| OLD | NEW |
| (Empty) |
| 1 /* | |
| 2 ******************************************************************************* | |
| 3 * | |
| 4 * Copyright (C) 2001-2013, International Business Machines | |
| 5 * Corporation and others. All Rights Reserved. | |
| 6 * | |
| 7 ******************************************************************************* | |
| 8 * file name: ucol_bld.cpp | |
| 9 * encoding: US-ASCII | |
| 10 * tab size: 8 (not used) | |
| 11 * indentation:4 | |
| 12 * | |
| 13 * created 02/22/2001 | |
| 14 * created by: Vladimir Weinstein | |
| 15 * | |
| 16 * This module builds a collator based on the rule set. | |
| 17 * | |
| 18 */ | |
| 19 | |
| 20 #include "unicode/utypes.h" | |
| 21 | |
| 22 #if !UCONFIG_NO_COLLATION | |
| 23 | |
| 24 #include "unicode/ucoleitr.h" | |
| 25 #include "unicode/udata.h" | |
| 26 #include "unicode/uchar.h" | |
| 27 #include "unicode/uniset.h" | |
| 28 #include "unicode/uscript.h" | |
| 29 #include "unicode/ustring.h" | |
| 30 #include "unicode/utf16.h" | |
| 31 #include "normalizer2impl.h" | |
| 32 #include "uassert.h" | |
| 33 #include "ucol_bld.h" | |
| 34 #include "ucol_elm.h" | |
| 35 #include "ucol_cnt.h" | |
| 36 #include "ucln_in.h" | |
| 37 #include "umutex.h" | |
| 38 #include "cmemory.h" | |
| 39 #include "cstring.h" | |
| 40 | |
| 41 #define LENGTHOF(array) (int32_t)(sizeof(array)/sizeof((array)[0])) | |
| 42 | |
| 43 static const InverseUCATableHeader* _staticInvUCA = NULL; | |
| 44 static UDataMemory* invUCA_DATA_MEM = NULL; | |
| 45 static icu::UInitOnce gStaticInvUCAInitOnce = U_INITONCE_INITIALIZER; | |
| 46 | |
| 47 U_CDECL_BEGIN | |
| 48 static UBool U_CALLCONV | |
| 49 isAcceptableInvUCA(void * /*context*/, | |
| 50 const char * /*type*/, const char * /*name*/, | |
| 51 const UDataInfo *pInfo) | |
| 52 { | |
| 53 /* context, type & name are intentionally not used */ | |
| 54 if( pInfo->size>=20 && | |
| 55 pInfo->isBigEndian==U_IS_BIG_ENDIAN && | |
| 56 pInfo->charsetFamily==U_CHARSET_FAMILY && | |
| 57 pInfo->dataFormat[0]==INVUCA_DATA_FORMAT_0 && /* dataFormat="InvC" */ | |
| 58 pInfo->dataFormat[1]==INVUCA_DATA_FORMAT_1 && | |
| 59 pInfo->dataFormat[2]==INVUCA_DATA_FORMAT_2 && | |
| 60 pInfo->dataFormat[3]==INVUCA_DATA_FORMAT_3 && | |
| 61 pInfo->formatVersion[0]==INVUCA_FORMAT_VERSION_0 && | |
| 62 pInfo->formatVersion[1]>=INVUCA_FORMAT_VERSION_1 //&& | |
| 63 //pInfo->formatVersion[1]==INVUCA_FORMAT_VERSION_1 && | |
| 64 //pInfo->formatVersion[2]==INVUCA_FORMAT_VERSION_2 && | |
| 65 //pInfo->formatVersion[3]==INVUCA_FORMAT_VERSION_3 && | |
| 66 ) | |
| 67 { | |
| 68 // TODO: Check that the invuca data version (pInfo->dataVersion) | |
| 69 // matches the ucadata version. | |
| 70 return TRUE; | |
| 71 } else { | |
| 72 return FALSE; | |
| 73 } | |
| 74 } | |
| 75 U_CDECL_END | |
| 76 | |
| 77 /* | |
| 78 * Takes two CEs (lead and continuation) and | |
| 79 * compares them as CEs should be compared: | |
| 80 * primary vs. primary, secondary vs. secondary | |
| 81 * tertiary vs. tertiary | |
| 82 */ | |
| 83 static int32_t compareCEs(uint32_t source0, uint32_t source1, uint32_t target0,
uint32_t target1) { | |
| 84 uint32_t s1 = source0, s2, t1 = target0, t2; | |
| 85 if(isContinuation(source1)) { | |
| 86 s2 = source1; | |
| 87 } else { | |
| 88 s2 = 0; | |
| 89 } | |
| 90 if(isContinuation(target1)) { | |
| 91 t2 = target1; | |
| 92 } else { | |
| 93 t2 = 0; | |
| 94 } | |
| 95 | |
| 96 uint32_t s = 0, t = 0; | |
| 97 if(s1 == t1 && s2 == t2) { | |
| 98 return 0; | |
| 99 } | |
| 100 s = (s1 & 0xFFFF0000)|((s2 & 0xFFFF0000)>>16); | |
| 101 t = (t1 & 0xFFFF0000)|((t2 & 0xFFFF0000)>>16); | |
| 102 if(s < t) { | |
| 103 return -1; | |
| 104 } else if(s > t) { | |
| 105 return 1; | |
| 106 } else { | |
| 107 s = (s1 & 0x0000FF00) | (s2 & 0x0000FF00)>>8; | |
| 108 t = (t1 & 0x0000FF00) | (t2 & 0x0000FF00)>>8; | |
| 109 if(s < t) { | |
| 110 return -1; | |
| 111 } else if(s > t) { | |
| 112 return 1; | |
| 113 } else { | |
| 114 s = (s1 & 0x000000FF)<<8 | (s2 & 0x000000FF); | |
| 115 t = (t1 & 0x000000FF)<<8 | (t2 & 0x000000FF); | |
| 116 if(s < t) { | |
| 117 return -1; | |
| 118 } else { | |
| 119 return 1; | |
| 120 } | |
| 121 } | |
| 122 } | |
| 123 } | |
| 124 | |
| 125 static | |
| 126 int32_t ucol_inv_findCE(const UColTokenParser *src, uint32_t CE, uint32_t Second
CE) { | |
| 127 uint32_t bottom = 0, top = src->invUCA->tableSize; | |
| 128 uint32_t i = 0; | |
| 129 uint32_t first = 0, second = 0; | |
| 130 uint32_t *CETable = (uint32_t *)((uint8_t *)src->invUCA+src->invUCA->table); | |
| 131 int32_t res = 0; | |
| 132 | |
| 133 while(bottom < top-1) { | |
| 134 i = (top+bottom)/2; | |
| 135 first = *(CETable+3*i); | |
| 136 second = *(CETable+3*i+1); | |
| 137 res = compareCEs(first, second, CE, SecondCE); | |
| 138 if(res > 0) { | |
| 139 top = i; | |
| 140 } else if(res < 0) { | |
| 141 bottom = i; | |
| 142 } else { | |
| 143 break; | |
| 144 } | |
| 145 } | |
| 146 | |
| 147 /* weiv: */ | |
| 148 /* in searching for elements, I have removed the failure */ | |
| 149 /* The reason for this is that the builder does not rely */ | |
| 150 /* on search mechanism telling it that it didn't find an */ | |
| 151 /* element. However, indirect positioning relies on being */ | |
| 152 /* able to find the elements around any CE, even if it is */ | |
| 153 /* not defined in the UCA. */ | |
| 154 return i; | |
| 155 /* | |
| 156 if((first == CE && second == SecondCE)) { | |
| 157 return i; | |
| 158 } else { | |
| 159 return -1; | |
| 160 } | |
| 161 */ | |
| 162 } | |
| 163 | |
| 164 static const uint32_t strengthMask[UCOL_CE_STRENGTH_LIMIT] = { | |
| 165 0xFFFF0000, | |
| 166 0xFFFFFF00, | |
| 167 0xFFFFFFFF | |
| 168 }; | |
| 169 | |
| 170 U_CAPI int32_t U_EXPORT2 ucol_inv_getNextCE(const UColTokenParser *src, | |
| 171 uint32_t CE, uint32_t contCE, | |
| 172 uint32_t *nextCE, uint32_t *nextCont
CE, | |
| 173 uint32_t strength) | |
| 174 { | |
| 175 uint32_t *CETable = (uint32_t *)((uint8_t *)src->invUCA+src->invUCA->table); | |
| 176 int32_t iCE; | |
| 177 | |
| 178 iCE = ucol_inv_findCE(src, CE, contCE); | |
| 179 | |
| 180 if(iCE<0) { | |
| 181 *nextCE = UCOL_NOT_FOUND; | |
| 182 return -1; | |
| 183 } | |
| 184 | |
| 185 CE &= strengthMask[strength]; | |
| 186 contCE &= strengthMask[strength]; | |
| 187 | |
| 188 *nextCE = CE; | |
| 189 *nextContCE = contCE; | |
| 190 | |
| 191 while((*nextCE & strengthMask[strength]) == CE | |
| 192 && (*nextContCE & strengthMask[strength]) == contCE) | |
| 193 { | |
| 194 *nextCE = (*(CETable+3*(++iCE))); | |
| 195 *nextContCE = (*(CETable+3*(iCE)+1)); | |
| 196 } | |
| 197 | |
| 198 return iCE; | |
| 199 } | |
| 200 | |
| 201 U_CFUNC int32_t U_EXPORT2 ucol_inv_getPrevCE(const UColTokenParser *src, | |
| 202 uint32_t CE, uint32_t contCE, | |
