status); |
- initImplicitConstants(minImplicitPrimary, maxImplicitPrimary, 0x04, 0xFE, 1, 1, status); |
-} |
- |
- |
-/* collIterNormalize Incremental Normalization happens here. */ |
-/* pick up the range of chars identifed by FCD, */ |
-/* normalize it into the collIterate's writable buffer, */ |
-/* switch the collIterate's state to use the writable buffer. */ |
-/* */ |
-static |
-void collIterNormalize(collIterate *collationSource) |
-{ |
- UErrorCode status = U_ZERO_ERROR; |
- const UChar *srcP = collationSource->pos - 1; /* Start of chars to normalize */ |
- const UChar *endP = collationSource->fcdPosition; /* End of region to normalize+1 */ |
- |
- collationSource->nfd->normalize(UnicodeString(FALSE, srcP, (int32_t)(endP - srcP)), |
- collationSource->writableBuffer, |
- status); |
- if (U_FAILURE(status)) { |
-#ifdef UCOL_DEBUG |
- fprintf(stderr, "collIterNormalize(), NFD failed, status = %s\n", u_errorName(status)); |
-#endif |
- return; |
- } |
- |
- collationSource->pos = collationSource->writableBuffer.getTerminatedBuffer(); |
- collationSource->origFlags = collationSource->flags; |
- collationSource->flags |= UCOL_ITER_INNORMBUF; |
- collationSource->flags &= ~(UCOL_ITER_NORM | UCOL_ITER_HASLEN | UCOL_USE_ITERATOR); |
-} |
- |
- |
-// This function takes the iterator and extracts normalized stuff up to the next boundary |
-// It is similar in the end results to the collIterNormalize, but for the cases when we |
-// use an iterator |
-/*static |
-inline void normalizeIterator(collIterate *collationSource) { |
- UErrorCode status = U_ZERO_ERROR; |
- UBool wasNormalized = FALSE; |
- //int32_t iterIndex = collationSource->iterator->getIndex(collationSource->iterator, UITER_CURRENT); |
- uint32_t iterIndex = collationSource->iterator->getState(collationSource->iterator); |
- int32_t normLen = unorm_next(collationSource->iterator, collationSource->writableBuffer, |
- (int32_t)collationSource->writableBufSize, UNORM_FCD, 0, TRUE, &wasNormalized, &status); |
- if(status == U_BUFFER_OVERFLOW_ERROR || normLen == (int32_t)collationSource->writableBufSize) { |
- // reallocate and terminate |
- if(!u_growBufferFromStatic(collationSource->stackWritableBuffer, |
- &collationSource->writableBuffer, |
- (int32_t *)&collationSource->writableBufSize, normLen + 1, |
- 0) |
- ) { |
- #ifdef UCOL_DEBUG |
- fprintf(stderr, "normalizeIterator(), out of memory\n"); |
- #endif |
- return; |
- } |
- status = U_ZERO_ERROR; |
- //collationSource->iterator->move(collationSource->iterator, iterIndex, UITER_ZERO); |
- collationSource->iterator->setState(collationSource->iterator, iterIndex, &status); |
- normLen = unorm_next(collationSource->iterator, collationSource->writableBuffer, |
- (int32_t)collationSource->writableBufSize, UNORM_FCD, 0, TRUE, &wasNormalized, &status); |
- } |
- // Terminate the buffer - we already checked that it is big enough |
- collationSource->writableBuffer[normLen] = 0; |
- if(collationSource->writableBuffer != collationSource->stackWritableBuffer) { |
- collationSource->flags |= UCOL_ITER_ALLOCATED; |
- } |
- collationSource->pos = collationSource->writableBuffer; |
- collationSource->origFlags = collationSource->flags; |
- collationSource->flags |= UCOL_ITER_INNORMBUF; |
- collationSource->flags &= ~(UCOL_ITER_NORM | UCOL_ITER_HASLEN | UCOL_USE_ITERATOR); |
-}*/ |
- |
- |
-/* Incremental FCD check and normalize */ |
-/* Called from getNextCE when normalization state is suspect. */ |
-/* When entering, the state is known to be this: */ |
-/* o We are working in the main buffer of the collIterate, not the side */ |
-/* writable buffer. When in the side buffer, normalization mode is always off, */ |
-/* so we won't get here. */ |
-/* o The leading combining class from the current character is 0 or */ |
-/* the trailing combining class of the previous char was zero. */ |
-/* True because the previous call to this function will have always exited */ |
-/* that way, and we get called for every char where cc might be non-zero. */ |
-static |
-inline UBool collIterFCD(collIterate *collationSource) { |
- const UChar *srcP, *endP; |
- uint8_t leadingCC; |
- uint8_t prevTrailingCC = 0; |
- uint16_t fcd; |
- UBool needNormalize = FALSE; |
- |
- srcP = collationSource->pos-1; |
- |
- if (collationSource->flags & UCOL_ITER_HASLEN) { |
- endP = collationSource->endp; |
- } else { |
- endP = NULL; |
- } |
- |
- // Get the trailing combining class of the current character. If it's zero, we are OK. |
- fcd = g_nfcImpl->nextFCD16(srcP, endP); |
- if (fcd != 0) { |
- prevTrailingCC = (uint8_t)(fcd & LAST_BYTE_MASK_); |
- |
- if (prevTrailingCC != 0) { |
- // The current char has a non-zero trailing CC. Scan forward until we find |
- // a char with a leading cc of zero. |
- while (endP == NULL || srcP != endP) |
- { |
- const UChar *savedSrcP = srcP; |
- |
- fcd = g_nfcImpl->nextFCD16(srcP, endP); |
- leadingCC = (uint8_t)(fcd >> SECOND_LAST_BYTE_SHIFT_); |
- if (leadingCC == 0) { |
- srcP = savedSrcP; // Hit char that is not part of combining sequence. |
- // back up over it. (Could be surrogate pair!) |
- break; |
- } |
- |
- if (leadingCC < prevTrailingCC) { |
- needNormalize = TRUE; |
- } |
- |
- prevTrailingCC = (uint8_t)(fcd & LAST_BYTE_MASK_); |
- } |
- } |
- } |
- |
- collationSource->fcdPosition = (UChar *)srcP; |
- |
- return needNormalize; |
-} |
- |
-/****************************************************************************/ |
-/* Following are the CE retrieval functions */ |
-/* */ |
-/****************************************************************************/ |
- |
-static uint32_t getImplicit(UChar32 cp, collIterate *collationSource); |
-static uint32_t getPrevImplicit(UChar32 cp, collIterate *collationSource); |
- |
-/* there should be a macro version of this function in the header file */ |
-/* This is the first function that tries to fetch a collation element */ |
-/* If it's not succesfull or it encounters a more difficult situation */ |
-/* some more sofisticated and slower functions are invoked */ |
-static |
-inline uint32_t ucol_IGetNextCE(const UCollator *coll, collIterate *collationSource, UErrorCode *status) { |
- uint32_t order = 0; |
- if (collationSource->CEpos > collationSource->toReturn) { /* Are there any CEs from previous expansions? */ |
- order = *(collationSource->toReturn++); /* if so, return them */ |
- if(collationSource->CEpos == collationSource->toReturn) { |
- collationSource->CEpos = collationSource->toReturn = collationSource->extendCEs ? collationSource->extendCEs : collationSource->CEs; |
- } |
- return order; |
- } |
- |
- UChar ch = 0; |
- collationSource->offsetReturn = NULL; |
- |
- do { |
- for (;;) /* Loop handles case when incremental normalize switches */ |
- { /* to or from the side buffer / original string, and we */ |
- /* need to start again to get the next character. */ |
- |
- if ((collationSource->flags & (UCOL_ITER_HASLEN | UCOL_ITER_INNORMBUF | UCOL_ITER_NORM | UCOL_HIRAGANA_Q | UCOL_USE_ITERATOR)) == 0) |
- { |
- // The source string is null terminated and we're not working from the side buffer, |
- // and we're not normalizing. This is the fast path. |
- // (We can be in the side buffer for Thai pre-vowel reordering even when not normalizing.) |
- ch = *collationSource->pos++; |
- if (ch != 0) { |
- break; |
- } |
- else { |
- return UCOL_NO_MORE_CES; |
- } |
- } |
- |
- if (collationSource->flags & UCOL_ITER_HASLEN) { |
- // Normal path for strings when length is specified. |
- // (We can't be in side buffer because it is always null terminated.) |
- if (collationSource->pos >= collationSource->endp) { |
- // Ran off of the end of the main source string. We're done. |
- return UCOL_NO_MORE_CES; |
- } |
- ch = *collationSource->pos++; |
- } |
- else if(collationSource->flags & UCOL_USE_ITERATOR) { |
- UChar32 iterCh = collationSource->iterator->next(collationSource->iterator); |
- if(iterCh == U_SENTINEL) { |
- return UCOL_NO_MORE_CES; |
- } |
- ch = (UChar)iterCh; |
- } |
- else |
- { |
- // Null terminated string. |
- ch = *collationSource->pos++; |
- if (ch == 0) { |
- // Ran off end of buffer. |
- if ((collationSource->flags & UCOL_ITER_INNORMBUF) == 0) { |
- // Ran off end of main string. backing up one character. |
- collationSource->pos--; |
- return UCOL_NO_MORE_CES; |
- } |
- else |
- { |
- // Hit null in the normalize side buffer. |
- // Usually this means the end of the normalized data, |
- // except for one odd case: a null followed by combining chars, |
- // which is the case if we are at the start of the buffer. |
- if (collationSource->pos == collationSource->writableBuffer.getBuffer()+1) { |
- break; |
- } |
- |
- // Null marked end of side buffer. |
- // Revert to the main string and |
- // loop back to top to try again to get a character. |
- collationSource->pos = collationSource->fcdPosition; |
- collationSource->flags = collationSource->origFlags; |
- continue; |
- } |
- } |
- } |
- |
- if(collationSource->flags&UCOL_HIRAGANA_Q) { |
- /* Codepoints \u3099-\u309C are both Hiragana and Katakana. Set the flag |
- * based on whether the previous codepoint was Hiragana or Katakana. |
- */ |
- if(((ch>=0x3040 && ch<=0x3096) || (ch >= 0x309d && ch <= 0x309f)) || |
- ((collationSource->flags & UCOL_WAS_HIRAGANA) && (ch >= 0x3099 && ch <= 0x309C))) { |
- collationSource->flags |= UCOL_WAS_HIRAGANA; |
- } else { |
- collationSource->flags &= ~UCOL_WAS_HIRAGANA; |
- } |
- } |
- |
- // We've got a character. See if there's any fcd and/or normalization stuff to do. |
- // Note that UCOL_ITER_NORM flag is always zero when we are in the side buffer. |
- if ((collationSource->flags & UCOL_ITER_NORM) == 0) { |
- break; |
- } |
- |
- if (collationSource->fcdPosition >= collationSource->pos) { |
- // An earlier FCD check has already covered the current character. |
- // We can go ahead and process this char. |
- break; |
- } |
- |
- if (ch < ZERO_CC_LIMIT_ ) { |
- // Fast fcd safe path. Trailing combining class == 0. This char is OK. |
- break; |
- } |
- |
- if (ch < NFC_ZERO_CC_BLOCK_LIMIT_) { |
- // We need to peek at the next character in order to tell if we are FCD |
- if ((collationSource->flags & UCOL_ITER_HASLEN) && collationSource->pos >= collationSource->endp) { |
- // We are at the last char of source string. |
- // It is always OK for FCD check. |
- break; |
- } |
- |
- // Not at last char of source string (or we'll check against terminating null). Do the FCD fast test |
- if (*collationSource->pos < NFC_ZERO_CC_BLOCK_LIMIT_) { |
- break; |
- } |
- } |
- |
- |
- // Need a more complete FCD check and possible normalization. |
- if (collIterFCD(collationSource)) { |
- collIterNormalize(collationSource); |
- } |
- if ((collationSource->flags & UCOL_ITER_INNORMBUF) == 0) { |
- // No normalization was needed. Go ahead and process the char we already had. |
- break; |
- } |
- |
- // Some normalization happened. Next loop iteration will pick up a char |
- // from the normalization buffer. |
- |
- } // end for (;;) |
- |
- |
- if (ch <= 0xFF) { |
- /* For latin-1 characters we never need to fall back to the UCA table */ |
- /* because all of the UCA data is replicated in the latinOneMapping array */ |
- order = coll->latinOneMapping[ch]; |
- if (order > UCOL_NOT_FOUND) { |
- order = ucol_prv_getSpecialCE(coll, ch, order, collationSource, status); |
- } |
- } |
- else |
- { |
- // Always use UCA for Han, Hangul |
- // (Han extension A is before main Han block) |
- // **** Han compatibility chars ?? **** |
- if ((collationSource->flags & UCOL_FORCE_HAN_IMPLICIT) != 0 && |
- (ch >= UCOL_FIRST_HAN_A && ch <= UCOL_LAST_HANGUL)) { |
- if (ch > UCOL_LAST_HAN && ch < UCOL_FIRST_HANGUL) { |
- // between the two target ranges; do normal lookup |
- // **** this range is YI, Modifier tone letters, **** |
- // **** Latin-D, Syloti Nagari, Phagas-pa. **** |
- // **** Latin-D might be tailored, so we need to **** |
- // **** do the normal lookup for these guys. **** |
- order = UTRIE_GET32_FROM_LEAD(&coll->mapping, ch); |
- } else { |
- // in one of the target ranges; use UCA |
- order = UCOL_NOT_FOUND; |
- } |
- } else { |
- order = UTRIE_GET32_FROM_LEAD(&coll->mapping, ch); |
- } |
- |
- if(order > UCOL_NOT_FOUND) { /* if a CE is special */ |
- order = ucol_prv_getSpecialCE(coll, ch, order, collationSource, status); /* and try to get the special CE */ |
- } |
- |
- if(order == UCOL_NOT_FOUND && coll->UCA) { /* We couldn't find a good CE in the tailoring */ |
- /* if we got here, the codepoint MUST be over 0xFF - so we look directly in the trie */ |
- order = UTRIE_GET32_FROM_LEAD(&coll->UCA->mapping, ch); |
- |
- if(order > UCOL_NOT_FOUND) { /* UCA also gives us a special CE */ |
- order = ucol_prv_getSpecialCE(coll->UCA, ch, order, collationSource, status); |
- } |
- } |
- } |
- } while ( order == UCOL_IGNORABLE && ch >= UCOL_FIRST_HANGUL && ch <= UCOL_LAST_HANGUL ); |
- |
- if(order == UCOL_NOT_FOUND) { |
- order = getImplicit(ch, collationSource); |
- } |
- return order; /* return the CE */ |
-} |
- |
-/* ucol_getNextCE, out-of-line version for use from other files. */ |
-U_CAPI uint32_t U_EXPORT2 |
-ucol_getNextCE(const UCollator *coll, collIterate *collationSource, UErrorCode *status) { |
- return ucol_IGetNextCE(coll, collationSource, status); |
-} |
- |
- |
-/** |
-* Incremental previous normalization happens here. Pick up the range of chars |
-* identifed by FCD, normalize it into the collIterate's writable buffer, |
-* switch the collIterate's state to use the writable buffer. |
-* @param data collation iterator data |
-*/ |
-static |
-void collPrevIterNormalize(collIterate *data) |
-{ |
- UErrorCode status = U_ZERO_ERROR; |
- const UChar *pEnd = data->pos; /* End normalize + 1 */ |
- const UChar *pStart; |
- |
- /* Start normalize */ |
- if (data->fcdPosition == NULL) { |
- pStart = data->string; |
- } |
- else { |
- pStart = data->fcdPosition + 1; |
- } |
- |
- int32_t normLen = |
- data->nfd->normalize(UnicodeString(FALSE, pStart, (int32_t)((pEnd - pStart) + 1)), |
- data->writableBuffer, |
- status). |
- length(); |
- if(U_FAILURE(status)) { |
- return; |
- } |
- /* |
- this puts the null termination infront of the normalized string instead |
- of the end |
- */ |
- data->writableBuffer.insert(0, (UChar)0); |
- |
- /* |
- * The usual case at this point is that we've got a base |
- * character followed by marks that were normalized. If |
- * fcdPosition is NULL, that means that we backed up to |
- * the beginning of the string and there's no base character. |
- * |
- * Forward processing will usually normalize when it sees |
- * the first mark, so that mark will get it's natural offset |
- * and the rest will get the offset of the character following |
- * the marks. The base character will also get its natural offset. |
- * |
- * We write the offset of the base character, if there is one, |
- * followed by the offset of the first mark and then the offsets |
- * of the rest of the marks. |
- */ |
- int32_t firstMarkOffset = 0; |
- int32_t trailOffset = (int32_t)(data->pos - data->string + 1); |
- int32_t trailCount = normLen - 1; |
- |
- if (data->fcdPosition != NULL) { |
- int32_t baseOffset = (int32_t)(data->fcdPosition - data->string); |
- UChar baseChar = *data->fcdPosition; |
- |
- firstMarkOffset = baseOffset + 1; |
- |
- /* |
- * If the base character is the start of a contraction, forward processing |
- * will normalize the marks while checking for the contraction, which means |
- * that the offset of the first mark will the same as the other marks. |
- * |
- * **** THIS IS PROBABLY NOT A COMPLETE TEST **** |
- */ |
- if (baseChar >= 0x100) { |
- uint32_t baseOrder = UTRIE_GET32_FROM_LEAD(&data->coll->mapping, baseChar); |
- |
- if (baseOrder == UCOL_NOT_FOUND && data->coll->UCA) { |
- baseOrder = UTRIE_GET32_FROM_LEAD(&data->coll->UCA->mapping, baseChar); |
- } |
- |
- if (baseOrder > UCOL_NOT_FOUND && getCETag(baseOrder) == CONTRACTION_TAG) { |
- firstMarkOffset = trailOffset; |
- } |
- } |
- |
- data->appendOffset(baseOffset, status); |
- } |
- |
- data->appendOffset(firstMarkOffset, status); |
- |
- for (int32_t i = 0; i < trailCount; i += 1) { |
- data->appendOffset(trailOffset, status); |
- } |
- |
- data->offsetRepeatValue = trailOffset; |
- |
- data->offsetReturn = data->offsetStore - 1; |
- if (data->offsetReturn == data->offsetBuffer) { |
- data->offsetStore = data->offsetBuffer; |
- } |
- |
- data->pos = data->writableBuffer.getTerminatedBuffer() + 1 + normLen; |
- data->origFlags = data->flags; |
- data->flags |= UCOL_ITER_INNORMBUF; |
- data->flags &= ~(UCOL_ITER_NORM | UCOL_ITER_HASLEN); |
-} |
- |
- |
-/** |
-* Incremental FCD check for previous iteration and normalize. Called from |
-* getPrevCE when normalization state is suspect. |
-* When entering, the state is known to be this: |
-* o We are working in the main buffer of the collIterate, not the side |
-* writable buffer. When in the side buffer, normalization mode is always |
-* off, so we won't get here. |
-* o The leading combining class from the current character is 0 or the |
-* trailing combining class of the previous char was zero. |
-* True because the previous call to this function will have always exited |
-* that way, and we get called for every char where cc might be non-zero. |
-* @param data collation iterate struct |
-* @return normalization status, TRUE for normalization to be done, FALSE |
-* otherwise |
-*/ |
-static |
-inline UBool collPrevIterFCD(collIterate *data) |
-{ |
- const UChar *src, *start; |
- uint8_t leadingCC; |
- uint8_t trailingCC = 0; |
- uint16_t fcd; |
- UBool result = FALSE; |
- |
- start = data->string; |
- src = data->pos + 1; |
- |
- /* Get the trailing combining class of the current character. */ |
- fcd = g_nfcImpl->previousFCD16(start, src); |
- |
- leadingCC = (uint8_t)(fcd >> SECOND_LAST_BYTE_SHIFT_); |
- |
- if (leadingCC != 0) { |
- /* |
- The current char has a non-zero leading combining class. |
- Scan backward until we find a char with a trailing cc of zero. |
- */ |
- for (;;) |
- { |
- if (start == src) { |
- data->fcdPosition = NULL; |
- return result; |
- } |
- |
- fcd = g_nfcImpl->previousFCD16(start, src); |
- |
- trailingCC = (uint8_t)(fcd & LAST_BYTE_MASK_); |
- |
- if (trailingCC == 0) { |
- break; |
- } |
- |
- if (leadingCC < trailingCC) { |
- result = TRUE; |
- } |
- |
- leadingCC = (uint8_t)(fcd >> SECOND_LAST_BYTE_SHIFT_); |
- } |
- } |
- |
- data->fcdPosition = (UChar *)src; |
- |
- return result; |
-} |
- |
-/** gets a code unit from the string at a given offset |
- * Handles both normal and iterative cases. |
- * No error checking - caller beware! |
- */ |
-static inline |
-UChar peekCodeUnit(collIterate *source, int32_t offset) { |
- if(source->pos != NULL) { |
- return *(source->pos + offset); |
- } else if(source->iterator != NULL) { |
- UChar32 c; |
- if(offset != 0) { |
- source->iterator->move(source->iterator, offset, UITER_CURRENT); |
- c = source->iterator->next(source->iterator); |
- source->iterator->move(source->iterator, -offset-1, UITER_CURRENT); |
- } else { |
- c = source->iterator->current(source->iterator); |
- } |
- return c >= 0 ? (UChar)c : 0xfffd; // If the caller works properly, we should never see c<0. |
- } else { |
- return 0xfffd; |
- } |
-} |
- |
-// Code point version. Treats the offset as a _code point_ delta. |
-// We cannot use U16_FWD_1_UNSAFE and similar because we might not have well-formed UTF-16. |
-// We cannot use U16_FWD_1 and similar because we do not know the start and limit of the buffer. |
-static inline |
-UChar32 peekCodePoint(collIterate *source, int32_t offset) { |
- UChar32 c; |
- if(source->pos != NULL) { |
- const UChar *p = source->pos; |
- if(offset >= 0) { |
- // Skip forward over (offset-1) code points. |
- while(--offset >= 0) { |
- if(U16_IS_LEAD(*p++) && U16_IS_TRAIL(*p)) { |
- ++p; |
- } |
- } |
- // Read the code point there. |
- c = *p++; |
- UChar trail; |
- if(U16_IS_LEAD(c) && U16_IS_TRAIL(trail = *p)) { |
- c = U16_GET_SUPPLEMENTARY(c, trail); |
- } |
- } else /* offset<0 */ { |
- // Skip backward over (offset-1) code points. |
- while(++offset < 0) { |
- if(U16_IS_TRAIL(*--p) && U16_IS_LEAD(*(p - 1))) { |
- --p; |
- } |
- } |
- // Read the code point before that. |
- c = *--p; |
- UChar lead; |
- if(U16_IS_TRAIL(c) && U16_IS_LEAD(lead = *(p - 1))) { |
- c = U16_GET_SUPPLEMENTARY(lead, c); |
- } |
- } |
- } else if(source->iterator != NULL) { |
- if(offset >= 0) { |
- // Skip forward over (offset-1) code points. |
- int32_t fwd = offset; |
- while(fwd-- > 0) { |
- uiter_next32(source->iterator); |
- } |
- // Read the code point there. |
- c = uiter_current32(source->iterator); |
- // Return to the starting point, skipping backward over (offset-1) code points. |
- while(offset-- > 0) { |
- uiter_previous32(source->iterator); |
- } |
- } else /* offset<0 */ { |
- // Read backward, reading offset code points, remember only the last-read one. |
- int32_t back = offset; |
- do { |
- c = uiter_previous32(source->iterator); |
- } while(++back < 0); |
- // Return to the starting position, skipping forward over offset code points. |
- do { |
- uiter_next32(source->iterator); |
- } while(++offset < 0); |
- } |
- } else { |
- c = U_SENTINEL; |
- } |
- return c; |
-} |
- |
-/** |
-* Determines if we are at the start of the data string in the backwards |
-* collation iterator |
-* @param data collation iterator |
-* @return TRUE if we are at the start |
-*/ |
-static |
-inline UBool isAtStartPrevIterate(collIterate *data) { |
- if(data->pos == NULL && data->iterator != NULL) { |
- return !data->iterator->hasPrevious(data->iterator); |
- } |
- //return (collIter_bos(data)) || |
- return (data->pos == data->string) || |
- ((data->flags & UCOL_ITER_INNORMBUF) && (data->pos != NULL) && |
- *(data->pos - 1) == 0 && data->fcdPosition == NULL); |
-} |
- |
-static |
-inline void goBackOne(collIterate *data) { |
-# if 0 |
- // somehow, it looks like we need to keep iterator synced up |
- // at all times, as above. |
- if(data->pos) { |
- data->pos--; |
- } |
- if(data->iterator) { |
- data->iterator->previous(data->iterator); |
- } |
-#endif |
- if(data->iterator && (data->flags & UCOL_USE_ITERATOR)) { |
- data->iterator->previous(data->iterator); |
- } |
- if(data->pos) { |
- data->pos --; |
- } |
-} |
- |
-/** |
-* Inline function that gets a simple CE. |
-* So what it does is that it will first check the expansion buffer. If the |
-* expansion buffer is not empty, ie the end pointer to the expansion buffer |
-* is different from the string pointer, we return the collation element at the |
-* return pointer and decrement it. |
-* For more complicated CEs it resorts to getComplicatedCE. |
-* @param coll collator data |
-* @param data collation iterator struct |
-* @param status error status |
-*/ |
-static |
-inline uint32_t ucol_IGetPrevCE(const UCollator *coll, collIterate *data, |
- UErrorCode *status) |
-{ |
- uint32_t result = (uint32_t)UCOL_NULLORDER; |
- |
- if (data->offsetReturn != NULL) { |
- if (data->offsetRepeatCount > 0) { |
- data->offsetRepeatCount -= 1; |
- } else { |
- if (data->offsetReturn == data->offsetBuffer) { |
- data->offsetReturn = NULL; |
- data->offsetStore = data->offsetBuffer; |
- } else { |
- data->offsetReturn -= 1; |
- } |
- } |
- } |
- |
- if ((data->extendCEs && data->toReturn > data->extendCEs) || |
- (!data->extendCEs && data->toReturn > data->CEs)) |
- { |
- data->toReturn -= 1; |
- result = *(data->toReturn); |
- if (data->CEs == data->toReturn || data->extendCEs == data->toReturn) { |
- data->CEpos = data->toReturn; |
- } |
- } |
- else { |
- UChar ch = 0; |
- |
- do { |
- /* |
- Loop handles case when incremental normalize switches to or from the |
- side buffer / original string, and we need to start again to get the |
- next character. |
- */ |
- for (;;) { |
- if (data->flags & UCOL_ITER_HASLEN) { |
- /* |
- Normal path for strings when length is specified. |
- Not in side buffer because it is always null terminated. |
- */ |
- if (data->pos <= data->string) { |
- /* End of the main source string */ |
- return UCOL_NO_MORE_CES; |
- } |
- data->pos --; |
- ch = *data->pos; |
- } |
- // we are using an iterator to go back. Pray for us! |
- else if (data->flags & UCOL_USE_ITERATOR) { |
- UChar32 iterCh = data->iterator->previous(data->iterator); |
- if(iterCh == U_SENTINEL) { |
- return UCOL_NO_MORE_CES; |
- } else { |
- ch = (UChar)iterCh; |
- } |
- } |
- else { |
- data->pos --; |
- ch = *data->pos; |
- /* we are in the side buffer. */ |
- if (ch == 0) { |
- /* |
- At the start of the normalize side buffer. |
- Go back to string. |
- Because pointer points to the last accessed character, |
- hence we have to increment it by one here. |
- */ |
- data->flags = data->origFlags; |
- data->offsetRepeatValue = 0; |
- |
- if (data->fcdPosition == NULL) { |
- data->pos = data->string; |
- return UCOL_NO_MORE_CES; |
- } |
- else { |
- data->pos = data->fcdPosition + 1; |
- } |
- |
- continue; |
- } |
- } |
- |
- if(data->flags&UCOL_HIRAGANA_Q) { |
- if(ch>=0x3040 && ch<=0x309f) { |
- data->flags |= UCOL_WAS_HIRAGANA; |
- } else { |
- data->flags &= ~UCOL_WAS_HIRAGANA; |
- } |
- } |
- |
- /* |
- * got a character to determine if there's fcd and/or normalization |
- * stuff to do. |
- * if the current character is not fcd. |
- * if current character is at the start of the string |
- * Trailing combining class == 0. |
- * Note if pos is in the writablebuffer, norm is always 0 |
- */ |
- if (ch < ZERO_CC_LIMIT_ || |
- // this should propel us out of the loop in the iterator case |
- (data->flags & UCOL_ITER_NORM) == 0 || |
- (data->fcdPosition != NULL && data->fcdPosition <= data->pos) |
- || data->string == data->pos) { |
- break; |
- } |
- |
- if (ch < NFC_ZERO_CC_BLOCK_LIMIT_) { |
- /* if next character is FCD */ |
- if (data->pos == data->string) { |
- /* First char of string is always OK for FCD check */ |
- break; |
- } |
- |
- /* Not first char of string, do the FCD fast test */ |
- if (*(data->pos - 1) < NFC_ZERO_CC_BLOCK_LIMIT_) { |
- break; |
- } |
- } |
- |
- /* Need a more complete FCD check and possible normalization. */ |
- if (collPrevIterFCD(data)) { |
- collPrevIterNormalize(data); |
- } |
- |
- if ((data->flags & UCOL_ITER_INNORMBUF) == 0) { |
- /* No normalization. Go ahead and process the char. */ |
- break; |
- } |
- |
- /* |
- Some normalization happened. |
- Next loop picks up a char from the normalization buffer. |
- */ |
- } |
- |
- /* attempt to handle contractions, after removal of the backwards |
- contraction |
- */ |
- if (ucol_contractionEndCP(ch, coll) && !isAtStartPrevIterate(data)) { |
- result = ucol_prv_getSpecialPrevCE(coll, ch, UCOL_CONTRACTION, data, status); |
- } else { |
- if (ch <= 0xFF) { |
- result = coll->latinOneMapping[ch]; |
- } |
- else { |
- // Always use UCA for [3400..9FFF], [AC00..D7AF] |
- // **** [FA0E..FA2F] ?? **** |
- if ((data->flags & UCOL_FORCE_HAN_IMPLICIT) != 0 && |
- (ch >= 0x3400 && ch <= 0xD7AF)) { |
- if (ch > 0x9FFF && ch < 0xAC00) { |
- // between the two target ranges; do normal lookup |
- // **** this range is YI, Modifier tone letters, **** |
- // **** Latin-D, Syloti Nagari, Phagas-pa. **** |
- // **** Latin-D might be tailored, so we need to **** |
- // **** do the normal lookup for these guys. **** |
- result = UTRIE_GET32_FROM_LEAD(&coll->mapping, ch); |
- } else { |
- result = UCOL_NOT_FOUND; |
- } |
- } else { |
- result = UTRIE_GET32_FROM_LEAD(&coll->mapping, ch); |
- } |
- } |
- if (result > UCOL_NOT_FOUND) { |
- result = ucol_prv_getSpecialPrevCE(coll, ch, result, data, status); |
- } |
- if (result == UCOL_NOT_FOUND) { // Not found in master list |
- if (!isAtStartPrevIterate(data) && |
- ucol_contractionEndCP(ch, data->coll)) |
- { |
- result = UCOL_CONTRACTION; |
- } else { |
- if(coll->UCA) { |
- result = UTRIE_GET32_FROM_LEAD(&coll->UCA->mapping, ch); |
- } |
- } |
- |
- if (result > UCOL_NOT_FOUND) { |
- if(coll->UCA) { |
- result = ucol_prv_getSpecialPrevCE(coll->UCA, ch, result, data, status); |
- } |
- } |
- } |
- } |
- } while ( result == UCOL_IGNORABLE && ch >= UCOL_FIRST_HANGUL && ch <= UCOL_LAST_HANGUL ); |
- |
- if(result == UCOL_NOT_FOUND) { |
- result = getPrevImplicit(ch, data); |
- } |
- } |
- |
- return result; |
-} |
- |
- |
-/* ucol_getPrevCE, out-of-line version for use from other files. */ |
-U_CFUNC uint32_t U_EXPORT2 |
-ucol_getPrevCE(const UCollator *coll, collIterate *data, |
- UErrorCode *status) { |
- return ucol_IGetPrevCE(coll, data, status); |
-} |
- |
- |
-/* this should be connected to special Jamo handling */ |
-U_CFUNC uint32_t U_EXPORT2 |
-ucol_getFirstCE(const UCollator *coll, UChar u, UErrorCode *status) { |
- collIterate colIt; |
- IInit_collIterate(coll, &u, 1, &colIt, status); |
- if(U_FAILURE(*status)) { |
- return 0; |
- } |
- return ucol_IGetNextCE(coll, &colIt, status); |
-} |
- |
-/** |
-* Inserts the argument character into the end of the buffer pushing back the |
-* null terminator. |
-* @param data collIterate struct data |
-* @param ch character to be appended |
-* @return the position of the new addition |
-*/ |
-static |
-inline const UChar * insertBufferEnd(collIterate *data, UChar ch) |
-{ |
- int32_t oldLength = data->writableBuffer.length(); |
- return data->writableBuffer.append(ch).getTerminatedBuffer() + oldLength; |
-} |
- |
-/** |
-* Inserts the argument string into the end of the buffer pushing back the |
-* null terminator. |
-* @param data collIterate struct data |
-* @param string to be appended |
-* @param length of the string to be appended |
-* @return the position of the new addition |
-*/ |
-static |
-inline const UChar * insertBufferEnd(collIterate *data, const UChar *str, int32_t length) |
-{ |
- int32_t oldLength = data->writableBuffer.length(); |
- return data->writableBuffer.append(str, length).getTerminatedBuffer() + oldLength; |
-} |
- |
-/** |
-* Special normalization function for contraction in the forwards iterator. |
-* This normalization sequence will place the current character at source->pos |
-* and its following normalized sequence into the buffer. |
-* The fcd position, pos will be changed. |
-* pos will now point to positions in the buffer. |
-* Flags will be changed accordingly. |
-* @param data collation iterator data |
-*/ |
-static |
-inline void normalizeNextContraction(collIterate *data) |
-{ |
- int32_t strsize; |
- UErrorCode status = U_ZERO_ERROR; |
- /* because the pointer points to the next character */ |
- const UChar *pStart = data->pos - 1; |
- const UChar *pEnd; |
- |
- if ((data->flags & UCOL_ITER_INNORMBUF) == 0) { |
- data->writableBuffer.setTo(*(pStart - 1)); |
- strsize = 1; |
- } |
- else { |
- strsize = data->writableBuffer.length(); |
- } |
- |
- pEnd = data->fcdPosition; |
- |
- data->writableBuffer.append( |
- data->nfd->normalize(UnicodeString(FALSE, pStart, (int32_t)(pEnd - pStart)), status)); |
- if(U_FAILURE(status)) { |
- return; |
- } |
- |
- data->pos = data->writableBuffer.getTerminatedBuffer() + strsize; |
- data->origFlags = data->flags; |
- data->flags |= UCOL_ITER_INNORMBUF; |
- data->flags &= ~(UCOL_ITER_NORM | UCOL_ITER_HASLEN); |
-} |
- |
-/** |
-* Contraction character management function that returns the next character |
-* for the forwards iterator. |
-* Does nothing if the next character is in buffer and not the first character |
-* in it. |
-* Else it checks next character in data string to see if it is normalizable. |
-* If it is not, the character is simply copied into the buffer, else |
-* the whole normalized substring is copied into the buffer, including the |
-* current character. |
-* @param data collation element iterator data |
-* @return next character |
-*/ |
-static |
-inline UChar getNextNormalizedChar(collIterate *data) |
-{ |
- UChar nextch; |
- UChar ch; |
- // Here we need to add the iterator code. One problem is the way |
