| OLD | NEW |
| (Empty) |
| 1 /* | |
| 2 ****************************************************************************** | |
| 3 * | |
| 4 * Copyright (C) 2000-2013, International Business Machines | |
| 5 * Corporation and others. All Rights Reserved. | |
| 6 * | |
| 7 ****************************************************************************** | |
| 8 * file name: ucnvmbcs.c | |
| 9 * encoding: US-ASCII | |
| 10 * tab size: 8 (not used) | |
| 11 * indentation:4 | |
| 12 * | |
| 13 * created on: 2000jul03 | |
| 14 * created by: Markus W. Scherer | |
| 15 * | |
| 16 * The current code in this file replaces the previous implementation | |
| 17 * of conversion code from multi-byte codepages to Unicode and back. | |
| 18 * This implementation supports the following: | |
| 19 * - legacy variable-length codepages with up to 4 bytes per character | |
| 20 * - all Unicode code points (up to 0x10ffff) | |
| 21 * - efficient distinction of unassigned vs. illegal byte sequences | |
| 22 * - it is possible in fromUnicode() to directly deal with simple | |
| 23 * stateful encodings (used for EBCDIC_STATEFUL) | |
| 24 * - it is possible to convert Unicode code points | |
| 25 * to a single zero byte (but not as a fallback except for SBCS) | |
| 26 * | |
| 27 * Remaining limitations in fromUnicode: | |
| 28 * - byte sequences must not have leading zero bytes | |
| 29 * - except for SBCS codepages: no fallback mapping from Unicode to a zero byte | |
| 30 * - limitation to up to 4 bytes per character | |
| 31 * | |
| 32 * ICU 2.8 (late 2003) adds a secondary data structure which lifts some of thes
e | |
| 33 * limitations and adds m:n character mappings and other features. | |
| 34 * See ucnv_ext.h for details. | |
| 35 * | |
| 36 * Change history: | |
| 37 * | |
| 38 * 5/6/2001 Ram Moved MBCS_SINGLE_RESULT_FROM_U,MBCS_STAGE_2_FROM
_U, | |
| 39 * MBCS_VALUE_2_FROM_STAGE_2, MBCS_VALUE_4_FROM_STAGE
_2 | |
| 40 * macros to ucnvmbcs.h file | |
| 41 */ | |
| 42 | |
| 43 #include "unicode/utypes.h" | |
| 44 | |
| 45 #if !UCONFIG_NO_CONVERSION && !UCONFIG_NO_LEGACY_CONVERSION | |
| 46 | |
| 47 #include "unicode/ucnv.h" | |
| 48 #include "unicode/ucnv_cb.h" | |
| 49 #include "unicode/udata.h" | |
| 50 #include "unicode/uset.h" | |
| 51 #include "unicode/utf8.h" | |
| 52 #include "unicode/utf16.h" | |
| 53 #include "ucnv_bld.h" | |
| 54 #include "ucnvmbcs.h" | |
| 55 #include "ucnv_ext.h" | |
| 56 #include "ucnv_cnv.h" | |
| 57 #include "cmemory.h" | |
| 58 #include "cstring.h" | |
| 59 #include "cmutex.h" | |
| 60 | |
| 61 /* control optimizations according to the platform */ | |
| 62 #define MBCS_UNROLL_SINGLE_TO_BMP 1 | |
| 63 #define MBCS_UNROLL_SINGLE_FROM_BMP 0 | |
| 64 | |
| 65 /* | |
| 66 * _MBCSHeader versions 5.3 & 4.3 | |
| 67 * (Note that the _MBCSHeader version is in addition to the converter formatVers
ion.) | |
| 68 * | |
| 69 * This version is optional. Version 5 is used for incompatible data format chan
ges. | |
| 70 * makeconv will continue to generate version 4 files if possible. | |
| 71 * | |
| 72 * Changes from version 4: | |
| 73 * | |
| 74 * The main difference is an additional _MBCSHeader field with | |
| 75 * - the length (number of uint32_t) of the _MBCSHeader | |
| 76 * - flags for further incompatible data format changes | |
| 77 * - flags for further, backward compatible data format changes | |
| 78 * | |
| 79 * The MBCS_OPT_FROM_U flag indicates that most of the fromUnicode data is omitt
ed from | |
| 80 * the file and needs to be reconstituted at load time. | |
| 81 * This requires a utf8Friendly format with an additional mbcsIndex table for fa
st | |
| 82 * (and UTF-8-friendly) fromUnicode conversion for Unicode code points up to max
FastUChar. | |
| 83 * (For details about these structures see below, and see ucnvmbcs.h.) | |
| 84 * | |
| 85 * utf8Friendly also implies that the fromUnicode mappings are stored in ascen
ding order | |
| 86 * of the Unicode code points. (This requires that the .ucm file has the |0 et
c. | |
| 87 * precision markers for all mappings.) | |
| 88 * | |
| 89 * All fallbacks have been moved to the extension table, leaving only roundtri
ps in the | |
| 90 * omitted data that can be reconstituted from the toUnicode data. | |
| 91 * | |
| 92 * Of the stage 2 table, the part corresponding to maxFastUChar and below is o
mitted. | |
| 93 * With only roundtrip mappings in the base fromUnicode data, this part is ful
ly | |
| 94 * redundant with the mbcsIndex and will be reconstituted from that (also usin
g the | |
| 95 * stage 1 table which contains the information about how stage 2 was compacte
d). | |
| 96 * | |
| 97 * The rest of the stage 2 table, the part for code points above maxFastUChar, | |
| 98 * is stored in the file and will be appended to the reconstituted part. | |
| 99 * | |
| 100 * The entire fromUBytes array is omitted from the file and will be reconstitu
ed. | |
| 101 * This is done by enumerating all toUnicode roundtrip mappings, performing | |
| 102 * each mapping (using the stage 1 and reconstituted stage 2 tables) and | |
| 103 * writing instead of reading the byte values. | |
| 104 * | |
| 105 * _MBCSHeader version 4.3 | |
| 106 * | |
| 107 * Change from version 4.2: | |
| 108 * - Optional utf8Friendly data structures, with 64-entry stage 3 block | |
| 109 * allocation for parts of the BMP, and an additional mbcsIndex in non-SBCS | |
| 110 * files which can be used instead of stages 1 & 2. | |
| 111 * Faster lookups for roundtrips from most commonly used characters, | |
| 112 * and lookups from UTF-8 byte sequences with a natural bit distribution. | |
| 113 * See ucnvmbcs.h for more details. | |
| 114 * | |
| 115 * Change from version 4.1: | |
| 116 * - Added an optional extension table structure at the end of the .cnv file. | |
| 117 * It is present if the upper bits of the header flags field contains a non-ze
ro | |
| 118 * byte offset to it. | |
| 119 * Files that contain only a conversion table and no base table | |
| 120 * use the special outputType MBCS_OUTPUT_EXT_ONLY. | |
| 121 * These contain the base table name between the MBCS header and the extension | |
| 122 * data. | |
| 123 * | |
| 124 * Change from version 4.0: | |
| 125 * - Replace header.reserved with header.fromUBytesLength so that all | |
| 126 * fields in the data have length. | |
| 127 * | |
| 128 * Changes from version 3 (for performance improvements): | |
| 129 * - new bit distribution for state table entries | |
| 130 * - reordered action codes | |
| 131 * - new data structure for single-byte fromUnicode | |