| 203 uint32_t *prevCE, uint32_t *prevCont
CE, | |
| 204 uint32_t strength) | |
| 205 { | |
| 206 uint32_t *CETable = (uint32_t *)((uint8_t *)src->invUCA+src->invUCA->table); | |
| 207 int32_t iCE; | |
| 208 | |
| 209 iCE = ucol_inv_findCE(src, CE, contCE); | |
| 210 | |
| 211 if(iCE<0) { | |
| 212 *prevCE = UCOL_NOT_FOUND; | |
| 213 return -1; | |
| 214 } | |
| 215 | |
| 216 CE &= strengthMask[strength]; | |
| 217 contCE &= strengthMask[strength]; | |
| 218 | |
| 219 *prevCE = CE; | |
| 220 *prevContCE = contCE; | |
| 221 | |
| 222 while((*prevCE & strengthMask[strength]) == CE | |
| 223 && (*prevContCE & strengthMask[strength])== contCE | |
| 224 && iCE > 0) /* this condition should prevent falling off the edge of the
world */ | |
| 225 { | |
| 226 /* here, we end up in a singularity - zero */ | |
| 227 *prevCE = (*(CETable+3*(--iCE))); | |
| 228 *prevContCE = (*(CETable+3*(iCE)+1)); | |
| 229 } | |
| 230 | |
| 231 return iCE; | |
| 232 } | |
| 233 | |
| 234 U_CFUNC uint32_t U_EXPORT2 ucol_getCEStrengthDifference(uint32_t CE, uint32_t co
ntCE, | |
| 235 uint32_t prevCE, uint32_t
prevContCE) | |
| 236 { | |
| 237 if(prevCE == CE && prevContCE == contCE) { | |
| 238 return UCOL_IDENTICAL; | |
| 239 } | |
| 240 if((prevCE & strengthMask[UCOL_PRIMARY]) != (CE & strengthMask[UCOL_PRIMARY]
) | |
| 241 || (prevContCE & strengthMask[UCOL_PRIMARY]) != (contCE & strengthMask[U
COL_PRIMARY])) | |
| 242 { | |
| 243 return UCOL_PRIMARY; | |
| 244 } | |
| 245 if((prevCE & strengthMask[UCOL_SECONDARY]) != (CE & strengthMask[UCOL_SECOND
ARY]) | |
| 246 || (prevContCE & strengthMask[UCOL_SECONDARY]) != (contCE & strengthMask
[UCOL_SECONDARY])) | |
| 247 { | |
| 248 return UCOL_SECONDARY; | |
| 249 } | |
| 250 return UCOL_TERTIARY; | |
| 251 } | |
| 252 | |
| 253 | |
| 254 /*static | |
| 255 inline int32_t ucol_inv_getPrevious(UColTokenParser *src, UColTokListHeader *lh,
uint32_t strength) { | |
| 256 | |
| 257 uint32_t CE = lh->baseCE; | |
| 258 uint32_t SecondCE = lh->baseContCE; | |
| 259 | |
| 260 uint32_t *CETable = (uint32_t *)((uint8_t *)src->invUCA+src->invUCA->table); | |
| 261 uint32_t previousCE, previousContCE; | |
| 262 int32_t iCE; | |
| 263 | |
| 264 iCE = ucol_inv_findCE(src, CE, SecondCE); | |
| 265 | |
| 266 if(iCE<0) { | |
| 267 return -1; | |
| 268 } | |
| 269 | |
| 270 CE &= strengthMask[strength]; | |
| 271 SecondCE &= strengthMask[strength]; | |
| 272 | |
| 273 previousCE = CE; | |
| 274 previousContCE = SecondCE; | |
| 275 | |
| 276 while((previousCE & strengthMask[strength]) == CE && (previousContCE & str
engthMask[strength])== SecondCE) { | |
| 277 previousCE = (*(CETable+3*(--iCE))); | |
| 278 previousContCE = (*(CETable+3*(iCE)+1)); | |
| 279 } | |
| 280 lh->previousCE = previousCE; | |
| 281 lh->previousContCE = previousContCE; | |
| 282 | |
| 283 return iCE; | |
| 284 }*/ | |
| 285 | |
| 286 static | |
| 287 inline int32_t ucol_inv_getNext(UColTokenParser *src, UColTokListHeader *lh, uin
t32_t strength) { | |
| 288 uint32_t CE = lh->baseCE; | |
| 289 uint32_t SecondCE = lh->baseContCE; | |
| 290 | |
| 291 uint32_t *CETable = (uint32_t *)((uint8_t *)src->invUCA+src->invUCA->table); | |
| 292 uint32_t nextCE, nextContCE; | |
| 293 int32_t iCE; | |
| 294 | |
| 295 iCE = ucol_inv_findCE(src, CE, SecondCE); | |
| 296 | |
| 297 if(iCE<0) { | |
| 298 return -1; | |
| 299 } | |
| 300 | |
| 301 CE &= strengthMask[strength]; | |
| 302 SecondCE &= strengthMask[strength]; | |
| 303 | |
| 304 nextCE = CE; | |
| 305 nextContCE = SecondCE; | |
| 306 | |
| 307 while((nextCE & strengthMask[strength]) == CE | |
| 308 && (nextContCE & strengthMask[strength]) == SecondCE) | |
| 309 { | |
| 310 nextCE = (*(CETable+3*(++iCE))); | |
| 311 nextContCE = (*(CETable+3*(iCE)+1)); | |
| 312 } | |
| 313 | |
| 314 lh->nextCE = nextCE; | |
| 315 lh->nextContCE = nextContCE; | |
| 316 | |
| 317 return iCE; | |
| 318 } | |
| 319 | |
| 320 static void ucol_inv_getGapPositions(UColTokenParser *src, UColTokListHeader *lh
, UErrorCode *status) { | |
| 321 /* reset all the gaps */ | |
| 322 int32_t i = 0; | |
| 323 uint32_t *CETable = (uint32_t *)((uint8_t *)src->invUCA+src->invUCA->table); | |
| 324 uint32_t st = 0; | |
| 325 uint32_t t1, t2; | |
| 326 int32_t pos; | |
| 327 | |
| 328 UColToken *tok = lh->first; | |
| 329 uint32_t tokStrength = tok->strength; | |
| 330 | |
| 331 for(i = 0; i<3; i++) { | |
| 332 lh->gapsHi[3*i] = 0; | |
| 333 lh->gapsHi[3*i+1] = 0; | |
| 334 lh->gapsHi[3*i+2] = 0; | |
| 335 lh->gapsLo[3*i] = 0; | |
| 336 lh->gapsLo[3*i+1] = 0; | |
| 337 lh->gapsLo[3*i+2] = 0; | |
| 338 lh->numStr[i] = 0; | |
| 339 lh->fStrToken[i] = NULL; | |
| 340 lh->lStrToken[i] = NULL; | |
| 341 lh->pos[i] = -1; | |
| 342 } | |
| 343 | |
| 344 UCAConstants *consts = (UCAConstants *)((uint8_t *)src->UCA->image + src->UC
A->image->UCAConsts); | |
| 345 | |
| 346 if((lh->baseCE & 0xFF000000)>= (consts->UCA_PRIMARY_IMPLICIT_MIN<<24) && (lh
->baseCE & 0xFF000000) <= (consts->UCA_PRIMARY_IMPLICIT_MAX<<24) ) { /* implicit
s - */ | |
| 347 //if(lh->baseCE >= PRIMARY_IMPLICIT_MIN && lh->baseCE < PRIMARY_IMPLICIT
_MAX ) { /* implicits - */ | |
| 348 lh->pos[0] = 0; | |
| 349 t1 = lh->baseCE; | |
| 350 t2 = lh->baseContCE & UCOL_REMOVE_CONTINUATION; | |
| 351 lh->gapsLo[0] = (t1 & UCOL_PRIMARYMASK) | (t2 & UCOL_PRIMARYMASK) >> 16; | |
| 352 lh->gapsLo[1] = (t1 & UCOL_SECONDARYMASK) << 16 | (t2 & UCOL_SECONDARYMA
SK) << 8; | |
| 353 lh->gapsLo[2] = (UCOL_TERTIARYORDER(t1)) << 24 | (UCOL_TERTIARYORDER(t2)
) << 16; | |
| 354 uint32_t primaryCE = (t1 & UCOL_PRIMARYMASK) | ((t2 & UCOL_PRIMARYMASK)
>> 16); | |
| 355 primaryCE = uprv_uca_getImplicitFromRaw(uprv_uca_getRawFromImplicit(prim
aryCE)+1); | |
| 356 | |
| 357 t1 = (primaryCE & UCOL_PRIMARYMASK) | 0x0505; | |
| 358 t2 = (primaryCE << 16) & UCOL_PRIMARYMASK; // | UCOL_CONTINUATION_MARKER
; | |
| 359 | |
| 360 lh->gapsHi[0] = (t1 & UCOL_PRIMARYMASK) | (t2 & UCOL_PRIMARYMASK) >> 16; | |
| 361 lh->gapsHi[1] = (t1 & UCOL_SECONDARYMASK) << 16 | (t2 & UCOL_SECONDARYMA
SK) << 8; | |
| 362 lh->gapsHi[2] = (UCOL_TERTIARYORDER(t1)) << 24 | (UCOL_TERTIARYORDER(t2)
) << 16; | |
| 363 } else if(lh->indirect == TRUE && lh->nextCE != 0) { | |
| 364 //} else if(lh->baseCE == UCOL_RESET_TOP_VALUE && lh->baseContCE == 0) { | |
| 365 lh->pos[0] = 0; | |
| 366 t1 = lh->baseCE; | |
| 367 t2 = lh->baseContCE&UCOL_REMOVE_CONTINUATION; | |
| 368 lh->gapsLo[0] = (t1 & UCOL_PRIMARYMASK) | (t2 & UCOL_PRIMARYMASK) >> 16; | |
| 369 lh->gapsLo[1] = (t1 & UCOL_SECONDARYMASK) << 16 | (t2 & UCOL_SECONDARYMA
SK) << 8; | |
| 370 lh->gapsLo[2] = (UCOL_TERTIARYORDER(t1)) << 24 | (UCOL_TERTIARYORDER(t2)
) << 16; | |
| 371 t1 = lh->nextCE; | |
| 372 t2 = lh->nextContCE&UCOL_REMOVE_CONTINUATION; | |
| 373 lh->gapsHi[0] = (t1 & UCOL_PRIMARYMASK) | (t2 & UCOL_PRIMARYMASK) >> 16; | |