- // end of string is handled. If we just return next char, it could |
- // be the sentinel. Most of the cases already check for this, but we |
- // need to be sure. |
- if ((data->flags & (UCOL_ITER_NORM | UCOL_ITER_INNORMBUF)) == 0 ) { |
- /* if no normalization and not in buffer. */ |
- if(data->flags & UCOL_USE_ITERATOR) { |
- return (UChar)data->iterator->next(data->iterator); |
- } else { |
- return *(data->pos ++); |
- } |
- } |
- |
- //if (data->flags & UCOL_ITER_NORM && data->flags & UCOL_USE_ITERATOR) { |
- //normalizeIterator(data); |
- //} |
- |
- UBool innormbuf = (UBool)(data->flags & UCOL_ITER_INNORMBUF); |
- if ((innormbuf && *data->pos != 0) || |
- (data->fcdPosition != NULL && !innormbuf && |
- data->pos < data->fcdPosition)) { |
- /* |
- if next character is in normalized buffer, no further normalization |
- is required |
- */ |
- return *(data->pos ++); |
- } |
- |
- if (data->flags & UCOL_ITER_HASLEN) { |
- /* in data string */ |
- if (data->pos + 1 == data->endp) { |
- return *(data->pos ++); |
- } |
- if (data->pos >= data->endp) { |
- return (UChar) -1; // return U+FFFF (non-char) to indicate an error |
- } |
- } |
- else { |
- if (innormbuf) { |
- // inside the normalization buffer, but at the end |
- // (since we encountered zero). This means, in the |
- // case we're using char iterator, that we need to |
- // do another round of normalization. |
- //if(data->origFlags & UCOL_USE_ITERATOR) { |
- // we need to restore original flags, |
- // otherwise, we'll lose them |
- //data->flags = data->origFlags; |
- //normalizeIterator(data); |
- //return *(data->pos++); |
- //} else { |
- /* |
- in writable buffer, at this point fcdPosition can not be |
- pointing to the end of the data string. see contracting tag. |
- */ |
- if(data->fcdPosition) { |
- if (*(data->fcdPosition + 1) == 0 || |
- data->fcdPosition + 1 == data->endp) { |
- /* at the end of the string, dump it into the normalizer */ |
- data->pos = insertBufferEnd(data, *(data->fcdPosition)) + 1; |
- // Check if data->pos received a null pointer |
- if (data->pos == NULL) { |
- return (UChar)-1; // Return to indicate error. |
- } |
- return *(data->fcdPosition ++); |
- } |
- data->pos = data->fcdPosition; |
- } else if(data->origFlags & UCOL_USE_ITERATOR) { |
- // if we are here, we're using a normalizing iterator. |
- // we should just continue further. |
- data->flags = data->origFlags; |
- data->pos = NULL; |
- return (UChar)data->iterator->next(data->iterator); |
- } |
- //} |
- } |
- else { |
- if (*(data->pos + 1) == 0) { |
- return *(data->pos ++); |
- } |
- } |
- } |
- |
- ch = *data->pos ++; |
- nextch = *data->pos; |
- |
- /* |
- * if the current character is not fcd. |
- * Trailing combining class == 0. |
- */ |
- if ((data->fcdPosition == NULL || data->fcdPosition < data->pos) && |
- (nextch >= NFC_ZERO_CC_BLOCK_LIMIT_ || |
- ch >= NFC_ZERO_CC_BLOCK_LIMIT_)) { |
- /* |
- Need a more complete FCD check and possible normalization. |
- normalize substring will be appended to buffer |
- */ |
- if (collIterFCD(data)) { |
- normalizeNextContraction(data); |
- return *(data->pos ++); |
- } |
- else if (innormbuf) { |
- /* fcdposition shifted even when there's no normalization, if we |
- don't input the rest into this, we'll get the wrong position when |
- we reach the end of the writableBuffer */ |
- int32_t length = (int32_t)(data->fcdPosition - data->pos + 1); |
- data->pos = insertBufferEnd(data, data->pos - 1, length); |
- // Check if data->pos received a null pointer |
- if (data->pos == NULL) { |
- return (UChar)-1; // Return to indicate error. |
- } |
- return *(data->pos ++); |
- } |
- } |
- |
- if (innormbuf) { |
- /* |
- no normalization is to be done hence only one character will be |
- appended to the buffer. |
- */ |
- data->pos = insertBufferEnd(data, ch) + 1; |
- // Check if data->pos received a null pointer |
- if (data->pos == NULL) { |
- return (UChar)-1; // Return to indicate error. |
- } |
- } |
- |
- /* points back to the pos in string */ |
- return ch; |
-} |
- |
- |
- |
-/** |
-* Function to copy the buffer into writableBuffer and sets the fcd position to |
-* the correct position |
-* @param source data string source |
-* @param buffer character buffer |
-*/ |
-static |
-inline void setDiscontiguosAttribute(collIterate *source, const UnicodeString &buffer) |
-{ |
- /* okay confusing part here. to ensure that the skipped characters are |
- considered later, we need to place it in the appropriate position in the |
- normalization buffer and reassign the pos pointer. simple case if pos |
- reside in string, simply copy to normalization buffer and |
- fcdposition = pos, pos = start of normalization buffer. if pos in |
- normalization buffer, we'll insert the copy infront of pos and point pos |
- to the start of the normalization buffer. why am i doing these copies? |
- well, so that the whole chunk of codes in the getNextCE, ucol_prv_getSpecialCE does |
- not require any changes, which be really painful. */ |
- if (source->flags & UCOL_ITER_INNORMBUF) { |
- int32_t replaceLength = source->pos - source->writableBuffer.getBuffer(); |
- source->writableBuffer.replace(0, replaceLength, buffer); |
- } |
- else { |
- source->fcdPosition = source->pos; |
- source->origFlags = source->flags; |
- source->flags |= UCOL_ITER_INNORMBUF; |
- source->flags &= ~(UCOL_ITER_NORM | UCOL_ITER_HASLEN | UCOL_USE_ITERATOR); |
- source->writableBuffer = buffer; |
- } |
- |
- source->pos = source->writableBuffer.getTerminatedBuffer(); |
-} |
- |
-/** |
-* Function to get the discontiguos collation element within the source. |
-* Note this function will set the position to the appropriate places. |
-* @param coll current collator used |
-* @param source data string source |
-* @param constart index to the start character in the contraction table |
-* @return discontiguos collation element offset |
-*/ |
-static |
-uint32_t getDiscontiguous(const UCollator *coll, collIterate *source, |
- const UChar *constart) |
-{ |
- /* source->pos currently points to the second combining character after |
- the start character */ |
- const UChar *temppos = source->pos; |
- UnicodeString buffer; |
- const UChar *tempconstart = constart; |
- uint8_t tempflags = source->flags; |
- UBool multicontraction = FALSE; |
- collIterateState discState; |
- |
- backupState(source, &discState); |
- |
- buffer.setTo(peekCodePoint(source, -1)); |
- for (;;) { |
- UChar *UCharOffset; |
- UChar schar, |
- tchar; |
- uint32_t result; |
- |
- if (((source->flags & UCOL_ITER_HASLEN) && source->pos >= source->endp) |
- || (peekCodeUnit(source, 0) == 0 && |
- //|| (*source->pos == 0 && |
- ((source->flags & UCOL_ITER_INNORMBUF) == 0 || |
- source->fcdPosition == NULL || |
- source->fcdPosition == source->endp || |
- *(source->fcdPosition) == 0 || |
- u_getCombiningClass(*(source->fcdPosition)) == 0)) || |
- /* end of string in null terminated string or stopped by a |
- null character, note fcd does not always point to a base |
- character after the discontiguos change */ |
- u_getCombiningClass(peekCodePoint(source, 0)) == 0) { |
- //u_getCombiningClass(*(source->pos)) == 0) { |
- //constart = (UChar *)coll->image + getContractOffset(CE); |
- if (multicontraction) { |
- source->pos = temppos - 1; |
- setDiscontiguosAttribute(source, buffer); |
- return *(coll->contractionCEs + |
- (tempconstart - coll->contractionIndex)); |
- } |
- constart = tempconstart; |
- break; |
- } |
- |
- UCharOffset = (UChar *)(tempconstart + 1); /* skip the backward offset*/ |
- schar = getNextNormalizedChar(source); |
- |
- while (schar > (tchar = *UCharOffset)) { |
- UCharOffset++; |
- } |
- |
- if (schar != tchar) { |
- /* not the correct codepoint. we stuff the current codepoint into |
- the discontiguos buffer and try the next character */ |
- buffer.append(schar); |
- continue; |
- } |
- else { |
- if (u_getCombiningClass(schar) == |
- u_getCombiningClass(peekCodePoint(source, -2))) { |
- buffer.append(schar); |
- continue; |
- } |
- result = *(coll->contractionCEs + |
- (UCharOffset - coll->contractionIndex)); |
- } |
- |
- if (result == UCOL_NOT_FOUND) { |
- break; |
- } else if (isContraction(result)) { |
- /* this is a multi-contraction*/ |
- tempconstart = (UChar *)coll->image + getContractOffset(result); |
- if (*(coll->contractionCEs + (constart - coll->contractionIndex)) |
- != UCOL_NOT_FOUND) { |
- multicontraction = TRUE; |
- temppos = source->pos + 1; |
- } |
- } else { |
- setDiscontiguosAttribute(source, buffer); |
- return result; |
- } |
- } |
- |
- /* no problems simply reverting just like that, |
- if we are in string before getting into this function, points back to |
- string hence no problem. |
- if we are in normalization buffer before getting into this function, |
- since we'll never use another normalization within this function, we |
- know that fcdposition points to a base character. the normalization buffer |
- never change, hence this revert works. */ |
- loadState(source, &discState, TRUE); |
- goBackOne(source); |
- |
- //source->pos = temppos - 1; |
- source->flags = tempflags; |
- return *(coll->contractionCEs + (constart - coll->contractionIndex)); |
-} |
- |
-/* now uses Mark's getImplicitPrimary code */ |
-static |
-inline uint32_t getImplicit(UChar32 cp, collIterate *collationSource) { |
- uint32_t r = uprv_uca_getImplicitPrimary(cp); |
- *(collationSource->CEpos++) = ((r & 0x0000FFFF)<<16) | 0x000000C0; |
- collationSource->offsetRepeatCount += 1; |
- return (r & UCOL_PRIMARYMASK) | 0x00000505; // This was 'order' |
-} |
- |
-/** |
-* Inserts the argument character into the front of the buffer replacing the |
-* front null terminator. |
-* @param data collation element iterator data |
-* @param ch character to be appended |
-*/ |
-static |
-inline void insertBufferFront(collIterate *data, UChar ch) |
-{ |
- data->pos = data->writableBuffer.setCharAt(0, ch).insert(0, (UChar)0).getTerminatedBuffer() + 2; |
-} |
- |
-/** |
-* Special normalization function for contraction in the previous iterator. |
-* This normalization sequence will place the current character at source->pos |
-* and its following normalized sequence into the buffer. |
-* The fcd position, pos will be changed. |
-* pos will now point to positions in the buffer. |
-* Flags will be changed accordingly. |
-* @param data collation iterator data |
-*/ |
-static |
-inline void normalizePrevContraction(collIterate *data, UErrorCode *status) |
-{ |
- const UChar *pEnd = data->pos + 1; /* End normalize + 1 */ |
- const UChar *pStart; |
- |
- UnicodeString endOfBuffer; |
- if (data->flags & UCOL_ITER_HASLEN) { |
- /* |
- normalization buffer not used yet, we'll pull down the next |
- character into the end of the buffer |
- */ |
- endOfBuffer.setTo(*pEnd); |
- } |
- else { |
- endOfBuffer.setTo(data->writableBuffer, 1); // after the leading NUL |
- } |
- |
- if (data->fcdPosition == NULL) { |
- pStart = data->string; |
- } |
- else { |
- pStart = data->fcdPosition + 1; |
- } |
- int32_t normLen = |
- data->nfd->normalize(UnicodeString(FALSE, pStart, (int32_t)(pEnd - pStart)), |
- data->writableBuffer, |
- *status). |
- length(); |
- if(U_FAILURE(*status)) { |
- return; |
- } |
- /* |
- this puts the null termination infront of the normalized string instead |
- of the end |
- */ |
- data->pos = |
- data->writableBuffer.insert(0, (UChar)0).append(endOfBuffer).getTerminatedBuffer() + |
- 1 + normLen; |
- data->origFlags = data->flags; |
- data->flags |= UCOL_ITER_INNORMBUF; |
- data->flags &= ~(UCOL_ITER_NORM | UCOL_ITER_HASLEN); |
-} |
- |
-/** |
-* Contraction character management function that returns the previous character |
-* for the backwards iterator. |
-* Does nothing if the previous character is in buffer and not the first |
-* character in it. |
-* Else it checks previous character in data string to see if it is |
-* normalizable. |
-* If it is not, the character is simply copied into the buffer, else |
-* the whole normalized substring is copied into the buffer, including the |
-* current character. |
-* @param data collation element iterator data |
-* @return previous character |
-*/ |
-static |
-inline UChar getPrevNormalizedChar(collIterate *data, UErrorCode *status) |
-{ |
- UChar prevch; |
- UChar ch; |
- const UChar *start; |
- UBool innormbuf = (UBool)(data->flags & UCOL_ITER_INNORMBUF); |
- if ((data->flags & (UCOL_ITER_NORM | UCOL_ITER_INNORMBUF)) == 0 || |
- (innormbuf && *(data->pos - 1) != 0)) { |
- /* |
- if no normalization. |
- if previous character is in normalized buffer, no further normalization |
- is required |
- */ |
- if(data->flags & UCOL_USE_ITERATOR) { |
- data->iterator->move(data->iterator, -1, UITER_CURRENT); |
- return (UChar)data->iterator->next(data->iterator); |
- } else { |
- return *(data->pos - 1); |
- } |
- } |
- |
- start = data->pos; |
- if ((data->fcdPosition==NULL)||(data->flags & UCOL_ITER_HASLEN)) { |
- /* in data string */ |
- if ((start - 1) == data->string) { |
- return *(start - 1); |
- } |
- start --; |
- ch = *start; |
- prevch = *(start - 1); |
- } |
- else { |
- /* |
- in writable buffer, at this point fcdPosition can not be NULL. |
- see contracting tag. |
- */ |
- if (data->fcdPosition == data->string) { |
- /* at the start of the string, just dump it into the normalizer */ |
- insertBufferFront(data, *(data->fcdPosition)); |
- data->fcdPosition = NULL; |
- return *(data->pos - 1); |
- } |
- start = data->fcdPosition; |
- ch = *start; |
- prevch = *(start - 1); |
- } |
- /* |
- * if the current character is not fcd. |
- * Trailing combining class == 0. |
- */ |
- if (data->fcdPosition > start && |
- (ch >= NFC_ZERO_CC_BLOCK_LIMIT_ || prevch >= NFC_ZERO_CC_BLOCK_LIMIT_)) |
- { |
- /* |
- Need a more complete FCD check and possible normalization. |
- normalize substring will be appended to buffer |
- */ |
- const UChar *backuppos = data->pos; |
- data->pos = start; |
- if (collPrevIterFCD(data)) { |
- normalizePrevContraction(data, status); |
- return *(data->pos - 1); |
- } |
- data->pos = backuppos; |
- data->fcdPosition ++; |
- } |
- |
- if (innormbuf) { |
- /* |
- no normalization is to be done hence only one character will be |
- appended to the buffer. |
- */ |
- insertBufferFront(data, ch); |
- data->fcdPosition --; |
- } |
- |
- return ch; |
-} |
- |
-/* This function handles the special CEs like contractions, expansions, surrogates, Thai */ |
-/* It is called by getNextCE */ |
- |
-/* The following should be even */ |
-#define UCOL_MAX_DIGITS_FOR_NUMBER 254 |
- |
-uint32_t ucol_prv_getSpecialCE(const UCollator *coll, UChar ch, uint32_t CE, collIterate *source, UErrorCode *status) { |
- collIterateState entryState; |
- backupState(source, &entryState); |
- UChar32 cp = ch; |
- |
- for (;;) { |
- // This loop will repeat only in the case of contractions, and only when a contraction |
- // is found and the first CE resulting from that contraction is itself a special |
- // (an expansion, for example.) All other special CE types are fully handled the |
- // first time through, and the loop exits. |
- |
- const uint32_t *CEOffset = NULL; |
- switch(getCETag(CE)) { |
- case NOT_FOUND_TAG: |
- /* This one is not found, and we'll let somebody else bother about it... no more games */ |
- return CE; |
- case SPEC_PROC_TAG: |
- { |
- // Special processing is getting a CE that is preceded by a certain prefix |
- // Currently this is only needed for optimizing Japanese length and iteration marks. |
- // When we encouter a special processing tag, we go backwards and try to see if |
- // we have a match. |
- // Contraction tables are used - so the whole process is not unlike contraction. |
- // prefix data is stored backwards in the table. |
- const UChar *UCharOffset; |
- UChar schar, tchar; |
- collIterateState prefixState; |
- backupState(source, &prefixState); |
- loadState(source, &entryState, TRUE); |
- goBackOne(source); // We want to look at the point where we entered - actually one |
- // before that... |
- |
- for(;;) { |
- // This loop will run once per source string character, for as long as we |
- // are matching a potential contraction sequence |
- |
- // First we position ourselves at the begining of contraction sequence |
- const UChar *ContractionStart = UCharOffset = (UChar *)coll->image+getContractOffset(CE); |
- if (collIter_bos(source)) { |
- CE = *(coll->contractionCEs + (UCharOffset - coll->contractionIndex)); |
- break; |
- } |
- schar = getPrevNormalizedChar(source, status); |
- goBackOne(source); |
- |
- while(schar > (tchar = *UCharOffset)) { /* since the contraction codepoints should be ordered, we skip all that are smaller */ |
- UCharOffset++; |
- } |
- |
- if (schar == tchar) { |
- // Found the source string char in the table. |
- // Pick up the corresponding CE from the table. |
- CE = *(coll->contractionCEs + |
- (UCharOffset - coll->contractionIndex)); |
- } |
- else |
- { |
- // Source string char was not in the table. |
- // We have not found the prefix. |
- CE = *(coll->contractionCEs + |
- (ContractionStart - coll->contractionIndex)); |
- } |
- |
- if(!isPrefix(CE)) { |
- // The source string char was in the contraction table, and the corresponding |
- // CE is not a prefix CE. We found the prefix, break |
- // out of loop, this CE will end up being returned. This is the normal |
- // way out of prefix handling when the source actually contained |
- // the prefix. |
- break; |
- } |
- } |
- if(CE != UCOL_NOT_FOUND) { // we found something and we can merilly continue |
- loadState(source, &prefixState, TRUE); |
- if(source->origFlags & UCOL_USE_ITERATOR) { |
- source->flags = source->origFlags; |
- } |
- } else { // prefix search was a failure, we have to backup all the way to the start |
- loadState(source, &entryState, TRUE); |
- } |
- break; |
- } |
- case CONTRACTION_TAG: |
- { |
- /* This should handle contractions */ |
- collIterateState state; |
- backupState(source, &state); |
- uint32_t firstCE = *(coll->contractionCEs + ((UChar *)coll->image+getContractOffset(CE) - coll->contractionIndex)); //UCOL_NOT_FOUND; |
- const UChar *UCharOffset; |
- UChar schar, tchar; |
- |
- for (;;) { |
- /* This loop will run once per source string character, for as long as we */ |
- /* are matching a potential contraction sequence */ |
- |
- /* First we position ourselves at the begining of contraction sequence */ |
- const UChar *ContractionStart = UCharOffset = (UChar *)coll->image+getContractOffset(CE); |
- |
- if (collIter_eos(source)) { |
- // Ran off the end of the source string. |
- CE = *(coll->contractionCEs + (UCharOffset - coll->contractionIndex)); |
- // So we'll pick whatever we have at the point... |
- if (CE == UCOL_NOT_FOUND) { |
- // back up the source over all the chars we scanned going into this contraction. |
- CE = firstCE; |
- loadState(source, &state, TRUE); |
- if(source->origFlags & UCOL_USE_ITERATOR) { |
- source->flags = source->origFlags; |
- } |
- } |
- break; |
- } |
- |
- uint8_t maxCC = (uint8_t)(*(UCharOffset)&0xFF); /*get the discontiguos stuff */ /* skip the backward offset, see above */ |
- uint8_t allSame = (uint8_t)(*(UCharOffset++)>>8); |
- |
- schar = getNextNormalizedChar(source); |
- while(schar > (tchar = *UCharOffset)) { /* since the contraction codepoints should be ordered, we skip all that are smaller */ |
- UCharOffset++; |
- } |
- |
- if (schar == tchar) { |
- // Found the source string char in the contraction table. |
- // Pick up the corresponding CE from the table. |
- CE = *(coll->contractionCEs + |
- (UCharOffset - coll->contractionIndex)); |
- } |
- else |
- { |
- // Source string char was not in contraction table. |
- // Unless we have a discontiguous contraction, we have finished |
- // with this contraction. |
- // in order to do the proper detection, we |
- // need to see if we're dealing with a supplementary |
- /* We test whether the next two char are surrogate pairs. |
- * This test is done if the iterator is not NULL. |
- * If there is no surrogate pair, the iterator |
- * goes back one if needed. */ |
- UChar32 miss = schar; |
- if (source->iterator) { |
- UChar32 surrNextChar; /* the next char in the iteration to test */ |
- int32_t prevPos; /* holds the previous position before move forward of the source iterator */ |
- if(U16_IS_LEAD(schar) && source->iterator->hasNext(source->iterator)) { |
- prevPos = source->iterator->index; |
- surrNextChar = getNextNormalizedChar(source); |
- if (U16_IS_TRAIL(surrNextChar)) { |
- miss = U16_GET_SUPPLEMENTARY(schar, surrNextChar); |
- } else if (prevPos < source->iterator->index){ |
- goBackOne(source); |
- } |
- } |
- } else if (U16_IS_LEAD(schar) && source->pos + 1 < source->endp) { |
- const UChar* prevPos = source->pos; |
- UChar nextChar = getNextNormalizedChar(source); |
- if (U16_IS_TRAIL(nextChar)) { |
- miss = U16_GET_SUPPLEMENTARY(schar, nextChar); |
- } else if (prevPos < source->pos) { |
- goBackOne(source); |
- } |
- } |
- |
- uint8_t sCC; |
- if (miss < 0x300 || |
- maxCC == 0 || |
- (sCC = i_getCombiningClass(miss, coll)) == 0 || |
- sCC>maxCC || |
- (allSame != 0 && sCC == maxCC) || |
- collIter_eos(source)) |
- { |
- // Contraction can not be discontiguous. |
- goBackOne(source); // back up the source string by one, |
- // because the character we just looked at was |
- // not part of the contraction. */ |
- if(U_IS_SUPPLEMENTARY(miss)) { |
- goBackOne(source); |
- } |
- CE = *(coll->contractionCEs + |
- (ContractionStart - coll->contractionIndex)); |
- } else { |
- // |
- // Contraction is possibly discontiguous. |
- // Scan more of source string looking for a match |
- // |
- UChar tempchar; |
- /* find the next character if schar is not a base character |
- and we are not yet at the end of the string */ |
- tempchar = getNextNormalizedChar(source); |
- // probably need another supplementary thingie here |
- goBackOne(source); |
- if (i_getCombiningClass(tempchar, coll) == 0) { |
- goBackOne(source); |
- if(U_IS_SUPPLEMENTARY(miss)) { |
- goBackOne(source); |
- } |
- /* Spit out the last char of the string, wasn't tasty enough */ |
- CE = *(coll->contractionCEs + |
- (ContractionStart - coll->contractionIndex)); |
- } else { |
- CE = getDiscontiguous(coll, source, ContractionStart); |
- } |
- } |
- } // else after if(schar == tchar) |
- |
- if(CE == UCOL_NOT_FOUND) { |
- /* The Source string did not match the contraction that we were checking. */ |
- /* Back up the source position to undo the effects of having partially */ |
- /* scanned through what ultimately proved to not be a contraction. */ |
- loadState(source, &state, TRUE); |
- CE = firstCE; |
- break; |
- } |
- |
- if(!isContraction(CE)) { |
- // The source string char was in the contraction table, and the corresponding |
- // CE is not a contraction CE. We completed the contraction, break |
- // out of loop, this CE will end up being returned. This is the normal |
- // way out of contraction handling when the source actually contained |
- // the contraction. |
- break; |
- } |
- |
- |
- // The source string char was in the contraction table, and the corresponding |
- // CE is IS a contraction CE. We will continue looping to check the source |
- // string for the remaining chars in the contraction. |
- uint32_t tempCE = *(coll->contractionCEs + (ContractionStart - coll->contractionIndex)); |
- if(tempCE != UCOL_NOT_FOUND) { |
- // We have scanned a a section of source string for which there is a |
- // CE from the contraction table. Remember the CE and scan position, so |
- // that we can return to this point if further scanning fails to |
- // match a longer contraction sequence. |
- firstCE = tempCE; |
- |
- goBackOne(source); |
- backupState(source, &state); |
- getNextNormalizedChar(source); |
- |
- // Another way to do this is: |
- //collIterateState tempState; |
- //backupState(source, &tempState); |
- //goBackOne(source); |
- //backupState(source, &state); |
- //loadState(source, &tempState, TRUE); |
- |
- // The problem is that for incomplete contractions we have to remember the previous |
- // position. Before, the only thing I needed to do was state.pos--; |
- // After iterator introduction and especially after introduction of normalizing |
- // iterators, it became much more difficult to decrease the saved state. |
- // I'm not yet sure which of the two methods above is faster. |
- } |
- } // for(;;) |
- break; |
- } // case CONTRACTION_TAG: |
- case LONG_PRIMARY_TAG: |
- { |
- *(source->CEpos++) = ((CE & 0xFF)<<24)|UCOL_CONTINUATION_MARKER; |
- CE = ((CE & 0xFFFF00) << 8) | (UCOL_BYTE_COMMON << 8) | UCOL_BYTE_COMMON; |
- source->offsetRepeatCount += 1; |
- return CE; |
- } |
- case EXPANSION_TAG: |
- { |
- /* This should handle expansion. */ |
- /* NOTE: we can encounter both continuations and expansions in an expansion! */ |
- /* I have to decide where continuations are going to be dealt with */ |
- uint32_t size; |
- uint32_t i; /* general counter */ |
- |
- CEOffset = (uint32_t *)coll->image+getExpansionOffset(CE); /* find the offset to expansion table */ |
- size = getExpansionCount(CE); |
- CE = *CEOffset++; |
- //source->offsetRepeatCount = -1; |
- |
- if(size != 0) { /* if there are less than 16 elements in expansion, we don't terminate */ |
- for(i = 1; i<size; i++) { |
- *(source->CEpos++) = *CEOffset++; |
- source->offsetRepeatCount += 1; |
- } |
- } else { /* else, we do */ |
- while(*CEOffset != 0) { |
- *(source->CEpos++) = *CEOffset++; |
- source->offsetRepeatCount += 1; |
- } |
- } |
- |
- return CE; |
- } |
- case DIGIT_TAG: |
- { |
- /* |
- We do a check to see if we want to collate digits as numbers; if so we generate |
- a custom collation key. Otherwise we pull out the value stored in the expansion table. |
- */ |
- //uint32_t size; |
- uint32_t i; /* general counter */ |
- |
- if (source->coll->numericCollation == UCOL_ON){ |
- collIterateState digitState = {0,0,0,0,0,0,0,0,0}; |
- UChar32 char32 = 0; |
- int32_t digVal = 0; |
- |
- uint32_t digIndx = 0; |
- uint32_t endIndex = 0; |
- uint32_t trailingZeroIndex = 0; |
- |
- uint8_t collateVal = 0; |
- |
- UBool nonZeroValReached = FALSE; |
- |
- uint8_t numTempBuf[UCOL_MAX_DIGITS_FOR_NUMBER/2 + 3]; // I just need a temporary place to store my generated CEs. |
- /* |
- We parse the source string until we hit a char that's NOT a digit. |
- Use this u_charDigitValue. This might be slow because we have to |
- handle surrogates... |
- */ |
- /* |
- if (U16_IS_LEAD(ch)){ |
- if (!collIter_eos(source)) { |
- backupState(source, &digitState); |
- UChar trail = getNextNormalizedChar(source); |
- if(U16_IS_TRAIL(trail)) { |
- char32 = U16_GET_SUPPLEMENTARY(ch, trail); |
- } else { |
- loadState(source, &digitState, TRUE); |
- char32 = ch; |
- } |
- } else { |
- char32 = ch; |
- } |
- } else { |
- char32 = ch; |
- } |
- digVal = u_charDigitValue(char32); |
- */ |
- digVal = u_charDigitValue(cp); // if we have arrived here, we have |
- // already processed possible supplementaries that trigered the digit tag - |
- // all supplementaries are marked in the UCA. |
- /* |
- We pad a zero in front of the first element anyways. This takes |
- care of the (probably) most common case where people are sorting things followed |
- by a single digit |
- */ |
- digIndx++; |
- for(;;){ |
- // Make sure we have enough space. No longer needed; |
- // at this point digIndx now has a max value of UCOL_MAX_DIGITS_FOR_NUMBER |
- // (it has been pre-incremented) so we just ensure that numTempBuf is big enough |
- // (UCOL_MAX_DIGITS_FOR_NUMBER/2 + 3). |
- |
- // Skipping over leading zeroes. |
- if (digVal != 0) { |
- nonZeroValReached = TRUE; |
- } |
- if (nonZeroValReached) { |
- /* |
- We parse the digit string into base 100 numbers (this fits into a byte). |
- We only add to the buffer in twos, thus if we are parsing an odd character, |
- that serves as the 'tens' digit while the if we are parsing an even one, that |
- is the 'ones' digit. We dumped the parsed base 100 value (collateVal) into |
- a buffer. We multiply each collateVal by 2 (to give us room) and add 5 (to avoid |
- overlapping magic CE byte values). The last byte we subtract 1 to ensure it is less |
- than all the other bytes. |
- */ |
- |
- if (digIndx % 2 == 1){ |
- collateVal += (uint8_t)digVal; |
- |
- // We don't enter the low-order-digit case unless we've already seen |
- // the high order, or for the first digit, which is always non-zero. |
- if (collateVal != 0) |
- trailingZeroIndex = 0; |
- |
- numTempBuf[(digIndx/2) + 2] = collateVal*2 + 6; |
- collateVal = 0; |
- } |
- else{ |
- // We drop the collation value into the buffer so if we need to do |
- // a "front patch" we don't have to check to see if we're hitting the |
- // last element. |
- collateVal = (uint8_t)(digVal * 10); |
- |
- // Check for trailing zeroes. |
- if (collateVal == 0) |
- { |
- if (!trailingZeroIndex) |
- trailingZeroIndex = (digIndx/2) + 2; |
- } |
- else |
- trailingZeroIndex = 0; |
- |
- numTempBuf[(digIndx/2) + 2] = collateVal*2 + 6; |
- } |
- digIndx++; |
- } |
- |
- // Get next character. |
- if (!collIter_eos(source)){ |
- ch = getNextNormalizedChar(source); |
- if (U16_IS_LEAD(ch)){ |
- if (!collIter_eos(source)) { |
- backupState(source, &digitState); |
- UChar trail = getNextNormalizedChar(source); |
- if(U16_IS_TRAIL(trail)) { |
- char32 = U16_GET_SUPPLEMENTARY(ch, trail); |
- } else { |
- loadState(source, &digitState, TRUE); |
- char32 = ch; |
- } |
- } |
- } else { |
- char32 = ch; |
- } |
- |
- if ((digVal = u_charDigitValue(char32)) == -1 || digIndx > UCOL_MAX_DIGITS_FOR_NUMBER){ |
- // Resetting position to point to the next unprocessed char. We |
- // overshot it when doing our test/set for numbers. |
- if (char32 > 0xFFFF) { // For surrogates. |
- loadState(source, &digitState, TRUE); |
- //goBackOne(source); |
- } |
- goBackOne(source); |
- break; |
- } |
- } else { |
- break; |
- } |
- } |
- |
- if (nonZeroValReached == FALSE){ |
- digIndx = 2; |
- numTempBuf[2] = 6; |
- } |
- |
- endIndex = trailingZeroIndex ? trailingZeroIndex : ((digIndx/2) + 2) ; |
- if (digIndx % 2 != 0){ |
- /* |
- We missed a value. Since digIndx isn't even, stuck too many values into the buffer (this is what |
- we get for padding the first byte with a zero). "Front-patch" now by pushing all nybbles forward. |
- Doing it this way ensures that at least 50% of the time (statistically speaking) we'll only be doing a |
- single pass and optimizes for strings with single digits. I'm just assuming that's the more common case. |
- */ |
- |
- for(i = 2; i < endIndex; i++){ |
- numTempBuf[i] = (((((numTempBuf[i] - 6)/2) % 10) * 10) + |
- (((numTempBuf[i+1])-6)/2) / 10) * 2 + 6; |
- } |
- --digIndx; |
- } |
- |
- // Subtract one off of the last byte. |
- numTempBuf[endIndex-1] -= 1; |
- |
- /* |
- We want to skip over the first two slots in the buffer. The first slot |
- is reserved for the header byte UCOL_CODAN_PLACEHOLDER. The second slot is for the |
- sign/exponent byte: 0x80 + (decimalPos/2) & 7f. |
- */ |
- numTempBuf[0] = UCOL_CODAN_PLACEHOLDER; |
- numTempBuf[1] = (uint8_t)(0x80 + ((digIndx/2) & 0x7F)); |
- |
- // Now transfer the collation key to our collIterate struct. |
- // The total size for our collation key is endIndx bumped up to the next largest even value divided by two. |
- //size = ((endIndex+1) & ~1)/2; |
- CE = (((numTempBuf[0] << 8) | numTempBuf[1]) << UCOL_PRIMARYORDERSHIFT) | //Primary weight |
- (UCOL_BYTE_COMMON << UCOL_SECONDARYORDERSHIFT) | // Secondary weight |
- UCOL_BYTE_COMMON; // Tertiary weight. |
- i = 2; // Reset the index into the buffer. |
- while(i < endIndex) |
- { |
- uint32_t primWeight = numTempBuf[i++] << 8; |
- if ( i < endIndex) |
- primWeight |= numTempBuf[i++]; |
- *(source->CEpos++) = (primWeight << UCOL_PRIMARYORDERSHIFT) | UCOL_CONTINUATION_MARKER; |
- } |
- |
- } else { |
- // no numeric mode, we'll just switch to whatever we stashed and continue |