| 132 * + stage 2 only contains indexes | |
| 133 * + stage 3 stores 16 bits per character with classification bits 15..8 | |
| 134 * - no multiplier for stage 1 entries | |
| 135 * - stage 2 for non-single-byte codepages contains the index and the flags in | |
| 136 * one 32-bit value | |
| 137 * - 2-byte and 4-byte fromUnicode results are stored directly as 16/32-bit inte
gers | |
| 138 * | |
| 139 * For more details about old versions of the MBCS data structure, see | |
| 140 * the corresponding versions of this file. | |
| 141 * | |
| 142 * Converting stateless codepage data ---------------------------------------*** | |
| 143 * (or codepage data with simple states) to Unicode. | |
| 144 * | |
| 145 * Data structure and algorithm for converting from complex legacy codepages | |
| 146 * to Unicode. (Designed before 2000-may-22.) | |
| 147 * | |
| 148 * The basic idea is that the structure of legacy codepages can be described | |
| 149 * with state tables. | |
| 150 * When reading a byte stream, each input byte causes a state transition. | |
| 151 * Some transitions result in the output of a code point, some result in | |
| 152 * "unassigned" or "illegal" output. | |
| 153 * This is used here for character conversion. | |
| 154 * | |
| 155 * The data structure begins with a state table consisting of a row | |
| 156 * per state, with 256 entries (columns) per row for each possible input | |
| 157 * byte value. | |
| 158 * Each entry is 32 bits wide, with two formats distinguished by | |
| 159 * the sign bit (bit 31): | |
| 160 * | |
| 161 * One format for transitional entries (bit 31 not set) for non-final bytes, and | |
| 162 * one format for final entries (bit 31 set). | |
| 163 * Both formats contain the number of the next state in the same bit | |
| 164 * positions. | |
| 165 * State 0 is the initial state. | |
| 166 * | |
| 167 * Most of the time, the offset values of subsequent states are added | |
| 168 * up to a scalar value. This value will eventually be the index of | |
| 169 * the Unicode code point in a table that follows the state table. | |
| 170 * The effect is that the code points for final state table rows | |
| 171 * are contiguous. The code points of final state rows follow each other | |
| 172 * in the order of the references to those final states by previous | |
| 173 * states, etc. | |
| 174 * | |
| 175 * For some terminal states, the offset is itself the output Unicode | |
| 176 * code point (16 bits for a BMP code point or 20 bits for a supplementary | |
| 177 * code point (stored as code point minus 0x10000 so that 20 bits are enough). | |
| 178 * For others, the code point in the Unicode table is stored with either | |
| 179 * one or two code units: one for BMP code points, two for a pair of | |
| 180 * surrogates. | |
| 181 * All code points for a final state entry take up the same number of code | |
| 182 * units, regardless of whether they all actually _use_ the same number | |
| 183 * of code units. This is necessary for simple array access. | |
| 184 * | |
| 185 * An additional feature comes in with what in ICU is called "fallback" | |
| 186 * mappings: | |
| 187 * | |
| 188 * In addition to round-trippable, precise, 1:1 mappings, there are often | |
| 189 * mappings defined between similar, though not the same, characters. | |
| 190 * Typically, such mappings occur only in fromUnicode mapping tables because | |
| 191 * Unicode has a superset repertoire of most other codepages. However, it | |
| 192 * is possible to provide such mappings in the toUnicode tables, too. | |
| 193 * In this case, the fallback mappings are partly integrated into the | |
| 194 * general state tables because the structure of the encoding includes their | |
| 195 * byte sequences. | |
| 196 * For final entries in an initial state, fallback mappings are stored in | |
| 197 * the entry itself like with roundtrip mappings. | |
| 198 * For other final entries, they are stored in the code units table if | |
| 199 * the entry is for a pair of code units. | |
| 200 * For single-unit results in the code units table, there is no space to | |
| 201 * alternatively hold a fallback mapping; in this case, the code unit | |
| 202 * is stored as U+fffe (unassigned), and the fallback mapping needs to | |
| 203 * be looked up by the scalar offset value in a separate table. | |
| 204 * | |
| 205 * "Unassigned" state entries really mean "structurally unassigned", | |
| 206 * i.e., such a byte sequence will never have a mapping result. | |
| 207 * | |
| 208 * The interpretation of the bits in each entry is as follows: | |
| 209 * | |
| 210 * Bit 31 not set, not a terminal entry ("transitional"): | |
| 211 * 30..24 next state | |
| 212 * 23..0 offset delta, to be added up | |
| 213 * | |
| 214 * Bit 31 set, terminal ("final") entry: | |
| 215 * 30..24 next state (regardless of action code) | |
| 216 * 23..20 action code: | |
| 217 * action codes 0 and 1 result in precise-mapping Unicode code points | |
| 218 * 0 valid byte sequence | |
| 219 * 19..16 not used, 0 | |
| 220 * 15..0 16-bit Unicode BMP code point | |
| 221 * never U+fffe or U+ffff | |
| 222 * 1 valid byte sequence | |
| 223 * 19..0 20-bit Unicode supplementary code point | |
| 224 * never U+fffe or U+ffff | |
| 225 * | |
| 226 * action codes 2 and 3 result in fallback (unidirectional-mapping) Unico
de code points | |
| 227 * 2 valid byte sequence (fallback) | |
| 228 * 19..16 not used, 0 | |
| 229 * 15..0 16-bit Unicode BMP code point as fallback result | |
| 230 * 3 valid byte sequence (fallback) | |
| 231 * 19..0 20-bit Unicode supplementary code point as fallback result | |
| 232 * | |
| 233 * action codes 4 and 5 may result in roundtrip/fallback/unassigned/illeg
al results | |
| 234 * depending on the code units they result in | |
| 235 * 4 valid byte sequence | |
| 236 * 19..9 not used, 0 | |
| 237 * 8..0 final offset delta | |
| 238 * pointing to one 16-bit code unit which may be | |
| 239 * fffe unassigned -- look for a fallback for this offset | |
| 240 * ffff illegal | |
| 241 * 5 valid byte sequence | |
| 242 * 19..9 not used, 0 | |
| 243 * 8..0 final offset delta | |
| 244 * pointing to two 16-bit code units | |
| 245 * (typically UTF-16 surrogates) | |
| 246 * the result depends on the first code unit as follows: | |
| 247 * 0000..d7ff roundtrip BMP code point (1st alone) | |
| 248 * d800..dbff roundtrip surrogate pair (1st, 2nd) | |
| 249 * dc00..dfff fallback surrogate pair (1st-400, 2nd) | |
| 250 * e000 roundtrip BMP code point (2nd alone) | |