| 374 lh->gapsHi[1] = (t1 & UCOL_SECONDARYMASK) << 16 | (t2 & UCOL_SECONDARYMA
SK) << 8; | |
| 375 lh->gapsHi[2] = (UCOL_TERTIARYORDER(t1)) << 24 | (UCOL_TERTIARYORDER(t2)
) << 16; | |
| 376 } else { | |
| 377 for(;;) { | |
| 378 if(tokStrength < UCOL_CE_STRENGTH_LIMIT) { | |
| 379 if((lh->pos[tokStrength] = ucol_inv_getNext(src, lh, tokStrength
)) >= 0) { | |
| 380 lh->fStrToken[tokStrength] = tok; | |
| 381 } else { /* The CE must be implicit, since it's not in the table
*/ | |
| 382 /* Error */ | |
| 383 *status = U_INTERNAL_PROGRAM_ERROR; | |
| 384 } | |
| 385 } | |
| 386 | |
| 387 while(tok != NULL && tok->strength >= tokStrength) { | |
| 388 if(tokStrength < UCOL_CE_STRENGTH_LIMIT) { | |
| 389 lh->lStrToken[tokStrength] = tok; | |
| 390 } | |
| 391 tok = tok->next; | |
| 392 } | |
| 393 if(tokStrength < UCOL_CE_STRENGTH_LIMIT-1) { | |
| 394 /* check if previous interval is the same and merge the interval
s if it is so */ | |
| 395 if(lh->pos[tokStrength] == lh->pos[tokStrength+1]) { | |
| 396 lh->fStrToken[tokStrength] = lh->fStrToken[tokStrength+1]; | |
| 397 lh->fStrToken[tokStrength+1] = NULL; | |
| 398 lh->lStrToken[tokStrength+1] = NULL; | |
| 399 lh->pos[tokStrength+1] = -1; | |
| 400 } | |
| 401 } | |
| 402 if(tok != NULL) { | |
| 403 tokStrength = tok->strength; | |
| 404 } else { | |
| 405 break; | |
| 406 } | |
| 407 } | |
| 408 for(st = 0; st < 3; st++) { | |
| 409 if((pos = lh->pos[st]) >= 0) { | |
| 410 t1 = *(CETable+3*(pos)); | |
| 411 t2 = *(CETable+3*(pos)+1); | |
| 412 lh->gapsHi[3*st] = (t1 & UCOL_PRIMARYMASK) | (t2 & UCOL_PRIMARYM
ASK) >> 16; | |
| 413 lh->gapsHi[3*st+1] = (t1 & UCOL_SECONDARYMASK) << 16 | (t2 & UCO
L_SECONDARYMASK) << 8; | |
| 414 //lh->gapsHi[3*st+2] = (UCOL_TERTIARYORDER(t1)) << 24 | (UCOL_TE
RTIARYORDER(t2)) << 16; | |
| 415 lh->gapsHi[3*st+2] = (t1&0x3f) << 24 | (t2&0x3f) << 16; | |
| 416 //pos--; | |
| 417 //t1 = *(CETable+3*(pos)); | |
| 418 //t2 = *(CETable+3*(pos)+1); | |
| 419 t1 = lh->baseCE; | |
| 420 t2 = lh->baseContCE; | |
| 421 lh->gapsLo[3*st] = (t1 & UCOL_PRIMARYMASK) | (t2 & UCOL_PRIMARYM
ASK) >> 16; | |
| 422 lh->gapsLo[3*st+1] = (t1 & UCOL_SECONDARYMASK) << 16 | (t2 & UCO
L_SECONDARYMASK) << 8; | |
| 423 lh->gapsLo[3*st+2] = (t1&0x3f) << 24 | (t2&0x3f) << 16; | |
| 424 } | |
| 425 } | |
| 426 } | |
| 427 } | |
| 428 | |
| 429 | |
| 430 #define ucol_countBytes(value, noOfBytes) \ | |
| 431 { \ | |
| 432 uint32_t mask = 0xFFFFFFFF; \ | |
| 433 (noOfBytes) = 0; \ | |
| 434 while(mask != 0) { \ | |
| 435 if(((value) & mask) != 0) { \ | |
| 436 (noOfBytes)++; \ | |
| 437 } \ | |
| 438 mask >>= 8; \ | |
| 439 } \ | |
| 440 } | |
| 441 | |
| 442 static uint32_t ucol_getNextGenerated(ucolCEGenerator *g, UErrorCode *status) { | |
| 443 if(U_SUCCESS(*status)) { | |
| 444 g->current = ucol_nextWeight(g->ranges, &g->noOfRanges); | |
| 445 } | |
| 446 return g->current; | |
| 447 } | |
| 448 | |
| 449 static uint32_t ucol_getSimpleCEGenerator(ucolCEGenerator *g, UColToken *tok, ui
nt32_t strength, UErrorCode *status) { | |
| 450 /* TODO: rename to enum names */ | |
| 451 uint32_t high, low, count=1; | |
| 452 uint32_t maxByte = (strength == UCOL_TERTIARY)?0x3F:0xFF; | |
| 453 | |
| 454 if(strength == UCOL_SECONDARY) { | |
| 455 low = UCOL_COMMON_TOP2<<24; | |
| 456 high = 0xFFFFFFFF; | |
| 457 count = 0xFF - UCOL_COMMON_TOP2; | |
| 458 } else { | |
| 459 low = UCOL_BYTE_COMMON << 24; //0x05000000; | |
| 460 high = 0x40000000; | |
| 461 count = 0x40 - UCOL_BYTE_COMMON; | |
| 462 } | |
| 463 | |
| 464 if(tok->next != NULL && tok->next->strength == strength) { | |
| 465 count = tok->next->toInsert; | |
| 466 } | |
| 467 | |
| 468 g->noOfRanges = ucol_allocWeights(low, high, count, maxByte, g->ranges); | |
| 469 g->current = UCOL_BYTE_COMMON<<24; | |
| 470 | |
| 471 if(g->noOfRanges == 0) { | |
| 472 *status = U_INTERNAL_PROGRAM_ERROR; | |
| 473 } | |
| 474 return g->current; | |
| 475 } | |
| 476 | |
| 477 static uint32_t ucol_getCEGenerator(ucolCEGenerator *g, uint32_t* lows, uint32_t
* highs, UColToken *tok, uint32_t fStrength, UErrorCode *status) { | |
| 478 uint32_t strength = tok->strength; | |
| 479 uint32_t low = lows[fStrength*3+strength]; | |
| 480 uint32_t high = highs[fStrength*3+strength]; | |
| 481 uint32_t maxByte = 0; | |
| 482 if(strength == UCOL_TERTIARY) { | |
| 483 maxByte = 0x3F; | |
| 484 } else if(strength == UCOL_PRIMARY) { | |
| 485 maxByte = 0xFE; | |
| 486 } else { | |
| 487 maxByte = 0xFF; | |
| 488 } | |
| 489 | |
| 490 uint32_t count = tok->toInsert; | |
| 491 | |
| 492 if(low >= high && strength > UCOL_PRIMARY) { | |
| 493 int32_t s = strength; | |
| 494 for(;;) { | |
| 495 s--; | |
| 496 if(lows[fStrength*3+s] != highs[fStrength*3+s]) { | |
| 497 if(strength == UCOL_SECONDARY) { | |
| 498 if (low < UCOL_COMMON_TOP2<<24 ) { | |
| 499 // Override if low range is less than UCOL_COMMON_TOP2. | |
| 500 low = UCOL_COMMON_TOP2<<24; | |
| 501 } | |
| 502 high = 0xFFFFFFFF; | |
| 503 } else { | |
| 504 // Override if low range is less than UCOL_COMMON_BOT3. | |
| 505 if ( low < UCOL_COMMON_BOT3<<24 ) { | |
| 506 low = UCOL_COMMON_BOT3<<24; | |
| 507 } | |
| 508 high = 0x40000000; | |
| 509 } | |
| 510 break; | |
| 511 } | |
| 512 if(s<0) { | |
| 513 *status = U_INTERNAL_PROGRAM_ERROR; | |
| 514 return 0; | |
| 515 } | |
| 516 } | |
| 517 } | |
| 518 | |
| 519 if(low < 0x02000000) { | |
| 520 // We must not use CE weight byte 02, so we set it as the minimum lower
bound. | |
| 521 // See http://site.icu-project.org/design/collation/bytes | |
| 522 low = 0x02000000; | |
| 523 } | |
| 524 | |
| 525 if(strength == UCOL_SECONDARY) { /* similar as simple */ | |
| 526 if(low >= (UCOL_COMMON_BOT2<<24) && low < (uint32_t)(UCOL_COMMON_TOP2<<2
4)) { | |
| 527 low = UCOL_COMMON_TOP2<<24; | |
| 528 } | |
| 529 if(high > (UCOL_COMMON_BOT2<<24) && high < (uint32_t)(UCOL_COMMON_TOP2<<
24)) { | |
| 530 high = UCOL_COMMON_TOP2<<24; | |
| 531 } | |
| 532 if(low < (UCOL_COMMON_BOT2<<24)) { | |
| 533 g->noOfRanges = ucol_allocWeights(UCOL_BYTE_UNSHIFTED_MIN<<24, high,
count, maxByte, g->ranges); | |
| 534 g->current = ucol_nextWeight(g->ranges, &g->noOfRanges); | |
| 535 //g->current = UCOL_COMMON_BOT2<<24; | |
| 536 return g->current; | |
| 537 } | |
| 538 } | |
| 539 | |
| 540 g->noOfRanges = ucol_allocWeights(low, high, count, maxByte, g->ranges); | |
| 541 if(g->noOfRanges == 0) { | |
| 542 *status = U_INTERNAL_PROGRAM_ERROR; | |
| 543 } | |
| 544 g->current = ucol_nextWeight(g->ranges, &g->noOfRanges); | |
| 545 return g->current; | |
| 546 } | |
| 547 | |
| 548 static | |
| 549 uint32_t u_toLargeKana(const UChar *source, const uint32_t sourceLen, UChar *res
Buf, const uint32_t resLen, UErrorCode *status) { | |
| 550 uint32_t i = 0; | |
| 551 UChar c; | |
| 552 | |
| 553 if(U_FAILURE(*status)) { | |