- CEOffset = (uint32_t *)coll->image+getExpansionOffset(CE); /* find the offset to expansion table */ |
- CE = *CEOffset++; |
- break; |
- } |
- return CE; |
- } |
- /* various implicits optimization */ |
- case IMPLICIT_TAG: /* everything that is not defined otherwise */ |
- /* UCA is filled with these. Tailorings are NOT_FOUND */ |
- return getImplicit(cp, source); |
- case CJK_IMPLICIT_TAG: /* 0x3400-0x4DB5, 0x4E00-0x9FA5, 0xF900-0xFA2D*/ |
- // TODO: remove CJK_IMPLICIT_TAG completely - handled by the getImplicit |
- return getImplicit(cp, source); |
- case HANGUL_SYLLABLE_TAG: /* AC00-D7AF*/ |
- { |
- static const uint32_t |
- SBase = 0xAC00, LBase = 0x1100, VBase = 0x1161, TBase = 0x11A7; |
- //const uint32_t LCount = 19; |
- static const uint32_t VCount = 21; |
- static const uint32_t TCount = 28; |
- //const uint32_t NCount = VCount * TCount; // 588 |
- //const uint32_t SCount = LCount * NCount; // 11172 |
- uint32_t L = ch - SBase; |
- |
- // divide into pieces |
- |
- uint32_t T = L % TCount; // we do it in this order since some compilers can do % and / in one operation |
- L /= TCount; |
- uint32_t V = L % VCount; |
- L /= VCount; |
- |
- // offset them |
- |
- L += LBase; |
- V += VBase; |
- T += TBase; |
- |
- // return the first CE, but first put the rest into the expansion buffer |
- if (!source->coll->image->jamoSpecial) { // FAST PATH |
- |
- *(source->CEpos++) = UTRIE_GET32_FROM_LEAD(&coll->mapping, V); |
- if (T != TBase) { |
- *(source->CEpos++) = UTRIE_GET32_FROM_LEAD(&coll->mapping, T); |
- } |
- |
- return UTRIE_GET32_FROM_LEAD(&coll->mapping, L); |
- |
- } else { // Jamo is Special |
- // Since Hanguls pass the FCD check, it is |
- // guaranteed that we won't be in |
- // the normalization buffer if something like this happens |
- |
- // However, if we are using a uchar iterator and normalization |
- // is ON, the Hangul that lead us here is going to be in that |
- // normalization buffer. Here we want to restore the uchar |
- // iterator state and pull out of the normalization buffer |
- if(source->iterator != NULL && source->flags & UCOL_ITER_INNORMBUF) { |
- source->flags = source->origFlags; // restore the iterator |
- source->pos = NULL; |
- } |
- |
- // Move Jamos into normalization buffer |
- UChar *buffer = source->writableBuffer.getBuffer(4); |
- int32_t bufferLength; |
- buffer[0] = (UChar)L; |
- buffer[1] = (UChar)V; |
- if (T != TBase) { |
- buffer[2] = (UChar)T; |
- bufferLength = 3; |
- } else { |
- bufferLength = 2; |
- } |
- source->writableBuffer.releaseBuffer(bufferLength); |
- |
- // Indicate where to continue in main input string after exhausting the writableBuffer |
- source->fcdPosition = source->pos; |
- |
- source->pos = source->writableBuffer.getTerminatedBuffer(); |
- source->origFlags = source->flags; |
- source->flags |= UCOL_ITER_INNORMBUF; |
- source->flags &= ~(UCOL_ITER_NORM | UCOL_ITER_HASLEN); |
- |
- return(UCOL_IGNORABLE); |
- } |
- } |
- case SURROGATE_TAG: |
- /* we encountered a leading surrogate. We shall get the CE by using the following code unit */ |
- /* two things can happen here: next code point can be a trailing surrogate - we will use it */ |
- /* to retrieve the CE, or it is not a trailing surrogate (or the string is done). In that case */ |
- /* we treat it like an unassigned code point. */ |
- { |
- UChar trail; |
- collIterateState state; |
- backupState(source, &state); |
- if (collIter_eos(source) || !(U16_IS_TRAIL((trail = getNextNormalizedChar(source))))) { |
- // we chould have stepped one char forward and it might have turned that it |
- // was not a trail surrogate. In that case, we have to backup. |
- loadState(source, &state, TRUE); |
- return UCOL_NOT_FOUND; |
- } else { |
- /* TODO: CE contain the data from the previous CE + the mask. It should at least be unmasked */ |
- CE = UTRIE_GET32_FROM_OFFSET_TRAIL(&coll->mapping, CE&0xFFFFFF, trail); |
- if(CE == UCOL_NOT_FOUND) { // there are tailored surrogates in this block, but not this one. |
- // We need to backup |
- loadState(source, &state, TRUE); |
- return CE; |
- } |
- // calculate the supplementary code point value, if surrogate was not tailored |
- cp = ((((uint32_t)ch)<<10UL)+(trail)-(((uint32_t)0xd800<<10UL)+0xdc00-0x10000)); |
- } |
- } |
- break; |
- case LEAD_SURROGATE_TAG: /* D800-DBFF*/ |
- UChar nextChar; |
- if( source->flags & UCOL_USE_ITERATOR) { |
- if(U_IS_TRAIL(nextChar = (UChar)source->iterator->current(source->iterator))) { |
- cp = U16_GET_SUPPLEMENTARY(ch, nextChar); |
- source->iterator->next(source->iterator); |
- return getImplicit(cp, source); |
- } |
- } else if((((source->flags & UCOL_ITER_HASLEN) == 0 ) || (source->pos<source->endp)) && |
- U_IS_TRAIL((nextChar=*source->pos))) { |
- cp = U16_GET_SUPPLEMENTARY(ch, nextChar); |
- source->pos++; |
- return getImplicit(cp, source); |
- } |
- return UCOL_NOT_FOUND; |
- case TRAIL_SURROGATE_TAG: /* DC00-DFFF*/ |
- return UCOL_NOT_FOUND; /* broken surrogate sequence */ |
- case CHARSET_TAG: |
- /* not yet implemented */ |
- /* probably after 1.8 */ |
- return UCOL_NOT_FOUND; |
- default: |
- *status = U_INTERNAL_PROGRAM_ERROR; |
- CE=0; |
- break; |
- } |
- if (CE <= UCOL_NOT_FOUND) break; |
- } |
- return CE; |
-} |
- |
- |
-/* now uses Mark's getImplicitPrimary code */ |
-static |
-inline uint32_t getPrevImplicit(UChar32 cp, collIterate *collationSource) { |
- uint32_t r = uprv_uca_getImplicitPrimary(cp); |
- |
- *(collationSource->CEpos++) = (r & UCOL_PRIMARYMASK) | 0x00000505; |
- collationSource->toReturn = collationSource->CEpos; |
- |
- // **** doesn't work if using iterator **** |
- if (collationSource->flags & UCOL_ITER_INNORMBUF) { |
- collationSource->offsetRepeatCount = 1; |
- } else { |
- int32_t firstOffset = (int32_t)(collationSource->pos - collationSource->string); |
- |
- UErrorCode errorCode = U_ZERO_ERROR; |
- collationSource->appendOffset(firstOffset, errorCode); |
- collationSource->appendOffset(firstOffset + 1, errorCode); |
- |
- collationSource->offsetReturn = collationSource->offsetStore - 1; |
- *(collationSource->offsetBuffer) = firstOffset; |
- if (collationSource->offsetReturn == collationSource->offsetBuffer) { |
- collationSource->offsetStore = collationSource->offsetBuffer; |
- } |
- } |
- |
- return ((r & 0x0000FFFF)<<16) | 0x000000C0; |
-} |
- |
-/** |
- * This function handles the special CEs like contractions, expansions, |
- * surrogates, Thai. |
- * It is called by both getPrevCE |
- */ |
-uint32_t ucol_prv_getSpecialPrevCE(const UCollator *coll, UChar ch, uint32_t CE, |
- collIterate *source, |
- UErrorCode *status) |
-{ |
- const uint32_t *CEOffset = NULL; |
- UChar *UCharOffset = NULL; |
- UChar schar; |
- const UChar *constart = NULL; |
- uint32_t size; |
- UChar buffer[UCOL_MAX_BUFFER]; |
- uint32_t *endCEBuffer; |
- UChar *strbuffer; |
- int32_t noChars = 0; |
- int32_t CECount = 0; |
- |
- for(;;) |
- { |
- /* the only ces that loops are thai and contractions */ |
- switch (getCETag(CE)) |
- { |
- case NOT_FOUND_TAG: /* this tag always returns */ |
- return CE; |
- |
- case SPEC_PROC_TAG: |
- { |
- // Special processing is getting a CE that is preceded by a certain prefix |
- // Currently this is only needed for optimizing Japanese length and iteration marks. |
- // When we encouter a special processing tag, we go backwards and try to see if |
- // we have a match. |
- // Contraction tables are used - so the whole process is not unlike contraction. |
- // prefix data is stored backwards in the table. |
- const UChar *UCharOffset; |
- UChar schar, tchar; |
- collIterateState prefixState; |
- backupState(source, &prefixState); |
- for(;;) { |
- // This loop will run once per source string character, for as long as we |
- // are matching a potential contraction sequence |
- |
- // First we position ourselves at the begining of contraction sequence |
- const UChar *ContractionStart = UCharOffset = (UChar *)coll->image+getContractOffset(CE); |
- |
- if (collIter_bos(source)) { |
- CE = *(coll->contractionCEs + (UCharOffset - coll->contractionIndex)); |
- break; |
- } |
- schar = getPrevNormalizedChar(source, status); |
- goBackOne(source); |
- |
- while(schar > (tchar = *UCharOffset)) { /* since the contraction codepoints should be ordered, we skip all that are smaller */ |
- UCharOffset++; |
- } |
- |
- if (schar == tchar) { |
- // Found the source string char in the table. |
- // Pick up the corresponding CE from the table. |
- CE = *(coll->contractionCEs + |
- (UCharOffset - coll->contractionIndex)); |
- } |
- else |
- { |
- // if there is a completely ignorable code point in the middle of |
- // a prefix, we need to act as if it's not there |
- // assumption: 'real' noncharacters (*fffe, *ffff, fdd0-fdef are set to zero) |
- // lone surrogates cannot be set to zero as it would break other processing |
- uint32_t isZeroCE = UTRIE_GET32_FROM_LEAD(&coll->mapping, schar); |
- // it's easy for BMP code points |
- if(isZeroCE == 0) { |
- continue; |
- } else if(U16_IS_SURROGATE(schar)) { |
- // for supplementary code points, we have to check the next one |
- // situations where we are going to ignore |
- // 1. beginning of the string: schar is a lone surrogate |
- // 2. schar is a lone surrogate |
- // 3. schar is a trail surrogate in a valid surrogate sequence |
- // that is explicitly set to zero. |
- if (!collIter_bos(source)) { |
- UChar lead; |
- if(!U16_IS_SURROGATE_LEAD(schar) && U16_IS_LEAD(lead = getPrevNormalizedChar(source, status))) { |
- isZeroCE = UTRIE_GET32_FROM_LEAD(&coll->mapping, lead); |
- if(isSpecial(isZeroCE) && getCETag(isZeroCE) == SURROGATE_TAG) { |
- uint32_t finalCE = UTRIE_GET32_FROM_OFFSET_TRAIL(&coll->mapping, isZeroCE&0xFFFFFF, schar); |
- if(finalCE == 0) { |
- // this is a real, assigned completely ignorable code point |
- goBackOne(source); |
- continue; |
- } |
- } |
- } else { |
- // lone surrogate, treat like unassigned |
- return UCOL_NOT_FOUND; |
- } |
- } else { |
- // lone surrogate at the beggining, treat like unassigned |
- return UCOL_NOT_FOUND; |
- } |
- } |
- // Source string char was not in the table. |
- // We have not found the prefix. |
- CE = *(coll->contractionCEs + |
- (ContractionStart - coll->contractionIndex)); |
- } |
- |
- if(!isPrefix(CE)) { |
- // The source string char was in the contraction table, and the corresponding |
- // CE is not a prefix CE. We found the prefix, break |
- // out of loop, this CE will end up being returned. This is the normal |
- // way out of prefix handling when the source actually contained |
- // the prefix. |
- break; |
- } |
- } |
- loadState(source, &prefixState, TRUE); |
- break; |
- } |
- |
- case CONTRACTION_TAG: { |
- /* to ensure that the backwards and forwards iteration matches, we |
- take the current region of most possible match and pass it through |
- the forward iteration. this will ensure that the obstinate problem of |
- overlapping contractions will not occur. |
- */ |
- schar = peekCodeUnit(source, 0); |
- constart = (UChar *)coll->image + getContractOffset(CE); |
- if (isAtStartPrevIterate(source) |
- /* commented away contraction end checks after adding the checks |
- in getPrevCE */) { |
- /* start of string or this is not the end of any contraction */ |
- CE = *(coll->contractionCEs + |
- (constart - coll->contractionIndex)); |
- break; |
- } |
- strbuffer = buffer; |
- UCharOffset = strbuffer + (UCOL_MAX_BUFFER - 1); |
- *(UCharOffset --) = 0; |
- noChars = 0; |
- // have to swap thai characters |
- while (ucol_unsafeCP(schar, coll)) { |
- *(UCharOffset) = schar; |
- noChars++; |
- UCharOffset --; |
- schar = getPrevNormalizedChar(source, status); |
- goBackOne(source); |
- // TODO: when we exhaust the contraction buffer, |
- // it needs to get reallocated. The problem is |
- // that the size depends on the string which is |
- // not iterated over. However, since we're travelling |
- // backwards, we already had to set the iterator at |
- // the end - so we might as well know where we are? |
- if (UCharOffset + 1 == buffer) { |
- /* we have exhausted the buffer */ |
- int32_t newsize = 0; |
- if(source->pos) { // actually dealing with a position |
- newsize = (int32_t)(source->pos - source->string + 1); |
- } else { // iterator |
- newsize = 4 * UCOL_MAX_BUFFER; |
- } |
- strbuffer = (UChar *)uprv_malloc(sizeof(UChar) * |
- (newsize + UCOL_MAX_BUFFER)); |
- /* test for NULL */ |
- if (strbuffer == NULL) { |
- *status = U_MEMORY_ALLOCATION_ERROR; |
- return UCOL_NO_MORE_CES; |
- } |
- UCharOffset = strbuffer + newsize; |
- uprv_memcpy(UCharOffset, buffer, |
- UCOL_MAX_BUFFER * sizeof(UChar)); |
- UCharOffset --; |
- } |
- if ((source->pos && (source->pos == source->string || |
- ((source->flags & UCOL_ITER_INNORMBUF) && |
- *(source->pos - 1) == 0 && source->fcdPosition == NULL))) |
- || (source->iterator && !source->iterator->hasPrevious(source->iterator))) { |
- break; |
- } |
- } |
- /* adds the initial base character to the string */ |
- *(UCharOffset) = schar; |
- noChars++; |
- |
- int32_t offsetBias; |
- |
- // **** doesn't work if using iterator **** |
- if (source->flags & UCOL_ITER_INNORMBUF) { |
- offsetBias = -1; |
- } else { |
- offsetBias = (int32_t)(source->pos - source->string); |
- } |
- |
- /* a new collIterate is used to simplify things, since using the current |
- collIterate will mean that the forward and backwards iteration will |
- share and change the same buffers. we don't want to get into that. */ |
- collIterate temp; |
- int32_t rawOffset; |
- |
- IInit_collIterate(coll, UCharOffset, noChars, &temp, status); |
- if(U_FAILURE(*status)) { |
- return (uint32_t)UCOL_NULLORDER; |
- } |
- temp.flags &= ~UCOL_ITER_NORM; |
- temp.flags |= source->flags & UCOL_FORCE_HAN_IMPLICIT; |
- |
- rawOffset = (int32_t)(temp.pos - temp.string); // should always be zero? |
- CE = ucol_IGetNextCE(coll, &temp, status); |
- |
- if (source->extendCEs) { |
- endCEBuffer = source->extendCEs + source->extendCEsSize; |
- CECount = (int32_t)((source->CEpos - source->extendCEs)/sizeof(uint32_t)); |
- } else { |
- endCEBuffer = source->CEs + UCOL_EXPAND_CE_BUFFER_SIZE; |
- CECount = (int32_t)((source->CEpos - source->CEs)/sizeof(uint32_t)); |
- } |
- |
- while (CE != UCOL_NO_MORE_CES) { |
- *(source->CEpos ++) = CE; |
- |
- if (offsetBias >= 0) { |
- source->appendOffset(rawOffset + offsetBias, *status); |
- } |
- |
- CECount++; |
- if (source->CEpos == endCEBuffer) { |
- /* ran out of CE space, reallocate to new buffer. |
- If reallocation fails, reset pointers and bail out, |
- there's no guarantee of the right character position after |
- this bail*/ |
- if (!increaseCEsCapacity(source)) { |
- *status = U_MEMORY_ALLOCATION_ERROR; |
- break; |
- } |
- |
- endCEBuffer = source->extendCEs + source->extendCEsSize; |
- } |
- |
- if ((temp.flags & UCOL_ITER_INNORMBUF) != 0) { |
- rawOffset = (int32_t)(temp.fcdPosition - temp.string); |
- } else { |
- rawOffset = (int32_t)(temp.pos - temp.string); |
- } |
- |
- CE = ucol_IGetNextCE(coll, &temp, status); |
- } |
- |
- if (strbuffer != buffer) { |
- uprv_free(strbuffer); |
- } |
- if (U_FAILURE(*status)) { |
- return (uint32_t)UCOL_NULLORDER; |
- } |
- |
- if (source->offsetRepeatValue != 0) { |
- if (CECount > noChars) { |
- source->offsetRepeatCount += temp.offsetRepeatCount; |
- } else { |
- // **** does this really skip the right offsets? **** |
- source->offsetReturn -= (noChars - CECount); |
- } |
- } |
- |
- if (offsetBias >= 0) { |
- source->offsetReturn = source->offsetStore - 1; |
- if (source->offsetReturn == source->offsetBuffer) { |
- source->offsetStore = source->offsetBuffer; |
- } |
- } |
- |
- source->toReturn = source->CEpos - 1; |
- if (source->toReturn == source->CEs) { |
- source->CEpos = source->CEs; |
- } |
- |
- return *(source->toReturn); |
- } |
- case LONG_PRIMARY_TAG: |
- { |
- *(source->CEpos++) = ((CE & 0xFFFF00) << 8) | (UCOL_BYTE_COMMON << 8) | UCOL_BYTE_COMMON; |
- *(source->CEpos++) = ((CE & 0xFF)<<24)|UCOL_CONTINUATION_MARKER; |
- source->toReturn = source->CEpos - 1; |
- |
- if (source->flags & UCOL_ITER_INNORMBUF) { |
- source->offsetRepeatCount = 1; |
- } else { |
- int32_t firstOffset = (int32_t)(source->pos - source->string); |
- |
- source->appendOffset(firstOffset, *status); |
- source->appendOffset(firstOffset + 1, *status); |
- |
- source->offsetReturn = source->offsetStore - 1; |
- *(source->offsetBuffer) = firstOffset; |
- if (source->offsetReturn == source->offsetBuffer) { |
- source->offsetStore = source->offsetBuffer; |
- } |
- } |
- |
- |
- return *(source->toReturn); |
- } |
- |
- case EXPANSION_TAG: /* this tag always returns */ |
- { |
- /* |
- This should handle expansion. |
- NOTE: we can encounter both continuations and expansions in an expansion! |
- I have to decide where continuations are going to be dealt with |
- */ |
- int32_t firstOffset = (int32_t)(source->pos - source->string); |
- |
- // **** doesn't work if using iterator **** |
- if (source->offsetReturn != NULL) { |
- if (! (source->flags & UCOL_ITER_INNORMBUF) && source->offsetReturn == source->offsetBuffer) { |
- source->offsetStore = source->offsetBuffer; |
- }else { |
- firstOffset = -1; |
- } |
- } |
- |
- /* find the offset to expansion table */ |
- CEOffset = (uint32_t *)coll->image + getExpansionOffset(CE); |
- size = getExpansionCount(CE); |
- if (size != 0) { |
- /* |
- if there are less than 16 elements in expansion, we don't terminate |
- */ |
- uint32_t count; |
- |
- for (count = 0; count < size; count++) { |
- *(source->CEpos ++) = *CEOffset++; |
- |
- if (firstOffset >= 0) { |
- source->appendOffset(firstOffset + 1, *status); |
- } |
- } |
- } else { |
- /* else, we do */ |
- while (*CEOffset != 0) { |
- *(source->CEpos ++) = *CEOffset ++; |
- |
- if (firstOffset >= 0) { |
- source->appendOffset(firstOffset + 1, *status); |
- } |
- } |
- } |
- |
- if (firstOffset >= 0) { |
- source->offsetReturn = source->offsetStore - 1; |
- *(source->offsetBuffer) = firstOffset; |
- if (source->offsetReturn == source->offsetBuffer) { |
- source->offsetStore = source->offsetBuffer; |
- } |
- } else { |
- source->offsetRepeatCount += size - 1; |
- } |
- |
- source->toReturn = source->CEpos - 1; |
- // in case of one element expansion, we |
- // want to immediately return CEpos |
- if(source->toReturn == source->CEs) { |
- source->CEpos = source->CEs; |
- } |
- |
- return *(source->toReturn); |
- } |
- |
- case DIGIT_TAG: |
- { |
- /* |
- We do a check to see if we want to collate digits as numbers; if so we generate |
- a custom collation key. Otherwise we pull out the value stored in the expansion table. |
- */ |
- uint32_t i; /* general counter */ |
- |
- if (source->coll->numericCollation == UCOL_ON){ |
- uint32_t digIndx = 0; |
- uint32_t endIndex = 0; |
- uint32_t leadingZeroIndex = 0; |
- uint32_t trailingZeroCount = 0; |
- |
- uint8_t collateVal = 0; |
- |
- UBool nonZeroValReached = FALSE; |
- |
- uint8_t numTempBuf[UCOL_MAX_DIGITS_FOR_NUMBER/2 + 2]; // I just need a temporary place to store my generated CEs. |
- /* |
- We parse the source string until we hit a char that's NOT a digit. |
- Use this u_charDigitValue. This might be slow because we have to |
- handle surrogates... |
- */ |
- /* |
- We need to break up the digit string into collection elements of UCOL_MAX_DIGITS_FOR_NUMBER or less, |
- with any chunks smaller than that being on the right end of the digit string - i.e. the first collation |
- element we process when going backward. To determine how long that chunk might be, we may need to make |
- two passes through the loop that collects digits - one to see how long the string is (and how much is |
- leading zeros) to determine the length of that right-hand chunk, and a second (if the whole string has |
- more than UCOL_MAX_DIGITS_FOR_NUMBER non-leading-zero digits) to actually process that collation |
- element chunk after resetting the state to the initialState at the right side of the digit string. |
- */ |
- uint32_t ceLimit = 0; |
- UChar initial_ch = ch; |
- collIterateState initialState = {0,0,0,0,0,0,0,0,0}; |
- backupState(source, &initialState); |
- |
- for(;;) { |
- collIterateState state = {0,0,0,0,0,0,0,0,0}; |
- UChar32 char32 = 0; |
- int32_t digVal = 0; |
- |
- if (U16_IS_TRAIL (ch)) { |
- if (!collIter_bos(source)){ |
- UChar lead = getPrevNormalizedChar(source, status); |
- if(U16_IS_LEAD(lead)) { |
- char32 = U16_GET_SUPPLEMENTARY(lead,ch); |
- goBackOne(source); |
- } else { |
- char32 = ch; |
- } |
- } else { |
- char32 = ch; |
- } |
- } else { |
- char32 = ch; |
- } |
- digVal = u_charDigitValue(char32); |
- |
- for(;;) { |
- // Make sure we have enough space. No longer needed; |
- // at this point the largest value of digIndx when we need to save data in numTempBuf |
- // is UCOL_MAX_DIGITS_FOR_NUMBER-1 (digIndx is post-incremented) so we just ensure |
- // that numTempBuf is big enough (UCOL_MAX_DIGITS_FOR_NUMBER/2 + 2). |
- |
- // Skip over trailing zeroes, and keep a count of them. |
- if (digVal != 0) |
- nonZeroValReached = TRUE; |
- |
- if (nonZeroValReached) { |
- /* |
- We parse the digit string into base 100 numbers (this fits into a byte). |
- We only add to the buffer in twos, thus if we are parsing an odd character, |
- that serves as the 'tens' digit while the if we are parsing an even one, that |
- is the 'ones' digit. We dumped the parsed base 100 value (collateVal) into |
- a buffer. We multiply each collateVal by 2 (to give us room) and add 5 (to avoid |
- overlapping magic CE byte values). The last byte we subtract 1 to ensure it is less |
- than all the other bytes. |
- |
- Since we're doing in this reverse we want to put the first digit encountered into the |
- ones place and the second digit encountered into the tens place. |
- */ |
- |
- if ((digIndx + trailingZeroCount) % 2 == 1) { |
- // High-order digit case (tens place) |
- collateVal += (uint8_t)(digVal * 10); |
- |
- // We cannot set leadingZeroIndex unless it has been set for the |
- // low-order digit. Therefore, all we can do for the high-order |
- // digit is turn it off, never on. |
- // The only time we will have a high digit without a low is for |
- // the very first non-zero digit, so no zero check is necessary. |
- if (collateVal != 0) |
- leadingZeroIndex = 0; |
- |
- // The first pass through, digIndx may exceed the limit, but in that case |
- // we no longer care about numTempBuf contents since they will be discarded |
- if ( digIndx < UCOL_MAX_DIGITS_FOR_NUMBER ) { |
- numTempBuf[(digIndx/2) + 2] = collateVal*2 + 6; |
- } |
- collateVal = 0; |
- } else { |
- // Low-order digit case (ones place) |
- collateVal = (uint8_t)digVal; |
- |
- // Check for leading zeroes. |
- if (collateVal == 0) { |
- if (!leadingZeroIndex) |
- leadingZeroIndex = (digIndx/2) + 2; |
- } else |
- leadingZeroIndex = 0; |
- |
- // No need to write to buffer; the case of a last odd digit |
- // is handled below. |
- } |
- ++digIndx; |
- } else |
- ++trailingZeroCount; |
- |
- if (!collIter_bos(source)) { |
- ch = getPrevNormalizedChar(source, status); |
- //goBackOne(source); |
- if (U16_IS_TRAIL(ch)) { |
- backupState(source, &state); |
- if (!collIter_bos(source)) { |
- goBackOne(source); |
- UChar lead = getPrevNormalizedChar(source, status); |
- |
- if(U16_IS_LEAD(lead)) { |
- char32 = U16_GET_SUPPLEMENTARY(lead,ch); |
- } else { |
- loadState(source, &state, FALSE); |
- char32 = ch; |
- } |
- } |
- } else |
- char32 = ch; |
- |
- if ((digVal = u_charDigitValue(char32)) == -1 || (ceLimit > 0 && (digIndx + trailingZeroCount) >= ceLimit)) { |
- if (char32 > 0xFFFF) {// For surrogates. |
- loadState(source, &state, FALSE); |
- } |
- // Don't need to "reverse" the goBackOne call, |
- // as this points to the next position to process.. |
- //if (char32 > 0xFFFF) // For surrogates. |
- //getNextNormalizedChar(source); |
- break; |
- } |
- |
- goBackOne(source); |
- }else |
- break; |
- } |
- |
- if (digIndx + trailingZeroCount <= UCOL_MAX_DIGITS_FOR_NUMBER) { |
- // our collation element is not too big, go ahead and finish with it |
- break; |
- } |
- // our digit string is too long for a collation element; |
- // set the limit for it, reset the state and begin again |
- ceLimit = (digIndx + trailingZeroCount) % UCOL_MAX_DIGITS_FOR_NUMBER; |
- if ( ceLimit == 0 ) { |
- ceLimit = UCOL_MAX_DIGITS_FOR_NUMBER; |
- } |
- ch = initial_ch; |
- loadState(source, &initialState, FALSE); |
- digIndx = endIndex = leadingZeroIndex = trailingZeroCount = 0; |
- collateVal = 0; |
- nonZeroValReached = FALSE; |
- } |
- |
- if (! nonZeroValReached) { |
- digIndx = 2; |
- trailingZeroCount = 0; |
- numTempBuf[2] = 6; |
- } |
- |
- if ((digIndx + trailingZeroCount) % 2 != 0) { |
- numTempBuf[((digIndx)/2) + 2] = collateVal*2 + 6; |
- digIndx += 1; // The implicit leading zero |
- } |
- if (trailingZeroCount % 2 != 0) { |
- // We had to consume one trailing zero for the low digit |
- // of the least significant byte |
- digIndx += 1; // The trailing zero not in the exponent |
- trailingZeroCount -= 1; |
- } |
- |
- endIndex = leadingZeroIndex ? leadingZeroIndex : ((digIndx/2) + 2) ; |
- |
- // Subtract one off of the last byte. Really the first byte here, but it's reversed... |
- numTempBuf[2] -= 1; |
- |
- /* |
- We want to skip over the first two slots in the buffer. The first slot |
- is reserved for the header byte UCOL_CODAN_PLACEHOLDER. The second slot is for the |
- sign/exponent byte: 0x80 + (decimalPos/2) & 7f. |
- The exponent must be adjusted by the number of leading zeroes, and the number of |
- trailing zeroes. |
- */ |
- numTempBuf[0] = UCOL_CODAN_PLACEHOLDER; |
- uint32_t exponent = (digIndx+trailingZeroCount)/2; |
- if (leadingZeroIndex) |
- exponent -= ((digIndx/2) + 2 - leadingZeroIndex); |
- numTempBuf[1] = (uint8_t)(0x80 + (exponent & 0x7F)); |
- |
- // Now transfer the collation key to our collIterate struct. |
- // The total size for our collation key is half of endIndex, rounded up. |
- int32_t size = (endIndex+1)/2; |
- if(!ensureCEsCapacity(source, size)) { |
- return (uint32_t)UCOL_NULLORDER; |
- } |
- *(source->CEpos++) = (((numTempBuf[0] << 8) | numTempBuf[1]) << UCOL_PRIMARYORDERSHIFT) | //Primary weight |
- (UCOL_BYTE_COMMON << UCOL_SECONDARYORDERSHIFT) | // Secondary weight |
- UCOL_BYTE_COMMON; // Tertiary weight. |
- i = endIndex - 1; // Reset the index into the buffer. |
- while(i >= 2) { |
- uint32_t primWeight = numTempBuf[i--] << 8; |
- if ( i >= 2) |
- primWeight |= numTempBuf[i--]; |
- *(source->CEpos++) = (primWeight << UCOL_PRIMARYORDERSHIFT) | UCOL_CONTINUATION_MARKER; |
- } |
- |
- source->toReturn = source->CEpos -1; |
- return *(source->toReturn); |
- } else { |
- CEOffset = (uint32_t *)coll->image + getExpansionOffset(CE); |
- CE = *(CEOffset++); |
- break; |
- } |
- } |
- |
- case HANGUL_SYLLABLE_TAG: /* AC00-D7AF*/ |
- { |
- static const uint32_t |
- SBase = 0xAC00, LBase = 0x1100, VBase = 0x1161, TBase = 0x11A7; |
- //const uint32_t LCount = 19; |
- static const uint32_t VCount = 21; |
- static const uint32_t TCount = 28; |
- //const uint32_t NCount = VCount * TCount; /* 588 */ |
- //const uint32_t SCount = LCount * NCount; /* 11172 */ |
- |
- uint32_t L = ch - SBase; |
- /* |
- divide into pieces. |
- we do it in this order since some compilers can do % and / in one |
- operation |
- */ |
- uint32_t T = L % TCount; |
- L /= TCount; |
- uint32_t V = L % VCount; |
- L /= VCount; |
- |
- /* offset them */ |
- L += LBase; |
- V += VBase; |
- T += TBase; |
- |
- int32_t firstOffset = (int32_t)(source->pos - source->string); |
- source->appendOffset(firstOffset, *status); |
- |
- /* |
- * return the first CE, but first put the rest into the expansion buffer |
- */ |
- if (!source->coll->image->jamoSpecial) { |
- *(source->CEpos++) = UTRIE_GET32_FROM_LEAD(&coll->mapping, L); |
- *(source->CEpos++) = UTRIE_GET32_FROM_LEAD(&coll->mapping, V); |
- source->appendOffset(firstOffset + 1, *status); |
- |
- if (T != TBase) { |
- *(source->CEpos++) = UTRIE_GET32_FROM_LEAD(&coll->mapping, T); |
- source->appendOffset(firstOffset + 1, *status); |
- } |
- |
- source->toReturn = source->CEpos - 1; |
- |
- source->offsetReturn = source->offsetStore - 1; |
- if (source->offsetReturn == source->offsetBuffer) { |
- source->offsetStore = source->offsetBuffer; |
- } |
- |
- return *(source->toReturn); |
- } else { |
- // Since Hanguls pass the FCD check, it is |
- // guaranteed that we won't be in |
- // the normalization buffer if something like this happens |
- |
- // Move Jamos into normalization buffer |
- UChar *tempbuffer = source->writableBuffer.getBuffer(5); |
- int32_t tempbufferLength, jamoOffset; |
- tempbuffer[0] = 0; |
- tempbuffer[1] = (UChar)L; |
- tempbuffer[2] = (UChar)V; |
- if (T != TBase) { |
- tempbuffer[3] = (UChar)T; |
- tempbufferLength = 4; |
- } else { |
- tempbufferLength = 3; |
- } |
- source->writableBuffer.releaseBuffer(tempbufferLength); |
- |
- // Indicate where to continue in main input string after exhausting the writableBuffer |
- if (source->pos == source->string) { |
- jamoOffset = 0; |
- source->fcdPosition = NULL; |
- } else { |
- jamoOffset = source->pos - source->string; |
- source->fcdPosition = source->pos-1; |
- } |
- |
- // Append offsets for the additional chars |
- // (not the 0, and not the L whose offsets match the original Hangul) |
- int32_t jamoRemaining = tempbufferLength - 2; |
- jamoOffset++; // appended offsets should match end of original Hangul |
- while (jamoRemaining-- > 0) { |
- source->appendOffset(jamoOffset, *status); |
- } |
- |
- source->offsetRepeatValue = jamoOffset; |
- |
- source->offsetReturn = source->offsetStore - 1; |
- if (source->offsetReturn == source->offsetBuffer) { |
- source->offsetStore = source->offsetBuffer; |
- } |
- |
- source->pos = source->writableBuffer.getTerminatedBuffer() + tempbufferLength; |
- source->origFlags = source->flags; |
- source->flags |= UCOL_ITER_INNORMBUF; |
- source->flags &= ~(UCOL_ITER_NORM | UCOL_ITER_HASLEN); |
- |
- return(UCOL_IGNORABLE); |
- } |
- } |
- |
- case IMPLICIT_TAG: /* everything that is not defined otherwise */ |
- return getPrevImplicit(ch, source); |
- |
- // TODO: Remove CJK implicits as they are handled by the getImplicitPrimary function |
- case CJK_IMPLICIT_TAG: /* 0x3400-0x4DB5, 0x4E00-0x9FA5, 0xF900-0xFA2D*/ |
- return getPrevImplicit(ch, source); |
- |
- case SURROGATE_TAG: /* This is a surrogate pair */ |
- /* essentially an engaged lead surrogate. */ |
- /* if you have encountered it here, it means that a */ |
- /* broken sequence was encountered and this is an error */ |
- return UCOL_NOT_FOUND; |
- |
- case LEAD_SURROGATE_TAG: /* D800-DBFF*/ |
- return UCOL_NOT_FOUND; /* broken surrogate sequence */ |
- |
- case TRAIL_SURROGATE_TAG: /* DC00-DFFF*/ |
- { |
- UChar32 cp = 0; |
- UChar prevChar; |
- const UChar *prev; |
- if (isAtStartPrevIterate(source)) { |
- /* we are at the start of the string, wrong place to be at */ |
- return UCOL_NOT_FOUND; |
- } |
- if (source->pos != source->writableBuffer.getBuffer()) { |
- prev = source->pos - 1; |
- } else { |
- prev = source->fcdPosition; |
- } |
- prevChar = *prev; |
- |
- /* Handles Han and Supplementary characters here.*/ |
- if (U16_IS_LEAD(prevChar)) { |
- cp = ((((uint32_t)prevChar)<<10UL)+(ch)-(((uint32_t)0xd800<<10UL)+0xdc00-0x10000)); |
- source->pos = prev; |
- } else { |
- return UCOL_NOT_FOUND; /* like unassigned */ |
- } |
- |
- return getPrevImplicit(cp, source); |
- } |
- |
- /* UCA is filled with these. Tailorings are NOT_FOUND */ |
- /* not yet implemented */ |
- case CHARSET_TAG: /* this tag always returns */ |
- /* probably after 1.8 */ |
- return UCOL_NOT_FOUND; |
- |
- default: /* this tag always returns */ |
- *status = U_INTERNAL_PROGRAM_ERROR; |
- CE=0; |
- break; |
- } |
- |
- if (CE <= UCOL_NOT_FOUND) { |
- break; |
- } |
- } |
- |
- return CE; |
-} |
- |
-/* This should really be a macro */ |