| 251 * e001 fallback BMP code point (2nd alone) | |
| 252 * fffe unassigned | |
| 253 * ffff illegal | |
| 254 * (the final offset deltas are at most 255 * 2, | |
| 255 * times 2 because of storing code unit pairs) | |
| 256 * | |
| 257 * 6 unassigned byte sequence | |
| 258 * 19..16 not used, 0 | |
| 259 * 15..0 16-bit Unicode BMP code point U+fffe (new with version 2) | |
| 260 * this does not contain a final offset delta because the main | |
| 261 * purpose of this action code is to save scalar offset values; | |
| 262 * therefore, fallback values cannot be assigned to byte | |
| 263 * sequences that result in this action code | |
| 264 * 7 illegal byte sequence | |
| 265 * 19..16 not used, 0 | |
| 266 * 15..0 16-bit Unicode BMP code point U+ffff (new with version 2) | |
| 267 * 8 state change only | |
| 268 * 19..0 not used, 0 | |
| 269 * useful for state changes in simple stateful encodings, | |
| 270 * at Shift-In/Shift-Out codes | |
| 271 * | |
| 272 * | |
| 273 * 9..15 reserved for future use | |
| 274 * current implementations will only perform a state change | |
| 275 * and ignore bits 19..0 | |
| 276 * | |
| 277 * An encoding with contiguous ranges of unassigned byte sequences, like | |
| 278 * Shift-JIS and especially EUC-TW, can be stored efficiently by having | |
| 279 * at least two states for the trail bytes: | |
| 280 * One trail byte state that results in code points, and one that only | |
| 281 * has "unassigned" and "illegal" terminal states. | |
| 282 * | |
| 283 * Note: partly by accident, this data structure supports simple stateful | |
| 284 * encodings without any additional logic. | |
| 285 * Currently, only simple Shift-In/Shift-Out schemes are handled with | |
| 286 * appropriate state tables (especially EBCDIC_STATEFUL!). | |
| 287 * | |
| 288 * MBCS version 2 added: | |
| 289 * unassigned and illegal action codes have U+fffe and U+ffff | |
| 290 * instead of unused bits; this is useful for _MBCS_SINGLE_SIMPLE_GET_NEXT_BMP() | |
| 291 * | |
| 292 * Converting from Unicode to codepage bytes --------------------------------*** | |
| 293 * | |
| 294 * The conversion data structure for fromUnicode is designed for the known | |
| 295 * structure of Unicode. It maps from 21-bit code points (0..0x10ffff) to | |
| 296 * a sequence of 1..4 bytes, in addition to a flag that indicates if there is | |
| 297 * a roundtrip mapping. | |
| 298 * | |
| 299 * The lookup is done with a 3-stage trie, using 11/6/4 bits for stage 1/2/3 | |
| 300 * like in the character properties table. | |
| 301 * The beginning of the trie is at offsetFromUTable, the beginning of stage 3 | |
| 302 * with the resulting bytes is at offsetFromUBytes. | |
| 303 * | |
| 304 * Beginning with version 4, single-byte codepages have a significantly differen
t | |
| 305 * trie compared to other codepages. | |
| 306 * In all cases, the entry in stage 1 is directly the index of the block of | |
| 307 * 64 entries in stage 2. | |
| 308 * | |
| 309 * Single-byte lookup: | |
| 310 * | |
| 311 * Stage 2 only contains 16-bit indexes directly to the 16-blocks in stage 3. | |
| 312 * Stage 3 contains one 16-bit word per result: | |
| 313 * Bits 15..8 indicate the kind of result: | |
| 314 * f roundtrip result | |
| 315 * c fallback result from private-use code point | |
| 316 * 8 fallback result from other code points | |
| 317 * 0 unassigned | |
| 318 * Bits 7..0 contain the codepage byte. A zero byte is always possible. | |
| 319 * | |
| 320 * In version 4.3, the runtime code can build an sbcsIndex for a utf8Friendly | |
| 321 * file. For 2-byte UTF-8 byte sequences and some 3-byte sequences the lookup | |
| 322 * becomes a 2-stage (single-index) trie lookup with 6 bits for stage 3. | |
| 323 * ASCII code points can be looked up with a linear array access into stage 3. | |
| 324 * See maxFastUChar and other details in ucnvmbcs.h. | |
| 325 * | |
| 326 * Multi-byte lookup: | |
| 327 * | |
| 328 * Stage 2 contains a 32-bit word for each 16-block in stage 3: | |
| 329 * Bits 31..16 contain flags for which stage 3 entries contain roundtrip results | |
| 330 * test: MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c) | |
| 331 * If this test is false, then a non-zero result will be interpreted
as | |
| 332 * a fallback mapping. | |
| 333 * Bits 15..0 contain the index to stage 3, which must be multiplied by 16*(byt
es per char) | |
| 334 * | |
| 335 * Stage 3 contains 2, 3, or 4 bytes per result. | |
| 336 * 2 or 4 bytes are stored as uint16_t/uint32_t in platform endianness, | |
| 337 * while 3 bytes are stored as bytes in big-endian order. | |
| 338 * Leading zero bytes are ignored, and the number of bytes is counted. | |
| 339 * A zero byte mapping result is possible as a roundtrip result. | |
| 340 * For some output types, the actual result is processed from this; | |
| 341 * see ucnv_MBCSFromUnicodeWithOffsets(). | |
| 342 * | |
| 343 * Note that stage 1 always contains 0x440=1088 entries (0x440==0x110000>>10), | |
| 344 * or (version 3 and up) for BMP-only codepages, it contains 64 entries. | |
| 345 * | |
| 346 * In version 4.3, a utf8Friendly file contains an mbcsIndex table. | |
| 347 * For 2-byte UTF-8 byte sequences and most 3-byte sequences the lookup | |
| 348 * becomes a 2-stage (single-index) trie lookup with 6 bits for stage 3. | |
| 349 * ASCII code points can be looked up with a linear array access into stage 3. | |
| 350 * See maxFastUChar, mbcsIndex and other details in ucnvmbcs.h. | |
| 351 * | |
| 352 * In version 3, stage 2 blocks may overlap by multiples of the multiplier | |
| 353 * for compaction. | |
| 354 * In version 4, stage 2 blocks (and for single-byte codepages, stage 3 blocks) | |
| 355 * may overlap by any number of entries. | |
| 356 * | |
| 357 * MBCS version 2 added: | |
| 358 * the converter checks for known output types, which allows | |
| 359 * adding new ones without crashing an unaware converter | |
| 360 */ | |
| 361 | |
| 362 static const UConverterImpl _SBCSUTF8Impl; | |
| 363 static const UConverterImpl _DBCSUTF8Impl; | |
| 364 | |
| 365 /* GB 18030 data ------------------------------------------------------------ */ | |
| 366 | |
| 367 /* helper macros for linear values for GB 18030 four-byte sequences */ | |
| 368 #define LINEAR_18030(a, b, c, d) ((((a)*10+(b))*126L+(c))*10L+(d)) | |
| 369 | |
| 370 #define LINEAR_18030_BASE LINEAR_18030(0x81, 0x30, 0x81, 0x30) | |
| 371 | |
| 372 #define LINEAR(x) LINEAR_18030(x>>24, (x>>16)&0xff, (x>>8)&0xff, x&0xff) | |
| 373 | |
| 374 /* | |