| 554 return 0; | |
| 555 } | |
| 556 | |
| 557 if(sourceLen > resLen) { | |
| 558 *status = U_MEMORY_ALLOCATION_ERROR; | |
| 559 return 0; | |
| 560 } | |
| 561 | |
| 562 for(i = 0; i < sourceLen; i++) { | |
| 563 c = source[i]; | |
| 564 if(0x3041 <= c && c <= 0x30FA) { /* Kana range */ | |
| 565 switch(c - 0x3000) { | |
| 566 case 0x41: case 0x43: case 0x45: case 0x47: case 0x49: case 0x63: ca
se 0x83: case 0x85: case 0x8E: | |
| 567 case 0xA1: case 0xA3: case 0xA5: case 0xA7: case 0xA9: case 0xC3: ca
se 0xE3: case 0xE5: case 0xEE: | |
| 568 c++; | |
| 569 break; | |
| 570 case 0xF5: | |
| 571 c = 0x30AB; | |
| 572 break; | |
| 573 case 0xF6: | |
| 574 c = 0x30B1; | |
| 575 break; | |
| 576 } | |
| 577 } | |
| 578 resBuf[i] = c; | |
| 579 } | |
| 580 return sourceLen; | |
| 581 } | |
| 582 | |
| 583 static | |
| 584 uint32_t u_toSmallKana(const UChar *source, const uint32_t sourceLen, UChar *res
Buf, const uint32_t resLen, UErrorCode *status) { | |
| 585 uint32_t i = 0; | |
| 586 UChar c; | |
| 587 | |
| 588 if(U_FAILURE(*status)) { | |
| 589 return 0; | |
| 590 } | |
| 591 | |
| 592 if(sourceLen > resLen) { | |
| 593 *status = U_MEMORY_ALLOCATION_ERROR; | |
| 594 return 0; | |
| 595 } | |
| 596 | |
| 597 for(i = 0; i < sourceLen; i++) { | |
| 598 c = source[i]; | |
| 599 if(0x3041 <= c && c <= 0x30FA) { /* Kana range */ | |
| 600 switch(c - 0x3000) { | |
| 601 case 0x42: case 0x44: case 0x46: case 0x48: case 0x4A: case 0x64: ca
se 0x84: case 0x86: case 0x8F: | |
| 602 case 0xA2: case 0xA4: case 0xA6: case 0xA8: case 0xAA: case 0xC4: ca
se 0xE4: case 0xE6: case 0xEF: | |
| 603 c--; | |
| 604 break; | |
| 605 case 0xAB: | |
| 606 c = 0x30F5; | |
| 607 break; | |
| 608 case 0xB1: | |
| 609 c = 0x30F6; | |
| 610 break; | |
| 611 } | |
| 612 } | |
| 613 resBuf[i] = c; | |
| 614 } | |
| 615 return sourceLen; | |
| 616 } | |
| 617 | |
| 618 U_NAMESPACE_BEGIN | |
| 619 | |
| 620 static | |
| 621 uint8_t ucol_uprv_getCaseBits(const UCollator *UCA, const UChar *src, uint32_t l
en, UErrorCode *status) { | |
| 622 uint32_t i = 0; | |
| 623 UChar n[128]; | |
| 624 uint32_t nLen = 0; | |
| 625 uint32_t uCount = 0, lCount = 0; | |
| 626 | |
| 627 collIterate s; | |
| 628 uint32_t order = 0; | |
| 629 | |
| 630 if(U_FAILURE(*status)) { | |
| 631 return UCOL_LOWER_CASE; | |
| 632 } | |
| 633 | |
| 634 nLen = unorm_normalize(src, len, UNORM_NFKD, 0, n, 128, status); | |
| 635 if(U_SUCCESS(*status)) { | |
| 636 for(i = 0; i < nLen; i++) { | |
| 637 uprv_init_collIterate(UCA, &n[i], 1, &s, status); | |
| 638 order = ucol_getNextCE(UCA, &s, status); | |
| 639 if(isContinuation(order)) { | |
| 640 *status = U_INTERNAL_PROGRAM_ERROR; | |
| 641 return UCOL_LOWER_CASE; | |
| 642 } | |
| 643 if((order&UCOL_CASE_BIT_MASK)== UCOL_UPPER_CASE) { | |
| 644 uCount++; | |
| 645 } else { | |
| 646 if(u_islower(n[i])) { | |
| 647 lCount++; | |
| 648 } else if(U_SUCCESS(*status)) { | |
| 649 UChar sk[1], lk[1]; | |
| 650 u_toSmallKana(&n[i], 1, sk, 1, status); | |
| 651 u_toLargeKana(&n[i], 1, lk, 1, status); | |
| 652 if(sk[0] == n[i] && lk[0] != n[i]) { | |
| 653 lCount++; | |
| 654 } | |
| 655 } | |
| 656 } | |
| 657 } | |
| 658 } | |
| 659 | |
| 660 if(uCount != 0 && lCount != 0) { | |
| 661 return UCOL_MIXED_CASE; | |
| 662 } else if(uCount != 0) { | |
| 663 return UCOL_UPPER_CASE; | |
| 664 } else { | |
| 665 return UCOL_LOWER_CASE; | |
| 666 } | |
| 667 } | |
| 668 | |
| 669 | |
| 670 U_CFUNC void ucol_doCE(UColTokenParser *src, uint32_t *CEparts, UColToken *tok,
UErrorCode *status) { | |
| 671 /* this one makes the table and stuff */ | |
| 672 uint32_t noOfBytes[3]; | |
| 673 uint32_t i; | |
| 674 | |
| 675 for(i = 0; i<3; i++) { | |
| 676 ucol_countBytes(CEparts[i], noOfBytes[i]); | |
| 677 } | |
| 678 | |
| 679 /* Here we have to pack CEs from parts */ | |
| 680 | |
| 681 uint32_t CEi = 0; | |
| 682 uint32_t value = 0; | |
| 683 | |
| 684 while(2*CEi<noOfBytes[0] || CEi<noOfBytes[1] || CEi<noOfBytes[2]) { | |
| 685 if(CEi > 0) { | |
| 686 value = UCOL_CONTINUATION_MARKER; /* Continuation marker */ | |
| 687 } else { | |
| 688 value = 0; | |
| 689 } | |
| 690 | |
| 691 if(2*CEi<noOfBytes[0]) { | |
| 692 value |= ((CEparts[0]>>(32-16*(CEi+1))) & 0xFFFF) << 16; | |
| 693 } | |
| 694 if(CEi<noOfBytes[1]) { | |
| 695 value |= ((CEparts[1]>>(32-8*(CEi+1))) & 0xFF) << 8; | |
| 696 } | |
| 697 if(CEi<noOfBytes[2]) { | |
| 698 value |= ((CEparts[2]>>(32-8*(CEi+1))) & 0x3F); | |
| 699 } | |
| 700 tok->CEs[CEi] = value; | |
| 701 CEi++; | |
| 702 } | |
| 703 if(CEi == 0) { /* totally ignorable */ | |
| 704 tok->noOfCEs = 1; | |
| 705 tok->CEs[0] = 0; | |
| 706 } else { /* there is at least something */ | |
| 707 tok->noOfCEs = CEi; | |
| 708 } | |
| 709 | |
| 710 | |
| 711 // we want to set case bits here and now, not later. | |
| 712 // Case bits handling | |
| 713 if(tok->CEs[0] != 0) { // case bits should be set only for non-ignorables | |
| 714 tok->CEs[0] &= 0xFFFFFF3F; // Clean the case bits field | |
| 715 int32_t cSize = (tok->source & 0xFF000000) >> 24; | |
| 716 UChar *cPoints = (tok->source & 0x00FFFFFF) + src->source; | |
| 717 | |
| 718 if(cSize > 1) { | |
| 719 // Do it manually | |
| 720 tok->CEs[0] |= ucol_uprv_getCaseBits(src->UCA, cPoints, cSize, statu
s); | |
| 721 } else { | |
| 722 // Copy it from the UCA | |
| 723 uint32_t caseCE = ucol_getFirstCE(src->UCA, cPoints[0], status); | |
| 724 tok->CEs[0] |= (caseCE & 0xC0); | |
| 725 } | |
| 726 } | |
| 727 | |
| 728 #if UCOL_DEBUG==2 | |
| 729 fprintf(stderr, "%04X str: %i, [%08X, %08X, %08X]: tok: ", tok->debugSource,
tok->strength, CEparts[0] >> (32-8*noOfBytes[0]), CEparts[1] >> (32-8*noOfBytes
[1]), CEparts[2]>> (32-8*noOfBytes[2])); | |
| 730 for(i = 0; i<tok->noOfCEs; i++) { | |
| 731 fprintf(stderr, "%08X ", tok->CEs[i]); | |
| 732 } | |
| 733 fprintf(stderr, "\n"); | |
| 734 #endif | |
| 735 } | |
| 736 | |
| 737 U_CFUNC void ucol_initBuffers(UColTokenParser *src, UColTokListHeader *lh, UErro
rCode *status) { | |
| 738 ucolCEGenerator Gens[UCOL_CE_STRENGTH_LIMIT]; | |
| 739 uint32_t CEparts[UCOL_CE_STRENGTH_LIMIT]; | |
| 740 | |
| 741 UColToken *tok = lh->last; | |
| 742 uint32_t t[UCOL_STRENGTH_LIMIT]; | |
| 743 | |
| 744 uprv_memset(t, 0, UCOL_STRENGTH_LIMIT*sizeof(uint32_t)); | |
| 745 | |
| 746 /* must initialize ranges to avoid memory check warnings */ | |
| 747 for (int i = 0; i < UCOL_CE_STRENGTH_LIMIT; i++) { | |
| 748 uprv_memset(Gens[i].ranges, 0, sizeof(Gens[i].ranges)); | |
| 749 } | |
| 750 | |
| 751 tok->toInsert = 1; | |
| 752 t[tok->strength] = 1; | |
| 753 | |
| 754 while(tok->previous != NULL) { | |
| 755 if(tok->previous->strength < tok->strength) { /* going up */ | |
| 756 t[tok->strength] = 0; | |
| 757 t[tok->previous->strength]++; | |
| 758 } else if(tok->previous->strength > tok->strength) { /* going down */ | |