-/* This function is used to reverse parts of a buffer. We need this operation when doing continuation */ |
-/* secondaries in French */ |
-/* |
-void uprv_ucol_reverse_buffer(uint8_t *start, uint8_t *end) { |
- uint8_t temp; |
- while(start<end) { |
- temp = *start; |
- *start++ = *end; |
- *end-- = temp; |
- } |
-} |
-*/ |
- |
-#define uprv_ucol_reverse_buffer(TYPE, start, end) { \ |
- TYPE tempA; \ |
-while((start)<(end)) { \ |
- tempA = *(start); \ |
- *(start)++ = *(end); \ |
- *(end)-- = tempA; \ |
-} \ |
-} |
- |
-/****************************************************************************/ |
-/* Following are the sortkey generation functions */ |
-/* */ |
-/****************************************************************************/ |
- |
-U_CAPI int32_t U_EXPORT2 |
-ucol_mergeSortkeys(const uint8_t *src1, int32_t src1Length, |
- const uint8_t *src2, int32_t src2Length, |
- uint8_t *dest, int32_t destCapacity) { |
- /* check arguments */ |
- if( src1==NULL || src1Length<-1 || src1Length==0 || (src1Length>0 && src1[src1Length-1]!=0) || |
- src2==NULL || src2Length<-1 || src2Length==0 || (src2Length>0 && src2[src2Length-1]!=0) || |
- destCapacity<0 || (destCapacity>0 && dest==NULL) |
- ) { |
- /* error, attempt to write a zero byte and return 0 */ |
- if(dest!=NULL && destCapacity>0) { |
- *dest=0; |
- } |
- return 0; |
- } |
- |
- /* check lengths and capacity */ |
- if(src1Length<0) { |
- src1Length=(int32_t)uprv_strlen((const char *)src1)+1; |
- } |
- if(src2Length<0) { |
- src2Length=(int32_t)uprv_strlen((const char *)src2)+1; |
- } |
- |
- int32_t destLength=src1Length+src2Length; |
- if(destLength>destCapacity) { |
- /* the merged sort key does not fit into the destination */ |
- return destLength; |
- } |
- |
- /* merge the sort keys with the same number of levels */ |
- uint8_t *p=dest; |
- for(;;) { |
- /* copy level from src1 not including 00 or 01 */ |
- uint8_t b; |
- while((b=*src1)>=2) { |
- ++src1; |
- *p++=b; |
- } |
- |
- /* add a 02 merge separator */ |
- *p++=2; |
- |
- /* copy level from src2 not including 00 or 01 */ |
- while((b=*src2)>=2) { |
- ++src2; |
- *p++=b; |
- } |
- |
- /* if both sort keys have another level, then add a 01 level separator and continue */ |
- if(*src1==1 && *src2==1) { |
- ++src1; |
- ++src2; |
- *p++=1; |
- } else { |
- break; |
- } |
- } |
- |
- /* |
- * here, at least one sort key is finished now, but the other one |
- * might have some contents left from containing more levels; |
- * that contents is just appended to the result |
- */ |
- if(*src1!=0) { |
- /* src1 is not finished, therefore *src2==0, and src1 is appended */ |
- src2=src1; |
- } |
- /* append src2, "the other, unfinished sort key" */ |
- while((*p++=*src2++)!=0) {} |
- |
- /* the actual length might be less than destLength if either sort key contained illegally embedded zero bytes */ |
- return (int32_t)(p-dest); |
-} |
- |
-U_NAMESPACE_BEGIN |
- |
-class SortKeyByteSink : public ByteSink { |
-public: |
- SortKeyByteSink(char *dest, int32_t destCapacity) |
- : buffer_(dest), capacity_(destCapacity), |
- appended_(0) { |
- if (buffer_ == NULL) { |
- capacity_ = 0; |
- } else if(capacity_ < 0) { |
- buffer_ = NULL; |
- capacity_ = 0; |
- } |
- } |
- virtual ~SortKeyByteSink(); |
- |
- virtual void Append(const char *bytes, int32_t n); |
- void Append(uint32_t b) { |
- if (appended_ < capacity_ || Resize(1, appended_)) { |
- buffer_[appended_] = (char)b; |
- } |
- ++appended_; |
- } |
- void Append(uint32_t b1, uint32_t b2) { |
- int32_t a2 = appended_ + 2; |
- if (a2 <= capacity_ || Resize(2, appended_)) { |
- buffer_[appended_] = (char)b1; |
- buffer_[appended_ + 1] = (char)b2; |
- } else if(appended_ < capacity_) { |
- buffer_[appended_] = (char)b1; |
- } |
- appended_ = a2; |
- } |
- virtual char *GetAppendBuffer(int32_t min_capacity, |
- int32_t desired_capacity_hint, |
- char *scratch, int32_t scratch_capacity, |
- int32_t *result_capacity); |
- int32_t NumberOfBytesAppended() const { return appended_; } |
- /** @return FALSE if memory allocation failed */ |
- UBool IsOk() const { return buffer_ != NULL; } |
- |
-protected: |
- virtual void AppendBeyondCapacity(const char *bytes, int32_t n, int32_t length) = 0; |
- virtual UBool Resize(int32_t appendCapacity, int32_t length) = 0; |
- |
- void SetNotOk() { |
- buffer_ = NULL; |
- capacity_ = 0; |
- } |
- |
- char *buffer_; |
- int32_t capacity_; |
- int32_t appended_; |
- |
-private: |
- SortKeyByteSink(const SortKeyByteSink &); // copy constructor not implemented |
- SortKeyByteSink &operator=(const SortKeyByteSink &); // assignment operator not implemented |
-}; |
- |
-SortKeyByteSink::~SortKeyByteSink() {} |
- |
-void |
-SortKeyByteSink::Append(const char *bytes, int32_t n) { |
- if (n <= 0 || bytes == NULL) { |
- return; |
- } |
- int32_t length = appended_; |
- appended_ += n; |
- if ((buffer_ + length) == bytes) { |
- return; // the caller used GetAppendBuffer() and wrote the bytes already |
- } |
- int32_t available = capacity_ - length; |
- if (n <= available) { |
- uprv_memcpy(buffer_ + length, bytes, n); |
- } else { |
- AppendBeyondCapacity(bytes, n, length); |
- } |
-} |
- |
-char * |
-SortKeyByteSink::GetAppendBuffer(int32_t min_capacity, |
- int32_t desired_capacity_hint, |
- char *scratch, |
- int32_t scratch_capacity, |
- int32_t *result_capacity) { |
- if (min_capacity < 1 || scratch_capacity < min_capacity) { |
- *result_capacity = 0; |
- return NULL; |
- } |
- int32_t available = capacity_ - appended_; |
- if (available >= min_capacity) { |
- *result_capacity = available; |
- return buffer_ + appended_; |
- } else if (Resize(desired_capacity_hint, appended_)) { |
- *result_capacity = capacity_ - appended_; |
- return buffer_ + appended_; |
- } else { |
- *result_capacity = scratch_capacity; |
- return scratch; |
- } |
-} |
- |
-class FixedSortKeyByteSink : public SortKeyByteSink { |
-public: |
- FixedSortKeyByteSink(char *dest, int32_t destCapacity) |
- : SortKeyByteSink(dest, destCapacity) {} |
- virtual ~FixedSortKeyByteSink(); |
- |
-private: |
- virtual void AppendBeyondCapacity(const char *bytes, int32_t n, int32_t length); |
- virtual UBool Resize(int32_t appendCapacity, int32_t length); |
-}; |
- |
-FixedSortKeyByteSink::~FixedSortKeyByteSink() {} |
- |
-void |
-FixedSortKeyByteSink::AppendBeyondCapacity(const char *bytes, int32_t /*n*/, int32_t length) { |
- // buffer_ != NULL && bytes != NULL && n > 0 && appended_ > capacity_ |
- // Fill the buffer completely. |
- int32_t available = capacity_ - length; |
- if (available > 0) { |
- uprv_memcpy(buffer_ + length, bytes, available); |
- } |
-} |
- |
-UBool |
-FixedSortKeyByteSink::Resize(int32_t /*appendCapacity*/, int32_t /*length*/) { |
- return FALSE; |
-} |
- |
-class CollationKeyByteSink : public SortKeyByteSink { |
-public: |
- CollationKeyByteSink(CollationKey &key) |
- : SortKeyByteSink(reinterpret_cast<char *>(key.getBytes()), key.getCapacity()), |
- key_(key) {} |
- virtual ~CollationKeyByteSink(); |
- |
-private: |
- virtual void AppendBeyondCapacity(const char *bytes, int32_t n, int32_t length); |
- virtual UBool Resize(int32_t appendCapacity, int32_t length); |
- |
- CollationKey &key_; |
-}; |
- |
-CollationKeyByteSink::~CollationKeyByteSink() {} |
- |
-void |
-CollationKeyByteSink::AppendBeyondCapacity(const char *bytes, int32_t n, int32_t length) { |
- // buffer_ != NULL && bytes != NULL && n > 0 && appended_ > capacity_ |
- if (Resize(n, length)) { |
- uprv_memcpy(buffer_ + length, bytes, n); |
- } |
-} |
- |
-UBool |
-CollationKeyByteSink::Resize(int32_t appendCapacity, int32_t length) { |
- if (buffer_ == NULL) { |
- return FALSE; // allocation failed before already |
- } |
- int32_t newCapacity = 2 * capacity_; |
- int32_t altCapacity = length + 2 * appendCapacity; |
- if (newCapacity < altCapacity) { |
- newCapacity = altCapacity; |
- } |
- if (newCapacity < 200) { |
- newCapacity = 200; |
- } |
- uint8_t *newBuffer = key_.reallocate(newCapacity, length); |
- if (newBuffer == NULL) { |
- SetNotOk(); |
- return FALSE; |
- } |
- buffer_ = reinterpret_cast<char *>(newBuffer); |
- capacity_ = newCapacity; |
- return TRUE; |
-} |
- |
-/** |
- * uint8_t byte buffer, similar to CharString but simpler. |
- */ |
-class SortKeyLevel : public UMemory { |
-public: |
- SortKeyLevel() : len(0), ok(TRUE) {} |
- ~SortKeyLevel() {} |
- |
- /** @return FALSE if memory allocation failed */ |
- UBool isOk() const { return ok; } |
- UBool isEmpty() const { return len == 0; } |
- int32_t length() const { return len; } |
- const uint8_t *data() const { return buffer.getAlias(); } |
- uint8_t operator[](int32_t index) const { return buffer[index]; } |
- |
- void appendByte(uint32_t b); |
- |
- void appendTo(ByteSink &sink) const { |
- sink.Append(reinterpret_cast<const char *>(buffer.getAlias()), len); |
- } |
- |
- uint8_t &lastByte() { |
- U_ASSERT(len > 0); |
- return buffer[len - 1]; |
- } |
- |
- uint8_t *getLastFewBytes(int32_t n) { |
- if (ok && len >= n) { |
- return buffer.getAlias() + len - n; |
- } else { |
- return NULL; |
- } |
- } |
- |
-private: |
- MaybeStackArray<uint8_t, 40> buffer; |
- int32_t len; |
- UBool ok; |
- |
- UBool ensureCapacity(int32_t appendCapacity); |
- |
- SortKeyLevel(const SortKeyLevel &other); // forbid copying of this class |
- SortKeyLevel &operator=(const SortKeyLevel &other); // forbid copying of this class |
-}; |
- |
-void SortKeyLevel::appendByte(uint32_t b) { |
- if(len < buffer.getCapacity() || ensureCapacity(1)) { |
- buffer[len++] = (uint8_t)b; |
- } |
-} |
- |
-UBool SortKeyLevel::ensureCapacity(int32_t appendCapacity) { |
- if(!ok) { |
- return FALSE; |
- } |
- int32_t newCapacity = 2 * buffer.getCapacity(); |
- int32_t altCapacity = len + 2 * appendCapacity; |
- if (newCapacity < altCapacity) { |
- newCapacity = altCapacity; |
- } |
- if (newCapacity < 200) { |
- newCapacity = 200; |
- } |
- if(buffer.resize(newCapacity, len)==NULL) { |
- return ok = FALSE; |
- } |
- return TRUE; |
-} |
- |
-U_NAMESPACE_END |
- |
-/* sortkey API */ |
-U_CAPI int32_t U_EXPORT2 |
-ucol_getSortKey(const UCollator *coll, |
- const UChar *source, |
- int32_t sourceLength, |
- uint8_t *result, |
- int32_t resultLength) |
-{ |
- UTRACE_ENTRY(UTRACE_UCOL_GET_SORTKEY); |
- if (UTRACE_LEVEL(UTRACE_VERBOSE)) { |
- UTRACE_DATA3(UTRACE_VERBOSE, "coll=%p, source string = %vh ", coll, source, |
- ((sourceLength==-1 && source!=NULL) ? u_strlen(source) : sourceLength)); |
- } |
- |
- if(coll->delegate != NULL) { |
- return ((const Collator*)coll->delegate)->getSortKey(source, sourceLength, result, resultLength); |
- } |
- |
- UErrorCode status = U_ZERO_ERROR; |
- int32_t keySize = 0; |
- |
- if(source != NULL) { |
- // source == NULL is actually an error situation, but we would need to |
- // have an error code to return it. Until we introduce a new |
- // API, it stays like this |
- |
- /* this uses the function pointer that is set in updateinternalstate */ |
- /* currently, there are two funcs: */ |
- /*ucol_calcSortKey(...);*/ |
- /*ucol_calcSortKeySimpleTertiary(...);*/ |
- |
- uint8_t noDest[1] = { 0 }; |
- if(result == NULL) { |
- // Distinguish pure preflighting from an allocation error. |
- result = noDest; |
- resultLength = 0; |
- } |
- FixedSortKeyByteSink sink(reinterpret_cast<char *>(result), resultLength); |
- coll->sortKeyGen(coll, source, sourceLength, sink, &status); |
- if(U_SUCCESS(status)) { |
- keySize = sink.NumberOfBytesAppended(); |
- } |
- } |
- UTRACE_DATA2(UTRACE_VERBOSE, "Sort Key = %vb", result, keySize); |
- UTRACE_EXIT_STATUS(status); |
- return keySize; |
-} |
- |
-U_CFUNC int32_t |
-ucol_getCollationKey(const UCollator *coll, |
- const UChar *source, int32_t sourceLength, |
- CollationKey &key, |
- UErrorCode &errorCode) { |
- CollationKeyByteSink sink(key); |
- coll->sortKeyGen(coll, source, sourceLength, sink, &errorCode); |
- return sink.NumberOfBytesAppended(); |
-} |
- |
-// Is this primary weight compressible? |
-// Returns false for multi-lead-byte scripts (digits, Latin, Han, implicit). |
-// TODO: This should use per-lead-byte flags from FractionalUCA.txt. |
-static inline UBool |
-isCompressible(const UCollator * /*coll*/, uint8_t primary1) { |
- return UCOL_BYTE_FIRST_NON_LATIN_PRIMARY <= primary1 && primary1 <= maxRegularPrimary; |
-} |
- |
-static |
-inline void doCaseShift(SortKeyLevel &cases, uint32_t &caseShift) { |
- if (caseShift == 0) { |
- cases.appendByte(UCOL_CASE_BYTE_START); |
- caseShift = UCOL_CASE_SHIFT_START; |
- } |
-} |
- |
-// Packs the secondary buffer when processing French locale. |
-static void |
-packFrench(const uint8_t *secondaries, int32_t secsize, SortKeyByteSink &result) { |
- secondaries += secsize; // We read the secondary-level bytes back to front. |
- uint8_t secondary; |
- int32_t count2 = 0; |
- int32_t i = 0; |
- // we use i here since the key size already accounts for terminators, so we'll discard the increment |
- for(i = 0; i<secsize; i++) { |
- secondary = *(secondaries-i-1); |
- /* This is compression code. */ |
- if (secondary == UCOL_COMMON2) { |
- ++count2; |
- } else { |
- if (count2 > 0) { |
- if (secondary > UCOL_COMMON2) { // not necessary for 4th level. |
- while (count2 > UCOL_TOP_COUNT2) { |
- result.Append(UCOL_COMMON_TOP2 - UCOL_TOP_COUNT2); |
- count2 -= (uint32_t)UCOL_TOP_COUNT2; |
- } |
- result.Append(UCOL_COMMON_TOP2 - (count2-1)); |
- } else { |
- while (count2 > UCOL_BOT_COUNT2) { |
- result.Append(UCOL_COMMON_BOT2 + UCOL_BOT_COUNT2); |
- count2 -= (uint32_t)UCOL_BOT_COUNT2; |
- } |
- result.Append(UCOL_COMMON_BOT2 + (count2-1)); |
- } |
- count2 = 0; |
- } |
- result.Append(secondary); |
- } |
- } |
- if (count2 > 0) { |
- while (count2 > UCOL_BOT_COUNT2) { |
- result.Append(UCOL_COMMON_BOT2 + UCOL_BOT_COUNT2); |
- count2 -= (uint32_t)UCOL_BOT_COUNT2; |
- } |
- result.Append(UCOL_COMMON_BOT2 + (count2-1)); |
- } |
-} |
- |
-#define DEFAULT_ERROR_SIZE_FOR_CALCSORTKEY 0 |
- |
-/* This is the sortkey work horse function */ |
-U_CFUNC void U_CALLCONV |
-ucol_calcSortKey(const UCollator *coll, |
- const UChar *source, |
- int32_t sourceLength, |
- SortKeyByteSink &result, |
- UErrorCode *status) |
-{ |
- if(U_FAILURE(*status)) { |
- return; |
- } |
- |
- SortKeyByteSink &primaries = result; |
- SortKeyLevel secondaries; |
- SortKeyLevel tertiaries; |
- SortKeyLevel cases; |
- SortKeyLevel quads; |
- |
- UnicodeString normSource; |
- |
- int32_t len = (sourceLength == -1 ? u_strlen(source) : sourceLength); |
- |
- UColAttributeValue strength = coll->strength; |
- |
- uint8_t compareSec = (uint8_t)((strength >= UCOL_SECONDARY)?0:0xFF); |
- uint8_t compareTer = (uint8_t)((strength >= UCOL_TERTIARY)?0:0xFF); |
- uint8_t compareQuad = (uint8_t)((strength >= UCOL_QUATERNARY)?0:0xFF); |
- UBool compareIdent = (strength == UCOL_IDENTICAL); |
- UBool doCase = (coll->caseLevel == UCOL_ON); |
- UBool isFrenchSec = (coll->frenchCollation == UCOL_ON) && (compareSec == 0); |
- UBool shifted = (coll->alternateHandling == UCOL_SHIFTED); |
- //UBool qShifted = shifted && (compareQuad == 0); |
- UBool doHiragana = (coll->hiraganaQ == UCOL_ON) && (compareQuad == 0); |
- |
- uint32_t variableTopValue = coll->variableTopValue; |
- // TODO: UCOL_COMMON_BOT4 should be a function of qShifted. If we have no |
- // qShifted, we don't need to set UCOL_COMMON_BOT4 so high. |
- uint8_t UCOL_COMMON_BOT4 = (uint8_t)((coll->variableTopValue>>8)+1); |
- uint8_t UCOL_HIRAGANA_QUAD = 0; |
- if(doHiragana) { |
- UCOL_HIRAGANA_QUAD=UCOL_COMMON_BOT4++; |
- /* allocate one more space for hiragana, value for hiragana */ |
- } |
- uint8_t UCOL_BOT_COUNT4 = (uint8_t)(0xFF - UCOL_COMMON_BOT4); |
- |
- /* support for special features like caselevel and funky secondaries */ |
- int32_t lastSecondaryLength = 0; |
- uint32_t caseShift = 0; |
- |
- /* If we need to normalize, we'll do it all at once at the beginning! */ |
- const Normalizer2 *norm2; |
- if(compareIdent) { |
- norm2 = Normalizer2Factory::getNFDInstance(*status); |
- } else if(coll->normalizationMode != UCOL_OFF) { |
- norm2 = Normalizer2Factory::getFCDInstance(*status); |
- } else { |
- norm2 = NULL; |
- } |
- if(norm2 != NULL) { |
- normSource.setTo(FALSE, source, len); |
- int32_t qcYesLength = norm2->spanQuickCheckYes(normSource, *status); |
- if(qcYesLength != len) { |
- UnicodeString unnormalized = normSource.tempSubString(qcYesLength); |
- normSource.truncate(qcYesLength); |
- norm2->normalizeSecondAndAppend(normSource, unnormalized, *status); |
- source = normSource.getBuffer(); |
- len = normSource.length(); |
- } |
- } |
- collIterate s; |
- IInit_collIterate(coll, source, len, &s, status); |
- if(U_FAILURE(*status)) { |
- return; |
- } |
- s.flags &= ~UCOL_ITER_NORM; // source passed the FCD test or else was normalized. |
- |
- uint32_t order = 0; |
- |
- uint8_t primary1 = 0; |
- uint8_t primary2 = 0; |
- uint8_t secondary = 0; |
- uint8_t tertiary = 0; |
- uint8_t caseSwitch = coll->caseSwitch; |
- uint8_t tertiaryMask = coll->tertiaryMask; |
- int8_t tertiaryAddition = coll->tertiaryAddition; |
- uint8_t tertiaryTop = coll->tertiaryTop; |
- uint8_t tertiaryBottom = coll->tertiaryBottom; |
- uint8_t tertiaryCommon = coll->tertiaryCommon; |
- uint8_t caseBits = 0; |
- |
- UBool wasShifted = FALSE; |
- UBool notIsContinuation = FALSE; |
- |
- uint32_t count2 = 0, count3 = 0, count4 = 0; |
- uint8_t leadPrimary = 0; |
- |
- for(;;) { |
- order = ucol_IGetNextCE(coll, &s, status); |
- if(order == UCOL_NO_MORE_CES) { |
- break; |
- } |
- |
- if(order == 0) { |
- continue; |
- } |
- |
- notIsContinuation = !isContinuation(order); |
- |
- if(notIsContinuation) { |
- tertiary = (uint8_t)(order & UCOL_BYTE_SIZE_MASK); |
- } else { |
- tertiary = (uint8_t)((order & UCOL_REMOVE_CONTINUATION)); |
- } |
- |
- secondary = (uint8_t)((order >>= 8) & UCOL_BYTE_SIZE_MASK); |
- primary2 = (uint8_t)((order >>= 8) & UCOL_BYTE_SIZE_MASK); |
- primary1 = (uint8_t)(order >> 8); |
- |
- uint8_t originalPrimary1 = primary1; |
- if(notIsContinuation && coll->leadBytePermutationTable != NULL) { |
- primary1 = coll->leadBytePermutationTable[primary1]; |
- } |
- |
- if((shifted && ((notIsContinuation && order <= variableTopValue && primary1 > 0) |
- || (!notIsContinuation && wasShifted))) |
- || (wasShifted && primary1 == 0)) /* amendment to the UCA says that primary ignorables */ |
- { |
- /* and other ignorables should be removed if following a shifted code point */ |
- if(primary1 == 0) { /* if we were shifted and we got an ignorable code point */ |
- /* we should just completely ignore it */ |
- continue; |
- } |
- if(compareQuad == 0) { |
- if(count4 > 0) { |
- while (count4 > UCOL_BOT_COUNT4) { |
- quads.appendByte(UCOL_COMMON_BOT4 + UCOL_BOT_COUNT4); |
- count4 -= UCOL_BOT_COUNT4; |
- } |
- quads.appendByte(UCOL_COMMON_BOT4 + (count4-1)); |
- count4 = 0; |
- } |
- /* We are dealing with a variable and we're treating them as shifted */ |
- /* This is a shifted ignorable */ |
- if(primary1 != 0) { /* we need to check this since we could be in continuation */ |
- quads.appendByte(primary1); |
- } |
- if(primary2 != 0) { |
- quads.appendByte(primary2); |
- } |
- } |
- wasShifted = TRUE; |
- } else { |
- wasShifted = FALSE; |
- /* Note: This code assumes that the table is well built i.e. not having 0 bytes where they are not supposed to be. */ |
- /* Usually, we'll have non-zero primary1 & primary2, except in cases of a-z and friends, when primary2 will */ |
- /* regular and simple sortkey calc */ |
- if(primary1 != UCOL_IGNORABLE) { |
- if(notIsContinuation) { |
- if(leadPrimary == primary1) { |
- primaries.Append(primary2); |
- } else { |
- if(leadPrimary != 0) { |
- primaries.Append((primary1 > leadPrimary) ? UCOL_BYTE_UNSHIFTED_MAX : UCOL_BYTE_UNSHIFTED_MIN); |
- } |
- if(primary2 == UCOL_IGNORABLE) { |
- /* one byter, not compressed */ |
- primaries.Append(primary1); |
- leadPrimary = 0; |
- } else if(isCompressible(coll, originalPrimary1)) { |
- /* compress */ |
- primaries.Append(leadPrimary = primary1, primary2); |
- } else { |
- leadPrimary = 0; |
- primaries.Append(primary1, primary2); |
- } |
- } |
- } else { /* we are in continuation, so we're gonna add primary to the key don't care about compression */ |
- if(primary2 == UCOL_IGNORABLE) { |
- primaries.Append(primary1); |
- } else { |
- primaries.Append(primary1, primary2); |
- } |
- } |
- } |
- |
- if(secondary > compareSec) { |
- if(!isFrenchSec) { |
- /* This is compression code. */ |
- if (secondary == UCOL_COMMON2 && notIsContinuation) { |
- ++count2; |
- } else { |
- if (count2 > 0) { |
- if (secondary > UCOL_COMMON2) { // not necessary for 4th level. |
- while (count2 > UCOL_TOP_COUNT2) { |
- secondaries.appendByte(UCOL_COMMON_TOP2 - UCOL_TOP_COUNT2); |
- count2 -= (uint32_t)UCOL_TOP_COUNT2; |
- } |
- secondaries.appendByte(UCOL_COMMON_TOP2 - (count2-1)); |
- } else { |
- while (count2 > UCOL_BOT_COUNT2) { |
- secondaries.appendByte(UCOL_COMMON_BOT2 + UCOL_BOT_COUNT2); |
- count2 -= (uint32_t)UCOL_BOT_COUNT2; |
- } |
- secondaries.appendByte(UCOL_COMMON_BOT2 + (count2-1)); |
- } |
- count2 = 0; |
- } |
- secondaries.appendByte(secondary); |
- } |
- } else { |
- /* Do the special handling for French secondaries */ |
- /* We need to get continuation elements and do intermediate restore */ |
- /* abc1c2c3de with french secondaries need to be edc1c2c3ba NOT edc3c2c1ba */ |
- if(notIsContinuation) { |
- if (lastSecondaryLength > 1) { |
- uint8_t *frenchStartPtr = secondaries.getLastFewBytes(lastSecondaryLength); |
- if (frenchStartPtr != NULL) { |
- /* reverse secondaries from frenchStartPtr up to frenchEndPtr */ |
- uint8_t *frenchEndPtr = frenchStartPtr + lastSecondaryLength - 1; |
- uprv_ucol_reverse_buffer(uint8_t, frenchStartPtr, frenchEndPtr); |
- } |
- } |
- lastSecondaryLength = 1; |
- } else { |
- ++lastSecondaryLength; |
- } |
- secondaries.appendByte(secondary); |
- } |
- } |
- |
- if(doCase && (primary1 > 0 || strength >= UCOL_SECONDARY)) { |
- // do the case level if we need to do it. We don't want to calculate |
- // case level for primary ignorables if we have only primary strength and case level |
- // otherwise we would break well formedness of CEs |
- doCaseShift(cases, caseShift); |
- if(notIsContinuation) { |
- caseBits = (uint8_t)(tertiary & 0xC0); |
- |
- if(tertiary != 0) { |
- if(coll->caseFirst == UCOL_UPPER_FIRST) { |
- if((caseBits & 0xC0) == 0) { |
- cases.lastByte() |= 1 << (--caseShift); |
- } else { |
- cases.lastByte() |= 0 << (--caseShift); |
- /* second bit */ |
- doCaseShift(cases, caseShift); |
- cases.lastByte() |= ((caseBits>>6)&1) << (--caseShift); |
- } |
- } else { |
- if((caseBits & 0xC0) == 0) { |
- cases.lastByte() |= 0 << (--caseShift); |
- } else { |
- cases.lastByte() |= 1 << (--caseShift); |
- /* second bit */ |
- doCaseShift(cases, caseShift); |
- cases.lastByte() |= ((caseBits>>7)&1) << (--caseShift); |
- } |
- } |
- } |
- } |
- } else { |
- if(notIsContinuation) { |
- tertiary ^= caseSwitch; |
- } |
- } |
- |
- tertiary &= tertiaryMask; |
- if(tertiary > compareTer) { |
- /* This is compression code. */ |
- /* sequence size check is included in the if clause */ |
- if (tertiary == tertiaryCommon && notIsContinuation) { |
- ++count3; |
- } else { |
- if(tertiary > tertiaryCommon && tertiaryCommon == UCOL_COMMON3_NORMAL) { |
- tertiary += tertiaryAddition; |
- } else if(tertiary <= tertiaryCommon && tertiaryCommon == UCOL_COMMON3_UPPERFIRST) { |
- tertiary -= tertiaryAddition; |
- } |
- if (count3 > 0) { |
- if ((tertiary > tertiaryCommon)) { |
- while (count3 > coll->tertiaryTopCount) { |
- tertiaries.appendByte(tertiaryTop - coll->tertiaryTopCount); |
- count3 -= (uint32_t)coll->tertiaryTopCount; |
- } |
- tertiaries.appendByte(tertiaryTop - (count3-1)); |
- } else { |
- while (count3 > coll->tertiaryBottomCount) { |
- tertiaries.appendByte(tertiaryBottom + coll->tertiaryBottomCount); |
- count3 -= (uint32_t)coll->tertiaryBottomCount; |
- } |
- tertiaries.appendByte(tertiaryBottom + (count3-1)); |
- } |
- count3 = 0; |
- } |
- tertiaries.appendByte(tertiary); |
- } |
- } |
- |
- if(/*qShifted*/(compareQuad==0) && notIsContinuation) { |
- if(s.flags & UCOL_WAS_HIRAGANA) { // This was Hiragana and we need to note it |
- if(count4>0) { // Close this part |
- while (count4 > UCOL_BOT_COUNT4) { |
- quads.appendByte(UCOL_COMMON_BOT4 + UCOL_BOT_COUNT4); |
- count4 -= UCOL_BOT_COUNT4; |
- } |
- quads.appendByte(UCOL_COMMON_BOT4 + (count4-1)); |
- count4 = 0; |
- } |
- quads.appendByte(UCOL_HIRAGANA_QUAD); // Add the Hiragana |
- } else { // This wasn't Hiragana, so we can continue adding stuff |
- count4++; |
- } |
- } |
- } |
- } |
- |
- /* Here, we are generally done with processing */ |
- /* bailing out would not be too productive */ |
- |
- UBool ok = TRUE; |
- if(U_SUCCESS(*status)) { |
- /* we have done all the CE's, now let's put them together to form a key */ |
- if(compareSec == 0) { |
- if (count2 > 0) { |
- while (count2 > UCOL_BOT_COUNT2) { |
- secondaries.appendByte(UCOL_COMMON_BOT2 + UCOL_BOT_COUNT2); |
- count2 -= (uint32_t)UCOL_BOT_COUNT2; |
- } |
- secondaries.appendByte(UCOL_COMMON_BOT2 + (count2-1)); |
- } |
- result.Append(UCOL_LEVELTERMINATOR); |
- if(!secondaries.isOk()) { |
- ok = FALSE; |
- } else if(!isFrenchSec) { |
- secondaries.appendTo(result); |
- } else { |
- // If there are any unresolved continuation secondaries, |
- // reverse them here so that we can reverse the whole secondary thing. |
- if (lastSecondaryLength > 1) { |
- uint8_t *frenchStartPtr = secondaries.getLastFewBytes(lastSecondaryLength); |
- if (frenchStartPtr != NULL) { |
- /* reverse secondaries from frenchStartPtr up to frenchEndPtr */ |
- uint8_t *frenchEndPtr = frenchStartPtr + lastSecondaryLength - 1; |
- uprv_ucol_reverse_buffer(uint8_t, frenchStartPtr, frenchEndPtr); |
- } |
- } |
- packFrench(secondaries.data(), secondaries.length(), result); |
- } |
- } |
- |
- if(doCase) { |
- ok &= cases.isOk(); |
- result.Append(UCOL_LEVELTERMINATOR); |
- cases.appendTo(result); |
- } |
- |
- if(compareTer == 0) { |
- if (count3 > 0) { |
- if (coll->tertiaryCommon != UCOL_COMMON_BOT3) { |
- while (count3 >= coll->tertiaryTopCount) { |
- tertiaries.appendByte(tertiaryTop - coll->tertiaryTopCount); |
- count3 -= (uint32_t)coll->tertiaryTopCount; |
- } |
- tertiaries.appendByte(tertiaryTop - count3); |
- } else { |
- while (count3 > coll->tertiaryBottomCount) { |
- tertiaries.appendByte(tertiaryBottom + coll->tertiaryBottomCount); |
- count3 -= (uint32_t)coll->tertiaryBottomCount; |
- } |
- tertiaries.appendByte(tertiaryBottom + (count3-1)); |
- } |
- } |
- ok &= tertiaries.isOk(); |
- result.Append(UCOL_LEVELTERMINATOR); |
- tertiaries.appendTo(result); |
- |
- if(compareQuad == 0/*qShifted == TRUE*/) { |
- if(count4 > 0) { |
- while (count4 > UCOL_BOT_COUNT4) { |
- quads.appendByte(UCOL_COMMON_BOT4 + UCOL_BOT_COUNT4); |
- count4 -= UCOL_BOT_COUNT4; |
- } |
- quads.appendByte(UCOL_COMMON_BOT4 + (count4-1)); |
- } |
- ok &= quads.isOk(); |
- result.Append(UCOL_LEVELTERMINATOR); |
- quads.appendTo(result); |
- } |
- |
- if(compareIdent) { |
- result.Append(UCOL_LEVELTERMINATOR); |
- u_writeIdenticalLevelRun(s.string, len, result); |
- } |
- } |
- result.Append(0); |
- } |
- |
- /* To avoid memory leak, free the offset buffer if necessary. */ |
- ucol_freeOffsetBuffer(&s); |
- |
- ok &= result.IsOk(); |
- if(!ok && U_SUCCESS(*status)) { *status = U_MEMORY_ALLOCATION_ERROR; } |
-} |
- |
- |
-U_CFUNC void U_CALLCONV |
-ucol_calcSortKeySimpleTertiary(const UCollator *coll, |
- const UChar *source, |
- int32_t sourceLength, |
- SortKeyByteSink &result, |
- UErrorCode *status) |
-{ |
- U_ALIGN_CODE(16); |
- |
- if(U_FAILURE(*status)) { |
- return; |
- } |
- |
- SortKeyByteSink &primaries = result; |
- SortKeyLevel secondaries; |
- SortKeyLevel tertiaries; |
- |
- UnicodeString normSource; |
- |
- int32_t len = sourceLength; |
- |
- /* If we need to normalize, we'll do it all at once at the beginning! */ |
- if(coll->normalizationMode != UCOL_OFF) { |
- normSource.setTo(len < 0, source, len); |
- const Normalizer2 *norm2 = Normalizer2Factory::getFCDInstance(*status); |
- int32_t qcYesLength = norm2->spanQuickCheckYes(normSource, *status); |
- if(qcYesLength != normSource.length()) { |
- UnicodeString unnormalized = normSource.tempSubString(qcYesLength); |
- normSource.truncate(qcYesLength); |
- norm2->normalizeSecondAndAppend(normSource, unnormalized, *status); |
- source = normSource.getBuffer(); |
- len = normSource.length(); |
- } |
- } |
- collIterate s; |
- IInit_collIterate(coll, (UChar *)source, len, &s, status); |
- if(U_FAILURE(*status)) { |
- return; |
- } |
- s.flags &= ~UCOL_ITER_NORM; // source passed the FCD test or else was normalized. |
- |
- uint32_t order = 0; |
- |
- uint8_t primary1 = 0; |
- uint8_t primary2 = 0; |
- uint8_t secondary = 0; |
- uint8_t tertiary = 0; |
- uint8_t caseSwitch = coll->caseSwitch; |
- uint8_t tertiaryMask = coll->tertiaryMask; |
- int8_t tertiaryAddition = coll->tertiaryAddition; |
- uint8_t tertiaryTop = coll->tertiaryTop; |
- uint8_t tertiaryBottom = coll->tertiaryBottom; |
- uint8_t tertiaryCommon = coll->tertiaryCommon; |
- |
- UBool notIsContinuation = FALSE; |
- |
- uint32_t count2 = 0, count3 = 0; |
- uint8_t leadPrimary = 0; |
- |
- for(;;) { |
- order = ucol_IGetNextCE(coll, &s, status); |
- |
- if(order == 0) { |
- continue; |
- } |
- |
- if(order == UCOL_NO_MORE_CES) { |
- break; |
- } |
- |
- notIsContinuation = !isContinuation(order); |
- |
- if(notIsContinuation) { |
- tertiary = (uint8_t)((order & tertiaryMask)); |
- } else { |
- tertiary = (uint8_t)((order & UCOL_REMOVE_CONTINUATION)); |
- } |
- |
- secondary = (uint8_t)((order >>= 8) & UCOL_BYTE_SIZE_MASK); |
- primary2 = (uint8_t)((order >>= 8) & UCOL_BYTE_SIZE_MASK); |
- primary1 = (uint8_t)(order >> 8); |
- |
- uint8_t originalPrimary1 = primary1; |
- if (coll->leadBytePermutationTable != NULL && notIsContinuation) { |
- primary1 = coll->leadBytePermutationTable[primary1]; |
- } |
- |
- /* Note: This code assumes that the table is well built i.e. not having 0 bytes where they are not supposed to be. */ |
- /* Usually, we'll have non-zero primary1 & primary2, except in cases of a-z and friends, when primary2 will */ |
- /* be zero with non zero primary1. primary3 is different than 0 only for long primaries - see above. */ |
- /* regular and simple sortkey calc */ |
- if(primary1 != UCOL_IGNORABLE) { |
- if(notIsContinuation) { |
- if(leadPrimary == primary1) { |
- primaries.Append(primary2); |
- } else { |
- if(leadPrimary != 0) { |
- primaries.Append((primary1 > leadPrimary) ? UCOL_BYTE_UNSHIFTED_MAX : UCOL_BYTE_UNSHIFTED_MIN); |
- } |
- if(primary2 == UCOL_IGNORABLE) { |
- /* one byter, not compressed */ |
- primaries.Append(primary1); |
- leadPrimary = 0; |
- } else if(isCompressible(coll, originalPrimary1)) { |
- /* compress */ |
- primaries.Append(leadPrimary = primary1, primary2); |
- } else { |
- leadPrimary = 0; |
- primaries.Append(primary1, primary2); |
- } |
- } |
- } else { /* we are in continuation, so we're gonna add primary to the key don't care about compression */ |
- if(primary2 == UCOL_IGNORABLE) { |
- primaries.Append(primary1); |
- } else { |
- primaries.Append(primary1, primary2); |
- } |
- } |
- } |
- |
- if(secondary > 0) { /* I think that != 0 test should be != IGNORABLE */ |
- /* This is compression code. */ |
- if (secondary == UCOL_COMMON2 && notIsContinuation) { |
- ++count2; |
- } else { |
- if (count2 > 0) { |
- if (secondary > UCOL_COMMON2) { // not necessary for 4th level. |
- while (count2 > UCOL_TOP_COUNT2) { |
- secondaries.appendByte(UCOL_COMMON_TOP2 - UCOL_TOP_COUNT2); |
- count2 -= (uint32_t)UCOL_TOP_COUNT2; |
- } |
- secondaries.appendByte(UCOL_COMMON_TOP2 - (count2-1)); |
- } else { |
- while (count2 > UCOL_BOT_COUNT2) { |
- secondaries.appendByte(UCOL_COMMON_BOT2 + UCOL_BOT_COUNT2); |
- count2 -= (uint32_t)UCOL_BOT_COUNT2; |