| 375 * Some ranges of GB 18030 where both the Unicode code points and the | |
| 376 * GB four-byte sequences are contiguous and are handled algorithmically by | |
| 377 * the special callback functions below. | |
| 378 * The values are start & end of Unicode & GB codes. | |
| 379 * | |
| 380 * Note that single surrogates are not mapped by GB 18030 | |
| 381 * as of the re-released mapping tables from 2000-nov-30. | |
| 382 */ | |
| 383 static const uint32_t | |
| 384 gb18030Ranges[14][4]={ | |
| 385 {0x10000, 0x10FFFF, LINEAR(0x90308130), LINEAR(0xE3329A35)}, | |
| 386 {0x9FA6, 0xD7FF, LINEAR(0x82358F33), LINEAR(0x8336C738)}, | |
| 387 {0x0452, 0x1E3E, LINEAR(0x8130D330), LINEAR(0x8135F436)}, | |
| 388 {0x1E40, 0x200F, LINEAR(0x8135F438), LINEAR(0x8136A531)}, | |
| 389 {0xE865, 0xF92B, LINEAR(0x8336D030), LINEAR(0x84308534)}, | |
| 390 {0x2643, 0x2E80, LINEAR(0x8137A839), LINEAR(0x8138FD38)}, | |
| 391 {0xFA2A, 0xFE2F, LINEAR(0x84309C38), LINEAR(0x84318537)}, | |
| 392 {0x3CE1, 0x4055, LINEAR(0x8231D438), LINEAR(0x8232AF32)}, | |
| 393 {0x361B, 0x3917, LINEAR(0x8230A633), LINEAR(0x8230F237)}, | |
| 394 {0x49B8, 0x4C76, LINEAR(0x8234A131), LINEAR(0x8234E733)}, | |
| 395 {0x4160, 0x4336, LINEAR(0x8232C937), LINEAR(0x8232F837)}, | |
| 396 {0x478E, 0x4946, LINEAR(0x8233E838), LINEAR(0x82349638)}, | |
| 397 {0x44D7, 0x464B, LINEAR(0x8233A339), LINEAR(0x8233C931)}, | |
| 398 {0xFFE6, 0xFFFF, LINEAR(0x8431A234), LINEAR(0x8431A439)} | |
| 399 }; | |
| 400 | |
| 401 /* bit flag for UConverter.options indicating GB 18030 special handling */ | |
| 402 #define _MBCS_OPTION_GB18030 0x8000 | |
| 403 | |
| 404 /* bit flag for UConverter.options indicating KEIS,JEF,JIF special handling */ | |
| 405 #define _MBCS_OPTION_KEIS 0x01000 | |
| 406 #define _MBCS_OPTION_JEF 0x02000 | |
| 407 #define _MBCS_OPTION_JIPS 0x04000 | |
| 408 | |
| 409 #define KEIS_SO_CHAR_1 0x0A | |
| 410 #define KEIS_SO_CHAR_2 0x42 | |
| 411 #define KEIS_SI_CHAR_1 0x0A | |
| 412 #define KEIS_SI_CHAR_2 0x41 | |
| 413 | |
| 414 #define JEF_SO_CHAR 0x28 | |
| 415 #define JEF_SI_CHAR 0x29 | |
| 416 | |
| 417 #define JIPS_SO_CHAR_1 0x1A | |
| 418 #define JIPS_SO_CHAR_2 0x70 | |
| 419 #define JIPS_SI_CHAR_1 0x1A | |
| 420 #define JIPS_SI_CHAR_2 0x71 | |
| 421 | |
| 422 enum SISO_Option { | |
| 423 SI, | |
| 424 SO | |
| 425 }; | |
| 426 typedef enum SISO_Option SISO_Option; | |
| 427 | |
| 428 static int32_t getSISOBytes(SISO_Option option, uint32_t cnvOption, uint8_t *val
ue) { | |
| 429 int32_t SISOLength = 0; | |
| 430 | |
| 431 switch (option) { | |
| 432 case SI: | |
| 433 if ((cnvOption&_MBCS_OPTION_KEIS)!=0) { | |
| 434 value[0] = KEIS_SI_CHAR_1; | |
| 435 value[1] = KEIS_SI_CHAR_2; | |
| 436 SISOLength = 2; | |
| 437 } else if ((cnvOption&_MBCS_OPTION_JEF)!=0) { | |
| 438 value[0] = JEF_SI_CHAR; | |
| 439 SISOLength = 1; | |
| 440 } else if ((cnvOption&_MBCS_OPTION_JIPS)!=0) { | |
| 441 value[0] = JIPS_SI_CHAR_1; | |
| 442 value[1] = JIPS_SI_CHAR_2; | |
| 443 SISOLength = 2; | |
| 444 } else { | |
| 445 value[0] = UCNV_SI; | |
| 446 SISOLength = 1; | |
| 447 } | |
| 448 break; | |
| 449 case SO: | |
| 450 if ((cnvOption&_MBCS_OPTION_KEIS)!=0) { | |
| 451 value[0] = KEIS_SO_CHAR_1; | |
| 452 value[1] = KEIS_SO_CHAR_2; | |
| 453 SISOLength = 2; | |
| 454 } else if ((cnvOption&_MBCS_OPTION_JEF)!=0) { | |
| 455 value[0] = JEF_SO_CHAR; | |
| 456 SISOLength = 1; | |
| 457 } else if ((cnvOption&_MBCS_OPTION_JIPS)!=0) { | |
| 458 value[0] = JIPS_SO_CHAR_1; | |
| 459 value[1] = JIPS_SO_CHAR_2; | |
| 460 SISOLength = 2; | |
| 461 } else { | |
| 462 value[0] = UCNV_SO; | |
| 463 SISOLength = 1; | |
| 464 } | |
| 465 break; | |
| 466 default: | |
| 467 /* Should never happen. */ | |
| 468 break; | |
| 469 } | |
| 470 | |
| 471 return SISOLength; | |
| 472 } | |
| 473 | |
| 474 /* Miscellaneous ------------------------------------------------------------ */ | |
| 475 | |
| 476 /** | |
| 477 * Callback from ucnv_MBCSEnumToUnicode(), takes 32 mappings from | |
| 478 * consecutive sequences of bytes, starting from the one encoded in value, | |
| 479 * to Unicode code points. (Multiple mappings to reduce per-function call overhe
ad.) | |
| 480 * Does not currently support m:n mappings or reverse fallbacks. | |
| 481 * This function will not be called for sequences of bytes with leading zeros. | |
| 482 * | |
| 483 * @param context an opaque pointer, as passed into ucnv_MBCSEnumToUnicode() | |
| 484 * @param value contains 1..4 bytes of the first byte sequence, right-aligned | |
| 485 * @param codePoints resulting Unicode code points, or negative if a byte sequen
ce does | |
| 486 * not map to anything | |
| 487 * @return TRUE to continue enumeration, FALSE to stop | |
| 488 */ | |
| 489 typedef UBool U_CALLCONV | |
| 490 UConverterEnumToUCallback(const void *context, uint32_t value, UChar32 codePoint
s[32]); | |
| 491 | |
| 492 /* similar to ucnv_MBCSGetNextUChar() but recursive */ | |
| 493 static UBool | |
| 494 enumToU(UConverterMBCSTable *mbcsTable, int8_t stateProps[], | |
| 495 int32_t state, uint32_t offset, | |
| 496 uint32_t value, | |
| 497 UConverterEnumToUCallback *callback, const void *context, | |
| 498 UErrorCode *pErrorCode) { | |
| 499 UChar32 codePoints[32]; | |
| 500 const int32_t *row; | |
| 501 const uint16_t *unicodeCodeUnits; | |
| 502 UChar32 anyCodePoints; | |
| 503 int32_t b, limit; | |
| 504 | |
| 505 row=mbcsTable->stateTable[state]; | |
| 506 unicodeCodeUnits=mbcsTable->unicodeCodeUnits; | |
| 507 | |
| 508 value<<=8; | |
| 509 anyCodePoints=-1; /* becomes non-negative if there is a mapping */ | |
| 510 | |
| 511 b=(stateProps[state]&0x38)<<2; | |
| 512 if(b==0 && stateProps[state]>=0x40) { | |
| 513 /* skip byte sequences with leading zeros because they are not stored in
the fromUnicode table */ | |
| 514 codePoints[0]=U_SENTINEL; | |
| 515 b=1; | |
| 516 } | |
| 517 limit=((stateProps[state]&7)+1)<<5; | |
| 518 while(b<limit) { | |
| 519 int32_t entry=row[b]; | |
| 520 if(MBCS_ENTRY_IS_TRANSITION(entry)) { | |
| 521 int32_t nextState=MBCS_ENTRY_TRANSITION_STATE(entry); | |
| 522 if(stateProps[nextState]>=0) { | |
| 523 /* recurse to a state with non-ignorable actions */ | |
| 524 if(!enumToU( | |
| 525 mbcsTable, stateProps, nextState, | |
| 526 offset+MBCS_ENTRY_TRANSITION_OFFSET(entry), | |
| 527 value|(uint32_t)b, | |
| 528 callback, context, | |
| 529 pErrorCode)) { | |
| 530 return FALSE; | |
| 531 } | |
| 532 } | |
| 533 codePoints[b&0x1f]=U_SENTINEL; | |
| 534 } else { | |
| 535 UChar32 c; | |
| 536 int32_t action; | |
| 537 | |
| 538 /* | |
| 539 * An if-else-if chain provides more reliable performance for | |