| 759 t[tok->previous->strength] = 1; | |
| 760 } else { | |
| 761 t[tok->strength]++; | |
| 762 } | |
| 763 tok=tok->previous; | |
| 764 tok->toInsert = t[tok->strength]; | |
| 765 } | |
| 766 | |
| 767 tok->toInsert = t[tok->strength]; | |
| 768 ucol_inv_getGapPositions(src, lh, status); | |
| 769 | |
| 770 #if UCOL_DEBUG | |
| 771 fprintf(stderr, "BaseCE: %08X %08X\n", lh->baseCE, lh->baseContCE); | |
| 772 int32_t j = 2; | |
| 773 for(j = 2; j >= 0; j--) { | |
| 774 fprintf(stderr, "gapsLo[%i] [%08X %08X %08X]\n", j, lh->gapsLo[j*3], lh-
>gapsLo[j*3+1], lh->gapsLo[j*3+2]); | |
| 775 fprintf(stderr, "gapsHi[%i] [%08X %08X %08X]\n", j, lh->gapsHi[j*3], lh-
>gapsHi[j*3+1], lh->gapsHi[j*3+2]); | |
| 776 } | |
| 777 tok=&lh->first[UCOL_TOK_POLARITY_POSITIVE]; | |
| 778 | |
| 779 do { | |
| 780 fprintf(stderr,"%i", tok->strength); | |
| 781 tok = tok->next; | |
| 782 } while(tok != NULL); | |
| 783 fprintf(stderr, "\n"); | |
| 784 | |
| 785 tok=&lh->first[UCOL_TOK_POLARITY_POSITIVE]; | |
| 786 | |
| 787 do { | |
| 788 fprintf(stderr,"%i", tok->toInsert); | |
| 789 tok = tok->next; | |
| 790 } while(tok != NULL); | |
| 791 #endif | |
| 792 | |
| 793 tok = lh->first; | |
| 794 uint32_t fStrength = UCOL_IDENTICAL; | |
| 795 uint32_t initStrength = UCOL_IDENTICAL; | |
| 796 | |
| 797 | |
| 798 CEparts[UCOL_PRIMARY] = (lh->baseCE & UCOL_PRIMARYMASK) | (lh->baseContCE &
UCOL_PRIMARYMASK) >> 16; | |
| 799 CEparts[UCOL_SECONDARY] = (lh->baseCE & UCOL_SECONDARYMASK) << 16 | (lh->bas
eContCE & UCOL_SECONDARYMASK) << 8; | |
| 800 CEparts[UCOL_TERTIARY] = (UCOL_TERTIARYORDER(lh->baseCE)) << 24 | (UCOL_TERT
IARYORDER(lh->baseContCE)) << 16; | |
| 801 | |
| 802 while (tok != NULL && U_SUCCESS(*status)) { | |
| 803 fStrength = tok->strength; | |
| 804 if(fStrength < initStrength) { | |
| 805 initStrength = fStrength; | |
| 806 if(lh->pos[fStrength] == -1) { | |
| 807 while(lh->pos[fStrength] == -1 && fStrength > 0) { | |
| 808 fStrength--; | |
| 809 } | |
| 810 if(lh->pos[fStrength] == -1) { | |
| 811 *status = U_INTERNAL_PROGRAM_ERROR; | |
| 812 return; | |
| 813 } | |
| 814 } | |
| 815 if(initStrength == UCOL_TERTIARY) { /* starting with tertiary */ | |
| 816 CEparts[UCOL_PRIMARY] = lh->gapsLo[fStrength*3]; | |
| 817 CEparts[UCOL_SECONDARY] = lh->gapsLo[fStrength*3+1]; | |
| 818 /*CEparts[UCOL_TERTIARY] = ucol_getCEGenerator(&Gens[2], lh->gap
sLo[fStrength*3+2], lh->gapsHi[fStrength*3+2], tok, UCOL_TERTIARY); */ | |
| 819 CEparts[UCOL_TERTIARY] = ucol_getCEGenerator(&Gens[UCOL_TERTIARY
], lh->gapsLo, lh->gapsHi, tok, fStrength, status); | |
| 820 } else if(initStrength == UCOL_SECONDARY) { /* secondaries */ | |
| 821 CEparts[UCOL_PRIMARY] = lh->gapsLo[fStrength*3]; | |
| 822 /*CEparts[1] = ucol_getCEGenerator(&Gens[1], lh->gapsLo[fStrengt
h*3+1], lh->gapsHi[fStrength*3+1], tok, 1);*/ | |
| 823 CEparts[UCOL_SECONDARY] = ucol_getCEGenerator(&Gens[UCOL_SECONDA
RY], lh->gapsLo, lh->gapsHi, tok, fStrength, status); | |
| 824 CEparts[UCOL_TERTIARY] = ucol_getSimpleCEGenerator(&Gens[UCOL_TE
RTIARY], tok, UCOL_TERTIARY, status); | |
| 825 } else { /* primaries */ | |
| 826 /*CEparts[UCOL_PRIMARY] = ucol_getCEGenerator(&Gens[0], lh->gaps
Lo[0], lh->gapsHi[0], tok, UCOL_PRIMARY);*/ | |
| 827 CEparts[UCOL_PRIMARY] = ucol_getCEGenerator(&Gens[UCOL_PRIMARY],
lh->gapsLo, lh->gapsHi, tok, fStrength, status); | |
| 828 CEparts[UCOL_SECONDARY] = ucol_getSimpleCEGenerator(&Gens[UCOL_S
ECONDARY], tok, UCOL_SECONDARY, status); | |
| 829 CEparts[UCOL_TERTIARY] = ucol_getSimpleCEGenerator(&Gens[UCOL_TE
RTIARY], tok, UCOL_TERTIARY, status); | |
| 830 } | |
| 831 } else { | |
| 832 if(tok->strength == UCOL_TERTIARY) { | |
| 833 CEparts[UCOL_TERTIARY] = ucol_getNextGenerated(&Gens[UCOL_TERTIA
RY], status); | |
| 834 } else if(tok->strength == UCOL_SECONDARY) { | |
| 835 CEparts[UCOL_SECONDARY] = ucol_getNextGenerated(&Gens[UCOL_SECON
DARY], status); | |
| 836 CEparts[UCOL_TERTIARY] = ucol_getSimpleCEGenerator(&Gens[UCOL_TE
RTIARY], tok, UCOL_TERTIARY, status); | |
| 837 } else if(tok->strength == UCOL_PRIMARY) { | |
| 838 CEparts[UCOL_PRIMARY] = ucol_getNextGenerated(&Gens[UCOL_PRIMARY
], status); | |
| 839 CEparts[UCOL_SECONDARY] = ucol_getSimpleCEGenerator(&Gens[UCOL_S
ECONDARY], tok, UCOL_SECONDARY, status); | |
| 840 CEparts[UCOL_TERTIARY] = ucol_getSimpleCEGenerator(&Gens[UCOL_TE
RTIARY], tok, UCOL_TERTIARY, status); | |
| 841 } | |
| 842 } | |
| 843 ucol_doCE(src, CEparts, tok, status); | |
| 844 tok = tok->next; | |
| 845 } | |
| 846 } | |
| 847 | |
| 848 U_CFUNC void ucol_createElements(UColTokenParser *src, tempUCATable *t, UColTokL
istHeader *lh, UErrorCode *status) { | |
| 849 UCAElements el; | |
| 850 UColToken *tok = lh->first; | |
| 851 UColToken *expt = NULL; | |
| 852 uint32_t i = 0, j = 0; | |
| 853 const Normalizer2Impl *nfcImpl = Normalizer2Factory::getNFCImpl(*status); | |
| 854 | |
| 855 while(tok != NULL && U_SUCCESS(*status)) { | |
| 856 /* first, check if there are any expansions */ | |
| 857 /* if there are expansions, we need to do a little bit more processing *
/ | |
| 858 /* since parts of expansion can be tailored, while others are not */ | |
| 859 if(tok->expansion != 0) { | |
| 860 uint32_t len = tok->expansion >> 24; | |
| 861 uint32_t currentSequenceLen = len; | |
| 862 uint32_t expOffset = tok->expansion & 0x00FFFFFF; | |
| 863 //uint32_t exp = currentSequenceLen | expOffset; | |
| 864 UColToken exp; | |
| 865 exp.source = currentSequenceLen | expOffset; | |
| 866 exp.rulesToParseHdl = &(src->source); | |
| 867 | |
| 868 while(len > 0) { | |
| 869 currentSequenceLen = len; | |
| 870 while(currentSequenceLen > 0) { | |
| 871 exp.source = (currentSequenceLen << 24) | expOffset; | |
| 872 if((expt = (UColToken *)uhash_get(src->tailored, &exp)) != N
ULL && expt->strength != UCOL_TOK_RESET) { /* expansion is tailored */ | |
| 873 uint32_t noOfCEsToCopy = expt->noOfCEs; | |
| 874 for(j = 0; j<noOfCEsToCopy; j++) { | |
| 875 tok->expCEs[tok->noOfExpCEs + j] = expt->CEs[j]; | |
| 876 } | |
| 877 tok->noOfExpCEs += noOfCEsToCopy; | |
| 878 // Smart people never try to add codepoints and CEs. | |
| 879 // For some odd reason, it won't work. | |
| 880 expOffset += currentSequenceLen; //noOfCEsToCopy; | |
| 881 len -= currentSequenceLen; //noOfCEsToCopy; | |
| 882 break; | |
| 883 } else { | |
| 884 currentSequenceLen--; | |
| 885 } | |
| 886 } | |
| 887 if(currentSequenceLen == 0) { /* couldn't find any tailored subs
equence */ | |
| 888 /* will have to get one from UCA */ | |
| 889 /* first, get the UChars from the rules */ | |
| 890 /* then pick CEs out until there is no more and stuff them i
nto expansion */ | |
| 891 collIterate s; | |
| 892 uint32_t order = 0; | |
| 893 uprv_init_collIterate(src->UCA, expOffset + src->source, 1,
&s, status); | |