- } |
- secondaries.appendByte(UCOL_COMMON_BOT2 + (count2-1)); |
- } |
- count2 = 0; |
- } |
- secondaries.appendByte(secondary); |
- } |
- } |
- |
- if(notIsContinuation) { |
- tertiary ^= caseSwitch; |
- } |
- |
- if(tertiary > 0) { |
- /* This is compression code. */ |
- /* sequence size check is included in the if clause */ |
- if (tertiary == tertiaryCommon && notIsContinuation) { |
- ++count3; |
- } else { |
- if(tertiary > tertiaryCommon && tertiaryCommon == UCOL_COMMON3_NORMAL) { |
- tertiary += tertiaryAddition; |
- } else if (tertiary <= tertiaryCommon && tertiaryCommon == UCOL_COMMON3_UPPERFIRST) { |
- tertiary -= tertiaryAddition; |
- } |
- if (count3 > 0) { |
- if ((tertiary > tertiaryCommon)) { |
- while (count3 > coll->tertiaryTopCount) { |
- tertiaries.appendByte(tertiaryTop - coll->tertiaryTopCount); |
- count3 -= (uint32_t)coll->tertiaryTopCount; |
- } |
- tertiaries.appendByte(tertiaryTop - (count3-1)); |
- } else { |
- while (count3 > coll->tertiaryBottomCount) { |
- tertiaries.appendByte(tertiaryBottom + coll->tertiaryBottomCount); |
- count3 -= (uint32_t)coll->tertiaryBottomCount; |
- } |
- tertiaries.appendByte(tertiaryBottom + (count3-1)); |
- } |
- count3 = 0; |
- } |
- tertiaries.appendByte(tertiary); |
- } |
- } |
- } |
- |
- UBool ok = TRUE; |
- if(U_SUCCESS(*status)) { |
- /* we have done all the CE's, now let's put them together to form a key */ |
- if (count2 > 0) { |
- while (count2 > UCOL_BOT_COUNT2) { |
- secondaries.appendByte(UCOL_COMMON_BOT2 + UCOL_BOT_COUNT2); |
- count2 -= (uint32_t)UCOL_BOT_COUNT2; |
- } |
- secondaries.appendByte(UCOL_COMMON_BOT2 + (count2-1)); |
- } |
- ok &= secondaries.isOk(); |
- result.Append(UCOL_LEVELTERMINATOR); |
- secondaries.appendTo(result); |
- |
- if (count3 > 0) { |
- if (coll->tertiaryCommon != UCOL_COMMON3_NORMAL) { |
- while (count3 >= coll->tertiaryTopCount) { |
- tertiaries.appendByte(tertiaryTop - coll->tertiaryTopCount); |
- count3 -= (uint32_t)coll->tertiaryTopCount; |
- } |
- tertiaries.appendByte(tertiaryTop - count3); |
- } else { |
- while (count3 > coll->tertiaryBottomCount) { |
- tertiaries.appendByte(tertiaryBottom + coll->tertiaryBottomCount); |
- count3 -= (uint32_t)coll->tertiaryBottomCount; |
- } |
- tertiaries.appendByte(tertiaryBottom + (count3-1)); |
- } |
- } |
- ok &= tertiaries.isOk(); |
- result.Append(UCOL_LEVELTERMINATOR); |
- tertiaries.appendTo(result); |
- |
- result.Append(0); |
- } |
- |
- /* To avoid memory leak, free the offset buffer if necessary. */ |
- ucol_freeOffsetBuffer(&s); |
- |
- ok &= result.IsOk(); |
- if(!ok && U_SUCCESS(*status)) { *status = U_MEMORY_ALLOCATION_ERROR; } |
-} |
- |
-static inline |
-UBool isShiftedCE(uint32_t CE, uint32_t LVT, UBool *wasShifted) { |
- UBool notIsContinuation = !isContinuation(CE); |
- uint8_t primary1 = (uint8_t)((CE >> 24) & 0xFF); |
- if((LVT && ((notIsContinuation && (CE & 0xFFFF0000)<= LVT && primary1 > 0) |
- || (!notIsContinuation && *wasShifted))) |
- || (*wasShifted && primary1 == 0)) /* amendment to the UCA says that primary ignorables */ |
- { |
- // The stuff below should probably be in the sortkey code... maybe not... |
- if(primary1 != 0) { /* if we were shifted and we got an ignorable code point */ |
- /* we should just completely ignore it */ |
- *wasShifted = TRUE; |
- //continue; |
- } |
- //*wasShifted = TRUE; |
- return TRUE; |
- } else { |
- *wasShifted = FALSE; |
- return FALSE; |
- } |
-} |
-static inline |
-void terminatePSKLevel(int32_t level, int32_t maxLevel, int32_t &i, uint8_t *dest) { |
- if(level < maxLevel) { |
- dest[i++] = UCOL_LEVELTERMINATOR; |
- } else { |
- dest[i++] = 0; |
- } |
-} |
- |
-/** enumeration of level identifiers for partial sort key generation */ |
-enum { |
- UCOL_PSK_PRIMARY = 0, |
- UCOL_PSK_SECONDARY = 1, |
- UCOL_PSK_CASE = 2, |
- UCOL_PSK_TERTIARY = 3, |
- UCOL_PSK_QUATERNARY = 4, |
- UCOL_PSK_QUIN = 5, /** This is an extra level, not used - but we have three bits to blow */ |
- UCOL_PSK_IDENTICAL = 6, |
- UCOL_PSK_NULL = 7, /** level for the end of sort key. Will just produce zeros */ |
- UCOL_PSK_LIMIT |
-}; |
- |
-/** collation state enum. *_SHIFT value is how much to shift right |
- * to get the state piece to the right. *_MASK value should be |
- * ANDed with the shifted state. This data is stored in state[1] |
- * field. |
- */ |
-enum { |
- UCOL_PSK_LEVEL_SHIFT = 0, /** level identificator. stores an enum value from above */ |
- UCOL_PSK_LEVEL_MASK = 7, /** three bits */ |
- UCOL_PSK_BYTE_COUNT_OR_FRENCH_DONE_SHIFT = 3, /** number of bytes of primary or quaternary already written */ |
- UCOL_PSK_BYTE_COUNT_OR_FRENCH_DONE_MASK = 1, |
- /** can be only 0 or 1, since we get up to two bytes from primary or quaternary |
- * This field is also used to denote that the French secondary level is finished |
- */ |
- UCOL_PSK_WAS_SHIFTED_SHIFT = 4,/** was the last value shifted */ |
- UCOL_PSK_WAS_SHIFTED_MASK = 1, /** can be 0 or 1 (Boolean) */ |
- UCOL_PSK_USED_FRENCH_SHIFT = 5,/** how many French bytes have we already written */ |
- UCOL_PSK_USED_FRENCH_MASK = 3, /** up to 4 bytes. See comment just below */ |
- /** When we do French we need to reverse secondary values. However, continuations |
- * need to stay the same. So if you had abc1c2c3de, you need to have edc1c2c3ba |
- */ |
- UCOL_PSK_BOCSU_BYTES_SHIFT = 7, |
- UCOL_PSK_BOCSU_BYTES_MASK = 3, |
- UCOL_PSK_CONSUMED_CES_SHIFT = 9, |
- UCOL_PSK_CONSUMED_CES_MASK = 0x7FFFF |
-}; |
- |
-// macro calculating the number of expansion CEs available |
-#define uprv_numAvailableExpCEs(s) (s).CEpos - (s).toReturn |
- |
- |
-/** main sortkey part procedure. On the first call, |
- * you should pass in a collator, an iterator, empty state |
- * state[0] == state[1] == 0, a buffer to hold results |
- * number of bytes you need and an error code pointer. |
- * Make sure your buffer is big enough to hold the wanted |
- * number of sortkey bytes. I don't check. |
- * The only meaningful status you can get back is |
- * U_BUFFER_OVERFLOW_ERROR, which basically means that you |
- * have been dealt a raw deal and that you probably won't |
- * be able to use partial sortkey generation for this |
- * particular combination of string and collator. This |
- * is highly unlikely, but you should still check the error code. |
- * Any other status means that you're not in a sane situation |
- * anymore. After the first call, preserve state values and |
- * use them on subsequent calls to obtain more bytes of a sortkey. |
- * Use until the number of bytes written is smaller than the requested |
- * number of bytes. Generated sortkey is not compatible with the |
- * one generated by ucol_getSortKey, as we don't do any compression. |
- * However, levels are still terminated by a 1 (one) and the sortkey |
- * is terminated by a 0 (zero). Identical level is the same as in the |
- * regular sortkey - internal bocu-1 implementation is used. |
- * For curious, although you cannot do much about this, here is |
- * the structure of state words. |
- * state[0] - iterator state. Depends on the iterator implementation, |
- * but allows the iterator to continue where it stopped in |
- * the last iteration. |
- * state[1] - collation processing state. Here is the distribution |
- * of the bits: |
- * 0, 1, 2 - level of the sortkey - primary, secondary, case, tertiary |
- * quaternary, quin (we don't use this one), identical and |
- * null (producing only zeroes - first one to terminate the |
- * sortkey and subsequent to fill the buffer). |
- * 3 - byte count. Number of bytes written on the primary level. |
- * 4 - was shifted. Whether the previous iteration finished in the |
- * shifted state. |
- * 5, 6 - French continuation bytes written. See the comment in the enum |
- * 7,8 - Bocsu bytes used. Number of bytes from a bocu sequence on |
- * the identical level. |
- * 9..31 - CEs consumed. Number of getCE or next32 operations performed |
- * since thes last successful update of the iterator state. |
- */ |
-U_CAPI int32_t U_EXPORT2 |
-ucol_nextSortKeyPart(const UCollator *coll, |
- UCharIterator *iter, |
- uint32_t state[2], |
- uint8_t *dest, int32_t count, |
- UErrorCode *status) |
-{ |
- /* error checking */ |
- if(status==NULL || U_FAILURE(*status)) { |
- return 0; |
- } |
- UTRACE_ENTRY(UTRACE_UCOL_NEXTSORTKEYPART); |
- if( coll==NULL || iter==NULL || |
- state==NULL || |
- count<0 || (count>0 && dest==NULL) |
- ) { |
- *status=U_ILLEGAL_ARGUMENT_ERROR; |
- UTRACE_EXIT_STATUS(status); |
- return 0; |
- } |
- |
- UTRACE_DATA6(UTRACE_VERBOSE, "coll=%p, iter=%p, state=%d %d, dest=%p, count=%d", |
- coll, iter, state[0], state[1], dest, count); |
- |
- if(count==0) { |
- /* nothing to do */ |
- UTRACE_EXIT_VALUE(0); |
- return 0; |
- } |
- /** Setting up situation according to the state we got from the previous iteration */ |
- // The state of the iterator from the previous invocation |
- uint32_t iterState = state[0]; |
- // Has the last iteration ended in the shifted state |
- UBool wasShifted = ((state[1] >> UCOL_PSK_WAS_SHIFTED_SHIFT) & UCOL_PSK_WAS_SHIFTED_MASK)?TRUE:FALSE; |
- // What is the current level of the sortkey? |
- int32_t level= (state[1] >> UCOL_PSK_LEVEL_SHIFT) & UCOL_PSK_LEVEL_MASK; |
- // Have we written only one byte from a two byte primary in the previous iteration? |
- // Also on secondary level - have we finished with the French secondary? |
- int32_t byteCountOrFrenchDone = (state[1] >> UCOL_PSK_BYTE_COUNT_OR_FRENCH_DONE_SHIFT) & UCOL_PSK_BYTE_COUNT_OR_FRENCH_DONE_MASK; |
- // number of bytes in the continuation buffer for French |
- int32_t usedFrench = (state[1] >> UCOL_PSK_USED_FRENCH_SHIFT) & UCOL_PSK_USED_FRENCH_MASK; |
- // Number of bytes already written from a bocsu sequence. Since |
- // the longes bocsu sequence is 4 long, this can be up to 3. |
- int32_t bocsuBytesUsed = (state[1] >> UCOL_PSK_BOCSU_BYTES_SHIFT) & UCOL_PSK_BOCSU_BYTES_MASK; |
- // Number of elements that need to be consumed in this iteration because |
- // the iterator returned UITER_NO_STATE at the end of the last iteration, |
- // so we had to save the last valid state. |
- int32_t cces = (state[1] >> UCOL_PSK_CONSUMED_CES_SHIFT) & UCOL_PSK_CONSUMED_CES_MASK; |
- |
- /** values that depend on the collator attributes */ |
- // strength of the collator. |
- int32_t strength = ucol_getAttribute(coll, UCOL_STRENGTH, status); |
- // maximal level of the partial sortkey. Need to take whether case level is done |
- int32_t maxLevel = 0; |
- if(strength < UCOL_TERTIARY) { |
- if(ucol_getAttribute(coll, UCOL_CASE_LEVEL, status) == UCOL_ON) { |
- maxLevel = UCOL_PSK_CASE; |
- } else { |
- maxLevel = strength; |
- } |
- } else { |
- if(strength == UCOL_TERTIARY) { |
- maxLevel = UCOL_PSK_TERTIARY; |
- } else if(strength == UCOL_QUATERNARY) { |
- maxLevel = UCOL_PSK_QUATERNARY; |
- } else { // identical |
- maxLevel = UCOL_IDENTICAL; |
- } |
- } |
- // value for the quaternary level if Hiragana is encountered. Used for JIS X 4061 collation |
- uint8_t UCOL_HIRAGANA_QUAD = |
- (ucol_getAttribute(coll, UCOL_HIRAGANA_QUATERNARY_MODE, status) == UCOL_ON)?0xFE:0xFF; |
- // Boundary value that decides whether a CE is shifted or not |
- uint32_t LVT = (coll->alternateHandling == UCOL_SHIFTED)?(coll->variableTopValue<<16):0; |
- // Are we doing French collation? |
- UBool doingFrench = (ucol_getAttribute(coll, UCOL_FRENCH_COLLATION, status) == UCOL_ON); |
- |
- /** initializing the collation state */ |
- UBool notIsContinuation = FALSE; |
- uint32_t CE = UCOL_NO_MORE_CES; |
- |
- collIterate s; |
- IInit_collIterate(coll, NULL, -1, &s, status); |
- if(U_FAILURE(*status)) { |
- UTRACE_EXIT_STATUS(*status); |
- return 0; |
- } |
- s.iterator = iter; |
- s.flags |= UCOL_USE_ITERATOR; |
- // This variable tells us whether we have produced some other levels in this iteration |
- // before we moved to the identical level. In that case, we need to switch the |
- // type of the iterator. |
- UBool doingIdenticalFromStart = FALSE; |
- // Normalizing iterator |
- // The division for the array length may truncate the array size to |
- // a little less than UNORM_ITER_SIZE, but that size is dimensioned too high |
- // for all platforms anyway. |
- UAlignedMemory stackNormIter[UNORM_ITER_SIZE/sizeof(UAlignedMemory)]; |
- UNormIterator *normIter = NULL; |
- // If the normalization is turned on for the collator and we are below identical level |
- // we will use a FCD normalizing iterator |
- if(ucol_getAttribute(coll, UCOL_NORMALIZATION_MODE, status) == UCOL_ON && level < UCOL_PSK_IDENTICAL) { |
- normIter = unorm_openIter(stackNormIter, sizeof(stackNormIter), status); |
- s.iterator = unorm_setIter(normIter, iter, UNORM_FCD, status); |
- s.flags &= ~UCOL_ITER_NORM; |
- if(U_FAILURE(*status)) { |
- UTRACE_EXIT_STATUS(*status); |
- return 0; |
- } |
- } else if(level == UCOL_PSK_IDENTICAL) { |
- // for identical level, we need a NFD iterator. We need to instantiate it here, since we |
- // will be updating the state - and this cannot be done on an ordinary iterator. |
- normIter = unorm_openIter(stackNormIter, sizeof(stackNormIter), status); |
- s.iterator = unorm_setIter(normIter, iter, UNORM_NFD, status); |
- s.flags &= ~UCOL_ITER_NORM; |
- if(U_FAILURE(*status)) { |
- UTRACE_EXIT_STATUS(*status); |
- return 0; |
- } |
- doingIdenticalFromStart = TRUE; |
- } |
- |
- // This is the tentative new state of the iterator. The problem |
- // is that the iterator might return an undefined state, in |
- // which case we should save the last valid state and increase |
- // the iterator skip value. |
- uint32_t newState = 0; |
- |
- // First, we set the iterator to the last valid position |
- // from the last iteration. This was saved in state[0]. |
- if(iterState == 0) { |
- /* initial state */ |
- if(level == UCOL_PSK_SECONDARY && doingFrench && !byteCountOrFrenchDone) { |
- s.iterator->move(s.iterator, 0, UITER_LIMIT); |
- } else { |
- s.iterator->move(s.iterator, 0, UITER_START); |
- } |
- } else { |
- /* reset to previous state */ |
- s.iterator->setState(s.iterator, iterState, status); |
- if(U_FAILURE(*status)) { |
- UTRACE_EXIT_STATUS(*status); |
- return 0; |
- } |
- } |
- |
- |
- |
- // This variable tells us whether we can attempt to update the state |
- // of iterator. Situations where we don't want to update iterator state |
- // are the existence of expansion CEs that are not yet processed, and |
- // finishing the case level without enough space in the buffer to insert |
- // a level terminator. |
- UBool canUpdateState = TRUE; |
- |
- // Consume all the CEs that were consumed at the end of the previous |
- // iteration without updating the iterator state. On identical level, |
- // consume the code points. |
- int32_t counter = cces; |
- if(level < UCOL_PSK_IDENTICAL) { |
- while(counter-->0) { |
- // If we're doing French and we are on the secondary level, |
- // we go backwards. |
- if(level == UCOL_PSK_SECONDARY && doingFrench) { |
- CE = ucol_IGetPrevCE(coll, &s, status); |
- } else { |
- CE = ucol_IGetNextCE(coll, &s, status); |
- } |
- if(CE==UCOL_NO_MORE_CES) { |
- /* should not happen */ |
- *status=U_INTERNAL_PROGRAM_ERROR; |
- UTRACE_EXIT_STATUS(*status); |
- return 0; |
- } |
- if(uprv_numAvailableExpCEs(s)) { |
- canUpdateState = FALSE; |
- } |
- } |
- } else { |
- while(counter-->0) { |
- uiter_next32(s.iterator); |
- } |
- } |
- |
- // French secondary needs to know whether the iterator state of zero came from previous level OR |
- // from a new invocation... |
- UBool wasDoingPrimary = FALSE; |
- // destination buffer byte counter. When this guy |
- // gets to count, we're done with the iteration |
- int32_t i = 0; |
- // used to count the zero bytes written after we |
- // have finished with the sort key |
- int32_t j = 0; |
- |
- |
- // Hm.... I think we're ready to plunge in. Basic story is as following: |
- // we have a fall through case based on level. This is used for initial |
- // positioning on iteration start. Every level processor contains a |
- // for(;;) which will be broken when we exhaust all the CEs. Other |
- // way to exit is a goto saveState, which happens when we have filled |
- // out our buffer. |
- switch(level) { |
- case UCOL_PSK_PRIMARY: |
- wasDoingPrimary = TRUE; |
- for(;;) { |
- if(i==count) { |
- goto saveState; |
- } |
- // We should save the state only if we |
- // are sure that we are done with the |
- // previous iterator state |
- if(canUpdateState && byteCountOrFrenchDone == 0) { |
- newState = s.iterator->getState(s.iterator); |
- if(newState != UITER_NO_STATE) { |
- iterState = newState; |
- cces = 0; |
- } |
- } |
- CE = ucol_IGetNextCE(coll, &s, status); |
- cces++; |
- if(CE==UCOL_NO_MORE_CES) { |
- // Add the level separator |
- terminatePSKLevel(level, maxLevel, i, dest); |
- byteCountOrFrenchDone=0; |
- // Restart the iteration an move to the |
- // second level |
- s.iterator->move(s.iterator, 0, UITER_START); |
- cces = 0; |
- level = UCOL_PSK_SECONDARY; |
- break; |
- } |
- if(!isContinuation(CE)){ |
- if(coll->leadBytePermutationTable != NULL){ |
- CE = (coll->leadBytePermutationTable[CE>>24] << 24) | (CE & 0x00FFFFFF); |
- } |
- } |
- if(!isShiftedCE(CE, LVT, &wasShifted)) { |
- CE >>= UCOL_PRIMARYORDERSHIFT; /* get primary */ |
- if(CE != 0) { |
- if(byteCountOrFrenchDone == 0) { |
- // get the second byte of primary |
- dest[i++]=(uint8_t)(CE >> 8); |
- } else { |
- byteCountOrFrenchDone = 0; |
- } |
- if((CE &=0xff)!=0) { |
- if(i==count) { |
- /* overflow */ |
- byteCountOrFrenchDone = 1; |
- cces--; |
- goto saveState; |
- } |
- dest[i++]=(uint8_t)CE; |
- } |
- } |
- } |
- if(uprv_numAvailableExpCEs(s)) { |
- canUpdateState = FALSE; |
- } else { |
- canUpdateState = TRUE; |
- } |
- } |
- /* fall through to next level */ |
- case UCOL_PSK_SECONDARY: |
- if(strength >= UCOL_SECONDARY) { |
- if(!doingFrench) { |
- for(;;) { |
- if(i == count) { |
- goto saveState; |
- } |
- // We should save the state only if we |
- // are sure that we are done with the |
- // previous iterator state |
- if(canUpdateState) { |
- newState = s.iterator->getState(s.iterator); |
- if(newState != UITER_NO_STATE) { |
- iterState = newState; |
- cces = 0; |
- } |
- } |
- CE = ucol_IGetNextCE(coll, &s, status); |
- cces++; |
- if(CE==UCOL_NO_MORE_CES) { |
- // Add the level separator |
- terminatePSKLevel(level, maxLevel, i, dest); |
- byteCountOrFrenchDone = 0; |
- // Restart the iteration an move to the |
- // second level |
- s.iterator->move(s.iterator, 0, UITER_START); |
- cces = 0; |
- level = UCOL_PSK_CASE; |
- break; |
- } |
- if(!isShiftedCE(CE, LVT, &wasShifted)) { |
- CE >>= 8; /* get secondary */ |
- if(CE != 0) { |
- dest[i++]=(uint8_t)CE; |
- } |
- } |
- if(uprv_numAvailableExpCEs(s)) { |
- canUpdateState = FALSE; |
- } else { |
- canUpdateState = TRUE; |
- } |
- } |
- } else { // French secondary processing |
- uint8_t frenchBuff[UCOL_MAX_BUFFER]; |
- int32_t frenchIndex = 0; |
- // Here we are going backwards. |
- // If the iterator is at the beggining, it should be |
- // moved to end. |
- if(wasDoingPrimary) { |
- s.iterator->move(s.iterator, 0, UITER_LIMIT); |
- cces = 0; |
- } |
- for(;;) { |
- if(i == count) { |
- goto saveState; |
- } |
- if(canUpdateState) { |
- newState = s.iterator->getState(s.iterator); |
- if(newState != UITER_NO_STATE) { |
- iterState = newState; |
- cces = 0; |
- } |
- } |
- CE = ucol_IGetPrevCE(coll, &s, status); |
- cces++; |
- if(CE==UCOL_NO_MORE_CES) { |
- // Add the level separator |
- terminatePSKLevel(level, maxLevel, i, dest); |
- byteCountOrFrenchDone = 0; |
- // Restart the iteration an move to the next level |
- s.iterator->move(s.iterator, 0, UITER_START); |
- level = UCOL_PSK_CASE; |
- break; |
- } |
- if(isContinuation(CE)) { // if it's a continuation, we want to save it and |
- // reverse when we get a first non-continuation CE. |
- CE >>= 8; |
- frenchBuff[frenchIndex++] = (uint8_t)CE; |
- } else if(!isShiftedCE(CE, LVT, &wasShifted)) { |
- CE >>= 8; /* get secondary */ |
- if(!frenchIndex) { |
- if(CE != 0) { |
- dest[i++]=(uint8_t)CE; |
- } |
- } else { |
- frenchBuff[frenchIndex++] = (uint8_t)CE; |
- frenchIndex -= usedFrench; |
- usedFrench = 0; |
- while(i < count && frenchIndex) { |
- dest[i++] = frenchBuff[--frenchIndex]; |
- usedFrench++; |
- } |
- } |
- } |
- if(uprv_numAvailableExpCEs(s)) { |
- canUpdateState = FALSE; |
- } else { |
- canUpdateState = TRUE; |
- } |
- } |
- } |
- } else { |
- level = UCOL_PSK_CASE; |
- } |
- /* fall through to next level */ |
- case UCOL_PSK_CASE: |
- if(ucol_getAttribute(coll, UCOL_CASE_LEVEL, status) == UCOL_ON) { |
- uint32_t caseShift = UCOL_CASE_SHIFT_START; |
- uint8_t caseByte = UCOL_CASE_BYTE_START; |
- uint8_t caseBits = 0; |
- |
- for(;;) { |
- U_ASSERT(caseShift <= UCOL_CASE_SHIFT_START); |
- if(i == count) { |
- goto saveState; |
- } |
- // We should save the state only if we |
- // are sure that we are done with the |
- // previous iterator state |
- if(canUpdateState) { |
- newState = s.iterator->getState(s.iterator); |
- if(newState != UITER_NO_STATE) { |
- iterState = newState; |
- cces = 0; |
- } |
- } |
- CE = ucol_IGetNextCE(coll, &s, status); |
- cces++; |
- if(CE==UCOL_NO_MORE_CES) { |
- // On the case level we might have an unfinished |
- // case byte. Add one if it's started. |
- if(caseShift != UCOL_CASE_SHIFT_START) { |
- dest[i++] = caseByte; |
- } |
- cces = 0; |
- // We have finished processing CEs on this level. |
- // However, we don't know if we have enough space |
- // to add a case level terminator. |
- if(i < count) { |
- // Add the level separator |
- terminatePSKLevel(level, maxLevel, i, dest); |
- // Restart the iteration and move to the |
- // next level |
- s.iterator->move(s.iterator, 0, UITER_START); |
- level = UCOL_PSK_TERTIARY; |
- } else { |
- canUpdateState = FALSE; |
- } |
- break; |
- } |
- |
- if(!isShiftedCE(CE, LVT, &wasShifted)) { |
- if(!isContinuation(CE) && ((CE & UCOL_PRIMARYMASK) != 0 || strength > UCOL_PRIMARY)) { |
- // do the case level if we need to do it. We don't want to calculate |
- // case level for primary ignorables if we have only primary strength and case level |
- // otherwise we would break well formedness of CEs |
- CE = (uint8_t)(CE & UCOL_BYTE_SIZE_MASK); |
- caseBits = (uint8_t)(CE & 0xC0); |
- // this copies the case level logic from the |
- // sort key generation code |
- if(CE != 0) { |
- if (caseShift == 0) { |
- dest[i++] = caseByte; |
- caseShift = UCOL_CASE_SHIFT_START; |
- caseByte = UCOL_CASE_BYTE_START; |
- } |
- if(coll->caseFirst == UCOL_UPPER_FIRST) { |
- if((caseBits & 0xC0) == 0) { |
- caseByte |= 1 << (--caseShift); |
- } else { |
- caseByte |= 0 << (--caseShift); |
- /* second bit */ |
- if(caseShift == 0) { |
- dest[i++] = caseByte; |
- caseShift = UCOL_CASE_SHIFT_START; |
- caseByte = UCOL_CASE_BYTE_START; |
- } |
- caseByte |= ((caseBits>>6)&1) << (--caseShift); |
- } |
- } else { |
- if((caseBits & 0xC0) == 0) { |
- caseByte |= 0 << (--caseShift); |
- } else { |
- caseByte |= 1 << (--caseShift); |
- /* second bit */ |
- if(caseShift == 0) { |
- dest[i++] = caseByte; |
- caseShift = UCOL_CASE_SHIFT_START; |
- caseByte = UCOL_CASE_BYTE_START; |
- } |
- caseByte |= ((caseBits>>7)&1) << (--caseShift); |
- } |
- } |
- } |
- |
- } |
- } |
- // Not sure this is correct for the case level - revisit |
- if(uprv_numAvailableExpCEs(s)) { |
- canUpdateState = FALSE; |
- } else { |
- canUpdateState = TRUE; |
- } |
- } |
- } else { |
- level = UCOL_PSK_TERTIARY; |
- } |
- /* fall through to next level */ |
- case UCOL_PSK_TERTIARY: |
- if(strength >= UCOL_TERTIARY) { |
- for(;;) { |
- if(i == count) { |
- goto saveState; |
- } |
- // We should save the state only if we |
- // are sure that we are done with the |
- // previous iterator state |
- if(canUpdateState) { |
- newState = s.iterator->getState(s.iterator); |
- if(newState != UITER_NO_STATE) { |
- iterState = newState; |
- cces = 0; |
- } |
- } |
- CE = ucol_IGetNextCE(coll, &s, status); |
- cces++; |
- if(CE==UCOL_NO_MORE_CES) { |
- // Add the level separator |
- terminatePSKLevel(level, maxLevel, i, dest); |
- byteCountOrFrenchDone = 0; |
- // Restart the iteration an move to the |
- // second level |
- s.iterator->move(s.iterator, 0, UITER_START); |
- cces = 0; |
- level = UCOL_PSK_QUATERNARY; |
- break; |
- } |
- if(!isShiftedCE(CE, LVT, &wasShifted)) { |
- notIsContinuation = !isContinuation(CE); |
- |
- if(notIsContinuation) { |
- CE = (uint8_t)(CE & UCOL_BYTE_SIZE_MASK); |
- CE ^= coll->caseSwitch; |
- CE &= coll->tertiaryMask; |
- } else { |
- CE = (uint8_t)((CE & UCOL_REMOVE_CONTINUATION)); |
- } |
- |
- if(CE != 0) { |
- dest[i++]=(uint8_t)CE; |
- } |
- } |
- if(uprv_numAvailableExpCEs(s)) { |
- canUpdateState = FALSE; |
- } else { |
- canUpdateState = TRUE; |
- } |
- } |
- } else { |
- // if we're not doing tertiary |
- // skip to the end |
- level = UCOL_PSK_NULL; |
- } |
- /* fall through to next level */ |
- case UCOL_PSK_QUATERNARY: |
- if(strength >= UCOL_QUATERNARY) { |
- for(;;) { |
- if(i == count) { |
- goto saveState; |
- } |
- // We should save the state only if we |
- // are sure that we are done with the |
- // previous iterator state |
- if(canUpdateState) { |
- newState = s.iterator->getState(s.iterator); |
- if(newState != UITER_NO_STATE) { |
- iterState = newState; |
- cces = 0; |
- } |
- } |
- CE = ucol_IGetNextCE(coll, &s, status); |
- cces++; |
- if(CE==UCOL_NO_MORE_CES) { |
- // Add the level separator |
- terminatePSKLevel(level, maxLevel, i, dest); |
- //dest[i++] = UCOL_LEVELTERMINATOR; |
- byteCountOrFrenchDone = 0; |
- // Restart the iteration an move to the |
- // second level |
- s.iterator->move(s.iterator, 0, UITER_START); |
- cces = 0; |
- level = UCOL_PSK_QUIN; |
- break; |
- } |
- if(CE==0) |
- continue; |
- if(isShiftedCE(CE, LVT, &wasShifted)) { |
- CE >>= 16; /* get primary */ |
- if(CE != 0) { |
- if(byteCountOrFrenchDone == 0) { |
- dest[i++]=(uint8_t)(CE >> 8); |
- } else { |
- byteCountOrFrenchDone = 0; |
- } |
- if((CE &=0xff)!=0) { |
- if(i==count) { |
- /* overflow */ |
- byteCountOrFrenchDone = 1; |
- goto saveState; |
- } |
- dest[i++]=(uint8_t)CE; |
- } |
- } |
- } else { |
- notIsContinuation = !isContinuation(CE); |
- if(notIsContinuation) { |
- if(s.flags & UCOL_WAS_HIRAGANA) { // This was Hiragana and we need to note it |
- dest[i++] = UCOL_HIRAGANA_QUAD; |
- } else { |
- dest[i++] = 0xFF; |
- } |
- } |
- } |
- if(uprv_numAvailableExpCEs(s)) { |
- canUpdateState = FALSE; |
- } else { |
- canUpdateState = TRUE; |
- } |
- } |
- } else { |
- // if we're not doing quaternary |
- // skip to the end |
- level = UCOL_PSK_NULL; |
- } |
- /* fall through to next level */ |
- case UCOL_PSK_QUIN: |
- level = UCOL_PSK_IDENTICAL; |
- /* fall through to next level */ |
- case UCOL_PSK_IDENTICAL: |
- if(strength >= UCOL_IDENTICAL) { |
- UChar32 first, second; |
- int32_t bocsuBytesWritten = 0; |
- // We always need to do identical on |
- // the NFD form of the string. |
- if(normIter == NULL) { |
- // we arrived from the level below and |
- // normalization was not turned on. |
- // therefore, we need to make a fresh NFD iterator |
- normIter = unorm_openIter(stackNormIter, sizeof(stackNormIter), status); |
- s.iterator = unorm_setIter(normIter, iter, UNORM_NFD, status); |
- } else if(!doingIdenticalFromStart) { |
- // there is an iterator, but we did some other levels. |
- // therefore, we have a FCD iterator - need to make |
- // a NFD one. |
- // normIter being at the beginning does not guarantee |
- // that the underlying iterator is at the beginning |
- iter->move(iter, 0, UITER_START); |
- s.iterator = unorm_setIter(normIter, iter, UNORM_NFD, status); |
- } |
- // At this point we have a NFD iterator that is positioned |
- // in the right place |
- if(U_FAILURE(*status)) { |
- UTRACE_EXIT_STATUS(*status); |
- return 0; |
- } |
- first = uiter_previous32(s.iterator); |
- // maybe we're at the start of the string |
- if(first == U_SENTINEL) { |
- first = 0; |
- } else { |
- uiter_next32(s.iterator); |
- } |
- |
- j = 0; |
- for(;;) { |
- if(i == count) { |
- if(j+1 < bocsuBytesWritten) { |
- bocsuBytesUsed = j+1; |
- } |
- goto saveState; |
- } |
- |
- // On identical level, we will always save |
- // the state if we reach this point, since |
- // we don't depend on getNextCE for content |
- // all the content is in our buffer and we |
- // already either stored the full buffer OR |
- // otherwise we won't arrive here. |
- newState = s.iterator->getState(s.iterator); |
- if(newState != UITER_NO_STATE) { |
- iterState = newState; |
- cces = 0; |
- } |
- |
- uint8_t buff[4]; |
- second = uiter_next32(s.iterator); |
- cces++; |
- |
- // end condition for identical level |
- if(second == U_SENTINEL) { |
- terminatePSKLevel(level, maxLevel, i, dest); |
- level = UCOL_PSK_NULL; |
- break; |
- } |
- bocsuBytesWritten = u_writeIdenticalLevelRunTwoChars(first, second, buff); |
- first = second; |
- |
- j = 0; |
- if(bocsuBytesUsed != 0) { |
- while(bocsuBytesUsed-->0) { |
- j++; |
- } |
- } |
- |
- while(i < count && j < bocsuBytesWritten) { |
- dest[i++] = buff[j++]; |
- } |
- } |
- |
- } else { |
- level = UCOL_PSK_NULL; |
- } |
- /* fall through to next level */ |
- case UCOL_PSK_NULL: |
- j = i; |
- while(j<count) { |
- dest[j++]=0; |
- } |
- break; |
- default: |
- *status = U_INTERNAL_PROGRAM_ERROR; |
- UTRACE_EXIT_STATUS(*status); |
- return 0; |
- } |
- |
-saveState: |
- // Now we need to return stuff. First we want to see whether we have |
- // done everything for the current state of iterator. |
- if(byteCountOrFrenchDone |
- || canUpdateState == FALSE |
- || (newState = s.iterator->getState(s.iterator)) == UITER_NO_STATE) |
- { |
- // Any of above mean that the previous transaction |
- // wasn't finished and that we should store the |
- // previous iterator state. |
- state[0] = iterState; |
- } else { |
- // The transaction is complete. We will continue in the next iteration. |
- state[0] = s.iterator->getState(s.iterator); |
- cces = 0; |
- } |
- // Store the number of bocsu bytes written. |
- if((bocsuBytesUsed & UCOL_PSK_BOCSU_BYTES_MASK) != bocsuBytesUsed) { |
- *status = U_INDEX_OUTOFBOUNDS_ERROR; |
- } |
- state[1] = (bocsuBytesUsed & UCOL_PSK_BOCSU_BYTES_MASK) << UCOL_PSK_BOCSU_BYTES_SHIFT; |
- |
- // Next we put in the level of comparison |
- state[1] |= ((level & UCOL_PSK_LEVEL_MASK) << UCOL_PSK_LEVEL_SHIFT); |
- |
- // If we are doing French, we need to store whether we have just finished the French level |
- if(level == UCOL_PSK_SECONDARY && doingFrench) { |
- state[1] |= (((int32_t)(state[0] == 0) & UCOL_PSK_BYTE_COUNT_OR_FRENCH_DONE_MASK) << UCOL_PSK_BYTE_COUNT_OR_FRENCH_DONE_SHIFT); |
- } else { |
- state[1] |= ((byteCountOrFrenchDone & UCOL_PSK_BYTE_COUNT_OR_FRENCH_DONE_MASK) << UCOL_PSK_BYTE_COUNT_OR_FRENCH_DONE_SHIFT); |
- } |
- |
- // Was the latest CE shifted |
- if(wasShifted) { |
- state[1] |= 1 << UCOL_PSK_WAS_SHIFTED_SHIFT; |
- } |
- // Check for cces overflow |
- if((cces & UCOL_PSK_CONSUMED_CES_MASK) != cces) { |
- *status = U_INDEX_OUTOFBOUNDS_ERROR; |
- } |
- // Store cces |
- state[1] |= ((cces & UCOL_PSK_CONSUMED_CES_MASK) << UCOL_PSK_CONSUMED_CES_SHIFT); |
- |
- // Check for French overflow |
- if((usedFrench & UCOL_PSK_USED_FRENCH_MASK) != usedFrench) { |
- *status = U_INDEX_OUTOFBOUNDS_ERROR; |
- } |
- // Store number of bytes written in the French secondary continuation sequence |
- state[1] |= ((usedFrench & UCOL_PSK_USED_FRENCH_MASK) << UCOL_PSK_USED_FRENCH_SHIFT); |
- |
- |
- // If we have used normalizing iterator, get rid of it |
- if(normIter != NULL) { |
- unorm_closeIter(normIter); |
- } |
- |
- /* To avoid memory leak, free the offset buffer if necessary. */ |
- ucol_freeOffsetBuffer(&s); |
- |
- // Return number of meaningful sortkey bytes. |
- UTRACE_DATA4(UTRACE_VERBOSE, "dest = %vb, state=%d %d", |
- dest,i, state[0], state[1]); |
- UTRACE_EXIT_VALUE(i); |