| 540 * the most common cases compared to a switch. | |
| 541 */ | |
| 542 action=MBCS_ENTRY_FINAL_ACTION(entry); | |
| 543 if(action==MBCS_STATE_VALID_DIRECT_16) { | |
| 544 /* output BMP code point */ | |
| 545 c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); | |
| 546 } else if(action==MBCS_STATE_VALID_16) { | |
| 547 int32_t finalOffset=offset+MBCS_ENTRY_FINAL_VALUE_16(entry); | |
| 548 c=unicodeCodeUnits[finalOffset]; | |
| 549 if(c<0xfffe) { | |
| 550 /* output BMP code point */ | |
| 551 } else { | |
| 552 c=U_SENTINEL; | |
| 553 } | |
| 554 } else if(action==MBCS_STATE_VALID_16_PAIR) { | |
| 555 int32_t finalOffset=offset+MBCS_ENTRY_FINAL_VALUE_16(entry); | |
| 556 c=unicodeCodeUnits[finalOffset++]; | |
| 557 if(c<0xd800) { | |
| 558 /* output BMP code point below 0xd800 */ | |
| 559 } else if(c<=0xdbff) { | |
| 560 /* output roundtrip or fallback supplementary code point */ | |
| 561 c=((c&0x3ff)<<10)+unicodeCodeUnits[finalOffset]+(0x10000-0xd
c00); | |
| 562 } else if(c==0xe000) { | |
| 563 /* output roundtrip BMP code point above 0xd800 or fallback
BMP code point */ | |
| 564 c=unicodeCodeUnits[finalOffset]; | |
| 565 } else { | |
| 566 c=U_SENTINEL; | |
| 567 } | |
| 568 } else if(action==MBCS_STATE_VALID_DIRECT_20) { | |
| 569 /* output supplementary code point */ | |
| 570 c=(UChar32)(MBCS_ENTRY_FINAL_VALUE(entry)+0x10000); | |
| 571 } else { | |
| 572 c=U_SENTINEL; | |
| 573 } | |
| 574 | |
| 575 codePoints[b&0x1f]=c; | |
| 576 anyCodePoints&=c; | |
| 577 } | |
| 578 if(((++b)&0x1f)==0) { | |
| 579 if(anyCodePoints>=0) { | |
| 580 if(!callback(context, value|(uint32_t)(b-0x20), codePoints)) { | |
| 581 return FALSE; | |
| 582 } | |
| 583 anyCodePoints=-1; | |
| 584 } | |
| 585 } | |
| 586 } | |
| 587 return TRUE; | |
| 588 } | |
| 589 | |
| 590 /* | |
| 591 * Only called if stateProps[state]==-1. | |
| 592 * A recursive call may do stateProps[state]|=0x40 if this state is the target o
f an | |
| 593 * MBCS_STATE_CHANGE_ONLY. | |
| 594 */ | |
| 595 static int8_t | |
| 596 getStateProp(const int32_t (*stateTable)[256], int8_t stateProps[], int state) { | |
| 597 const int32_t *row; | |
| 598 int32_t min, max, entry, nextState; | |
| 599 | |
| 600 row=stateTable[state]; | |
| 601 stateProps[state]=0; | |
| 602 | |
| 603 /* find first non-ignorable state */ | |
| 604 for(min=0;; ++min) { | |
| 605 entry=row[min]; | |
| 606 nextState=MBCS_ENTRY_STATE(entry); | |
| 607 if(stateProps[nextState]==-1) { | |
| 608 getStateProp(stateTable, stateProps, nextState); | |
| 609 } | |
| 610 if(MBCS_ENTRY_IS_TRANSITION(entry)) { | |
| 611 if(stateProps[nextState]>=0) { | |
| 612 break; | |
| 613 } | |
| 614 } else if(MBCS_ENTRY_FINAL_ACTION(entry)<MBCS_STATE_UNASSIGNED) { | |
| 615 break; | |
| 616 } | |
| 617 if(min==0xff) { | |
| 618 stateProps[state]=-0x40; /* (int8_t)0xc0 */ | |
| 619 return stateProps[state]; | |
| 620 } | |
| 621 } | |
| 622 stateProps[state]|=(int8_t)((min>>5)<<3); | |
| 623 | |
| 624 /* find last non-ignorable state */ | |
| 625 for(max=0xff; min<max; --max) { | |
| 626 entry=row[max]; | |
| 627 nextState=MBCS_ENTRY_STATE(entry); | |
| 628 if(stateProps[nextState]==-1) { | |
| 629 getStateProp(stateTable, stateProps, nextState); | |
| 630 } | |
| 631 if(MBCS_ENTRY_IS_TRANSITION(entry)) { | |
| 632 if(stateProps[nextState]>=0) { | |
| 633 break; | |
| 634 } | |
| 635 } else if(MBCS_ENTRY_FINAL_ACTION(entry)<MBCS_STATE_UNASSIGNED) { | |
| 636 break; | |
| 637 } | |
| 638 } | |
| 639 stateProps[state]|=(int8_t)(max>>5); | |
| 640 | |
| 641 /* recurse further and collect direct-state information */ | |
| 642 while(min<=max) { | |
| 643 entry=row[min]; | |
| 644 nextState=MBCS_ENTRY_STATE(entry); | |
| 645 if(stateProps[nextState]==-1) { | |
| 646 getStateProp(stateTable, stateProps, nextState); | |
| 647 } | |
| 648 if(MBCS_ENTRY_IS_FINAL(entry)) { | |
| 649 stateProps[nextState]|=0x40; | |
| 650 if(MBCS_ENTRY_FINAL_ACTION(entry)<=MBCS_STATE_FALLBACK_DIRECT_20) { | |
| 651 stateProps[state]|=0x40; | |
| 652 } | |
| 653 } | |
| 654 ++min; | |
| 655 } | |
| 656 return stateProps[state]; | |
| 657 } | |
| 658 | |
| 659 /* | |
| 660 * Internal function enumerating the toUnicode data of an MBCS converter. | |
| 661 * Currently only used for reconstituting data for a MBCS_OPT_NO_FROM_U | |
| 662 * table, but could also be used for a future ucnv_getUnicodeSet() option | |
| 663 * that includes reverse fallbacks (after updating this function's implementatio
n). | |
| 664 * Currently only handles roundtrip mappings. | |
| 665 * Does not currently handle extensions. | |
| 666 */ | |
| 667 static void | |
| 668 ucnv_MBCSEnumToUnicode(UConverterMBCSTable *mbcsTable, | |
| 669 UConverterEnumToUCallback *callback, const void *context, | |
| 670 UErrorCode *pErrorCode) { | |
| 671 /* | |
| 672 * Properties for each state, to speed up the enumeration. | |
| 673 * Ignorable actions are unassigned/illegal/state-change-only: | |
| 674 * They do not lead to mappings. | |
| 675 * | |
| 676 * Bits 7..6: | |
| 677 * 1 direct/initial state (stateful converters have multiple) | |
| 678 * 0 non-initial state with transitions or with non-ignorable result actions | |
| 679 * -1 final state with only ignorable actions | |
| 680 * | |
| 681 * Bits 5..3: | |
| 682 * The lowest byte value with non-ignorable actions is | |
| 683 * value<<5 (rounded down). | |
| 684 * | |
| 685 * Bits 2..0: | |
| 686 * The highest byte value with non-ignorable actions is | |
| 687 * (value<<5)&0x1f (rounded up). | |
| 688 */ | |
| 689 int8_t stateProps[MBCS_MAX_STATE_COUNT]; | |
| 690 int32_t state; | |
| 691 | |
| 692 uprv_memset(stateProps, -1, sizeof(stateProps)); | |
| 693 | |
| 694 /* recurse from state 0 and set all stateProps */ | |
| 695 getStateProp(mbcsTable->stateTable, stateProps, 0); | |
| 696 | |
| 697 for(state=0; state<mbcsTable->countStates; ++state) { | |
| 698 /*if(stateProps[state]==-1) { | |
| 699 printf("unused/unreachable <icu:state> %d\n", state); | |
| 700 }*/ | |
| 701 if(stateProps[state]>=0x40) { | |
| 702 /* start from each direct state */ | |
| 703 enumToU( | |
| 704 mbcsTable, stateProps, state, 0, 0, | |
| 705 callback, context, | |
| 706 pErrorCode); | |
| 707 } | |
| 708 } | |
| 709 } | |
| 710 | |
| 711 U_CFUNC void | |
| 712 ucnv_MBCSGetFilteredUnicodeSetForUnicode(const UConverterSharedData *sharedData, | |
| 713 const USetAdder *sa, | |
| 714 UConverterUnicodeSet which, | |
| 715 UConverterSetFilter filter, | |
| 716 UErrorCode *pErrorCode) { | |
| 717 const UConverterMBCSTable *mbcsTable; | |