| 894 | |
| 895 for(;;) { | |
| 896 order = ucol_getNextCE(src->UCA, &s, status); | |
| 897 if(order == UCOL_NO_MORE_CES) { | |
| 898 break; | |
| 899 } | |
| 900 tok->expCEs[tok->noOfExpCEs++] = order; | |
| 901 } | |
| 902 expOffset++; | |
| 903 len--; | |
| 904 } | |
| 905 } | |
| 906 } else { | |
| 907 tok->noOfExpCEs = 0; | |
| 908 } | |
| 909 | |
| 910 /* set the ucaelement with obtained values */ | |
| 911 el.noOfCEs = tok->noOfCEs + tok->noOfExpCEs; | |
| 912 /* copy CEs */ | |
| 913 for(i = 0; i<tok->noOfCEs; i++) { | |
| 914 el.CEs[i] = tok->CEs[i]; | |
| 915 } | |
| 916 for(i = 0; i<tok->noOfExpCEs; i++) { | |
| 917 el.CEs[i+tok->noOfCEs] = tok->expCEs[i]; | |
| 918 } | |
| 919 | |
| 920 /* copy UChars */ | |
| 921 // We kept prefix and source kind of together, as it is a kind of a cont
raction. | |
| 922 // However, now we have to slice the prefix off the main thing - | |
| 923 el.prefix = el.prefixChars; | |
| 924 el.cPoints = el.uchars; | |
| 925 if(tok->prefix != 0) { // we will just copy the prefix here, and adjust
accordingly in the | |
| 926 // addPrefix function in ucol_elm. The reason is that we need to add
both composed AND | |
| 927 // decomposed elements to the unsaf table. | |
| 928 el.prefixSize = tok->prefix>>24; | |
| 929 uprv_memcpy(el.prefix, src->source + (tok->prefix & 0x00FFFFFF), el.
prefixSize*sizeof(UChar)); | |
| 930 | |
| 931 el.cSize = (tok->source >> 24)-(tok->prefix>>24); | |
| 932 uprv_memcpy(el.uchars, (tok->source & 0x00FFFFFF)+(tok->prefix>>24)
+ src->source, el.cSize*sizeof(UChar)); | |
| 933 } else { | |
| 934 el.prefixSize = 0; | |
| 935 *el.prefix = 0; | |
| 936 | |
| 937 el.cSize = (tok->source >> 24); | |
| 938 uprv_memcpy(el.uchars, (tok->source & 0x00FFFFFF) + src->source, el.
cSize*sizeof(UChar)); | |
| 939 } | |
| 940 if(src->UCA != NULL) { | |
| 941 for(i = 0; i<el.cSize; i++) { | |
| 942 if(UCOL_ISJAMO(el.cPoints[i])) { | |
| 943 t->image->jamoSpecial = TRUE; | |
| 944 } | |
| 945 } | |
| 946 if (!src->buildCCTabFlag && el.cSize > 0) { | |
| 947 // Check the trailing canonical combining class (tccc) of the la
st character. | |
| 948 const UChar *s = el.cPoints + el.cSize; | |
| 949 uint16_t fcd = nfcImpl->previousFCD16(el.cPoints, s); | |
| 950 if ((fcd & 0xff) != 0) { | |
| 951 src->buildCCTabFlag = TRUE; | |
| 952 } | |
| 953 } | |
| 954 } | |
| 955 | |
| 956 /* and then, add it */ | |
| 957 #if UCOL_DEBUG==2 | |
| 958 fprintf(stderr, "Adding: %04X with %08X\n", el.cPoints[0], el.CEs[0]); | |
| 959 #endif | |
| 960 uprv_uca_addAnElement(t, &el, status); | |
| 961 | |
| 962 #if UCOL_DEBUG_DUPLICATES | |
| 963 if(*status != U_ZERO_ERROR) { | |
| 964 fprintf(stderr, "replaced CE for %04X with CE for %04X\n", el.cPoint
s[0], tok->debugSource); | |
| 965 *status = U_ZERO_ERROR; | |
| 966 } | |
| 967 #endif | |
| 968 | |
| 969 tok = tok->next; | |
| 970 } | |
| 971 } | |
| 972 | |
| 973 U_CDECL_BEGIN | |
| 974 static UBool U_CALLCONV | |
| 975 _processUCACompleteIgnorables(const void *context, UChar32 start, UChar32 limit,
uint32_t value) { | |
| 976 UErrorCode status = U_ZERO_ERROR; | |
| 977 tempUCATable *t = (tempUCATable *)context; | |
| 978 if(value == 0) { | |
| 979 while(start < limit) { | |
| 980 uint32_t CE = utrie_get32(t->mapping, start, NULL); | |
| 981 if(CE == UCOL_NOT_FOUND) { | |
| 982 UCAElements el; | |
| 983 el.isThai = FALSE; | |
| 984 el.prefixSize = 0; | |
| 985 el.prefixChars[0] = 0; | |
| 986 el.prefix = el.prefixChars; | |
| 987 el.cPoints = el.uchars; | |
| 988 | |
| 989 el.cSize = 0; | |
| 990 U16_APPEND_UNSAFE(el.uchars, el.cSize, start); | |
| 991 | |
| 992 el.noOfCEs = 1; | |
| 993 el.CEs[0] = 0; | |
| 994 uprv_uca_addAnElement(t, &el, &status); | |
| 995 | |
| 996 } | |
| 997 start++; | |
| 998 } | |
| 999 } | |
| 1000 if(U_FAILURE(status)) { | |
| 1001 return FALSE; | |
| 1002 } else { | |
| 1003 return TRUE; | |
| 1004 } | |
| 1005 } | |
| 1006 U_CDECL_END | |
| 1007 | |
| 1008 static void | |
| 1009 ucol_uprv_bld_copyRangeFromUCA(UColTokenParser *src, tempUCATable *t, | |
| 1010 UChar32 start, UChar32 end, | |
| 1011 UErrorCode *status) | |
| 1012 { | |
| 1013 //UChar decomp[256]; | |
| 1014 uint32_t CE = UCOL_NOT_FOUND; | |
| 1015 UChar32 u = 0; | |
| 1016 UCAElements el; | |
| 1017 el.isThai = FALSE; | |
| 1018 el.prefixSize = 0; | |
| 1019 el.prefixChars[0] = 0; | |
| 1020 collIterate colIt; | |
| 1021 | |
| 1022 if(U_SUCCESS(*status)) { | |
| 1023 for(u = start; u<=end; u++) { | |
| 1024 if((CE = utrie_get32(t->mapping, u, NULL)) == UCOL_NOT_FOUND | |
| 1025 /* this test is for contractions that are missing the starting e
lement. */ | |
| 1026 || ((isCntTableElement(CE)) && | |
| 1027 (uprv_cnttab_getCE(t->contractions, CE, 0, status) == UCOL_NOT_F
OUND)) | |
| 1028 ) | |
| 1029 { | |
| 1030 el.cSize = 0; | |
| 1031 U16_APPEND_UNSAFE(el.uchars, el.cSize, u); | |
| 1032 //decomp[0] = (UChar)u; | |
| 1033 //el.uchars[0] = (UChar)u; | |
| 1034 el.cPoints = el.uchars; | |
| 1035 //el.cSize = 1; | |
| 1036 el.noOfCEs = 0; | |
| 1037 el.prefix = el.prefixChars; | |
| 1038 el.prefixSize = 0; | |
| 1039 //uprv_init_collIterate(src->UCA, decomp, 1, &colIt); | |
| 1040 // We actually want to check whether this element is a special | |
| 1041 // If it is an implicit element (hangul, CJK - we want to copy t
he | |
| 1042 // special, not the resolved CEs) - for hangul, copying resolved | |
| 1043 // would just make things the same (there is an expansion and it | |
| 1044 // takes approximately the same amount of time to resolve as | |
| 1045 // falling back to the UCA). | |
| 1046 /* | |
| 1047 UTRIE_GET32(src->UCA->mapping, u, CE); | |
| 1048 tag = getCETag(CE); | |
| 1049 if(tag == HANGUL_SYLLABLE_TAG || tag == CJK_IMPLICIT_TAG | |
| 1050 || tag == IMPLICIT_TAG || tag == TRAIL_SURROGATE_TAG | |
| 1051 || tag == LEAD_SURROGATE_TAG) { | |
| 1052 el.CEs[el.noOfCEs++] = CE; | |
| 1053 } else { | |
| 1054 */ | |
| 1055 // It turns out that it does not make sense to keep implicits | |
| 1056 // unresolved. The cost of resolving them is big enough so that | |
| 1057 // it doesn't make any difference whether we have to go to the U
CA | |
| 1058 // or not. | |
| 1059 { | |
| 1060 uprv_init_collIterate(src->UCA, el.uchars, el.cSize, &colIt,
status); | |
| 1061 while(CE != UCOL_NO_MORE_CES) { | |
| 1062 CE = ucol_getNextCE(src->UCA, &colIt, status); | |
| 1063 if(CE != UCOL_NO_MORE_CES) { | |
| 1064 el.CEs[el.noOfCEs++] = CE; | |
| 1065 } | |
| 1066 } | |
| 1067 } | |
| 1068 uprv_uca_addAnElement(t, &el, status); | |
| 1069 } | |
| 1070 } | |
| 1071 } | |
| 1072 } | |
| 1073 | |
| 1074 U_NAMESPACE_END | |
| 1075 | |
| 1076 U_CFUNC UCATableHeader * | |
| 1077 ucol_assembleTailoringTable(UColTokenParser *src, UErrorCode *status) { | |
| 1078 U_NAMESPACE_USE | |
| 1079 | |