- return i; |
-} |
- |
-/** |
- * Produce a bound for a given sortkey and a number of levels. |
- */ |
-U_CAPI int32_t U_EXPORT2 |
-ucol_getBound(const uint8_t *source, |
- int32_t sourceLength, |
- UColBoundMode boundType, |
- uint32_t noOfLevels, |
- uint8_t *result, |
- int32_t resultLength, |
- UErrorCode *status) |
-{ |
- // consistency checks |
- if(status == NULL || U_FAILURE(*status)) { |
- return 0; |
- } |
- if(source == NULL) { |
- *status = U_ILLEGAL_ARGUMENT_ERROR; |
- return 0; |
- } |
- |
- int32_t sourceIndex = 0; |
- // Scan the string until we skip enough of the key OR reach the end of the key |
- do { |
- sourceIndex++; |
- if(source[sourceIndex] == UCOL_LEVELTERMINATOR) { |
- noOfLevels--; |
- } |
- } while (noOfLevels > 0 |
- && (source[sourceIndex] != 0 || sourceIndex < sourceLength)); |
- |
- if((source[sourceIndex] == 0 || sourceIndex == sourceLength) |
- && noOfLevels > 0) { |
- *status = U_SORT_KEY_TOO_SHORT_WARNING; |
- } |
- |
- |
- // READ ME: this code assumes that the values for boundType |
- // enum will not changes. They are set so that the enum value |
- // corresponds to the number of extra bytes each bound type |
- // needs. |
- if(result != NULL && resultLength >= sourceIndex+boundType) { |
- uprv_memcpy(result, source, sourceIndex); |
- switch(boundType) { |
- // Lower bound just gets terminated. No extra bytes |
- case UCOL_BOUND_LOWER: // = 0 |
- break; |
- // Upper bound needs one extra byte |
- case UCOL_BOUND_UPPER: // = 1 |
- result[sourceIndex++] = 2; |
- break; |
- // Upper long bound needs two extra bytes |
- case UCOL_BOUND_UPPER_LONG: // = 2 |
- result[sourceIndex++] = 0xFF; |
- result[sourceIndex++] = 0xFF; |
- break; |
- default: |
- *status = U_ILLEGAL_ARGUMENT_ERROR; |
- return 0; |
- } |
- result[sourceIndex++] = 0; |
- |
- return sourceIndex; |
- } else { |
- return sourceIndex+boundType+1; |
- } |
-} |
- |
-/****************************************************************************/ |
-/* Following are the functions that deal with the properties of a collator */ |
-/* there are new APIs and some compatibility APIs */ |
-/****************************************************************************/ |
- |
-static inline void |
-ucol_addLatinOneEntry(UCollator *coll, UChar ch, uint32_t CE, |
- int32_t *primShift, int32_t *secShift, int32_t *terShift) |
-{ |
- uint8_t primary1 = 0, primary2 = 0, secondary = 0, tertiary = 0; |
- UBool reverseSecondary = FALSE; |
- UBool continuation = isContinuation(CE); |
- if(!continuation) { |
- tertiary = (uint8_t)((CE & coll->tertiaryMask)); |
- tertiary ^= coll->caseSwitch; |
- reverseSecondary = TRUE; |
- } else { |
- tertiary = (uint8_t)((CE & UCOL_REMOVE_CONTINUATION)); |
- tertiary &= UCOL_REMOVE_CASE; |
- reverseSecondary = FALSE; |
- } |
- |
- secondary = (uint8_t)((CE >>= 8) & UCOL_BYTE_SIZE_MASK); |
- primary2 = (uint8_t)((CE >>= 8) & UCOL_BYTE_SIZE_MASK); |
- primary1 = (uint8_t)(CE >> 8); |
- |
- if(primary1 != 0) { |
- if (coll->leadBytePermutationTable != NULL && !continuation) { |
- primary1 = coll->leadBytePermutationTable[primary1]; |
- } |
- |
- coll->latinOneCEs[ch] |= (primary1 << *primShift); |
- *primShift -= 8; |
- } |
- if(primary2 != 0) { |
- if(*primShift < 0) { |
- coll->latinOneCEs[ch] = UCOL_BAIL_OUT_CE; |
- coll->latinOneCEs[coll->latinOneTableLen+ch] = UCOL_BAIL_OUT_CE; |
- coll->latinOneCEs[2*coll->latinOneTableLen+ch] = UCOL_BAIL_OUT_CE; |
- return; |
- } |
- coll->latinOneCEs[ch] |= (primary2 << *primShift); |
- *primShift -= 8; |
- } |
- if(secondary != 0) { |
- if(reverseSecondary && coll->frenchCollation == UCOL_ON) { // reverse secondary |
- coll->latinOneCEs[coll->latinOneTableLen+ch] >>= 8; // make space for secondary |
- coll->latinOneCEs[coll->latinOneTableLen+ch] |= (secondary << 24); |
- } else { // normal case |
- coll->latinOneCEs[coll->latinOneTableLen+ch] |= (secondary << *secShift); |
- } |
- *secShift -= 8; |
- } |
- if(tertiary != 0) { |
- coll->latinOneCEs[2*coll->latinOneTableLen+ch] |= (tertiary << *terShift); |
- *terShift -= 8; |
- } |
-} |
- |
-static inline UBool |
-ucol_resizeLatinOneTable(UCollator *coll, int32_t size, UErrorCode *status) { |
- uint32_t *newTable = (uint32_t *)uprv_malloc(size*sizeof(uint32_t)*3); |
- if(newTable == NULL) { |
- *status = U_MEMORY_ALLOCATION_ERROR; |
- coll->latinOneFailed = TRUE; |
- return FALSE; |
- } |
- int32_t sizeToCopy = ((size<coll->latinOneTableLen)?size:coll->latinOneTableLen)*sizeof(uint32_t); |
- uprv_memset(newTable, 0, size*sizeof(uint32_t)*3); |
- uprv_memcpy(newTable, coll->latinOneCEs, sizeToCopy); |
- uprv_memcpy(newTable+size, coll->latinOneCEs+coll->latinOneTableLen, sizeToCopy); |
- uprv_memcpy(newTable+2*size, coll->latinOneCEs+2*coll->latinOneTableLen, sizeToCopy); |
- coll->latinOneTableLen = size; |
- uprv_free(coll->latinOneCEs); |
- coll->latinOneCEs = newTable; |
- return TRUE; |
-} |
- |
-static UBool |
-ucol_setUpLatinOne(UCollator *coll, UErrorCode *status) { |
- UBool result = TRUE; |
- if(coll->latinOneCEs == NULL) { |
- coll->latinOneCEs = (uint32_t *)uprv_malloc(sizeof(uint32_t)*UCOL_LATINONETABLELEN*3); |
- if(coll->latinOneCEs == NULL) { |
- *status = U_MEMORY_ALLOCATION_ERROR; |
- return FALSE; |
- } |
- coll->latinOneTableLen = UCOL_LATINONETABLELEN; |
- } |
- UChar ch = 0; |
- UCollationElements *it = ucol_openElements(coll, &ch, 1, status); |
- // Check for null pointer |
- if (U_FAILURE(*status)) { |
- ucol_closeElements(it); |
- return FALSE; |
- } |
- uprv_memset(coll->latinOneCEs, 0, sizeof(uint32_t)*coll->latinOneTableLen*3); |
- |
- int32_t primShift = 24, secShift = 24, terShift = 24; |
- uint32_t CE = 0; |
- int32_t contractionOffset = UCOL_ENDOFLATINONERANGE+1; |
- |
- // TODO: make safe if you get more than you wanted... |
- for(ch = 0; ch <= UCOL_ENDOFLATINONERANGE; ch++) { |
- primShift = 24; secShift = 24; terShift = 24; |
- if(ch < 0x100) { |
- CE = coll->latinOneMapping[ch]; |
- } else { |
- CE = UTRIE_GET32_FROM_LEAD(&coll->mapping, ch); |
- if(CE == UCOL_NOT_FOUND && coll->UCA) { |
- CE = UTRIE_GET32_FROM_LEAD(&coll->UCA->mapping, ch); |
- } |
- } |
- if(CE < UCOL_NOT_FOUND) { |
- ucol_addLatinOneEntry(coll, ch, CE, &primShift, &secShift, &terShift); |
- } else { |
- switch (getCETag(CE)) { |
- case EXPANSION_TAG: |
- case DIGIT_TAG: |
- ucol_setText(it, &ch, 1, status); |
- while((int32_t)(CE = ucol_next(it, status)) != UCOL_NULLORDER) { |
- if(primShift < 0 || secShift < 0 || terShift < 0) { |
- coll->latinOneCEs[ch] = UCOL_BAIL_OUT_CE; |
- coll->latinOneCEs[coll->latinOneTableLen+ch] = UCOL_BAIL_OUT_CE; |
- coll->latinOneCEs[2*coll->latinOneTableLen+ch] = UCOL_BAIL_OUT_CE; |
- break; |
- } |
- ucol_addLatinOneEntry(coll, ch, CE, &primShift, &secShift, &terShift); |
- } |
- break; |
- case CONTRACTION_TAG: |
- // here is the trick |
- // F2 is contraction. We do something very similar to contractions |
- // but have two indices, one in the real contraction table and the |
- // other to where we stuffed things. This hopes that we don't have |
- // many contractions (this should work for latin-1 tables). |
- { |
- if((CE & 0x00FFF000) != 0) { |
- *status = U_UNSUPPORTED_ERROR; |
- goto cleanup_after_failure; |
- } |
- |
- const UChar *UCharOffset = (UChar *)coll->image+getContractOffset(CE); |
- |
- CE |= (contractionOffset & 0xFFF) << 12; // insert the offset in latin-1 table |
- |
- coll->latinOneCEs[ch] = CE; |
- coll->latinOneCEs[coll->latinOneTableLen+ch] = CE; |
- coll->latinOneCEs[2*coll->latinOneTableLen+ch] = CE; |
- |
- // We're going to jump into contraction table, pick the elements |
- // and use them |
- do { |
- CE = *(coll->contractionCEs + |
- (UCharOffset - coll->contractionIndex)); |
- if(CE > UCOL_NOT_FOUND && getCETag(CE) == EXPANSION_TAG) { |
- uint32_t size; |
- uint32_t i; /* general counter */ |
- uint32_t *CEOffset = (uint32_t *)coll->image+getExpansionOffset(CE); /* find the offset to expansion table */ |
- size = getExpansionCount(CE); |
- //CE = *CEOffset++; |
- if(size != 0) { /* if there are less than 16 elements in expansion, we don't terminate */ |
- for(i = 0; i<size; i++) { |
- if(primShift < 0 || secShift < 0 || terShift < 0) { |
- coll->latinOneCEs[(UChar)contractionOffset] = UCOL_BAIL_OUT_CE; |
- coll->latinOneCEs[coll->latinOneTableLen+(UChar)contractionOffset] = UCOL_BAIL_OUT_CE; |
- coll->latinOneCEs[2*coll->latinOneTableLen+(UChar)contractionOffset] = UCOL_BAIL_OUT_CE; |
- break; |
- } |
- ucol_addLatinOneEntry(coll, (UChar)contractionOffset, *CEOffset++, &primShift, &secShift, &terShift); |
- } |
- } else { /* else, we do */ |
- while(*CEOffset != 0) { |
- if(primShift < 0 || secShift < 0 || terShift < 0) { |
- coll->latinOneCEs[(UChar)contractionOffset] = UCOL_BAIL_OUT_CE; |
- coll->latinOneCEs[coll->latinOneTableLen+(UChar)contractionOffset] = UCOL_BAIL_OUT_CE; |
- coll->latinOneCEs[2*coll->latinOneTableLen+(UChar)contractionOffset] = UCOL_BAIL_OUT_CE; |
- break; |
- } |
- ucol_addLatinOneEntry(coll, (UChar)contractionOffset, *CEOffset++, &primShift, &secShift, &terShift); |
- } |
- } |
- contractionOffset++; |
- } else if(CE < UCOL_NOT_FOUND) { |
- ucol_addLatinOneEntry(coll, (UChar)contractionOffset++, CE, &primShift, &secShift, &terShift); |
- } else { |
- coll->latinOneCEs[(UChar)contractionOffset] = UCOL_BAIL_OUT_CE; |
- coll->latinOneCEs[coll->latinOneTableLen+(UChar)contractionOffset] = UCOL_BAIL_OUT_CE; |
- coll->latinOneCEs[2*coll->latinOneTableLen+(UChar)contractionOffset] = UCOL_BAIL_OUT_CE; |
- contractionOffset++; |
- } |
- UCharOffset++; |
- primShift = 24; secShift = 24; terShift = 24; |
- if(contractionOffset == coll->latinOneTableLen) { // we need to reallocate |
- if(!ucol_resizeLatinOneTable(coll, 2*coll->latinOneTableLen, status)) { |
- goto cleanup_after_failure; |
- } |
- } |
- } while(*UCharOffset != 0xFFFF); |
- } |
- break;; |
- case SPEC_PROC_TAG: |
- { |
- // 0xB7 is a precontext character defined in UCA5.1, a special |
- // handle is implemeted in order to save LatinOne table for |
- // most locales. |
- if (ch==0xb7) { |
- ucol_addLatinOneEntry(coll, ch, CE, &primShift, &secShift, &terShift); |
- } |
- else { |
- goto cleanup_after_failure; |
- } |
- } |
- break; |
- default: |
- goto cleanup_after_failure; |
- } |
- } |
- } |
- // compact table |
- if(contractionOffset < coll->latinOneTableLen) { |
- if(!ucol_resizeLatinOneTable(coll, contractionOffset, status)) { |
- goto cleanup_after_failure; |
- } |
- } |
- ucol_closeElements(it); |
- return result; |
- |
-cleanup_after_failure: |
- // status should already be set before arriving here. |
- coll->latinOneFailed = TRUE; |
- ucol_closeElements(it); |
- return FALSE; |
-} |
- |
-void ucol_updateInternalState(UCollator *coll, UErrorCode *status) { |
- if(U_SUCCESS(*status)) { |
- if(coll->caseFirst == UCOL_UPPER_FIRST) { |
- coll->caseSwitch = UCOL_CASE_SWITCH; |
- } else { |
- coll->caseSwitch = UCOL_NO_CASE_SWITCH; |
- } |
- |
- if(coll->caseLevel == UCOL_ON || coll->caseFirst == UCOL_OFF) { |
- coll->tertiaryMask = UCOL_REMOVE_CASE; |
- coll->tertiaryCommon = UCOL_COMMON3_NORMAL; |
- coll->tertiaryAddition = (int8_t)UCOL_FLAG_BIT_MASK_CASE_SW_OFF; /* Should be 0x80 */ |
- coll->tertiaryTop = UCOL_COMMON_TOP3_CASE_SW_OFF; |
- coll->tertiaryBottom = UCOL_COMMON_BOT3; |
- } else { |
- coll->tertiaryMask = UCOL_KEEP_CASE; |
- coll->tertiaryAddition = UCOL_FLAG_BIT_MASK_CASE_SW_ON; |
- if(coll->caseFirst == UCOL_UPPER_FIRST) { |
- coll->tertiaryCommon = UCOL_COMMON3_UPPERFIRST; |
- coll->tertiaryTop = UCOL_COMMON_TOP3_CASE_SW_UPPER; |
- coll->tertiaryBottom = UCOL_COMMON_BOTTOM3_CASE_SW_UPPER; |
- } else { |
- coll->tertiaryCommon = UCOL_COMMON3_NORMAL; |
- coll->tertiaryTop = UCOL_COMMON_TOP3_CASE_SW_LOWER; |
- coll->tertiaryBottom = UCOL_COMMON_BOTTOM3_CASE_SW_LOWER; |
- } |
- } |
- |
- /* Set the compression values */ |
- uint8_t tertiaryTotal = (uint8_t)(coll->tertiaryTop - coll->tertiaryBottom - 1); |
- coll->tertiaryTopCount = (uint8_t)(UCOL_PROPORTION3*tertiaryTotal); /* we multilply double with int, but need only int */ |
- coll->tertiaryBottomCount = (uint8_t)(tertiaryTotal - coll->tertiaryTopCount); |
- |
- if(coll->caseLevel == UCOL_OFF && coll->strength == UCOL_TERTIARY |
- && coll->frenchCollation == UCOL_OFF && coll->alternateHandling == UCOL_NON_IGNORABLE) |
- { |
- coll->sortKeyGen = ucol_calcSortKeySimpleTertiary; |
- } else { |
- coll->sortKeyGen = ucol_calcSortKey; |
- } |
- if(coll->caseLevel == UCOL_OFF && coll->strength <= UCOL_TERTIARY && coll->numericCollation == UCOL_OFF |
- && coll->alternateHandling == UCOL_NON_IGNORABLE && !coll->latinOneFailed) |
- { |
- if(coll->latinOneCEs == NULL || coll->latinOneRegenTable) { |
- if(ucol_setUpLatinOne(coll, status)) { // if we succeed in building latin1 table, we'll use it |
- //fprintf(stderr, "F"); |
- coll->latinOneUse = TRUE; |
- } else { |
- coll->latinOneUse = FALSE; |
- } |
- if(*status == U_UNSUPPORTED_ERROR) { |
- *status = U_ZERO_ERROR; |
- } |
- } else { // latin1Table exists and it doesn't need to be regenerated, just use it |
- coll->latinOneUse = TRUE; |
- } |
- } else { |
- coll->latinOneUse = FALSE; |
- } |
- } |
-} |
- |
-U_CAPI uint32_t U_EXPORT2 |
-ucol_setVariableTop(UCollator *coll, const UChar *varTop, int32_t len, UErrorCode *status) { |
- if(U_FAILURE(*status) || coll == NULL) { |
- return 0; |
- } |
- if(len == -1) { |
- len = u_strlen(varTop); |
- } |
- if(len == 0) { |
- *status = U_ILLEGAL_ARGUMENT_ERROR; |
- return 0; |
- } |
- |
- if(coll->delegate!=NULL) { |
- return ((Collator*)coll->delegate)->setVariableTop(varTop, len, *status); |
- } |
- |
- |
- collIterate s; |
- IInit_collIterate(coll, varTop, len, &s, status); |
- if(U_FAILURE(*status)) { |
- return 0; |
- } |
- |
- uint32_t CE = ucol_IGetNextCE(coll, &s, status); |
- |
- /* here we check if we have consumed all characters */ |
- /* you can put in either one character or a contraction */ |
- /* you shouldn't put more... */ |
- if(s.pos != s.endp || CE == UCOL_NO_MORE_CES) { |
- *status = U_CE_NOT_FOUND_ERROR; |
- return 0; |
- } |
- |
- uint32_t nextCE = ucol_IGetNextCE(coll, &s, status); |
- |
- if(isContinuation(nextCE) && (nextCE & UCOL_PRIMARYMASK) != 0) { |
- *status = U_PRIMARY_TOO_LONG_ERROR; |
- return 0; |
- } |
- if(coll->variableTopValue != (CE & UCOL_PRIMARYMASK)>>16) { |
- coll->variableTopValueisDefault = FALSE; |
- coll->variableTopValue = (CE & UCOL_PRIMARYMASK)>>16; |
- } |
- |
- /* To avoid memory leak, free the offset buffer if necessary. */ |
- ucol_freeOffsetBuffer(&s); |
- |
- return CE & UCOL_PRIMARYMASK; |
-} |
- |
-U_CAPI uint32_t U_EXPORT2 ucol_getVariableTop(const UCollator *coll, UErrorCode *status) { |
- if(U_FAILURE(*status) || coll == NULL) { |
- return 0; |
- } |
- if(coll->delegate!=NULL) { |
- return ((const Collator*)coll->delegate)->getVariableTop(*status); |
- } |
- return coll->variableTopValue<<16; |
-} |
- |
-U_CAPI void U_EXPORT2 |
-ucol_restoreVariableTop(UCollator *coll, const uint32_t varTop, UErrorCode *status) { |
- if(U_FAILURE(*status) || coll == NULL) { |
- return; |
- } |
- |
- if(coll->variableTopValue != (varTop & UCOL_PRIMARYMASK)>>16) { |
- coll->variableTopValueisDefault = FALSE; |
- coll->variableTopValue = (varTop & UCOL_PRIMARYMASK)>>16; |
- } |
-} |
-/* Attribute setter API */ |
-U_CAPI void U_EXPORT2 |
-ucol_setAttribute(UCollator *coll, UColAttribute attr, UColAttributeValue value, UErrorCode *status) { |
- if(U_FAILURE(*status) || coll == NULL) { |
- return; |
- } |
- |
- if(coll->delegate != NULL) { |
- ((Collator*)coll->delegate)->setAttribute(attr,value,*status); |
- return; |
- } |
- |
- UColAttributeValue oldFrench = coll->frenchCollation; |
- UColAttributeValue oldCaseFirst = coll->caseFirst; |
- switch(attr) { |
- case UCOL_NUMERIC_COLLATION: /* sort substrings of digits as numbers */ |
- if(value == UCOL_ON) { |
- coll->numericCollation = UCOL_ON; |
- coll->numericCollationisDefault = FALSE; |
- } else if (value == UCOL_OFF) { |
- coll->numericCollation = UCOL_OFF; |
- coll->numericCollationisDefault = FALSE; |
- } else if (value == UCOL_DEFAULT) { |
- coll->numericCollationisDefault = TRUE; |
- coll->numericCollation = (UColAttributeValue)coll->options->numericCollation; |
- } else { |
- *status = U_ILLEGAL_ARGUMENT_ERROR; |
- } |
- break; |
- case UCOL_HIRAGANA_QUATERNARY_MODE: /* special quaternary values for Hiragana */ |
- if(value == UCOL_ON || value == UCOL_OFF || value == UCOL_DEFAULT) { |
- // This attribute is an implementation detail of the CLDR Japanese tailoring. |
- // The implementation might change to use a different mechanism |
- // to achieve the same Japanese sort order. |
- // Since ICU 50, this attribute is not settable any more via API functions. |
- } else { |
- *status = U_ILLEGAL_ARGUMENT_ERROR; |
- } |
- break; |
- case UCOL_FRENCH_COLLATION: /* attribute for direction of secondary weights*/ |
- if(value == UCOL_ON) { |
- coll->frenchCollation = UCOL_ON; |
- coll->frenchCollationisDefault = FALSE; |
- } else if (value == UCOL_OFF) { |
- coll->frenchCollation = UCOL_OFF; |
- coll->frenchCollationisDefault = FALSE; |
- } else if (value == UCOL_DEFAULT) { |
- coll->frenchCollationisDefault = TRUE; |
- coll->frenchCollation = (UColAttributeValue)coll->options->frenchCollation; |
- } else { |
- *status = U_ILLEGAL_ARGUMENT_ERROR ; |
- } |
- break; |
- case UCOL_ALTERNATE_HANDLING: /* attribute for handling variable elements*/ |
- if(value == UCOL_SHIFTED) { |
- coll->alternateHandling = UCOL_SHIFTED; |
- coll->alternateHandlingisDefault = FALSE; |
- } else if (value == UCOL_NON_IGNORABLE) { |
- coll->alternateHandling = UCOL_NON_IGNORABLE; |
- coll->alternateHandlingisDefault = FALSE; |
- } else if (value == UCOL_DEFAULT) { |
- coll->alternateHandlingisDefault = TRUE; |
- coll->alternateHandling = (UColAttributeValue)coll->options->alternateHandling ; |
- } else { |
- *status = U_ILLEGAL_ARGUMENT_ERROR ; |
- } |
- break; |
- case UCOL_CASE_FIRST: /* who goes first, lower case or uppercase */ |
- if(value == UCOL_LOWER_FIRST) { |
- coll->caseFirst = UCOL_LOWER_FIRST; |
- coll->caseFirstisDefault = FALSE; |
- } else if (value == UCOL_UPPER_FIRST) { |
- coll->caseFirst = UCOL_UPPER_FIRST; |
- coll->caseFirstisDefault = FALSE; |
- } else if (value == UCOL_OFF) { |
- coll->caseFirst = UCOL_OFF; |
- coll->caseFirstisDefault = FALSE; |
- } else if (value == UCOL_DEFAULT) { |
- coll->caseFirst = (UColAttributeValue)coll->options->caseFirst; |
- coll->caseFirstisDefault = TRUE; |
- } else { |
- *status = U_ILLEGAL_ARGUMENT_ERROR ; |
- } |
- break; |
- case UCOL_CASE_LEVEL: /* do we have an extra case level */ |
- if(value == UCOL_ON) { |
- coll->caseLevel = UCOL_ON; |
- coll->caseLevelisDefault = FALSE; |
- } else if (value == UCOL_OFF) { |
- coll->caseLevel = UCOL_OFF; |
- coll->caseLevelisDefault = FALSE; |
- } else if (value == UCOL_DEFAULT) { |
- coll->caseLevel = (UColAttributeValue)coll->options->caseLevel; |
- coll->caseLevelisDefault = TRUE; |
- } else { |
- *status = U_ILLEGAL_ARGUMENT_ERROR ; |
- } |
- break; |
- case UCOL_NORMALIZATION_MODE: /* attribute for normalization */ |
- if(value == UCOL_ON) { |
- coll->normalizationMode = UCOL_ON; |
- coll->normalizationModeisDefault = FALSE; |
- initializeFCD(status); |
- } else if (value == UCOL_OFF) { |
- coll->normalizationMode = UCOL_OFF; |
- coll->normalizationModeisDefault = FALSE; |
- } else if (value == UCOL_DEFAULT) { |
- coll->normalizationModeisDefault = TRUE; |
- coll->normalizationMode = (UColAttributeValue)coll->options->normalizationMode; |
- if(coll->normalizationMode == UCOL_ON) { |
- initializeFCD(status); |
- } |
- } else { |
- *status = U_ILLEGAL_ARGUMENT_ERROR ; |
- } |
- break; |
- case UCOL_STRENGTH: /* attribute for strength */ |
- if (value == UCOL_DEFAULT) { |
- coll->strengthisDefault = TRUE; |
- coll->strength = (UColAttributeValue)coll->options->strength; |
- } else if (value <= UCOL_IDENTICAL) { |
- coll->strengthisDefault = FALSE; |
- coll->strength = value; |
- } else { |
- *status = U_ILLEGAL_ARGUMENT_ERROR ; |
- } |
- break; |
- case UCOL_ATTRIBUTE_COUNT: |
- default: |
- *status = U_ILLEGAL_ARGUMENT_ERROR; |
- break; |
- } |
- if(oldFrench != coll->frenchCollation || oldCaseFirst != coll->caseFirst) { |
- coll->latinOneRegenTable = TRUE; |
- } else { |
- coll->latinOneRegenTable = FALSE; |
- } |
- ucol_updateInternalState(coll, status); |
-} |
- |
-U_CAPI UColAttributeValue U_EXPORT2 |
-ucol_getAttribute(const UCollator *coll, UColAttribute attr, UErrorCode *status) { |
- if(U_FAILURE(*status) || coll == NULL) { |
- return UCOL_DEFAULT; |
- } |
- |
- if(coll->delegate != NULL) { |
- return ((Collator*)coll->delegate)->getAttribute(attr,*status); |
- } |
- |
- switch(attr) { |
- case UCOL_NUMERIC_COLLATION: |
- return coll->numericCollation; |
- case UCOL_HIRAGANA_QUATERNARY_MODE: |
- return coll->hiraganaQ; |
- case UCOL_FRENCH_COLLATION: /* attribute for direction of secondary weights*/ |
- return coll->frenchCollation; |
- case UCOL_ALTERNATE_HANDLING: /* attribute for handling variable elements*/ |
- return coll->alternateHandling; |
- case UCOL_CASE_FIRST: /* who goes first, lower case or uppercase */ |
- return coll->caseFirst; |
- case UCOL_CASE_LEVEL: /* do we have an extra case level */ |
- return coll->caseLevel; |
- case UCOL_NORMALIZATION_MODE: /* attribute for normalization */ |
- return coll->normalizationMode; |
- case UCOL_STRENGTH: /* attribute for strength */ |
- return coll->strength; |
- case UCOL_ATTRIBUTE_COUNT: |
- default: |
- *status = U_ILLEGAL_ARGUMENT_ERROR; |
- break; |
- } |
- return UCOL_DEFAULT; |
-} |
- |
-U_CAPI void U_EXPORT2 |
-ucol_setStrength( UCollator *coll, |
- UCollationStrength strength) |
-{ |
- UErrorCode status = U_ZERO_ERROR; |
- ucol_setAttribute(coll, UCOL_STRENGTH, strength, &status); |
-} |
- |
-U_CAPI UCollationStrength U_EXPORT2 |
-ucol_getStrength(const UCollator *coll) |
-{ |
- UErrorCode status = U_ZERO_ERROR; |
- return ucol_getAttribute(coll, UCOL_STRENGTH, &status); |
-} |
- |
-U_CAPI int32_t U_EXPORT2 |
-ucol_getReorderCodes(const UCollator *coll, |
- int32_t *dest, |
- int32_t destCapacity, |
- UErrorCode *status) { |
- if (U_FAILURE(*status)) { |
- return 0; |
- } |
- |
- if(coll->delegate!=NULL) { |
- return ((const Collator*)coll->delegate)->getReorderCodes(dest, destCapacity, *status); |
- } |
- |
- if (destCapacity < 0 || (destCapacity > 0 && dest == NULL)) { |
- *status = U_ILLEGAL_ARGUMENT_ERROR; |
- return 0; |
- } |
- |
-#ifdef UCOL_DEBUG |
- printf("coll->reorderCodesLength = %d\n", coll->reorderCodesLength); |
- printf("coll->defaultReorderCodesLength = %d\n", coll->defaultReorderCodesLength); |
-#endif |
- |
- if (coll->reorderCodesLength > destCapacity) { |
- *status = U_BUFFER_OVERFLOW_ERROR; |
- return coll->reorderCodesLength; |
- } |
- for (int32_t i = 0; i < coll->reorderCodesLength; i++) { |
- dest[i] = coll->reorderCodes[i]; |
- } |
- return coll->reorderCodesLength; |
-} |
- |
-U_CAPI void U_EXPORT2 |
-ucol_setReorderCodes(UCollator* coll, |
- const int32_t* reorderCodes, |
- int32_t reorderCodesLength, |
- UErrorCode *status) { |
- if (U_FAILURE(*status)) { |
- return; |
- } |
- |
- if (reorderCodesLength < 0 || (reorderCodesLength > 0 && reorderCodes == NULL)) { |
- *status = U_ILLEGAL_ARGUMENT_ERROR; |
- return; |
- } |
- |
- if(coll->delegate!=NULL) { |
- ((Collator*)coll->delegate)->setReorderCodes(reorderCodes, reorderCodesLength, *status); |
- return; |
- } |
- |
- if (coll->reorderCodes != NULL && coll->freeReorderCodesOnClose == TRUE) { |
- uprv_free(coll->reorderCodes); |
- } |
- coll->reorderCodes = NULL; |
- coll->freeReorderCodesOnClose = FALSE; |
- coll->reorderCodesLength = 0; |
- if (reorderCodesLength == 0) { |
- if (coll->leadBytePermutationTable != NULL && coll->freeLeadBytePermutationTableOnClose == TRUE) { |
- uprv_free(coll->leadBytePermutationTable); |
+ /* copy level from src2 not including 00 or 01 */ |
+ while((b=*src2)>=2) { |
+ ++src2; |
+ *p++=b; |
} |
- coll->leadBytePermutationTable = NULL; |
- coll->freeLeadBytePermutationTableOnClose = FALSE; |
- return; |
- } |
- coll->reorderCodes = (int32_t*) uprv_malloc(reorderCodesLength * sizeof(int32_t)); |
- if (coll->reorderCodes == NULL) { |
- *status = U_MEMORY_ALLOCATION_ERROR; |
- return; |
- } |
- coll->freeReorderCodesOnClose = TRUE; |
- for (int32_t i = 0; i < reorderCodesLength; i++) { |
- coll->reorderCodes[i] = reorderCodes[i]; |
- } |
- coll->reorderCodesLength = reorderCodesLength; |
- ucol_buildPermutationTable(coll, status); |
-} |
- |
-U_CAPI int32_t U_EXPORT2 |
-ucol_getEquivalentReorderCodes(int32_t reorderCode, |
- int32_t* dest, |
- int32_t destCapacity, |
- UErrorCode *pErrorCode) { |
- bool equivalentCodesSet[USCRIPT_CODE_LIMIT]; |
- uint16_t leadBytes[256]; |
- int leadBytesCount; |
- int leadByteIndex; |
- int16_t reorderCodesForLeadByte[USCRIPT_CODE_LIMIT]; |
- int reorderCodesForLeadByteCount; |
- int reorderCodeIndex; |
- |
- int32_t equivalentCodesCount = 0; |
- int setIndex; |
- |
- if (U_FAILURE(*pErrorCode)) { |
- return 0; |
- } |
- |
- if (destCapacity < 0 || (destCapacity > 0 && dest == NULL)) { |
- *pErrorCode = U_ILLEGAL_ARGUMENT_ERROR; |
- return 0; |
- } |
- uprv_memset(equivalentCodesSet, 0, USCRIPT_CODE_LIMIT * sizeof(bool)); |
- |
- const UCollator* uca = ucol_initUCA(pErrorCode); |
- if (U_FAILURE(*pErrorCode)) { |
- return 0; |
- } |
- leadBytesCount = ucol_getLeadBytesForReorderCode(uca, reorderCode, leadBytes, 256); |
- for (leadByteIndex = 0; leadByteIndex < leadBytesCount; leadByteIndex++) { |
- reorderCodesForLeadByteCount = ucol_getReorderCodesForLeadByte( |
- uca, leadBytes[leadByteIndex], reorderCodesForLeadByte, USCRIPT_CODE_LIMIT); |
- for (reorderCodeIndex = 0; reorderCodeIndex < reorderCodesForLeadByteCount; reorderCodeIndex++) { |
- equivalentCodesSet[reorderCodesForLeadByte[reorderCodeIndex]] = true; |
- } |
- } |
- |
- for (setIndex = 0; setIndex < USCRIPT_CODE_LIMIT; setIndex++) { |
- if (equivalentCodesSet[setIndex] == true) { |
- equivalentCodesCount++; |
+ /* if both sort keys have another level, then add a 01 level separator and continue */ |
+ if(*src1==1 && *src2==1) { |
+ ++src1; |
+ ++src2; |
+ *p++=1; |
+ } else { |
+ break; |
} |
} |
- |
- if (destCapacity == 0) { |
- return equivalentCodesCount; |
- } |
- |
- equivalentCodesCount = 0; |
- for (setIndex = 0; setIndex < USCRIPT_CODE_LIMIT; setIndex++) { |
- if (equivalentCodesSet[setIndex] == true) { |
- dest[equivalentCodesCount++] = setIndex; |
- if (equivalentCodesCount >= destCapacity) { |
- break; |
- } |
- } |
- } |
- return equivalentCodesCount; |
-} |
- |
- |
-/****************************************************************************/ |
-/* Following are misc functions */ |
-/* there are new APIs and some compatibility APIs */ |
-/****************************************************************************/ |
- |
-U_CAPI void U_EXPORT2 |
-ucol_getVersion(const UCollator* coll, |
- UVersionInfo versionInfo) |
-{ |
- if(coll->delegate!=NULL) { |
- ((const Collator*)coll->delegate)->getVersion(versionInfo); |
- return; |
- } |
- /* RunTime version */ |
- uint8_t rtVersion = UCOL_RUNTIME_VERSION; |
- /* Builder version*/ |
- uint8_t bdVersion = coll->image->version[0]; |
- /* Charset Version. Need to get the version from cnv files |
- * makeconv should populate cnv files with version and |
- * an api has to be provided in ucnv.h to obtain this version |
+ /* |
+ * here, at least one sort key is finished now, but the other one |
+ * might have some contents left from containing more levels; |
+ * that contents is just appended to the result |
*/ |
- uint8_t csVersion = 0; |
- |
- /* combine the version info */ |
- uint16_t cmbVersion = (uint16_t)((rtVersion<<11) | (bdVersion<<6) | (csVersion)); |
- |
- /* Tailoring rules */ |
- versionInfo[0] = (uint8_t)(cmbVersion>>8); |
- versionInfo[1] = (uint8_t)cmbVersion; |
- versionInfo[2] = coll->image->version[1]; |
- if(coll->UCA) { |
- /* Include the minor number when getting the UCA version. (major & 1f) << 3 | (minor & 7) */ |
- versionInfo[3] = (coll->UCA->image->UCAVersion[0] & 0x1f) << 3 | (coll->UCA->image->UCAVersion[1] & 0x07); |
- } else { |
- versionInfo[3] = 0; |
- } |
-} |
- |
- |
-/* This internal API checks whether a character is tailored or not */ |
-U_CAPI UBool U_EXPORT2 |
-ucol_isTailored(const UCollator *coll, const UChar u, UErrorCode *status) { |
- if(U_FAILURE(*status) || coll == NULL || coll == coll->UCA) { |
- return FALSE; |
- } |
- |
- uint32_t CE = UCOL_NOT_FOUND; |
- const UChar *ContractionStart = NULL; |
- if(u < 0x100) { /* latin-1 */ |
- CE = coll->latinOneMapping[u]; |
- if(coll->UCA && CE == coll->UCA->latinOneMapping[u]) { |
- return FALSE; |
- } |
- } else { /* regular */ |
- CE = UTRIE_GET32_FROM_LEAD(&coll->mapping, u); |
- } |
- |
- if(isContraction(CE)) { |
- ContractionStart = (UChar *)coll->image+getContractOffset(CE); |
- CE = *(coll->contractionCEs + (ContractionStart- coll->contractionIndex)); |
+ if(*src1!=0) { |
+ /* src1 is not finished, therefore *src2==0, and src1 is appended */ |
+ src2=src1; |
} |
+ /* append src2, "the other, unfinished sort key" */ |
+ while((*p++=*src2++)!=0) {} |
- return (UBool)(CE != UCOL_NOT_FOUND); |
+ /* the actual length might be less than destLength if either sort key contained illegally embedded zero bytes */ |
+ return (int32_t)(p-dest); |
} |
- |
-/****************************************************************************/ |
-/* Following are the string compare functions */ |
-/* */ |
-/****************************************************************************/ |
- |
- |
-/* ucol_checkIdent internal function. Does byte level string compare. */ |
-/* Used by strcoll if strength == identical and strings */ |
-/* are otherwise equal. */ |
-/* */ |
-/* Comparison must be done on NFD normalized strings. */ |
-/* FCD is not good enough. */ |
- |
-static |
-UCollationResult ucol_checkIdent(collIterate *sColl, collIterate *tColl, UBool normalize, UErrorCode *status) |
+U_CAPI int32_t U_EXPORT2 |
+ucol_getSortKey(const UCollator *coll, |
+ const UChar *source, |
+ int32_t sourceLength, |
+ uint8_t *result, |
+ int32_t resultLength) |
{ |
- // When we arrive here, we can have normal strings or UCharIterators. Currently they are both |
- // of same type, but that doesn't really mean that it will stay that way. |
- int32_t comparison; |
- |
- if (sColl->flags & UCOL_USE_ITERATOR) { |
- // The division for the array length may truncate the array size to |
- // a little less than UNORM_ITER_SIZE, but that size is dimensioned too high |
- // for all platforms anyway. |
- UAlignedMemory stackNormIter1[UNORM_ITER_SIZE/sizeof(UAlignedMemory)]; |
- UAlignedMemory stackNormIter2[UNORM_ITER_SIZE/sizeof(UAlignedMemory)]; |
- UNormIterator *sNIt = NULL, *tNIt = NULL; |
- sNIt = unorm_openIter(stackNormIter1, sizeof(stackNormIter1), status); |
- tNIt = unorm_openIter(stackNormIter2, sizeof(stackNormIter2), status); |
- sColl->iterator->move(sColl->iterator, 0, UITER_START); |
- tColl->iterator->move(tColl->iterator, 0, UITER_START); |
- UCharIterator *sIt = unorm_setIter(sNIt, sColl->iterator, UNORM_NFD, status); |
- UCharIterator *tIt = unorm_setIter(tNIt, tColl->iterator, UNORM_NFD, status); |
- comparison = u_strCompareIter(sIt, tIt, TRUE); |
- unorm_closeIter(sNIt); |
- unorm_closeIter(tNIt); |
- } else { |
- int32_t sLen = (sColl->flags & UCOL_ITER_HASLEN) ? (int32_t)(sColl->endp - sColl->string) : -1; |
- const UChar *sBuf = sColl->string; |
- int32_t tLen = (tColl->flags & UCOL_ITER_HASLEN) ? (int32_t)(tColl->endp - tColl->string) : -1; |
- const UChar *tBuf = tColl->string; |
- |
- if (normalize) { |
- *status = U_ZERO_ERROR; |
- // Note: We could use Normalizer::compare() or similar, but for short strings |
- // which may not be in FCD it might be faster to just NFD them. |
- // Note: spanQuickCheckYes() + normalizeSecondAndAppend() rather than |