| 718 const uint16_t *table; | |
| 719 | |
| 720 uint32_t st3; | |
| 721 uint16_t st1, maxStage1, st2; | |
| 722 | |
| 723 UChar32 c; | |
| 724 | |
| 725 /* enumerate the from-Unicode trie table */ | |
| 726 mbcsTable=&sharedData->mbcs; | |
| 727 table=mbcsTable->fromUnicodeTable; | |
| 728 if(mbcsTable->unicodeMask&UCNV_HAS_SUPPLEMENTARY) { | |
| 729 maxStage1=0x440; | |
| 730 } else { | |
| 731 maxStage1=0x40; | |
| 732 } | |
| 733 | |
| 734 c=0; /* keep track of the current code point while enumerating */ | |
| 735 | |
| 736 if(mbcsTable->outputType==MBCS_OUTPUT_1) { | |
| 737 const uint16_t *stage2, *stage3, *results; | |
| 738 uint16_t minValue; | |
| 739 | |
| 740 results=(const uint16_t *)mbcsTable->fromUnicodeBytes; | |
| 741 | |
| 742 /* | |
| 743 * Set a threshold variable for selecting which mappings to use. | |
| 744 * See ucnv_MBCSSingleFromBMPWithOffsets() and | |
| 745 * MBCS_SINGLE_RESULT_FROM_U() for details. | |
| 746 */ | |
| 747 if(which==UCNV_ROUNDTRIP_SET) { | |
| 748 /* use only roundtrips */ | |
| 749 minValue=0xf00; | |
| 750 } else /* UCNV_ROUNDTRIP_AND_FALLBACK_SET */ { | |
| 751 /* use all roundtrip and fallback results */ | |
| 752 minValue=0x800; | |
| 753 } | |
| 754 | |
| 755 for(st1=0; st1<maxStage1; ++st1) { | |
| 756 st2=table[st1]; | |
| 757 if(st2>maxStage1) { | |
| 758 stage2=table+st2; | |
| 759 for(st2=0; st2<64; ++st2) { | |
| 760 if((st3=stage2[st2])!=0) { | |
| 761 /* read the stage 3 block */ | |
| 762 stage3=results+st3; | |
| 763 | |
| 764 do { | |
| 765 if(*stage3++>=minValue) { | |
| 766 sa->add(sa->set, c); | |
| 767 } | |
| 768 } while((++c&0xf)!=0); | |
| 769 } else { | |
| 770 c+=16; /* empty stage 3 block */ | |
| 771 } | |
| 772 } | |
| 773 } else { | |
| 774 c+=1024; /* empty stage 2 block */ | |
| 775 } | |
| 776 } | |
| 777 } else { | |
| 778 const uint32_t *stage2; | |
| 779 const uint8_t *stage3, *bytes; | |
| 780 uint32_t st3Multiplier; | |
| 781 uint32_t value; | |
| 782 UBool useFallback; | |
| 783 | |
| 784 bytes=mbcsTable->fromUnicodeBytes; | |
| 785 | |
| 786 useFallback=(UBool)(which==UCNV_ROUNDTRIP_AND_FALLBACK_SET); | |
| 787 | |
| 788 switch(mbcsTable->outputType) { | |
| 789 case MBCS_OUTPUT_3: | |
| 790 case MBCS_OUTPUT_4_EUC: | |
| 791 st3Multiplier=3; | |
| 792 break; | |
| 793 case MBCS_OUTPUT_4: | |
| 794 st3Multiplier=4; | |
| 795 break; | |
| 796 default: | |
| 797 st3Multiplier=2; | |
| 798 break; | |
| 799 } | |
| 800 | |
| 801 for(st1=0; st1<maxStage1; ++st1) { | |
| 802 st2=table[st1]; | |
| 803 if(st2>(maxStage1>>1)) { | |
| 804 stage2=(const uint32_t *)table+st2; | |
| 805 for(st2=0; st2<64; ++st2) { | |
| 806 if((st3=stage2[st2])!=0) { | |
| 807 /* read the stage 3 block */ | |
| 808 stage3=bytes+st3Multiplier*16*(uint32_t)(uint16_t)st3; | |
| 809 | |
| 810 /* get the roundtrip flags for the stage 3 block */ | |
| 811 st3>>=16; | |
| 812 | |
| 813 /* | |
| 814 * Add code points for which the roundtrip flag is set, | |
| 815 * or which map to non-zero bytes if we use fallbacks. | |
| 816 * See ucnv_MBCSFromUnicodeWithOffsets() for details. | |
| 817 */ | |
| 818 switch(filter) { | |
| 819 case UCNV_SET_FILTER_NONE: | |
| 820 do { | |
| 821 if(st3&1) { | |
| 822 sa->add(sa->set, c); | |
| 823 stage3+=st3Multiplier; | |
| 824 } else if(useFallback) { | |
| 825 uint8_t b=0; | |
| 826 switch(st3Multiplier) { | |
| 827 case 4: | |
| 828 b|=*stage3++; | |
| 829 case 3: /*fall through*/ | |
| 830 b|=*stage3++; | |
| 831 case 2: /*fall through*/ | |
| 832 b|=stage3[0]|stage3[1]; | |
| 833 stage3+=2; | |
| 834 default: | |
| 835 break; | |
| 836 } | |
| 837 if(b!=0) { | |
| 838 sa->add(sa->set, c); | |
| 839 } | |
| 840 } | |
| 841 st3>>=1; | |
| 842 } while((++c&0xf)!=0); | |
| 843 break; | |
| 844 case UCNV_SET_FILTER_DBCS_ONLY: | |
| 845 /* Ignore single-byte results (<0x100). */ | |
| 846 do { | |
| 847 if(((st3&1)!=0 || useFallback) && *((const uint1
6_t *)stage3)>=0x100) { | |
| 848 sa->add(sa->set, c); | |
| 849 } | |
| 850 st3>>=1; | |
| 851 stage3+=2; /* +=st3Multiplier */ | |
| 852 } while((++c&0xf)!=0); | |
| 853 break; | |
| 854 case UCNV_SET_FILTER_2022_CN: | |
| 855 /* Only add code points that map to CNS 11643 plane
s 1 & 2 for non-EXT ISO-2022-CN. */ | |
| 856 do { | |
| 857 if(((st3&1)!=0 || useFallback) && ((value=*stage
3)==0x81 || value==0x82)) { | |
| 858 sa->add(sa->set, c); | |
| 859 } | |
| 860 st3>>=1; | |
| 861 stage3+=3; /* +=st3Multiplier */ | |
| 862 } while((++c&0xf)!=0); | |
| 863 break; | |
| 864 case UCNV_SET_FILTER_SJIS: | |
| 865 /* Only add code points that map to Shift-JIS codes
corresponding to JIS X 0208. */ | |
| 866 do { | |
| 867 if(((st3&1)!=0 || useFallback) && (value=*((cons
t uint16_t *)stage3))>=0x8140 && value<=0xeffc) { | |
| 868 sa->add(sa->set, c); | |
| 869 } | |
| 870 st3>>=1; | |
| 871 stage3+=2; /* +=st3Multiplier */ | |
| 872 } while((++c&0xf)!=0); | |
| 873 break; | |
| 874 case UCNV_SET_FILTER_GR94DBCS: | |
| 875 /* Only add code points that map to ISO 2022 GR 94 D
BCS codes (each byte A1..FE). */ | |
| 876 do { | |
| 877 if( ((st3&1)!=0 || useFallback) && | |
| 878 (uint16_t)((value=*((const uint16_t *)stage3
)) - 0xa1a1)<=(0xfefe - 0xa1a1) && | |
| 879 (uint8_t)(value-0xa1)<=(0xfe - 0xa1) | |
| 880 ) { | |
| 881 sa->add(sa->set, c); | |
| 882 } | |
| 883 st3>>=1; | |
| 884 stage3+=2; /* +=st3Multiplier */ | |
| 885 } while((++c&0xf)!=0); | |
| 886 break; | |
| 887 case UCNV_SET_FILTER_HZ: | |
| 888 /* Only add code points that are suitable for HZ DBC
S (lead byte A1..FD). */ | |
| 889 do { | |
| 890 if( ((st3&1)!=0 || useFallback) && | |
| 891 (uint16_t)((value=*((const uint16_t *)stage3
))-0xa1a1)<=(0xfdfe - 0xa1a1) && | |
| 892 (uint8_t)(value-0xa1)<=(0xfe - 0xa1) | |
| 893 ) { | |
| 894 sa->add(sa->set, c); | |
| 895 } | |
| 896 st3>>=1; | |
| 897 stage3+=2; /* +=st3Multiplier */ | |
| 898 } while((++c&0xf)!=0); | |
| 899 break; | |
| 900 default: | |
| 901 *pErrorCode=U_INTERNAL_PROGRAM_ERROR; | |
| 902 return; | |
| 903 } | |
| 904 } else { | |
| 905 c+=16; /* empty stage 3 block */ | |
| 906 } | |
| 907 } | |
| 908 } else { | |
| 909 c+=1024; /* empty stage 2 block */ | |
| 910 } | |
| 911 } | |
| 912 } | |
| 913 | |
| 914 ucnv_extGetUnicodeSet(sharedData, sa, which, filter, pErrorCode); | |
| 915 } | |
| 916 | |
| 917 U_CFUNC void | |
| 918 ucnv_MBCSGetUnicodeSetForUnicode(const UConverterSharedData *sharedData, | |
| 919 const USetAdder *sa, | |
| 920 UConverterUnicodeSet which, | |
| 921 UErrorCode *pErrorCode) { | |
| 922 ucnv_MBCSGetFilteredUnicodeSetForUnicode( | |