| 1080 uint32_t i = 0; | |
| 1081 if(U_FAILURE(*status)) { | |
| 1082 return NULL; | |
| 1083 } | |
| 1084 /* | |
| 1085 2. Eliminate the negative lists by doing the following for each non-null ne
gative list: | |
| 1086 o if previousCE(baseCE, strongestN) != some ListHeader X's baseCE, | |
| 1087 create new ListHeader X | |
| 1088 o reverse the list, add to the end of X's positive list. Reset the strengt
h of the | |
| 1089 first item you add, based on the stronger strength levels of the two lists. | |
| 1090 */ | |
| 1091 /* | |
| 1092 3. For each ListHeader with a non-null positive list: | |
| 1093 */ | |
| 1094 /* | |
| 1095 o Find all character strings with CEs between the baseCE and the | |
| 1096 next/previous CE, at the strength of the first token. Add these to the | |
| 1097 tailoring. | |
| 1098 ? That is, if UCA has ... x <<< X << x' <<< X' < y ..., and the | |
| 1099 tailoring has & x < z... | |
| 1100 ? Then we change the tailoring to & x <<< X << x' <<< X' < z ... | |
| 1101 */ | |
| 1102 /* It is possible that this part should be done even while constructing list
*/ | |
| 1103 /* The problem is that it is unknown what is going to be the strongest weigh
t */ | |
| 1104 /* So we might as well do it here */ | |
| 1105 | |
| 1106 /* | |
| 1107 o Allocate CEs for each token in the list, based on the total number N of
the | |
| 1108 largest level difference, and the gap G between baseCE and nextCE at that | |
| 1109 level. The relation * between the last item and nextCE is the same as the | |
| 1110 strongest strength. | |
| 1111 o Example: baseCE < a << b <<< q << c < d < e * nextCE(X,1) | |
| 1112 ? There are 3 primary items: a, d, e. Fit them into the primary gap. | |
| 1113 Then fit b and c into the secondary gap between a and d, then fit q | |
| 1114 into the tertiary gap between b and c. | |
| 1115 | |
| 1116 o Example: baseCE << b <<< q << c * nextCE(X,2) | |
| 1117 ? There are 2 secondary items: b, c. Fit them into the secondary gap. | |
| 1118 Then fit q into the tertiary gap between b and c. | |
| 1119 o When incrementing primary values, we will not cross high byte | |
| 1120 boundaries except where there is only a single-byte primary. That is to | |
| 1121 ensure that the script reordering will continue to work. | |
| 1122 */ | |
| 1123 UCATableHeader *image = (UCATableHeader *)uprv_malloc(sizeof(UCATableHeader)
); | |
| 1124 /* test for NULL */ | |
| 1125 if (image == NULL) { | |
| 1126 *status = U_MEMORY_ALLOCATION_ERROR; | |
| 1127 return NULL; | |
| 1128 } | |
| 1129 uprv_memcpy(image, src->UCA->image, sizeof(UCATableHeader)); | |
| 1130 | |
| 1131 for(i = 0; i<src->resultLen; i++) { | |
| 1132 /* now we need to generate the CEs */ | |
| 1133 /* We stuff the initial value in the buffers, and increase the appropria
te buffer */ | |
| 1134 /* According to strength
*/ | |
| 1135 if(U_SUCCESS(*status)) { | |
| 1136 if(src->lh[i].first) { // if there are any elements | |
| 1137 // due to the way parser works, subsequent tailorings | |
| 1138 // may remove all the elements from a sequence, therefore | |
| 1139 // leaving an empty tailoring sequence. | |
| 1140 ucol_initBuffers(src, &src->lh[i], status); | |
| 1141 } | |
| 1142 } | |
| 1143 if(U_FAILURE(*status)) { | |
| 1144 uprv_free(image); | |
| 1145 return NULL; | |
| 1146 } | |
| 1147 } | |
| 1148 | |
| 1149 if(src->varTop != NULL) { /* stuff the variable top value */ | |
| 1150 src->opts->variableTopValue = (*(src->varTop->CEs))>>16; | |
| 1151 /* remove it from the list */ | |
| 1152 if(src->varTop->listHeader->first == src->varTop) { /* first in list */ | |
| 1153 src->varTop->listHeader->first = src->varTop->next; | |
| 1154 } | |
| 1155 if(src->varTop->listHeader->last == src->varTop) { /* first in list */ | |
| 1156 src->varTop->listHeader->last = src->varTop->previous; | |
| 1157 } | |
| 1158 if(src->varTop->next != NULL) { | |
| 1159 src->varTop->next->previous = src->varTop->previous; | |
| 1160 } | |
| 1161 if(src->varTop->previous != NULL) { | |
| 1162 src->varTop->previous->next = src->varTop->next; | |
| 1163 } | |
| 1164 } | |
| 1165 | |
| 1166 | |
| 1167 tempUCATable *t = uprv_uca_initTempTable(image, src->opts, src->UCA, NOT_FOU
ND_TAG, NOT_FOUND_TAG, status); | |
| 1168 if(U_FAILURE(*status)) { | |
| 1169 uprv_free(image); | |
| 1170 return NULL; | |
| 1171 } | |
| 1172 | |
| 1173 | |
| 1174 /* After this, we have assigned CE values to all regular CEs */ | |
| 1175 /* now we will go through list once more and resolve expansions, */ | |
| 1176 /* make UCAElements structs and add them to table */ | |
| 1177 for(i = 0; i<src->resultLen; i++) { | |
| 1178 /* now we need to generate the CEs */ | |
| 1179 /* We stuff the initial value in the buffers, and increase the appropria
te buffer */ | |
| 1180 /* According to strength
*/ | |
| 1181 if(U_SUCCESS(*status)) { | |
| 1182 ucol_createElements(src, t, &src->lh[i], status); | |
| 1183 } | |
| 1184 } | |
| 1185 | |
| 1186 UCAElements el; | |
| 1187 el.isThai = FALSE; | |
| 1188 el.prefixSize = 0; | |
| 1189 el.prefixChars[0] = 0; | |
| 1190 | |
| 1191 /* add latin-1 stuff */ | |
| 1192 ucol_uprv_bld_copyRangeFromUCA(src, t, 0, 0xFF, status); | |
| 1193 | |
| 1194 /* add stuff for copying */ | |
| 1195 if(src->copySet != NULL) { | |
| 1196 int32_t i = 0; | |
| 1197 UnicodeSet *set = (UnicodeSet *)src->copySet; | |
| 1198 for(i = 0; i < set->getRangeCount(); i++) { | |
| 1199 ucol_uprv_bld_copyRangeFromUCA(src, t, set->getRangeStart(i), set->g
etRangeEnd(i), status); | |
| 1200 } | |
| 1201 } | |
| 1202 | |
| 1203 if(U_SUCCESS(*status)) { | |
| 1204 /* copy contractions from the UCA - this is felt mostly for cyrillic*/ | |
| 1205 | |
| 1206 uint32_t tailoredCE = UCOL_NOT_FOUND; | |
| 1207 UChar *conts = (UChar *)((uint8_t *)src->UCA->image + src->UCA->image->c
ontractionUCACombos); | |
| 1208 int32_t maxUCAContractionLength = src->UCA->image->contractionUCACombosW
idth; | |
| 1209 UCollationElements *ucaEl = ucol_openElements(src->UCA, NULL, 0, status)
; | |
| 1210 // Check for null pointer | |
| 1211 if (ucaEl == NULL) { | |
| 1212 *status = U_MEMORY_ALLOCATION_ERROR; | |
| 1213 return NULL; | |
| 1214 } | |
| 1215 while(*conts != 0) { | |
| 1216 // A continuation is NUL-terminated and NUL-padded | |
| 1217 // except if it has the maximum length. | |
| 1218 int32_t contractionLength = maxUCAContractionLength; | |
| 1219 while(contractionLength > 0 && conts[contractionLength - 1] == 0) { | |
| 1220 --contractionLength; | |
| 1221 } | |
| 1222 UChar32 first; | |
| 1223 int32_t firstLength = 0; | |
| 1224 U16_NEXT(conts, firstLength, contractionLength, first); | |
| 1225 tailoredCE = utrie_get32(t->mapping, first, NULL); | |
| 1226 if(tailoredCE != UCOL_NOT_FOUND) { | |
| 1227 UBool needToAdd = TRUE; | |
| 1228 if(isCntTableElement(tailoredCE)) { | |