- // NFD'ing immediately might be faster for long strings, |
- // but string comparison is usually done on relatively short strings. |
- sColl->nfd->normalize(UnicodeString((sColl->flags & UCOL_ITER_HASLEN) == 0, sBuf, sLen), |
- sColl->writableBuffer, |
- *status); |
- tColl->nfd->normalize(UnicodeString((tColl->flags & UCOL_ITER_HASLEN) == 0, tBuf, tLen), |
- tColl->writableBuffer, |
- *status); |
- if(U_FAILURE(*status)) { |
- return UCOL_LESS; |
- } |
- comparison = sColl->writableBuffer.compareCodePointOrder(tColl->writableBuffer); |
- } else { |
- comparison = u_strCompare(sBuf, sLen, tBuf, tLen, TRUE); |
- } |
- } |
- |
- if (comparison < 0) { |
- return UCOL_LESS; |
- } else if (comparison == 0) { |
- return UCOL_EQUAL; |
- } else /* comparison > 0 */ { |
- return UCOL_GREATER; |
+ UTRACE_ENTRY(UTRACE_UCOL_GET_SORTKEY); |
+ if (UTRACE_LEVEL(UTRACE_VERBOSE)) { |
+ UTRACE_DATA3(UTRACE_VERBOSE, "coll=%p, source string = %vh ", coll, source, |
+ ((sourceLength==-1 && source!=NULL) ? u_strlen(source) : sourceLength)); |
} |
-} |
- |
-/* CEBuf - A struct and some inline functions to handle the saving */ |
-/* of CEs in a buffer within ucol_strcoll */ |
- |
-#define UCOL_CEBUF_SIZE 512 |
-typedef struct ucol_CEBuf { |
- uint32_t *buf; |
- uint32_t *endp; |
- uint32_t *pos; |
- uint32_t localArray[UCOL_CEBUF_SIZE]; |
-} ucol_CEBuf; |
- |
-static |
-inline void UCOL_INIT_CEBUF(ucol_CEBuf *b) { |
- (b)->buf = (b)->pos = (b)->localArray; |
- (b)->endp = (b)->buf + UCOL_CEBUF_SIZE; |
-} |
- |
-static |
-void ucol_CEBuf_Expand(ucol_CEBuf *b, collIterate *ci, UErrorCode *status) { |
- uint32_t oldSize; |
- uint32_t newSize; |
- uint32_t *newBuf; |
- |
- ci->flags |= UCOL_ITER_ALLOCATED; |
- oldSize = (uint32_t)(b->pos - b->buf); |
- newSize = oldSize * 2; |
- newBuf = (uint32_t *)uprv_malloc(newSize * sizeof(uint32_t)); |
- if(newBuf == NULL) { |
- *status = U_MEMORY_ALLOCATION_ERROR; |
- } |
- else { |
- uprv_memcpy(newBuf, b->buf, oldSize * sizeof(uint32_t)); |
- if (b->buf != b->localArray) { |
- uprv_free(b->buf); |
- } |
- b->buf = newBuf; |
- b->endp = b->buf + newSize; |
- b->pos = b->buf + oldSize; |
- } |
-} |
+ int32_t keySize = Collator::fromUCollator(coll)-> |
+ getSortKey(source, sourceLength, result, resultLength); |
-static |
-inline void UCOL_CEBUF_PUT(ucol_CEBuf *b, uint32_t ce, collIterate *ci, UErrorCode *status) { |
- if (b->pos == b->endp) { |
- ucol_CEBuf_Expand(b, ci, status); |
- } |
- if (U_SUCCESS(*status)) { |
- *(b)->pos++ = ce; |
- } |
+ UTRACE_DATA2(UTRACE_VERBOSE, "Sort Key = %vb", result, keySize); |
+ UTRACE_EXIT_VALUE(keySize); |
+ return keySize; |
} |
-/* This is a trick string compare function that goes in and uses sortkeys to compare */ |
-/* It is used when compare gets in trouble and needs to bail out */ |
-static UCollationResult ucol_compareUsingSortKeys(collIterate *sColl, |
- collIterate *tColl, |
- UErrorCode *status) |
+U_CAPI int32_t U_EXPORT2 |
+ucol_nextSortKeyPart(const UCollator *coll, |
+ UCharIterator *iter, |
+ uint32_t state[2], |
+ uint8_t *dest, int32_t count, |
+ UErrorCode *status) |
{ |
- uint8_t sourceKey[UCOL_MAX_BUFFER], targetKey[UCOL_MAX_BUFFER]; |
- uint8_t *sourceKeyP = sourceKey; |
- uint8_t *targetKeyP = targetKey; |
- int32_t sourceKeyLen = UCOL_MAX_BUFFER, targetKeyLen = UCOL_MAX_BUFFER; |
- const UCollator *coll = sColl->coll; |
- const UChar *source = NULL; |
- const UChar *target = NULL; |
- int32_t result = UCOL_EQUAL; |
- UnicodeString sourceString, targetString; |
- int32_t sourceLength; |
- int32_t targetLength; |
- |
- if(sColl->flags & UCOL_USE_ITERATOR) { |
- sColl->iterator->move(sColl->iterator, 0, UITER_START); |
- tColl->iterator->move(tColl->iterator, 0, UITER_START); |
- UChar32 c; |
- while((c=sColl->iterator->next(sColl->iterator))>=0) { |
- sourceString.append((UChar)c); |
- } |
- while((c=tColl->iterator->next(tColl->iterator))>=0) { |
- targetString.append((UChar)c); |
- } |
- source = sourceString.getBuffer(); |
- sourceLength = sourceString.length(); |
- target = targetString.getBuffer(); |
- targetLength = targetString.length(); |
- } else { // no iterators |
- sourceLength = (sColl->flags&UCOL_ITER_HASLEN)?(int32_t)(sColl->endp-sColl->string):-1; |
- targetLength = (tColl->flags&UCOL_ITER_HASLEN)?(int32_t)(tColl->endp-tColl->string):-1; |
- source = sColl->string; |
- target = tColl->string; |
- } |
- |
- |
- |
- sourceKeyLen = ucol_getSortKey(coll, source, sourceLength, sourceKeyP, sourceKeyLen); |
- if(sourceKeyLen > UCOL_MAX_BUFFER) { |
- sourceKeyP = (uint8_t*)uprv_malloc(sourceKeyLen*sizeof(uint8_t)); |
- if(sourceKeyP == NULL) { |
- *status = U_MEMORY_ALLOCATION_ERROR; |
- goto cleanup_and_do_compare; |
- } |
- sourceKeyLen = ucol_getSortKey(coll, source, sourceLength, sourceKeyP, sourceKeyLen); |
- } |
- |
- targetKeyLen = ucol_getSortKey(coll, target, targetLength, targetKeyP, targetKeyLen); |
- if(targetKeyLen > UCOL_MAX_BUFFER) { |
- targetKeyP = (uint8_t*)uprv_malloc(targetKeyLen*sizeof(uint8_t)); |
- if(targetKeyP == NULL) { |
- *status = U_MEMORY_ALLOCATION_ERROR; |
- goto cleanup_and_do_compare; |
- } |
- targetKeyLen = ucol_getSortKey(coll, target, targetLength, targetKeyP, targetKeyLen); |
- } |
- |
- result = uprv_strcmp((const char*)sourceKeyP, (const char*)targetKeyP); |
- |
-cleanup_and_do_compare: |
- if(sourceKeyP != NULL && sourceKeyP != sourceKey) { |
- uprv_free(sourceKeyP); |
+ /* error checking */ |
+ if(status==NULL || U_FAILURE(*status)) { |
+ return 0; |
} |
+ UTRACE_ENTRY(UTRACE_UCOL_NEXTSORTKEYPART); |
+ UTRACE_DATA6(UTRACE_VERBOSE, "coll=%p, iter=%p, state=%d %d, dest=%p, count=%d", |
+ coll, iter, state[0], state[1], dest, count); |
- if(targetKeyP != NULL && targetKeyP != targetKey) { |
- uprv_free(targetKeyP); |
- } |
+ int32_t i = Collator::fromUCollator(coll)-> |
+ internalNextSortKeyPart(iter, state, dest, count, *status); |
- if(result<0) { |
- return UCOL_LESS; |
- } else if(result>0) { |
- return UCOL_GREATER; |
- } else { |
- return UCOL_EQUAL; |
- } |
+ // Return number of meaningful sortkey bytes. |
+ UTRACE_DATA4(UTRACE_VERBOSE, "dest = %vb, state=%d %d", |
+ dest,i, state[0], state[1]); |
+ UTRACE_EXIT_VALUE_STATUS(i, *status); |
+ return i; |
} |
- |
-static UCollationResult |
-ucol_strcollRegular(collIterate *sColl, collIterate *tColl, UErrorCode *status) |
+/** |
+ * Produce a bound for a given sortkey and a number of levels. |
+ */ |
+U_CAPI int32_t U_EXPORT2 |
+ucol_getBound(const uint8_t *source, |
+ int32_t sourceLength, |
+ UColBoundMode boundType, |
+ uint32_t noOfLevels, |
+ uint8_t *result, |
+ int32_t resultLength, |
+ UErrorCode *status) |
{ |
- U_ALIGN_CODE(16); |
- |
- const UCollator *coll = sColl->coll; |
- |
- |
- // setting up the collator parameters |
- UColAttributeValue strength = coll->strength; |
- UBool initialCheckSecTer = (strength >= UCOL_SECONDARY); |
- |
- UBool checkSecTer = initialCheckSecTer; |
- UBool checkTertiary = (strength >= UCOL_TERTIARY); |
- UBool checkQuad = (strength >= UCOL_QUATERNARY); |
- UBool checkIdent = (strength == UCOL_IDENTICAL); |
- UBool checkCase = (coll->caseLevel == UCOL_ON); |
- UBool isFrenchSec = (coll->frenchCollation == UCOL_ON) && checkSecTer; |
- UBool shifted = (coll->alternateHandling == UCOL_SHIFTED); |
- UBool qShifted = shifted && checkQuad; |
- UBool doHiragana = (coll->hiraganaQ == UCOL_ON) && checkQuad; |
- |
- if(doHiragana && shifted) { |
- return (ucol_compareUsingSortKeys(sColl, tColl, status)); |
- } |
- uint8_t caseSwitch = coll->caseSwitch; |
- uint8_t tertiaryMask = coll->tertiaryMask; |
- |
- // This is the lowest primary value that will not be ignored if shifted |
- uint32_t LVT = (shifted)?(coll->variableTopValue<<16):0; |
- |
- UCollationResult result = UCOL_EQUAL; |
- UCollationResult hirResult = UCOL_EQUAL; |
- |
- // Preparing the CE buffers. They will be filled during the primary phase |
- ucol_CEBuf sCEs; |
- ucol_CEBuf tCEs; |
- UCOL_INIT_CEBUF(&sCEs); |
- UCOL_INIT_CEBUF(&tCEs); |
- |
- uint32_t secS = 0, secT = 0; |
- uint32_t sOrder=0, tOrder=0; |
- |
- // Non shifted primary processing is quite simple |
- if(!shifted) { |
- for(;;) { |
- // We fetch CEs until we hit a non ignorable primary or end. |
- uint32_t sPrimary; |
- do { |
- // We get the next CE |
- sOrder = ucol_IGetNextCE(coll, sColl, status); |
- // Stuff it in the buffer |
- UCOL_CEBUF_PUT(&sCEs, sOrder, sColl, status); |
- // And keep just the primary part. |
- sPrimary = sOrder & UCOL_PRIMARYMASK; |
- } while(sPrimary == 0); |
- |
- // see the comments on the above block |
- uint32_t tPrimary; |
- do { |
- tOrder = ucol_IGetNextCE(coll, tColl, status); |
- UCOL_CEBUF_PUT(&tCEs, tOrder, tColl, status); |
- tPrimary = tOrder & UCOL_PRIMARYMASK; |
- } while(tPrimary == 0); |
- |
- // if both primaries are the same |
- if(sPrimary == tPrimary) { |
- // and there are no more CEs, we advance to the next level |
- if(sPrimary == UCOL_NO_MORE_CES_PRIMARY) { |
- break; |
- } |
- if(doHiragana && hirResult == UCOL_EQUAL) { |
- if((sColl->flags & UCOL_WAS_HIRAGANA) != (tColl->flags & UCOL_WAS_HIRAGANA)) { |
- hirResult = ((sColl->flags & UCOL_WAS_HIRAGANA) > (tColl->flags & UCOL_WAS_HIRAGANA)) |
- ? UCOL_LESS:UCOL_GREATER; |
- } |
- } |
- } else { |
- // only need to check one for continuation |
- // if one is then the other must be or the preceding CE would be a prefix of the other |
- if (coll->leadBytePermutationTable != NULL && !isContinuation(sOrder)) { |
- sPrimary = (coll->leadBytePermutationTable[sPrimary>>24] << 24) | (sPrimary & 0x00FFFFFF); |
- tPrimary = (coll->leadBytePermutationTable[tPrimary>>24] << 24) | (tPrimary & 0x00FFFFFF); |
- } |
- // if two primaries are different, we are done |
- result = (sPrimary < tPrimary) ? UCOL_LESS: UCOL_GREATER; |
- goto commonReturn; |
- } |
- } // no primary difference... do the rest from the buffers |
- } else { // shifted - do a slightly more complicated processing :) |
- for(;;) { |
- UBool sInShifted = FALSE; |
- UBool tInShifted = FALSE; |
- // This version of code can be refactored. However, it seems easier to understand this way. |
- // Source loop. Same as the target loop. |
- for(;;) { |
- sOrder = ucol_IGetNextCE(coll, sColl, status); |
- if(sOrder == UCOL_NO_MORE_CES) { |
- UCOL_CEBUF_PUT(&sCEs, sOrder, sColl, status); |
- break; |
- } else if(sOrder == 0 || (sInShifted && (sOrder & UCOL_PRIMARYMASK) == 0)) { |
- /* UCA amendment - ignore ignorables that follow shifted code points */ |
- continue; |
- } else if(isContinuation(sOrder)) { |
- if((sOrder & UCOL_PRIMARYMASK) > 0) { /* There is primary value */ |
- if(sInShifted) { |
- sOrder = (sOrder & UCOL_PRIMARYMASK) | 0xC0; /* preserve interesting continuation */ |
- UCOL_CEBUF_PUT(&sCEs, sOrder, sColl, status); |
- continue; |
- } else { |
- UCOL_CEBUF_PUT(&sCEs, sOrder, sColl, status); |
- break; |
- } |
- } else { /* Just lower level values */ |
- if(sInShifted) { |
- continue; |
- } else { |
- UCOL_CEBUF_PUT(&sCEs, sOrder, sColl, status); |
- continue; |
- } |
- } |
- } else { /* regular */ |
- if(coll->leadBytePermutationTable != NULL){ |
- sOrder = (coll->leadBytePermutationTable[sOrder>>24] << 24) | (sOrder & 0x00FFFFFF); |
- } |
- if((sOrder & UCOL_PRIMARYMASK) > LVT) { |
- UCOL_CEBUF_PUT(&sCEs, sOrder, sColl, status); |
- break; |
- } else { |
- if((sOrder & UCOL_PRIMARYMASK) > 0) { |
- sInShifted = TRUE; |
- sOrder &= UCOL_PRIMARYMASK; |
- UCOL_CEBUF_PUT(&sCEs, sOrder, sColl, status); |
- continue; |
- } else { |
- UCOL_CEBUF_PUT(&sCEs, sOrder, sColl, status); |
- sInShifted = FALSE; |
- continue; |
- } |
- } |
- } |
- } |
- sOrder &= UCOL_PRIMARYMASK; |
- sInShifted = FALSE; |
- |
- for(;;) { |
- tOrder = ucol_IGetNextCE(coll, tColl, status); |
- if(tOrder == UCOL_NO_MORE_CES) { |
- UCOL_CEBUF_PUT(&tCEs, tOrder, tColl, status); |
- break; |
- } else if(tOrder == 0 || (tInShifted && (tOrder & UCOL_PRIMARYMASK) == 0)) { |
- /* UCA amendment - ignore ignorables that follow shifted code points */ |
- continue; |
- } else if(isContinuation(tOrder)) { |
- if((tOrder & UCOL_PRIMARYMASK) > 0) { /* There is primary value */ |
- if(tInShifted) { |
- tOrder = (tOrder & UCOL_PRIMARYMASK) | 0xC0; /* preserve interesting continuation */ |
- UCOL_CEBUF_PUT(&tCEs, tOrder, tColl, status); |
- continue; |
- } else { |
- UCOL_CEBUF_PUT(&tCEs, tOrder, tColl, status); |
- break; |
- } |
- } else { /* Just lower level values */ |
- if(tInShifted) { |
- continue; |
- } else { |
- UCOL_CEBUF_PUT(&tCEs, tOrder, tColl, status); |
- continue; |
- } |
- } |
- } else { /* regular */ |
- if(coll->leadBytePermutationTable != NULL){ |
- tOrder = (coll->leadBytePermutationTable[tOrder>>24] << 24) | (tOrder & 0x00FFFFFF); |
- } |
- if((tOrder & UCOL_PRIMARYMASK) > LVT) { |
- UCOL_CEBUF_PUT(&tCEs, tOrder, tColl, status); |
- break; |
- } else { |
- if((tOrder & UCOL_PRIMARYMASK) > 0) { |
- tInShifted = TRUE; |
- tOrder &= UCOL_PRIMARYMASK; |
- UCOL_CEBUF_PUT(&tCEs, tOrder, tColl, status); |
- continue; |
- } else { |
- UCOL_CEBUF_PUT(&tCEs, tOrder, tColl, status); |
- tInShifted = FALSE; |
- continue; |
- } |
- } |
- } |
- } |
- tOrder &= UCOL_PRIMARYMASK; |
- tInShifted = FALSE; |
- |
- if(sOrder == tOrder) { |
- /* |
- if(doHiragana && hirResult == UCOL_EQUAL) { |
- if((sColl.flags & UCOL_WAS_HIRAGANA) != (tColl.flags & UCOL_WAS_HIRAGANA)) { |
- hirResult = ((sColl.flags & UCOL_WAS_HIRAGANA) > (tColl.flags & UCOL_WAS_HIRAGANA)) |
- ? UCOL_LESS:UCOL_GREATER; |
- } |
- } |
- */ |
- if(sOrder == UCOL_NO_MORE_CES_PRIMARY) { |
- break; |
- } else { |
- sOrder = 0; |
- tOrder = 0; |
- continue; |
- } |
- } else { |
- result = (sOrder < tOrder) ? UCOL_LESS : UCOL_GREATER; |
- goto commonReturn; |
- } |
- } /* no primary difference... do the rest from the buffers */ |
- } |
- |
- /* now, we're gonna reexamine collected CEs */ |
- uint32_t *sCE; |
- uint32_t *tCE; |
- |
- /* This is the secondary level of comparison */ |
- if(checkSecTer) { |
- if(!isFrenchSec) { /* normal */ |
- sCE = sCEs.buf; |
- tCE = tCEs.buf; |
- for(;;) { |
- while (secS == 0) { |
- secS = *(sCE++) & UCOL_SECONDARYMASK; |
- } |
- |
- while(secT == 0) { |
- secT = *(tCE++) & UCOL_SECONDARYMASK; |
- } |
- |
- if(secS == secT) { |
- if(secS == UCOL_NO_MORE_CES_SECONDARY) { |
- break; |
- } else { |
- secS = 0; secT = 0; |
- continue; |
- } |
- } else { |
- result = (secS < secT) ? UCOL_LESS : UCOL_GREATER; |
- goto commonReturn; |
- } |
- } |
- } else { /* do the French */ |
- uint32_t *sCESave = NULL; |
- uint32_t *tCESave = NULL; |
- sCE = sCEs.pos-2; /* this could also be sCEs-- if needs to be optimized */ |
- tCE = tCEs.pos-2; |
- for(;;) { |
- while (secS == 0 && sCE >= sCEs.buf) { |
- if(sCESave == NULL) { |
- secS = *(sCE--); |
- if(isContinuation(secS)) { |
- while(isContinuation(secS = *(sCE--))) |
- ; |
- /* after this, secS has the start of continuation, and sCEs points before that */ |
- sCESave = sCE; /* we save it, so that we know where to come back AND that we need to go forward */ |
- sCE+=2; /* need to point to the first continuation CP */ |
- /* However, now you can just continue doing stuff */ |
- } |
- } else { |
- secS = *(sCE++); |
- if(!isContinuation(secS)) { /* This means we have finished with this cont */ |
- sCE = sCESave; /* reset the pointer to before continuation */ |
- sCESave = NULL; |
- secS = 0; /* Fetch a fresh CE before the continuation sequence. */ |
- continue; |
- } |
- } |
- secS &= UCOL_SECONDARYMASK; /* remove the continuation bit */ |
- } |
- |
- while(secT == 0 && tCE >= tCEs.buf) { |
- if(tCESave == NULL) { |
- secT = *(tCE--); |
- if(isContinuation(secT)) { |
- while(isContinuation(secT = *(tCE--))) |
- ; |
- /* after this, secS has the start of continuation, and sCEs points before that */ |
- tCESave = tCE; /* we save it, so that we know where to come back AND that we need to go forward */ |
- tCE+=2; /* need to point to the first continuation CP */ |
- /* However, now you can just continue doing stuff */ |
- } |
- } else { |
- secT = *(tCE++); |
- if(!isContinuation(secT)) { /* This means we have finished with this cont */ |
- tCE = tCESave; /* reset the pointer to before continuation */ |
- tCESave = NULL; |
- secT = 0; /* Fetch a fresh CE before the continuation sequence. */ |
- continue; |
- } |
- } |
- secT &= UCOL_SECONDARYMASK; /* remove the continuation bit */ |
- } |
- |
- if(secS == secT) { |
- if(secS == UCOL_NO_MORE_CES_SECONDARY || (sCE < sCEs.buf && tCE < tCEs.buf)) { |
- break; |
- } else { |
- secS = 0; secT = 0; |
- continue; |
- } |
- } else { |
- result = (secS < secT) ? UCOL_LESS : UCOL_GREATER; |
- goto commonReturn; |
- } |
- } |
- } |
- } |
- |
- /* doing the case bit */ |
- if(checkCase) { |
- sCE = sCEs.buf; |
- tCE = tCEs.buf; |
- for(;;) { |
- while((secS & UCOL_REMOVE_CASE) == 0) { |
- if(!isContinuation(*sCE++)) { |
- secS =*(sCE-1); |
- if(((secS & UCOL_PRIMARYMASK) != 0) || strength > UCOL_PRIMARY) { |
- // primary ignorables should not be considered on the case level when the strength is primary |
- // otherwise, the CEs stop being well-formed |
- secS &= UCOL_TERT_CASE_MASK; |
- secS ^= caseSwitch; |
- } else { |
- secS = 0; |
- } |
- } else { |
- secS = 0; |
- } |
- } |
- |
- while((secT & UCOL_REMOVE_CASE) == 0) { |
- if(!isContinuation(*tCE++)) { |
- secT = *(tCE-1); |
- if(((secT & UCOL_PRIMARYMASK) != 0) || strength > UCOL_PRIMARY) { |
- // primary ignorables should not be considered on the case level when the strength is primary |
- // otherwise, the CEs stop being well-formed |
- secT &= UCOL_TERT_CASE_MASK; |
- secT ^= caseSwitch; |
- } else { |
- secT = 0; |
- } |
- } else { |
- secT = 0; |
- } |
- } |
- |
- if((secS & UCOL_CASE_BIT_MASK) < (secT & UCOL_CASE_BIT_MASK)) { |
- result = UCOL_LESS; |
- goto commonReturn; |
- } else if((secS & UCOL_CASE_BIT_MASK) > (secT & UCOL_CASE_BIT_MASK)) { |
- result = UCOL_GREATER; |
- goto commonReturn; |
- } |
- |
- if((secS & UCOL_REMOVE_CASE) == UCOL_NO_MORE_CES_TERTIARY || (secT & UCOL_REMOVE_CASE) == UCOL_NO_MORE_CES_TERTIARY ) { |
- break; |
- } else { |
- secS = 0; |
- secT = 0; |
- } |
- } |
- } |
- |
- /* Tertiary level */ |
- if(checkTertiary) { |
- secS = 0; |
- secT = 0; |
- sCE = sCEs.buf; |
- tCE = tCEs.buf; |
- for(;;) { |
- while((secS & UCOL_REMOVE_CASE) == 0) { |
- sOrder = *sCE++; |
- secS = sOrder & tertiaryMask; |
- if(!isContinuation(sOrder)) { |
- secS ^= caseSwitch; |
- } else { |
- secS &= UCOL_REMOVE_CASE; |
- } |
- } |
- |
- while((secT & UCOL_REMOVE_CASE) == 0) { |
- tOrder = *tCE++; |
- secT = tOrder & tertiaryMask; |
- if(!isContinuation(tOrder)) { |
- secT ^= caseSwitch; |
- } else { |
- secT &= UCOL_REMOVE_CASE; |
- } |
- } |
- |
- if(secS == secT) { |
- if((secS & UCOL_REMOVE_CASE) == 1) { |
- break; |
- } else { |
- secS = 0; secT = 0; |
- continue; |
- } |
- } else { |
- result = (secS < secT) ? UCOL_LESS : UCOL_GREATER; |
- goto commonReturn; |
- } |
- } |
- } |
- |
- |
- if(qShifted /*checkQuad*/) { |
- UBool sInShifted = TRUE; |
- UBool tInShifted = TRUE; |
- secS = 0; |
- secT = 0; |
- sCE = sCEs.buf; |
- tCE = tCEs.buf; |
- for(;;) { |
- while((secS == 0 && secS != UCOL_NO_MORE_CES) || (isContinuation(secS) && !sInShifted)) { |
- secS = *(sCE++); |
- if(isContinuation(secS)) { |
- if(!sInShifted) { |
- continue; |
- } |
- } else if(secS > LVT || (secS & UCOL_PRIMARYMASK) == 0) { /* non continuation */ |
- secS = UCOL_PRIMARYMASK; |
- sInShifted = FALSE; |
- } else { |
- sInShifted = TRUE; |
- } |
- } |
- secS &= UCOL_PRIMARYMASK; |
- |
- |
- while((secT == 0 && secT != UCOL_NO_MORE_CES) || (isContinuation(secT) && !tInShifted)) { |
- secT = *(tCE++); |
- if(isContinuation(secT)) { |
- if(!tInShifted) { |
- continue; |
- } |
- } else if(secT > LVT || (secT & UCOL_PRIMARYMASK) == 0) { |
- secT = UCOL_PRIMARYMASK; |
- tInShifted = FALSE; |
- } else { |
- tInShifted = TRUE; |
- } |
- } |
- secT &= UCOL_PRIMARYMASK; |
- |
- if(secS == secT) { |
- if(secS == UCOL_NO_MORE_CES_PRIMARY) { |
- break; |
- } else { |
- secS = 0; secT = 0; |
- continue; |
- } |
- } else { |
- result = (secS < secT) ? UCOL_LESS : UCOL_GREATER; |
- goto commonReturn; |
- } |
- } |
- } else if(doHiragana && hirResult != UCOL_EQUAL) { |
- // If we're fine on quaternaries, we might be different |
- // on Hiragana. This, however, might fail us in shifted. |
- result = hirResult; |
- goto commonReturn; |
+ // consistency checks |
+ if(status == NULL || U_FAILURE(*status)) { |
+ return 0; |
} |
- |
- /* For IDENTICAL comparisons, we use a bitwise character comparison */ |
- /* as a tiebreaker if all else is equal. */ |
- /* Getting here should be quite rare - strings are not identical - */ |
- /* that is checked first, but compared == through all other checks. */ |
- if(checkIdent) |
- { |
- //result = ucol_checkIdent(&sColl, &tColl, coll->normalizationMode == UCOL_ON); |
- result = ucol_checkIdent(sColl, tColl, TRUE, status); |
+ if(source == NULL) { |
+ *status = U_ILLEGAL_ARGUMENT_ERROR; |
+ return 0; |
} |
-commonReturn: |
- if ((sColl->flags | tColl->flags) & UCOL_ITER_ALLOCATED) { |
- if (sCEs.buf != sCEs.localArray ) { |
- uprv_free(sCEs.buf); |
- } |
- if (tCEs.buf != tCEs.localArray ) { |
- uprv_free(tCEs.buf); |
+ int32_t sourceIndex = 0; |
+ // Scan the string until we skip enough of the key OR reach the end of the key |
+ do { |
+ sourceIndex++; |
+ if(source[sourceIndex] == Collation::LEVEL_SEPARATOR_BYTE) { |
+ noOfLevels--; |
} |
- } |
- |
- return result; |
-} |
+ } while (noOfLevels > 0 |
+ && (source[sourceIndex] != 0 || sourceIndex < sourceLength)); |
-static UCollationResult |
-ucol_strcollRegular(const UCollator *coll, |
- const UChar *source, int32_t sourceLength, |
- const UChar *target, int32_t targetLength, |
- UErrorCode *status) { |
- collIterate sColl, tColl; |
- // Preparing the context objects for iterating over strings |
- IInit_collIterate(coll, source, sourceLength, &sColl, status); |
- IInit_collIterate(coll, target, targetLength, &tColl, status); |
- if(U_FAILURE(*status)) { |
- return UCOL_LESS; |
+ if((source[sourceIndex] == 0 || sourceIndex == sourceLength) |
+ && noOfLevels > 0) { |
+ *status = U_SORT_KEY_TOO_SHORT_WARNING; |
} |
- return ucol_strcollRegular(&sColl, &tColl, status); |
-} |
- |
-static inline uint32_t |
-ucol_getLatinOneContraction(const UCollator *coll, int32_t strength, |
- uint32_t CE, const UChar *s, int32_t *index, int32_t len) |
-{ |
- const UChar *UCharOffset = (UChar *)coll->image+getContractOffset(CE&0xFFF); |
- int32_t latinOneOffset = (CE & 0x00FFF000) >> 12; |
- int32_t offset = 1; |
- UChar schar = 0, tchar = 0; |
- |
- for(;;) { |
- if(len == -1) { |
- if(s[*index] == 0) { // end of string |
- return(coll->latinOneCEs[strength*coll->latinOneTableLen+latinOneOffset]); |
- } else { |
- schar = s[*index]; |
- } |
- } else { |
- if(*index == len) { |
- return(coll->latinOneCEs[strength*coll->latinOneTableLen+latinOneOffset]); |
- } else { |
- schar = s[*index]; |
- } |
- } |
- while(schar > (tchar = *(UCharOffset+offset))) { /* since the contraction codepoints should be ordered, we skip all that are smaller */ |
- offset++; |
- } |
- if (schar == tchar) { |
- (*index)++; |
- return(coll->latinOneCEs[strength*coll->latinOneTableLen+latinOneOffset+offset]); |
+ // READ ME: this code assumes that the values for boundType |
+ // enum will not changes. They are set so that the enum value |
+ // corresponds to the number of extra bytes each bound type |
+ // needs. |
+ if(result != NULL && resultLength >= sourceIndex+boundType) { |
+ uprv_memcpy(result, source, sourceIndex); |
+ switch(boundType) { |
+ // Lower bound just gets terminated. No extra bytes |
+ case UCOL_BOUND_LOWER: // = 0 |
+ break; |
+ // Upper bound needs one extra byte |
+ case UCOL_BOUND_UPPER: // = 1 |
+ result[sourceIndex++] = 2; |
+ break; |
+ // Upper long bound needs two extra bytes |
+ case UCOL_BOUND_UPPER_LONG: // = 2 |
+ result[sourceIndex++] = 0xFF; |
+ result[sourceIndex++] = 0xFF; |
+ break; |
+ default: |
+ *status = U_ILLEGAL_ARGUMENT_ERROR; |
+ return 0; |
} |
- else |
- { |
- if(schar & 0xFF00 /*> UCOL_ENDOFLATIN1RANGE*/) { |
- return UCOL_BAIL_OUT_CE; |
- } |
- // skip completely ignorables |
- uint32_t isZeroCE = UTRIE_GET32_FROM_LEAD(&coll->mapping, schar); |
- if(isZeroCE == 0) { // we have to ignore completely ignorables |
- (*index)++; |
- continue; |
- } |
+ result[sourceIndex++] = 0; |
- return(coll->latinOneCEs[strength*coll->latinOneTableLen+latinOneOffset]); |
- } |
+ return sourceIndex; |
+ } else { |
+ return sourceIndex+boundType+1; |
} |
} |
+U_CAPI void U_EXPORT2 |
+ucol_setMaxVariable(UCollator *coll, UColReorderCode group, UErrorCode *pErrorCode) { |
+ if(U_FAILURE(*pErrorCode)) { return; } |
+ Collator::fromUCollator(coll)->setMaxVariable(group, *pErrorCode); |
+} |
-/** |
- * This is a fast strcoll, geared towards text in Latin-1. |
- * It supports contractions of size two, French secondaries |
- * and case switching. You can use it with strengths primary |
- * to tertiary. It does not support shifted and case level. |
- * It relies on the table build by setupLatin1Table. If it |
- * doesn't understand something, it will go to the regular |
- * strcoll. |
- */ |
-static UCollationResult |
-ucol_strcollUseLatin1( const UCollator *coll, |
- const UChar *source, |
- int32_t sLen, |
- const UChar *target, |
- int32_t tLen, |
- UErrorCode *status) |
-{ |
- U_ALIGN_CODE(16); |
- int32_t strength = coll->strength; |
- |
- int32_t sIndex = 0, tIndex = 0; |
- UChar sChar = 0, tChar = 0; |
- uint32_t sOrder=0, tOrder=0; |
- |
- UBool endOfSource = FALSE; |
- |
- uint32_t *elements = coll->latinOneCEs; |
- |
- UBool haveContractions = FALSE; // if we have contractions in our string |
- // we cannot do French secondary |
- |
- // Do the primary level |
- for(;;) { |
- while(sOrder==0) { // this loop skips primary ignorables |
- // sOrder=getNextlatinOneCE(source); |
- if(sLen==-1) { // handling zero terminated strings |
- sChar=source[sIndex++]; |
- if(sChar==0) { |
- endOfSource = TRUE; |
- break; |
- } |
- } else { // handling strings with known length |
- if(sIndex==sLen) { |
- endOfSource = TRUE; |
- break; |
- } |
- sChar=source[sIndex++]; |
- } |
- if(sChar&0xFF00) { // if we encounter non-latin-1, we bail out (sChar > 0xFF, but this is faster on win32) |
- //fprintf(stderr, "R"); |
- return ucol_strcollRegular(coll, source, sLen, target, tLen, status); |
- } |
- sOrder = elements[sChar]; |
- if(sOrder >= UCOL_NOT_FOUND) { // if we got a special |
- // specials can basically be either contractions or bail-out signs. If we get anything |
- // else, we'll bail out anywasy |
- if(getCETag(sOrder) == CONTRACTION_TAG) { |
- sOrder = ucol_getLatinOneContraction(coll, UCOL_PRIMARY, sOrder, source, &sIndex, sLen); |
- haveContractions = TRUE; // if there are contractions, we cannot do French secondary |
- // However, if there are contractions in the table, but we always use just one char, |
- // we might be able to do French. This should be checked out. |
- } |
- if(sOrder >= UCOL_NOT_FOUND /*== UCOL_BAIL_OUT_CE*/) { |
- //fprintf(stderr, "S"); |
- return ucol_strcollRegular(coll, source, sLen, target, tLen, status); |
- } |
- } |
- } |
- |
- while(tOrder==0) { // this loop skips primary ignorables |
- // tOrder=getNextlatinOneCE(target); |
- if(tLen==-1) { // handling zero terminated strings |
- tChar=target[tIndex++]; |
- if(tChar==0) { |
- if(endOfSource) { // this is different than source loop, |
- // as we already know that source loop is done here, |
- // so we can either finish the primary loop if both |
- // strings are done or anounce the result if only |
- // target is done. Same below. |
- goto endOfPrimLoop; |
- } else { |
- return UCOL_GREATER; |
- } |
- } |
- } else { // handling strings with known length |
- if(tIndex==tLen) { |
- if(endOfSource) { |
- goto endOfPrimLoop; |
- } else { |
- return UCOL_GREATER; |
- } |
- } |
- tChar=target[tIndex++]; |
- } |
- if(tChar&0xFF00) { // if we encounter non-latin-1, we bail out (sChar > 0xFF, but this is faster on win32) |
- //fprintf(stderr, "R"); |
- return ucol_strcollRegular(coll, source, sLen, target, tLen, status); |
- } |
- tOrder = elements[tChar]; |
- if(tOrder >= UCOL_NOT_FOUND) { |
- // Handling specials, see the comments for source |
- if(getCETag(tOrder) == CONTRACTION_TAG) { |
- tOrder = ucol_getLatinOneContraction(coll, UCOL_PRIMARY, tOrder, target, &tIndex, tLen); |
- haveContractions = TRUE; |
- } |
- if(tOrder >= UCOL_NOT_FOUND /*== UCOL_BAIL_OUT_CE*/) { |
- //fprintf(stderr, "S"); |
- return ucol_strcollRegular(coll, source, sLen, target, tLen, status); |
- } |
- } |
- } |
- if(endOfSource) { // source is finished, but target is not, say the result. |
- return UCOL_LESS; |
- } |
- |
- if(sOrder == tOrder) { // if we have same CEs, we continue the loop |
- sOrder = 0; tOrder = 0; |
- continue; |
- } else { |
- // compare current top bytes |
- if(((sOrder^tOrder)&0xFF000000)!=0) { |
- // top bytes differ, return difference |
- if(sOrder < tOrder) { |
- return UCOL_LESS; |
- } else if(sOrder > tOrder) { |
- return UCOL_GREATER; |
- } |
- // instead of return (int32_t)(sOrder>>24)-(int32_t)(tOrder>>24); |
- // since we must return enum value |
- } |
+U_CAPI UColReorderCode U_EXPORT2 |
+ucol_getMaxVariable(const UCollator *coll) { |
+ return Collator::fromUCollator(coll)->getMaxVariable(); |
+} |
- // top bytes match, continue with following bytes |
- sOrder<<=8; |
- tOrder<<=8; |
- } |
+U_CAPI uint32_t U_EXPORT2 |
+ucol_setVariableTop(UCollator *coll, const UChar *varTop, int32_t len, UErrorCode *status) { |
+ if(U_FAILURE(*status) || coll == NULL) { |
+ return 0; |
} |
+ return Collator::fromUCollator(coll)->setVariableTop(varTop, len, *status); |
+} |
-endOfPrimLoop: |
- // after primary loop, we definitely know the sizes of strings, |
- // so we set it and use simpler loop for secondaries and tertiaries |
- sLen = sIndex; tLen = tIndex; |
- if(strength >= UCOL_SECONDARY) { |
- // adjust the table beggining |
- elements += coll->latinOneTableLen; |
- endOfSource = FALSE; |
- |
- if(coll->frenchCollation == UCOL_OFF) { // non French |
- // This loop is a simplified copy of primary loop |
- // at this point we know that whole strings are latin-1, so we don't |
- // check for that. We also know that we only have contractions as |
- // specials. |
- sIndex = 0; tIndex = 0; |
- for(;;) { |
- while(sOrder==0) { |
- if(sIndex==sLen) { |
- endOfSource = TRUE; |
- break; |
- } |
- sChar=source[sIndex++]; |
- sOrder = elements[sChar]; |
- if(sOrder > UCOL_NOT_FOUND) { |
- sOrder = ucol_getLatinOneContraction(coll, UCOL_SECONDARY, sOrder, source, &sIndex, sLen); |
- } |
- } |
- |
- while(tOrder==0) { |
- if(tIndex==tLen) { |
- if(endOfSource) { |
- goto endOfSecLoop; |
- } else { |
- return UCOL_GREATER; |
- } |
- } |
- tChar=target[tIndex++]; |
- tOrder = elements[tChar]; |
- if(tOrder > UCOL_NOT_FOUND) { |
- tOrder = ucol_getLatinOneContraction(coll, UCOL_SECONDARY, tOrder, target, &tIndex, tLen); |
- } |
- } |
- if(endOfSource) { |
- return UCOL_LESS; |
- } |
- |
- if(sOrder == tOrder) { |
- sOrder = 0; tOrder = 0; |
- continue; |
- } else { |
- // see primary loop for comments on this |
- if(((sOrder^tOrder)&0xFF000000)!=0) { |
- if(sOrder < tOrder) { |
- return UCOL_LESS; |
- } else if(sOrder > tOrder) { |
- return UCOL_GREATER; |
- } |
- } |
- sOrder<<=8; |
- tOrder<<=8; |
- } |
- } |
- } else { // French |
- if(haveContractions) { // if we have contractions, we have to bail out |
- // since we don't really know how to handle them here |
- return ucol_strcollRegular(coll, source, sLen, target, tLen, status); |
- } |
- // For French, we go backwards |
- sIndex = sLen; tIndex = tLen; |
- for(;;) { |
- while(sOrder==0) { |
- if(sIndex==0) { |
- endOfSource = TRUE; |
- break; |
- } |
- sChar=source[--sIndex]; |
- sOrder = elements[sChar]; |
- // don't even look for contractions |
- } |
- |
- while(tOrder==0) { |
- if(tIndex==0) { |
- if(endOfSource) { |
- goto endOfSecLoop; |