| 923 sharedData, sa, which, | |
| 924 sharedData->mbcs.outputType==MBCS_OUTPUT_DBCS_ONLY ? | |
| 925 UCNV_SET_FILTER_DBCS_ONLY : | |
| 926 UCNV_SET_FILTER_NONE, | |
| 927 pErrorCode); | |
| 928 } | |
| 929 | |
| 930 static void | |
| 931 ucnv_MBCSGetUnicodeSet(const UConverter *cnv, | |
| 932 const USetAdder *sa, | |
| 933 UConverterUnicodeSet which, | |
| 934 UErrorCode *pErrorCode) { | |
| 935 if(cnv->options&_MBCS_OPTION_GB18030) { | |
| 936 sa->addRange(sa->set, 0, 0xd7ff); | |
| 937 sa->addRange(sa->set, 0xe000, 0x10ffff); | |
| 938 } else { | |
| 939 ucnv_MBCSGetUnicodeSetForUnicode(cnv->sharedData, sa, which, pErrorCode)
; | |
| 940 } | |
| 941 } | |
| 942 | |
| 943 /* conversion extensions for input not in the main table -------------------- */ | |
| 944 | |
| 945 /* | |
| 946 * Hardcoded extension handling for GB 18030. | |
| 947 * Definition of LINEAR macros and gb18030Ranges see near the beginning of the f
ile. | |
| 948 * | |
| 949 * In the future, conversion extensions may handle m:n mappings and delta tables
, | |
| 950 * see http://source.icu-project.org/repos/icu/icuhtml/trunk/design/conversion/c
onversion_extensions.html | |
| 951 * | |
| 952 * If an input character cannot be mapped, then these functions set an error | |
| 953 * code. The framework will then call the callback function. | |
| 954 */ | |
| 955 | |
| 956 /* | |
| 957 * @return if(U_FAILURE) return the code point for cnv->fromUChar32 | |
| 958 * else return 0 after output has been written to the target | |
| 959 */ | |
| 960 static UChar32 | |
| 961 _extFromU(UConverter *cnv, const UConverterSharedData *sharedData, | |
| 962 UChar32 cp, | |
| 963 const UChar **source, const UChar *sourceLimit, | |
| 964 uint8_t **target, const uint8_t *targetLimit, | |
| 965 int32_t **offsets, int32_t sourceIndex, | |
| 966 UBool flush, | |
| 967 UErrorCode *pErrorCode) { | |
| 968 const int32_t *cx; | |
| 969 | |
| 970 cnv->useSubChar1=FALSE; | |
| 971 | |
| 972 if( (cx=sharedData->mbcs.extIndexes)!=NULL && | |
| 973 ucnv_extInitialMatchFromU( | |
| 974 cnv, cx, | |
| 975 cp, source, sourceLimit, | |
| 976 (char **)target, (char *)targetLimit, | |
| 977 offsets, sourceIndex, | |
| 978 flush, | |
| 979 pErrorCode) | |
| 980 ) { | |
| 981 return 0; /* an extension mapping handled the input */ | |
| 982 } | |
| 983 | |
| 984 /* GB 18030 */ | |
| 985 if((cnv->options&_MBCS_OPTION_GB18030)!=0) { | |
| 986 const uint32_t *range; | |
| 987 int32_t i; | |
| 988 | |
| 989 range=gb18030Ranges[0]; | |
| 990 for(i=0; i<sizeof(gb18030Ranges)/sizeof(gb18030Ranges[0]); range+=4, ++i
) { | |
| 991 if(range[0]<=(uint32_t)cp && (uint32_t)cp<=range[1]) { | |
| 992 /* found the Unicode code point, output the four-byte sequence f
or it */ | |
| 993 uint32_t linear; | |
| 994 char bytes[4]; | |
| 995 | |
| 996 /* get the linear value of the first GB 18030 code in this range
*/ | |
| 997 linear=range[2]-LINEAR_18030_BASE; | |
| 998 | |
| 999 /* add the offset from the beginning of the range */ | |
| 1000 linear+=((uint32_t)cp-range[0]); | |
| 1001 | |
| 1002 /* turn this into a four-byte sequence */ | |
| 1003 bytes[3]=(char)(0x30+linear%10); linear/=10; | |
| 1004 bytes[2]=(char)(0x81+linear%126); linear/=126; | |
| 1005 bytes[1]=(char)(0x30+linear%10); linear/=10; | |
| 1006 bytes[0]=(char)(0x81+linear); | |
| 1007 | |
| 1008 /* output this sequence */ | |
| 1009 ucnv_fromUWriteBytes(cnv, | |
| 1010 bytes, 4, (char **)target, (char *)targetLi
mit, | |
| 1011 offsets, sourceIndex, pErrorCode); | |
| 1012 return 0; | |
| 1013 } | |
| 1014 } | |
| 1015 } | |
| 1016 | |
| 1017 /* no mapping */ | |
| 1018 *pErrorCode=U_INVALID_CHAR_FOUND; | |
| 1019 return cp; | |
| 1020 } | |
| 1021 | |
| 1022 /* | |
| 1023 * Input sequence: cnv->toUBytes[0..length[ | |
| 1024 * @return if(U_FAILURE) return the length (toULength, byteIndex) for the input | |
| 1025 * else return 0 after output has been written to the target | |
| 1026 */ | |
| 1027 static int8_t | |
| 1028 _extToU(UConverter *cnv, const UConverterSharedData *sharedData, | |
| 1029 int8_t length, | |
| 1030 const uint8_t **source, const uint8_t *sourceLimit, | |
| 1031 UChar **target, const UChar *targetLimit, | |
| 1032 int32_t **offsets, int32_t sourceIndex, | |
| 1033 UBool flush, | |
| 1034 UErrorCode *pErrorCode) { | |
| 1035 const int32_t *cx; | |
| 1036 | |
| 1037 if( (cx=sharedData->mbcs.extIndexes)!=NULL && | |
| 1038 ucnv_extInitialMatchToU( | |
| 1039 cnv, cx, | |
| 1040 length, (const char **)source, (const char *)sourceLimit, | |
| 1041 target, targetLimit, | |
| 1042 offsets, sourceIndex, | |
| 1043 flush, | |
| 1044 pErrorCode) | |
| 1045 ) { | |
| 1046 return 0; /* an extension mapping handled the input */ | |
| 1047 } | |
| 1048 | |
| 1049 /* GB 18030 */ | |
| 1050 if(length==4 && (cnv->options&_MBCS_OPTION_GB18030)!=0) { | |
| 1051 const uint32_t *range; | |
| 1052 uint32_t linear; | |
| 1053 int32_t i; | |
| 1054 | |
| 1055 linear=LINEAR_18030(cnv->toUBytes[0], cnv->toUBytes[1], cnv->toUBytes[2]
, cnv->toUBytes[3]); | |
| 1056 range=gb18030Ranges[0]; | |
| 1057 for(i=0; i<sizeof(gb18030Ranges)/sizeof(gb18030Ranges[0]); range+=4, ++i
) { | |
| 1058 if(range[2]<=linear && linear<=range[3]) { | |
| 1059 /* found the sequence, output the Unicode code point for it */ | |
| 1060 *pErrorCode=U_ZERO_ERROR; | |
| 1061 | |
| 1062 /* add the linear difference between the input and start sequenc
es to the start code point */ | |
| 1063 linear=range[0]+(linear-range[2]); | |
| 1064 | |
| 1065 /* output this code point */ | |
| 1066 ucnv_toUWriteCodePoint(cnv, linear, target, targetLimit, offsets
, sourceIndex, pErrorCode); | |
| 1067 | |
| 1068 return 0; | |
| 1069 } | |
| 1070 } | |
| 1071 } | |
| 1072 | |
| 1073 /* no mapping */ | |
| 1074 *pErrorCode=U_INVALID_CHAR_FOUND; | |
| 1075 return length; | |
| 1076 } | |
| 1077 | |
| 1078 /* EBCDIC swap LF<->NL ------------------------------------------------------ */ | |
| 1079 | |
| 1080 /* | |
| 1081 * This code modifies a standard EBCDIC<->Unicode mapping table for | |
| 1082 * OS/390 (z/OS) Unix System Services (Open Edition). | |
| 1083 * The difference is in the mapping of Line Feed and New Line control codes: | |
| 1084 * Standard EBCDIC maps | |
| 1085 * | |
| 1086 * <U000A> \x25 |0 | |
| 1087 * <U0085> \x15 |0 | |
| 1088 * | |
| 1089 * but OS/390 USS EBCDIC swaps the control codes for LF and NL, | |
| 1090 * mapping | |
| 1091 * | |
| 1092 * <U000A> \x15 |0 | |
| 1093 * <U0085> \x25 |0 | |
| 1094 * | |
| 1095 * This code modifies a loaded standard EBCDIC<->Unicode mapping table | |