| 1229 if(uprv_cnttab_isTailored(t->contractions, tailoredCE, conts
+firstLength, status) == TRUE) { | |
| 1230 needToAdd = FALSE; | |
| 1231 } | |
| 1232 } | |
| 1233 if (!needToAdd && isPrefix(tailoredCE) && *(conts+1)==0) { | |
| 1234 UCAElements elm; | |
| 1235 elm.cPoints = el.uchars; | |
| 1236 elm.noOfCEs = 0; | |
| 1237 elm.uchars[0] = *conts; | |
| 1238 elm.uchars[1] = 0; | |
| 1239 elm.cSize = 1; | |
| 1240 elm.prefixChars[0] = *(conts+2); | |
| 1241 elm.isThai = FALSE; | |
| 1242 elm.prefix = elm.prefixChars; | |
| 1243 elm.prefixSize = 1; | |
| 1244 UCAElements *prefixEnt=(UCAElements *)uhash_get(t->prefixLoo
kup, &elm); | |
| 1245 if ((prefixEnt==NULL) || *(prefixEnt->prefix)!=*(conts+2)) { | |
| 1246 needToAdd = TRUE; | |
| 1247 } | |
| 1248 } | |
| 1249 if(src->removeSet != NULL && uset_contains(src->removeSet, first
)) { | |
| 1250 needToAdd = FALSE; | |
| 1251 } | |
| 1252 | |
| 1253 if(needToAdd == TRUE) { // we need to add if this contraction is
not tailored. | |
| 1254 if (*(conts+1) != 0) { // contractions | |
| 1255 el.prefix = el.prefixChars; | |
| 1256 el.prefixSize = 0; | |
| 1257 el.cPoints = el.uchars; | |
| 1258 el.noOfCEs = 0; | |
| 1259 u_memcpy(el.uchars, conts, contractionLength); | |
| 1260 el.cSize = contractionLength; | |
| 1261 ucol_setText(ucaEl, el.uchars, el.cSize, status); | |
| 1262 } | |
| 1263 else { // pre-context character | |
| 1264 UChar str[4] = { 0 }; | |
| 1265 int32_t len=0; | |
| 1266 int32_t preKeyLen=0; | |
| 1267 | |
| 1268 el.cPoints = el.uchars; | |
| 1269 el.noOfCEs = 0; | |
| 1270 el.uchars[0] = *conts; | |
| 1271 el.uchars[1] = 0; | |
| 1272 el.cSize = 1; | |
| 1273 el.prefixChars[0] = *(conts+2); | |
| 1274 el.prefix = el.prefixChars; | |
| 1275 el.prefixSize = 1; | |
| 1276 if (el.prefixChars[0]!=0) { | |
| 1277 // get CE of prefix character first | |
| 1278 str[0]=el.prefixChars[0]; | |
| 1279 str[1]=0; | |
| 1280 ucol_setText(ucaEl, str, 1, status); | |
| 1281 while ((int32_t)(el.CEs[el.noOfCEs] = ucol_next(ucaE
l, status)) | |
| 1282 != UCOL_NULLORDER) { | |
| 1283 preKeyLen++; // count number of keys for prefix
character | |
| 1284 } | |
| 1285 str[len++] = el.prefixChars[0]; | |
| 1286 } | |
| 1287 | |
| 1288 str[len++] = el.uchars[0]; | |
| 1289 str[len]=0; | |
| 1290 ucol_setText(ucaEl, str, len, status); | |
| 1291 // Skip the keys for prefix character, then copy the res
t to el. | |
| 1292 while ((preKeyLen-->0) && | |
| 1293 (int32_t)(el.CEs[el.noOfCEs] = ucol_next(ucaEl, s
tatus)) != UCOL_NULLORDER) { | |
| 1294 continue; | |
| 1295 } | |
| 1296 | |
| 1297 } | |
| 1298 while ((int32_t)(el.CEs[el.noOfCEs] = ucol_next(ucaEl, statu
s)) != UCOL_NULLORDER) { | |
| 1299 el.noOfCEs++; | |
| 1300 } | |
| 1301 uprv_uca_addAnElement(t, &el, status); | |
| 1302 } | |
| 1303 | |
| 1304 } else if(src->removeSet != NULL && uset_contains(src->removeSet, fi
rst)) { | |
| 1305 ucol_uprv_bld_copyRangeFromUCA(src, t, first, first, status); | |
| 1306 } | |
| 1307 conts+=maxUCAContractionLength; | |
| 1308 } | |
| 1309 ucol_closeElements(ucaEl); | |
| 1310 } | |
| 1311 | |
| 1312 // Add completely ignorable elements | |
| 1313 utrie_enum(&t->UCA->mapping, NULL, _processUCACompleteIgnorables, t); | |
| 1314 | |
| 1315 // add tailoring characters related canonical closures | |
| 1316 uprv_uca_canonicalClosure(t, src, NULL, status); | |
| 1317 | |
| 1318 /* still need to produce compatibility closure */ | |
| 1319 | |
| 1320 UCATableHeader *myData = uprv_uca_assembleTable(t, status); | |
| 1321 | |
| 1322 uprv_uca_closeTempTable(t); | |
| 1323 uprv_free(image); | |
| 1324 | |
| 1325 return myData; | |
| 1326 } | |
| 1327 | |
| 1328 U_CDECL_BEGIN | |
| 1329 static UBool U_CALLCONV | |
| 1330 ucol_bld_cleanup(void) | |
| 1331 { | |
| 1332 udata_close(invUCA_DATA_MEM); | |
| 1333 invUCA_DATA_MEM = NULL; | |
| 1334 _staticInvUCA = NULL; | |
| 1335 gStaticInvUCAInitOnce.reset(); | |
| 1336 return TRUE; | |
| 1337 } | |
| 1338 U_CDECL_END | |
| 1339 | |
| 1340 static void U_CALLCONV initInverseUCA(UErrorCode &status) { | |
| 1341 U_ASSERT(invUCA_DATA_MEM == NULL); | |
| 1342 U_ASSERT(_staticInvUCA == NULL); | |
| 1343 ucln_i18n_registerCleanup(UCLN_I18N_UCOL_BLD, ucol_bld_cleanup); | |
| 1344 InverseUCATableHeader *newInvUCA = NULL; | |
| 1345 UDataMemory *result = udata_openChoice(U_ICUDATA_COLL, INVC_DATA_TYPE, INVC_
DATA_NAME, isAcceptableInvUCA, NULL, &status); | |
| 1346 | |
| 1347 if(U_FAILURE(status)) { | |
| 1348 if (result) { | |
| 1349 udata_close(result); | |
| 1350 } | |
| 1351 // This is not needed, as we are talking about | |
| 1352 // memory we got from UData | |
| 1353 //uprv_free(newInvUCA); | |
| 1354 return; | |
| 1355 } | |
| 1356 | |
| 1357 if(result != NULL) { /* It looks like sometimes we can fail to find the data
file */ | |
| 1358 newInvUCA = (InverseUCATableHeader *)udata_getMemory(result); | |
| 1359 UCollator *UCA = ucol_initUCA(&status); | |
| 1360 // UCA versions of UCA and inverse UCA should match | |
| 1361 if(uprv_memcmp(newInvUCA->UCAVersion, UCA->image->UCAVersion, sizeof(UVe
rsionInfo)) != 0) { | |
| 1362 status = U_INVALID_FORMAT_ERROR; | |
| 1363 udata_close(result); | |
| 1364 return; | |
| 1365 } | |
| 1366 | |
| 1367 invUCA_DATA_MEM = result; | |
| 1368 _staticInvUCA = newInvUCA; | |
| 1369 } | |
| 1370 } | |
| 1371 | |
| 1372 | |
| 1373 U_CAPI const InverseUCATableHeader * U_EXPORT2 | |
| 1374 ucol_initInverseUCA(UErrorCode *status) | |
| 1375 { | |
| 1376 umtx_initOnce(gStaticInvUCAInitOnce, &initInverseUCA, *status); | |
| 1377 return _staticInvUCA; | |
| 1378 } | |
| 1379 | |
| 1380 /* This is the data that is used for non-script reordering codes. These _must_ b
e kept | |
| 1381 * in order that they are to be applied as defaults and in synch with the UColRe
orderCode enum. | |
| 1382 */ | |
| 1383 static const char * const ReorderingTokenNames[] = { | |
| 1384 "SPACE", | |
| 1385 "PUNCT", | |
| 1386 "SYMBOL", | |
| 1387 "CURRENCY", | |
| 1388 "DIGIT" | |
| 1389 }; | |
| 1390 | |
| 1391 static void toUpper(const char* src, char* dst, uint32_t length) { | |
| 1392 for (uint32_t i = 0; *src != '\0' && i < length - 1; ++src, ++dst, ++i) { | |
| 1393 *dst = uprv_toupper(*src); | |
| 1394 } | |
| 1395 *dst = '\0'; | |
| 1396 } | |
| 1397 | |
| 1398 U_INTERNAL int32_t U_EXPORT2 | |
| 1399 ucol_findReorderingEntry(const char* name) { | |
| 1400 char buffer[32]; | |
| 1401 toUpper(name, buffer, 32); | |
| 1402 for (uint32_t entry = 0; entry < LENGTHOF(ReorderingTokenNames); entry++) { | |
| 1403 if (uprv_strcmp(buffer, ReorderingTokenNames[entry]) == 0) { | |
| 1404 return entry + UCOL_REORDER_CODE_FIRST; | |
| 1405 } | |
| 1406 } | |
| 1407 return USCRIPT_INVALID_CODE; | |
| 1408 } | |
| 1409 | |
| 1410 #endif /* #if !UCONFIG_NO_COLLATION */ | |
| OLD | NEW |