- } else { |
- return UCOL_GREATER; |
- } |
- } |
- tChar=target[--tIndex]; |
- tOrder = elements[tChar]; |
- // don't even look for contractions |
- } |
- if(endOfSource) { |
- return UCOL_LESS; |
- } |
- |
- if(sOrder == tOrder) { |
- sOrder = 0; tOrder = 0; |
- continue; |
- } else { |
- // see the primary loop for comments |
- if(((sOrder^tOrder)&0xFF000000)!=0) { |
- if(sOrder < tOrder) { |
- return UCOL_LESS; |
- } else if(sOrder > tOrder) { |
- return UCOL_GREATER; |
- } |
- } |
- sOrder<<=8; |
- tOrder<<=8; |
- } |
- } |
- } |
+U_CAPI uint32_t U_EXPORT2 ucol_getVariableTop(const UCollator *coll, UErrorCode *status) { |
+ if(U_FAILURE(*status) || coll == NULL) { |
+ return 0; |
} |
+ return Collator::fromUCollator(coll)->getVariableTop(*status); |
+} |
-endOfSecLoop: |
- if(strength >= UCOL_TERTIARY) { |
- // tertiary loop is the same as secondary (except no French) |
- elements += coll->latinOneTableLen; |
- sIndex = 0; tIndex = 0; |
- endOfSource = FALSE; |
- for(;;) { |
- while(sOrder==0) { |
- if(sIndex==sLen) { |
- endOfSource = TRUE; |
- break; |
- } |
- sChar=source[sIndex++]; |
- sOrder = elements[sChar]; |
- if(sOrder > UCOL_NOT_FOUND) { |
- sOrder = ucol_getLatinOneContraction(coll, UCOL_TERTIARY, sOrder, source, &sIndex, sLen); |
- } |
- } |
- while(tOrder==0) { |
- if(tIndex==tLen) { |
- if(endOfSource) { |
- return UCOL_EQUAL; // if both strings are at the end, they are equal |
- } else { |
- return UCOL_GREATER; |
- } |
- } |
- tChar=target[tIndex++]; |
- tOrder = elements[tChar]; |
- if(tOrder > UCOL_NOT_FOUND) { |
- tOrder = ucol_getLatinOneContraction(coll, UCOL_TERTIARY, tOrder, target, &tIndex, tLen); |
- } |
- } |
- if(endOfSource) { |
- return UCOL_LESS; |
- } |
- if(sOrder == tOrder) { |
- sOrder = 0; tOrder = 0; |
- continue; |
- } else { |
- if(((sOrder^tOrder)&0xff000000)!=0) { |
- if(sOrder < tOrder) { |
- return UCOL_LESS; |
- } else if(sOrder > tOrder) { |
- return UCOL_GREATER; |
- } |
- } |
- sOrder<<=8; |
- tOrder<<=8; |
- } |
- } |
+U_CAPI void U_EXPORT2 |
+ucol_restoreVariableTop(UCollator *coll, const uint32_t varTop, UErrorCode *status) { |
+ if(U_FAILURE(*status) || coll == NULL) { |
+ return; |
} |
- return UCOL_EQUAL; |
+ Collator::fromUCollator(coll)->setVariableTop(varTop, *status); |
} |
-/* |
- Note: ucol_strcollUTF8 supports null terminated input. Calculating length of |
- null terminated input string takes extra amount of CPU cycles. |
-*/ |
-static UCollationResult |
-ucol_strcollRegularUTF8( |
- const UCollator *coll, |
- const char *source, |
- int32_t sourceLength, |
- const char *target, |
- int32_t targetLength, |
- UErrorCode *status) |
-{ |
- UCharIterator src; |
- UCharIterator tgt; |
- |
- uiter_setUTF8(&src, source, sourceLength); |
- uiter_setUTF8(&tgt, target, targetLength); |
- |
- // Preparing the context objects for iterating over strings |
- collIterate sColl, tColl; |
- IInit_collIterate(coll, NULL, -1, &sColl, status); |
- IInit_collIterate(coll, NULL, -1, &tColl, status); |
- if(U_FAILURE(*status)) { |
- UTRACE_EXIT_VALUE_STATUS(UCOL_EQUAL, *status) |
- return UCOL_EQUAL; |
+U_CAPI void U_EXPORT2 |
+ucol_setAttribute(UCollator *coll, UColAttribute attr, UColAttributeValue value, UErrorCode *status) { |
+ if(U_FAILURE(*status) || coll == NULL) { |
+ return; |
} |
- // The division for the array length may truncate the array size to |
- // a little less than UNORM_ITER_SIZE, but that size is dimensioned too high |
- // for all platforms anyway. |
- UAlignedMemory stackNormIter1[UNORM_ITER_SIZE/sizeof(UAlignedMemory)]; |
- UAlignedMemory stackNormIter2[UNORM_ITER_SIZE/sizeof(UAlignedMemory)]; |
- UNormIterator *sNormIter = NULL, *tNormIter = NULL; |
- sColl.iterator = &src; |
- sColl.flags |= UCOL_USE_ITERATOR; |
- tColl.flags |= UCOL_USE_ITERATOR; |
- tColl.iterator = &tgt; |
- |
- if(ucol_getAttribute(coll, UCOL_NORMALIZATION_MODE, status) == UCOL_ON) { |
- sNormIter = unorm_openIter(stackNormIter1, sizeof(stackNormIter1), status); |
- sColl.iterator = unorm_setIter(sNormIter, &src, UNORM_FCD, status); |
- sColl.flags &= ~UCOL_ITER_NORM; |
+ Collator::fromUCollator(coll)->setAttribute(attr, value, *status); |
+} |
- tNormIter = unorm_openIter(stackNormIter2, sizeof(stackNormIter2), status); |
- tColl.iterator = unorm_setIter(tNormIter, &tgt, UNORM_FCD, status); |
- tColl.flags &= ~UCOL_ITER_NORM; |
+U_CAPI UColAttributeValue U_EXPORT2 |
+ucol_getAttribute(const UCollator *coll, UColAttribute attr, UErrorCode *status) { |
+ if(U_FAILURE(*status) || coll == NULL) { |
+ return UCOL_DEFAULT; |
} |
- return ucol_strcollRegular(&sColl, &tColl, status); |
+ return Collator::fromUCollator(coll)->getAttribute(attr, *status); |
} |
-static inline uint32_t |
-ucol_getLatinOneContractionUTF8(const UCollator *coll, int32_t strength, |
- uint32_t CE, const char *s, int32_t *index, int32_t len) |
+U_CAPI void U_EXPORT2 |
+ucol_setStrength( UCollator *coll, |
+ UCollationStrength strength) |
{ |
- const UChar *UCharOffset = (UChar *)coll->image+getContractOffset(CE&0xFFF); |
- int32_t latinOneOffset = (CE & 0x00FFF000) >> 12; |
- int32_t offset = 1; |
- UChar32 schar = 0, tchar = 0; |
- |
- for(;;) { |
- if (*index == len) { |
- return(coll->latinOneCEs[strength*coll->latinOneTableLen+latinOneOffset]); |
- } |
- U8_GET_OR_FFFD((const uint8_t*)s, 0, *index, len, schar); |
- if (len < 0 && schar == 0) { |
- return(coll->latinOneCEs[strength*coll->latinOneTableLen+latinOneOffset]); |
- } |
- |
- while(schar > (tchar = *(UCharOffset+offset))) { /* since the contraction codepoints should be ordered, we skip all that are smaller */ |
- offset++; |
- } |
- |
- if (schar == tchar) { |
- U8_FWD_1(s, *index, len); |
- return(coll->latinOneCEs[strength*coll->latinOneTableLen+latinOneOffset+offset]); |
- } |
- else |
- { |
- if(schar & 0xFF00 /*> UCOL_ENDOFLATIN1RANGE*/) { |
- return UCOL_BAIL_OUT_CE; |
- } |
- // skip completely ignorables |
- uint32_t isZeroCE = UTRIE_GET32_FROM_LEAD(&coll->mapping, schar); |
- if(isZeroCE == 0) { // we have to ignore completely ignorables |
- U8_FWD_1(s, *index, len); |
- continue; |
- } |
- |
- return(coll->latinOneCEs[strength*coll->latinOneTableLen+latinOneOffset]); |
- } |
- } |
+ UErrorCode status = U_ZERO_ERROR; |
+ ucol_setAttribute(coll, UCOL_STRENGTH, strength, &status); |
} |
-static inline UCollationResult |
-ucol_strcollUseLatin1UTF8( |
- const UCollator *coll, |
- const char *source, |
- int32_t sLen, |
- const char *target, |
- int32_t tLen, |
- UErrorCode *status) |
+U_CAPI UCollationStrength U_EXPORT2 |
+ucol_getStrength(const UCollator *coll) |
{ |
- U_ALIGN_CODE(16); |
- int32_t strength = coll->strength; |
- |
- int32_t sIndex = 0, tIndex = 0; |
- UChar32 sChar = 0, tChar = 0; |
- uint32_t sOrder=0, tOrder=0; |
- |
- UBool endOfSource = FALSE; |
- |
- uint32_t *elements = coll->latinOneCEs; |
- |
- UBool haveContractions = FALSE; // if we have contractions in our string |
- // we cannot do French secondary |
- |
- // Do the primary level |
- for(;;) { |
- while(sOrder==0) { // this loop skips primary ignorables |
- // sOrder=getNextlatinOneCE(source); |
- if (sIndex == sLen) { |
- endOfSource = TRUE; |
- break; |
- } |
- U8_NEXT_OR_FFFD(source, sIndex, sLen ,sChar); |
- if (sLen < 0 && sChar == 0) { |
- endOfSource = TRUE; |
- sLen = sIndex; |
- break; |
- } |
- if(sChar&0xFFFFFF00) { // if we encounter non-latin-1, we bail out (sChar > 0xFF, but this is faster on win32) |
- //fprintf(stderr, "R"); |
- return ucol_strcollRegularUTF8(coll, source, sLen, target, tLen, status); |
- } |
- sOrder = elements[sChar]; |
- if(sOrder >= UCOL_NOT_FOUND) { // if we got a special |
- // specials can basically be either contractions or bail-out signs. If we get anything |
- // else, we'll bail out anywasy |
- if(getCETag(sOrder) == CONTRACTION_TAG) { |
- sOrder = ucol_getLatinOneContractionUTF8(coll, UCOL_PRIMARY, sOrder, source, &sIndex, sLen); |
- haveContractions = TRUE; // if there are contractions, we cannot do French secondary |
- // However, if there are contractions in the table, but we always use just one char, |
- // we might be able to do French. This should be checked out. |
- } |
- if(sOrder >= UCOL_NOT_FOUND /*== UCOL_BAIL_OUT_CE*/) { |
- //fprintf(stderr, "S"); |
- return ucol_strcollRegularUTF8(coll, source, sLen, target, tLen, status); |
- } |
- } |
- } |
- |
- while(tOrder==0) { // this loop skips primary ignorables |
- // tOrder=getNextlatinOneCE(target); |
- if (tIndex == tLen) { |
- if(endOfSource) { |
- goto endOfPrimLoopU8; |
- } else { |
- return UCOL_GREATER; |
- } |
- } |
- U8_NEXT_OR_FFFD(target, tIndex, tLen, tChar); |
- if (tLen < 0 && tChar == 0) { |
- if(endOfSource) { |
- tLen = tIndex; |
- goto endOfPrimLoopU8; |
- } else { |
- return UCOL_GREATER; |
- } |
- } |
- if(tChar&0xFFFFFF00) { // if we encounter non-latin-1, we bail out (sChar > 0xFF, but this is faster on win32) |
- //fprintf(stderr, "R"); |
- return ucol_strcollRegularUTF8(coll, source, sLen, target, tLen, status); |
- } |
- tOrder = elements[tChar]; |
- if(tOrder >= UCOL_NOT_FOUND) { |
- // Handling specials, see the comments for source |
- if(getCETag(tOrder) == CONTRACTION_TAG) { |
- tOrder = ucol_getLatinOneContractionUTF8(coll, UCOL_PRIMARY, tOrder, target, &tIndex, tLen); |
- haveContractions = TRUE; |
- } |
- if(tOrder >= UCOL_NOT_FOUND /*== UCOL_BAIL_OUT_CE*/) { |
- //fprintf(stderr, "S"); |
- return ucol_strcollRegularUTF8(coll, source, sLen, target, tLen, status); |
- } |
- } |
- } |
- if(endOfSource) { // source is finished, but target is not, say the result. |
- return UCOL_LESS; |
- } |
- |
- if(sOrder == tOrder) { // if we have same CEs, we continue the loop |
- sOrder = 0; tOrder = 0; |
- continue; |
- } else { |
- // compare current top bytes |
- if(((sOrder^tOrder)&0xFF000000)!=0) { |
- // top bytes differ, return difference |
- if(sOrder < tOrder) { |
- return UCOL_LESS; |
- } else if(sOrder > tOrder) { |
- return UCOL_GREATER; |
- } |
- // instead of return (int32_t)(sOrder>>24)-(int32_t)(tOrder>>24); |
- // since we must return enum value |
- } |
+ UErrorCode status = U_ZERO_ERROR; |
+ return ucol_getAttribute(coll, UCOL_STRENGTH, &status); |
+} |
- // top bytes match, continue with following bytes |
- sOrder<<=8; |
- tOrder<<=8; |
- } |
+U_CAPI int32_t U_EXPORT2 |
+ucol_getReorderCodes(const UCollator *coll, |
+ int32_t *dest, |
+ int32_t destCapacity, |
+ UErrorCode *status) { |
+ if (U_FAILURE(*status)) { |
+ return 0; |
} |
-endOfPrimLoopU8: |
- // after primary loop, we definitely know the sizes of strings, |
- // so we set it and use simpler loop for secondaries and tertiaries |
- sLen = sIndex; tLen = tIndex; |
- if(strength >= UCOL_SECONDARY) { |
- // adjust the table beggining |
- elements += coll->latinOneTableLen; |
- endOfSource = FALSE; |
- |
- if(coll->frenchCollation == UCOL_OFF) { // non French |
- // This loop is a simplified copy of primary loop |
- // at this point we know that whole strings are latin-1, so we don't |
- // check for that. We also know that we only have contractions as |
- // specials. |
- sIndex = 0; tIndex = 0; |
- for(;;) { |
- while(sOrder==0) { |
- if(sIndex==sLen) { |
- endOfSource = TRUE; |
- break; |
- } |
- U_ASSERT(sLen >= 0); |
- U8_NEXT_OR_FFFD(source, sIndex, sLen, sChar); |
- U_ASSERT(sChar >= 0 && sChar <= 0xFF); |
- sOrder = elements[sChar]; |
- if(sOrder > UCOL_NOT_FOUND) { |
- sOrder = ucol_getLatinOneContractionUTF8(coll, UCOL_SECONDARY, sOrder, source, &sIndex, sLen); |
- } |
- } |
- |
- while(tOrder==0) { |
- if(tIndex==tLen) { |
- if(endOfSource) { |
- goto endOfSecLoopU8; |
- } else { |
- return UCOL_GREATER; |
- } |
- } |
- U_ASSERT(tLen >= 0); |
- U8_NEXT_OR_FFFD(target, tIndex, tLen, tChar); |
- U_ASSERT(tChar >= 0 && tChar <= 0xFF); |
- tOrder = elements[tChar]; |
- if(tOrder > UCOL_NOT_FOUND) { |
- tOrder = ucol_getLatinOneContractionUTF8(coll, UCOL_SECONDARY, tOrder, target, &tIndex, tLen); |
- } |
- } |
- if(endOfSource) { |
- return UCOL_LESS; |
- } |
+ return Collator::fromUCollator(coll)->getReorderCodes(dest, destCapacity, *status); |
+} |
- if(sOrder == tOrder) { |
- sOrder = 0; tOrder = 0; |
- continue; |
- } else { |
- // see primary loop for comments on this |
- if(((sOrder^tOrder)&0xFF000000)!=0) { |
- if(sOrder < tOrder) { |
- return UCOL_LESS; |
- } else if(sOrder > tOrder) { |
- return UCOL_GREATER; |
- } |
- } |
- sOrder<<=8; |
- tOrder<<=8; |
- } |
- } |
- } else { // French |
- if(haveContractions) { // if we have contractions, we have to bail out |
- // since we don't really know how to handle them here |
- return ucol_strcollRegularUTF8(coll, source, sLen, target, tLen, status); |
- } |
- // For French, we go backwards |
- sIndex = sLen; tIndex = tLen; |
- for(;;) { |
- while(sOrder==0) { |
- if(sIndex==0) { |
- endOfSource = TRUE; |
- break; |
- } |
- U8_PREV_OR_FFFD(source, 0, sIndex, sChar); |
- U_ASSERT(sChar >= 0 && sChar <= 0xFF); |
- sOrder = elements[sChar]; |
- // don't even look for contractions |
- } |
+U_CAPI void U_EXPORT2 |
+ucol_setReorderCodes(UCollator* coll, |
+ const int32_t* reorderCodes, |
+ int32_t reorderCodesLength, |
+ UErrorCode *status) { |
+ if (U_FAILURE(*status)) { |
+ return; |
+ } |
- while(tOrder==0) { |
- if(tIndex==0) { |
- if(endOfSource) { |
- goto endOfSecLoopU8; |
- } else { |
- return UCOL_GREATER; |
- } |
- } |
- U8_PREV_OR_FFFD(target, 0, tIndex, tChar); |
- U_ASSERT(tChar >= 0 && tChar <= 0xFF); |
- tOrder = elements[tChar]; |
- // don't even look for contractions |
- } |
- if(endOfSource) { |
- return UCOL_LESS; |
- } |
+ Collator::fromUCollator(coll)->setReorderCodes(reorderCodes, reorderCodesLength, *status); |
+} |
- if(sOrder == tOrder) { |
- sOrder = 0; tOrder = 0; |
- continue; |
- } else { |
- // see the primary loop for comments |
- if(((sOrder^tOrder)&0xFF000000)!=0) { |
- if(sOrder < tOrder) { |
- return UCOL_LESS; |
- } else if(sOrder > tOrder) { |
- return UCOL_GREATER; |
- } |
- } |
- sOrder<<=8; |
- tOrder<<=8; |
- } |
- } |
- } |
- } |
+U_CAPI int32_t U_EXPORT2 |
+ucol_getEquivalentReorderCodes(int32_t reorderCode, |
+ int32_t* dest, |
+ int32_t destCapacity, |
+ UErrorCode *pErrorCode) { |
+ return Collator::getEquivalentReorderCodes(reorderCode, dest, destCapacity, *pErrorCode); |
+} |
-endOfSecLoopU8: |
- if(strength >= UCOL_TERTIARY) { |
- // tertiary loop is the same as secondary (except no French) |
- elements += coll->latinOneTableLen; |
- sIndex = 0; tIndex = 0; |
- endOfSource = FALSE; |
- for(;;) { |
- while(sOrder==0) { |
- if(sIndex==sLen) { |
- endOfSource = TRUE; |
- break; |
- } |
- U_ASSERT(sLen >= 0); |
- U8_NEXT_OR_FFFD(source, sIndex, sLen, sChar); |
- U_ASSERT(sChar >= 0 && sChar <= 0xFF); |
- sOrder = elements[sChar]; |
- if(sOrder > UCOL_NOT_FOUND) { |
- sOrder = ucol_getLatinOneContractionUTF8(coll, UCOL_TERTIARY, sOrder, source, &sIndex, sLen); |
- } |
- } |
- while(tOrder==0) { |
- if(tIndex==tLen) { |
- if(endOfSource) { |
- return UCOL_EQUAL; // if both strings are at the end, they are equal |
- } else { |
- return UCOL_GREATER; |
- } |
- } |
- U_ASSERT(tLen >= 0); |
- U8_NEXT_OR_FFFD(target, tIndex, tLen, tChar); |
- U_ASSERT(tChar >= 0 && tChar <= 0xFF); |
- tOrder = elements[tChar]; |
- if(tOrder > UCOL_NOT_FOUND) { |
- tOrder = ucol_getLatinOneContractionUTF8(coll, UCOL_TERTIARY, tOrder, target, &tIndex, tLen); |
- } |
- } |
- if(endOfSource) { |
- return UCOL_LESS; |
- } |
- if(sOrder == tOrder) { |
- sOrder = 0; tOrder = 0; |
- continue; |
- } else { |
- if(((sOrder^tOrder)&0xff000000)!=0) { |
- if(sOrder < tOrder) { |
- return UCOL_LESS; |
- } else if(sOrder > tOrder) { |
- return UCOL_GREATER; |
- } |
- } |
- sOrder<<=8; |
- tOrder<<=8; |
- } |
- } |
- } |
- return UCOL_EQUAL; |
+U_CAPI void U_EXPORT2 |
+ucol_getVersion(const UCollator* coll, |
+ UVersionInfo versionInfo) |
+{ |
+ Collator::fromUCollator(coll)->getVersion(versionInfo); |
} |
U_CAPI UCollationResult U_EXPORT2 |
@@ -8375,94 +418,15 @@ ucol_strcollIter( const UCollator *coll, |
UTRACE_ENTRY(UTRACE_UCOL_STRCOLLITER); |
UTRACE_DATA3(UTRACE_VERBOSE, "coll=%p, sIter=%p, tIter=%p", coll, sIter, tIter); |
- if (sIter == tIter) { |
- UTRACE_EXIT_VALUE_STATUS(UCOL_EQUAL, *status) |
- return UCOL_EQUAL; |
- } |
if(sIter == NULL || tIter == NULL || coll == NULL) { |
*status = U_ILLEGAL_ARGUMENT_ERROR; |
- UTRACE_EXIT_VALUE_STATUS(UCOL_EQUAL, *status) |
- return UCOL_EQUAL; |
- } |
- |
- UCollationResult result = UCOL_EQUAL; |
- |
- // Preparing the context objects for iterating over strings |
- collIterate sColl, tColl; |
- IInit_collIterate(coll, NULL, -1, &sColl, status); |
- IInit_collIterate(coll, NULL, -1, &tColl, status); |
- if(U_FAILURE(*status)) { |
- UTRACE_EXIT_VALUE_STATUS(UCOL_EQUAL, *status) |
+ UTRACE_EXIT_VALUE_STATUS(UCOL_EQUAL, *status); |
return UCOL_EQUAL; |
} |
- // The division for the array length may truncate the array size to |
- // a little less than UNORM_ITER_SIZE, but that size is dimensioned too high |
- // for all platforms anyway. |
- UAlignedMemory stackNormIter1[UNORM_ITER_SIZE/sizeof(UAlignedMemory)]; |
- UAlignedMemory stackNormIter2[UNORM_ITER_SIZE/sizeof(UAlignedMemory)]; |
- UNormIterator *sNormIter = NULL, *tNormIter = NULL; |
- |
- sColl.iterator = sIter; |
- sColl.flags |= UCOL_USE_ITERATOR; |
- tColl.flags |= UCOL_USE_ITERATOR; |
- tColl.iterator = tIter; |
- |
- if(ucol_getAttribute(coll, UCOL_NORMALIZATION_MODE, status) == UCOL_ON) { |
- sNormIter = unorm_openIter(stackNormIter1, sizeof(stackNormIter1), status); |
- sColl.iterator = unorm_setIter(sNormIter, sIter, UNORM_FCD, status); |
- sColl.flags &= ~UCOL_ITER_NORM; |
- |
- tNormIter = unorm_openIter(stackNormIter2, sizeof(stackNormIter2), status); |
- tColl.iterator = unorm_setIter(tNormIter, tIter, UNORM_FCD, status); |
- tColl.flags &= ~UCOL_ITER_NORM; |
- } |
- |
- UChar32 sChar = U_SENTINEL, tChar = U_SENTINEL; |
- |
- while((sChar = sColl.iterator->next(sColl.iterator)) == |
- (tChar = tColl.iterator->next(tColl.iterator))) { |
- if(sChar == U_SENTINEL) { |
- result = UCOL_EQUAL; |
- goto end_compare; |
- } |
- } |
- |
- if(sChar == U_SENTINEL) { |
- tChar = tColl.iterator->previous(tColl.iterator); |
- } |
- |
- if(tChar == U_SENTINEL) { |
- sChar = sColl.iterator->previous(sColl.iterator); |
- } |
- |
- sChar = sColl.iterator->previous(sColl.iterator); |
- tChar = tColl.iterator->previous(tColl.iterator); |
- |
- if (ucol_unsafeCP((UChar)sChar, coll) || ucol_unsafeCP((UChar)tChar, coll)) |
- { |
- // We are stopped in the middle of a contraction. |
- // Scan backwards through the == part of the string looking for the start of the contraction. |
- // It doesn't matter which string we scan, since they are the same in this region. |
- do |
- { |
- sChar = sColl.iterator->previous(sColl.iterator); |
- tChar = tColl.iterator->previous(tColl.iterator); |
- } |
- while (sChar != U_SENTINEL && ucol_unsafeCP((UChar)sChar, coll)); |
- } |
- |
- |
- if(U_SUCCESS(*status)) { |
- result = ucol_strcollRegular(&sColl, &tColl, status); |
- } |
-end_compare: |
- if(sNormIter || tNormIter) { |
- unorm_closeIter(sNormIter); |
- unorm_closeIter(tNormIter); |
- } |
+ UCollationResult result = Collator::fromUCollator(coll)->compare(*sIter, *tIter, *status); |
- UTRACE_EXIT_VALUE_STATUS(result, *status) |
+ UTRACE_EXIT_VALUE_STATUS(result, *status); |
return result; |
} |
@@ -8486,115 +450,10 @@ ucol_strcoll( const UCollator *coll, |
UTRACE_DATA2(UTRACE_VERBOSE, "target string = %vh ", target, targetLength); |
} |
- if((source == NULL && sourceLength != 0) || (target == NULL && targetLength != 0)) { |
- // do not crash, but return. Should have |
- // status argument to return error. |
- UTRACE_EXIT_VALUE(UCOL_EQUAL); |
- return UCOL_EQUAL; |
- } |
- |
- /* Quick check if source and target are same strings. */ |
- /* They should either both be NULL terminated or the explicit length should be set on both. */ |
- if (source==target && sourceLength==targetLength) { |
- UTRACE_EXIT_VALUE(UCOL_EQUAL); |
- return UCOL_EQUAL; |
- } |
- |
- if(coll->delegate != NULL) { |
- UErrorCode status = U_ZERO_ERROR; |
- return ((const Collator*)coll->delegate)->compare(source,sourceLength,target,targetLength, status); |
- } |
- |
- /* Scan the strings. Find: */ |
- /* The length of any leading portion that is equal */ |
- /* Whether they are exactly equal. (in which case we just return) */ |
- const UChar *pSrc = source; |
- const UChar *pTarg = target; |
- int32_t equalLength; |
- |
- if (sourceLength == -1 && targetLength == -1) { |
- // Both strings are null terminated. |
- // Scan through any leading equal portion. |
- while (*pSrc == *pTarg && *pSrc != 0) { |
- pSrc++; |
- pTarg++; |
- } |
- if (*pSrc == 0 && *pTarg == 0) { |
- UTRACE_EXIT_VALUE(UCOL_EQUAL); |
- return UCOL_EQUAL; |
- } |
- equalLength = (int32_t)(pSrc - source); |
- } |
- else |
- { |
- // One or both strings has an explicit length. |
- const UChar *pSrcEnd = source + sourceLength; |
- const UChar *pTargEnd = target + targetLength; |
- |
- // Scan while the strings are bitwise ==, or until one is exhausted. |
- for (;;) { |
- if (pSrc == pSrcEnd || pTarg == pTargEnd) { |
- break; |
- } |
- if ((*pSrc == 0 && sourceLength == -1) || (*pTarg == 0 && targetLength == -1)) { |
- break; |
- } |
- if (*pSrc != *pTarg) { |
- break; |
- } |
- pSrc++; |
- pTarg++; |
- } |
- equalLength = (int32_t)(pSrc - source); |
- |
- // If we made it all the way through both strings, we are done. They are == |
- if ((pSrc ==pSrcEnd || (pSrcEnd <pSrc && *pSrc==0)) && /* At end of src string, however it was specified. */ |
- (pTarg==pTargEnd || (pTargEnd<pTarg && *pTarg==0))) /* and also at end of dest string */ |
- { |
- UTRACE_EXIT_VALUE(UCOL_EQUAL); |
- return UCOL_EQUAL; |
- } |
- } |
- if (equalLength > 0) { |
- /* There is an identical portion at the beginning of the two strings. */ |
- /* If the identical portion ends within a contraction or a comibining */ |
- /* character sequence, back up to the start of that sequence. */ |
- |
- // These values should already be set by the code above. |
- //pSrc = source + equalLength; /* point to the first differing chars */ |
- //pTarg = target + equalLength; |
- if ((pSrc != source+sourceLength && ucol_unsafeCP(*pSrc, coll)) || |
- (pTarg != target+targetLength && ucol_unsafeCP(*pTarg, coll))) |
- { |
- // We are stopped in the middle of a contraction. |
- // Scan backwards through the == part of the string looking for the start of the contraction. |
- // It doesn't matter which string we scan, since they are the same in this region. |
- do |
- { |
- equalLength--; |
- pSrc--; |
- } |
- while (equalLength>0 && ucol_unsafeCP(*pSrc, coll)); |
- } |
- |
- source += equalLength; |
- target += equalLength; |
- if (sourceLength > 0) { |
- sourceLength -= equalLength; |
- } |
- if (targetLength > 0) { |
- targetLength -= equalLength; |
- } |
- } |
- |
UErrorCode status = U_ZERO_ERROR; |
- UCollationResult returnVal; |
- if(!coll->latinOneUse || (sourceLength > 0 && *source&0xff00) || (targetLength > 0 && *target&0xff00)) { |
- returnVal = ucol_strcollRegular(coll, source, sourceLength, target, targetLength, &status); |
- } else { |
- returnVal = ucol_strcollUseLatin1(coll, source, sourceLength, target, targetLength, &status); |
- } |
- UTRACE_EXIT_VALUE(returnVal); |
+ UCollationResult returnVal = Collator::fromUCollator(coll)-> |
+ compare(source, sourceLength, target, targetLength, status); |
+ UTRACE_EXIT_VALUE_STATUS(returnVal, status); |
return returnVal; |
} |
@@ -8622,151 +481,8 @@ ucol_strcollUTF8( |
return UCOL_EQUAL; |
} |
- if((source == NULL && sourceLength != 0) || (target == NULL && targetLength != 0)) { |
- *status = U_ILLEGAL_ARGUMENT_ERROR; |
- UTRACE_EXIT_VALUE_STATUS(UCOL_EQUAL, *status); |
- return UCOL_EQUAL; |
- } |
- |
- /* Quick check if source and target are same strings. */ |
- /* They should either both be NULL terminated or the explicit length should be set on both. */ |
- if (source==target && sourceLength==targetLength) { |
- UTRACE_EXIT_VALUE_STATUS(UCOL_EQUAL, *status); |
- return UCOL_EQUAL; |
- } |
- |
- if(coll->delegate != NULL) { |
- return ((const Collator*)coll->delegate)->compareUTF8( |
- StringPiece(source, (sourceLength < 0) ? uprv_strlen(source) : sourceLength), |
- StringPiece(target, (targetLength < 0) ? uprv_strlen(target) : targetLength), |
- *status); |
- } |
- |
- /* Scan the strings. Find: */ |
- /* The length of any leading portion that is equal */ |
- /* Whether they are exactly equal. (in which case we just return) */ |
- const char *pSrc = source; |
- const char *pTarg = target; |
- UBool bSrcLimit = FALSE; |
- UBool bTargLimit = FALSE; |
- |
- if (sourceLength == -1 && targetLength == -1) { |
- // Both strings are null terminated. |
- // Scan through any leading equal portion. |
- while (*pSrc == *pTarg && *pSrc != 0) { |
- pSrc++; |
- pTarg++; |
- } |
- if (*pSrc == 0 && *pTarg == 0) { |
- UTRACE_EXIT_VALUE_STATUS(UCOL_EQUAL, *status); |
- return UCOL_EQUAL; |
- } |
- bSrcLimit = (*pSrc == 0); |
- bTargLimit = (*pTarg == 0); |
- } |
- else |
- { |
- // One or both strings has an explicit length. |
- const char *pSrcEnd = source + sourceLength; |
- const char *pTargEnd = target + targetLength; |
- |
- // Scan while the strings are bitwise ==, or until one is exhausted. |
- for (;;) { |
- if (pSrc == pSrcEnd || pTarg == pTargEnd) { |
- break; |
- } |
- if ((*pSrc == 0 && sourceLength == -1) || (*pTarg == 0 && targetLength == -1)) { |
- break; |
- } |
- if (*pSrc != *pTarg) { |
- break; |
- } |
- pSrc++; |
- pTarg++; |
- } |
- bSrcLimit = (pSrc ==pSrcEnd || (pSrcEnd <pSrc && *pSrc==0)); |
- bTargLimit = (pTarg==pTargEnd || (pTargEnd<pTarg && *pTarg==0)); |
- |
- // If we made it all the way through both strings, we are done. They are == |
- if (bSrcLimit && /* At end of src string, however it was specified. */ |
- bTargLimit) /* and also at end of dest string */ |
- { |
- UTRACE_EXIT_VALUE_STATUS(UCOL_EQUAL, *status); |
- return UCOL_EQUAL; |
- } |
- } |
- |
- U_ASSERT(!(bSrcLimit && bTargLimit)); |
- |
- int32_t equalLength = pSrc - source; |
- UBool bSawNonLatin1 = FALSE; |
- |
- if (equalLength > 0) { |
- // Align position to the start of UTF-8 code point. |
- if (bTargLimit) { |
- U8_SET_CP_START((const uint8_t*)source, 0, equalLength); |
- } else { |
- U8_SET_CP_START((const uint8_t*)target, 0, equalLength); |
- } |
- pSrc = source + equalLength; |
- pTarg = target + equalLength; |
- } |
- |
- if (equalLength > 0) { |
- /* There is an identical portion at the beginning of the two strings. */ |
- /* If the identical portion ends within a contraction or a comibining */ |
- /* character sequence, back up to the start of that sequence. */ |
- UBool bUnsafeCP = FALSE; |
- UChar32 uc32 = -1; |
- |
- if (!bSrcLimit) { |
- U8_GET_OR_FFFD((const uint8_t*)source, 0, equalLength, sourceLength, uc32); |
- if (uc32 >= 0x10000 || ucol_unsafeCP((UChar)uc32, coll)) { |
- bUnsafeCP = TRUE; |
- } |
- bSawNonLatin1 |= (uc32 > 0xff); |
- } |
- if (!bTargLimit) { |
- U8_GET_OR_FFFD((const uint8_t*)target, 0, equalLength, targetLength, uc32); |
- if (uc32 >= 0x10000 || ucol_unsafeCP((UChar)uc32, coll)) { |
- bUnsafeCP = TRUE; |
- } |
- bSawNonLatin1 |= (uc32 > 0xff); |
- } |
- |
- if (bUnsafeCP) { |
- while (equalLength > 0) { |
- // We are stopped in the middle of a contraction. |
- // Scan backwards through the == part of the string looking for the start of the contraction. |
- // It doesn't matter which string we scan, since they are the same in this region. |
- U8_PREV_OR_FFFD((uint8_t*)source, 0, equalLength, uc32); |
- bSawNonLatin1 |= (uc32 > 0xff); |
- if (uc32 < 0x10000 && !ucol_unsafeCP((UChar)uc32, coll)) { |
- break; |
- } |
- } |
- } |
- source += equalLength; |
- target += equalLength; |
- if (sourceLength > 0) { |
- sourceLength -= equalLength; |
- } |
- if (targetLength > 0) { |
- targetLength -= equalLength; |
- } |
- } else { |
- // Lead byte of Latin 1 character is 0x00 - 0xC3 |
- bSawNonLatin1 = (source && (sourceLength != 0) && (uint8_t)*source > 0xc3); |
- bSawNonLatin1 |= (target && (targetLength != 0) && (uint8_t)*target > 0xc3); |
- } |
- |
- UCollationResult returnVal; |
- |
- if(!coll->latinOneUse || bSawNonLatin1) { |
- returnVal = ucol_strcollRegularUTF8(coll, source, sourceLength, target, targetLength, status); |
- } else { |
- returnVal = ucol_strcollUseLatin1UTF8(coll, source, sourceLength, target, targetLength, status); |
- } |
+ UCollationResult returnVal = Collator::fromUCollator(coll)->internalCompareUTF8( |
+ source, sourceLength, target, targetLength, *status); |
UTRACE_EXIT_VALUE_STATUS(returnVal, *status); |
return returnVal; |
} |
@@ -8810,9 +526,97 @@ ucol_equal( const UCollator *coll, |
U_CAPI void U_EXPORT2 |
ucol_getUCAVersion(const UCollator* coll, UVersionInfo info) { |
- if(coll && coll->UCA) { |
- uprv_memcpy(info, coll->UCA->image->UCAVersion, sizeof(UVersionInfo)); |
+ const Collator *c = Collator::fromUCollator(coll); |
+ if(c != NULL) { |
+ UVersionInfo v; |
+ c->getVersion(v); |
+ // Note: This is tied to how the current implementation encodes the UCA version |
+ // in the overall getVersion(). |
+ // Alternatively, we could load the root collator and get at lower-level data from there. |
+ // Either way, it will reflect the input collator's UCA version only |
+ // if it is a known implementation. |
+ // It would be cleaner to make this a virtual Collator method. |
+ info[0] = v[1] >> 3; |
+ info[1] = v[1] & 7; |
+ info[2] = v[2] >> 6; |
+ info[3] = 0; |
+ } |
+} |
+ |
+U_CAPI const UChar * U_EXPORT2 |
+ucol_getRules(const UCollator *coll, int32_t *length) { |
+ const RuleBasedCollator *rbc = RuleBasedCollator::rbcFromUCollator(coll); |
+ // OK to crash if coll==NULL: We do not want to check "this" pointers. |
+ if(rbc != NULL || coll == NULL) { |
+ const UnicodeString &rules = rbc->getRules(); |
+ U_ASSERT(rules.getBuffer()[rules.length()] == 0); |
+ *length = rules.length(); |
+ return rules.getBuffer(); |
+ } |
+ static const UChar _NUL = 0; |
+ *length = 0; |
+ return &_NUL; |
+} |
+ |
+U_CAPI int32_t U_EXPORT2 |
+ucol_getRulesEx(const UCollator *coll, UColRuleOption delta, UChar *buffer, int32_t bufferLen) { |
+ UnicodeString rules; |
+ const RuleBasedCollator *rbc = RuleBasedCollator::rbcFromUCollator(coll); |
+ if(rbc != NULL || coll == NULL) { |
+ rbc->getRules(delta, rules); |
+ } |
+ if(buffer != NULL && bufferLen > 0) { |
+ UErrorCode errorCode = U_ZERO_ERROR; |
+ return rules.extract(buffer, bufferLen, errorCode); |
+ } else { |
+ return rules.length(); |
+ } |
+} |
+ |
+U_CAPI const char * U_EXPORT2 |
+ucol_getLocale(const UCollator *coll, ULocDataLocaleType type, UErrorCode *status) { |
+ return ucol_getLocaleByType(coll, type, status); |
+} |
+ |
+U_CAPI const char * U_EXPORT2 |
+ucol_getLocaleByType(const UCollator *coll, ULocDataLocaleType type, UErrorCode *status) { |
+ if(U_FAILURE(*status)) { |
+ return NULL; |
} |
+ UTRACE_ENTRY(UTRACE_UCOL_GETLOCALE); |
+ UTRACE_DATA1(UTRACE_INFO, "coll=%p", coll); |
+ |
+ const char *result; |
+ const RuleBasedCollator *rbc = RuleBasedCollator::rbcFromUCollator(coll); |
+ if(rbc == NULL && coll != NULL) { |
+ *status = U_UNSUPPORTED_ERROR; |
+ result = NULL; |
+ } else { |
+ result = rbc->internalGetLocaleID(type, *status); |
+ } |
+ |
+ UTRACE_DATA1(UTRACE_INFO, "result = %s", result); |
+ UTRACE_EXIT_STATUS(*status); |
+ return result; |
+} |
+ |
+U_CAPI USet * U_EXPORT2 |
+ucol_getTailoredSet(const UCollator *coll, UErrorCode *status) { |
+ if(U_FAILURE(*status)) { |
+ return NULL; |
+ } |
+ UnicodeSet *set = Collator::fromUCollator(coll)->getTailoredSet(*status); |
+ if(U_FAILURE(*status)) { |
+ delete set; |
+ return NULL; |
+ } |
+ return set->toUSet(); |
+} |
+ |
+U_CAPI UBool U_EXPORT2 |
+ucol_equals(const UCollator *source, const UCollator *target) { |
+ return source == target || |
+ (*Collator::fromUCollator(source)) == (*Collator::fromUCollator(target)); |
} |
#endif /* #if !UCONFIG_NO_COLLATION */ |