| 1096 * by copying it into allocated memory and swapping the LF and NL values. | |
| 1097 * It allows to support the same EBCDIC charset in both versions without | |
| 1098 * duplicating the entire installed table. | |
| 1099 */ | |
| 1100 | |
| 1101 /* standard EBCDIC codes */ | |
| 1102 #define EBCDIC_LF 0x25 | |
| 1103 #define EBCDIC_NL 0x15 | |
| 1104 | |
| 1105 /* standard EBCDIC codes with roundtrip flag as stored in Unicode-to-single-byte
tables */ | |
| 1106 #define EBCDIC_RT_LF 0xf25 | |
| 1107 #define EBCDIC_RT_NL 0xf15 | |
| 1108 | |
| 1109 /* Unicode code points */ | |
| 1110 #define U_LF 0x0a | |
| 1111 #define U_NL 0x85 | |
| 1112 | |
| 1113 static UBool | |
| 1114 _EBCDICSwapLFNL(UConverterSharedData *sharedData, UErrorCode *pErrorCode) { | |
| 1115 UConverterMBCSTable *mbcsTable; | |
| 1116 | |
| 1117 const uint16_t *table, *results; | |
| 1118 const uint8_t *bytes; | |
| 1119 | |
| 1120 int32_t (*newStateTable)[256]; | |
| 1121 uint16_t *newResults; | |
| 1122 uint8_t *p; | |
| 1123 char *name; | |
| 1124 | |
| 1125 uint32_t stage2Entry; | |
| 1126 uint32_t size, sizeofFromUBytes; | |
| 1127 | |
| 1128 mbcsTable=&sharedData->mbcs; | |
| 1129 | |
| 1130 table=mbcsTable->fromUnicodeTable; | |
| 1131 bytes=mbcsTable->fromUnicodeBytes; | |
| 1132 results=(const uint16_t *)bytes; | |
| 1133 | |
| 1134 /* | |
| 1135 * Check that this is an EBCDIC table with SBCS portion - | |
| 1136 * SBCS or EBCDIC_STATEFUL with standard EBCDIC LF and NL mappings. | |
| 1137 * | |
| 1138 * If not, ignore the option. Options are always ignored if they do not appl
y. | |
| 1139 */ | |
| 1140 if(!( | |
| 1141 (mbcsTable->outputType==MBCS_OUTPUT_1 || mbcsTable->outputType==MBCS_OU
TPUT_2_SISO) && | |
| 1142 mbcsTable->stateTable[0][EBCDIC_LF]==MBCS_ENTRY_FINAL(0, MBCS_STATE_VAL
ID_DIRECT_16, U_LF) && | |
| 1143 mbcsTable->stateTable[0][EBCDIC_NL]==MBCS_ENTRY_FINAL(0, MBCS_STATE_VAL
ID_DIRECT_16, U_NL) | |
| 1144 )) { | |
| 1145 return FALSE; | |
| 1146 } | |
| 1147 | |
| 1148 if(mbcsTable->outputType==MBCS_OUTPUT_1) { | |
| 1149 if(!( | |
| 1150 EBCDIC_RT_LF==MBCS_SINGLE_RESULT_FROM_U(table, results, U_LF) && | |
| 1151 EBCDIC_RT_NL==MBCS_SINGLE_RESULT_FROM_U(table, results, U_NL) | |
| 1152 )) { | |
| 1153 return FALSE; | |
| 1154 } | |
| 1155 } else /* MBCS_OUTPUT_2_SISO */ { | |
| 1156 stage2Entry=MBCS_STAGE_2_FROM_U(table, U_LF); | |
| 1157 if(!( | |
| 1158 MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, U_LF)!=0 && | |
| 1159 EBCDIC_LF==MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, U_LF) | |
| 1160 )) { | |
| 1161 return FALSE; | |
| 1162 } | |
| 1163 | |
| 1164 stage2Entry=MBCS_STAGE_2_FROM_U(table, U_NL); | |
| 1165 if(!( | |
| 1166 MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, U_NL)!=0 && | |
| 1167 EBCDIC_NL==MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, U_NL) | |
| 1168 )) { | |
| 1169 return FALSE; | |
| 1170 } | |
| 1171 } | |
| 1172 | |
| 1173 if(mbcsTable->fromUBytesLength>0) { | |
| 1174 /* | |
| 1175 * We _know_ the number of bytes in the fromUnicodeBytes array | |
| 1176 * starting with header.version 4.1. | |
| 1177 */ | |
| 1178 sizeofFromUBytes=mbcsTable->fromUBytesLength; | |
| 1179 } else { | |
| 1180 /* | |
| 1181 * Otherwise: | |
| 1182 * There used to be code to enumerate the fromUnicode | |
| 1183 * trie and find the highest entry, but it was removed in ICU 3.2 | |
| 1184 * because it was not tested and caused a low code coverage number. | |
| 1185 * See Jitterbug 3674. | |
| 1186 * This affects only some .cnv file formats with a header.version | |
| 1187 * below 4.1, and only when swaplfnl is requested. | |
| 1188 * | |
| 1189 * ucnvmbcs.c revision 1.99 is the last one with the | |
| 1190 * ucnv_MBCSSizeofFromUBytes() function. | |
| 1191 */ | |
| 1192 *pErrorCode=U_INVALID_FORMAT_ERROR; | |
| 1193 return FALSE; | |
| 1194 } | |
| 1195 | |
| 1196 /* | |
| 1197 * The table has an appropriate format. | |
| 1198 * Allocate and build | |
| 1199 * - a modified to-Unicode state table | |
| 1200 * - a modified from-Unicode output array | |
| 1201 * - a converter name string with the swap option appended | |
| 1202 */ | |
| 1203 size= | |
| 1204 mbcsTable->countStates*1024+ | |
| 1205 sizeofFromUBytes+ | |
| 1206 UCNV_MAX_CONVERTER_NAME_LENGTH+20; | |
| 1207 p=(uint8_t *)uprv_malloc(size); | |
| 1208 if(p==NULL) { | |
| 1209 *pErrorCode=U_MEMORY_ALLOCATION_ERROR; | |
| 1210 return FALSE; | |
| 1211 } | |
| 1212 | |
| 1213 /* copy and modify the to-Unicode state table */ | |
| 1214 newStateTable=(int32_t (*)[256])p; | |
| 1215 uprv_memcpy(newStateTable, mbcsTable->stateTable, mbcsTable->countStates*102
4); | |
| 1216 | |
| 1217 newStateTable[0][EBCDIC_LF]=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16,
U_NL); | |
| 1218 newStateTable[0][EBCDIC_NL]=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16,
U_LF); | |
| 1219 | |
| 1220 /* copy and modify the from-Unicode result table */ | |
| 1221 newResults=(uint16_t *)newStateTable[mbcsTable->countStates]; | |
| 1222 uprv_memcpy(newResults, bytes, sizeofFromUBytes); | |
| 1223 | |
| 1224 /* conveniently, the table access macros work on the left side of expression
s */ | |
| 1225 if(mbcsTable->outputType==MBCS_OUTPUT_1) { | |
| 1226 MBCS_SINGLE_RESULT_FROM_U(table, newResults, U_LF)=EBCDIC_RT_NL; | |
| 1227 MBCS_SINGLE_RESULT_FROM_U(table, newResults, U_NL)=EBCDIC_RT_LF; | |
| 1228 } else /* MBCS_OUTPUT_2_SISO */ { | |
| 1229 stage2Entry=MBCS_STAGE_2_FROM_U(table, U_LF); | |
| 1230 MBCS_VALUE_2_FROM_STAGE_2(newResults, stage2Entry, U_LF)=EBCDIC_NL; | |
| 1231 | |
| 1232 stage2Entry=MBCS_STAGE_2_FROM_U(table, U_NL); | |
| 1233 MBCS_VALUE_2_FROM_STAGE_2(newResults, stage2Entry, U_NL)=EBCDIC_LF; | |
| 1234 } | |
| 1235 | |
| 1236 /* set the canonical converter name */ | |
| 1237 name=(char *)newResults+sizeofFromUBytes; | |
| 1238 uprv_strcpy(name, sharedData->staticData->name); | |
| 1239 uprv_strcat(name, UCNV_SWAP_LFNL_OPTION_STRING); | |
| 1240 | |
| 1241 /* set the pointers */ | |
| 1242 umtx_lock(NULL); | |
| 1243 if(mbcsTable->swapLFNLStateTable==NULL) { | |
| 1244 mbcsTable->swapLFNLStateTable=newStateTable; | |
| 1245 mbcsTable->swapLFNLFromUnicodeBytes=(uint8_t *)newResults; | |
| 1246 mbcsTable->swapLFNLName=name; | |
| 1247 | |
| 1248 newStateTable=NULL; | |
| 1249 } | |
| 1250 umtx_unlock(NULL); | |
| 1251 | |
| 1252 /* release the allocated memory if another thread beat us to it */ | |
| 1253 if(newStateTable!=NULL) { | |
| 1254 uprv_free(newStateTable); | |
| 1255 } | |
| 1256 return TRUE; | |
| 1257 } | |
| 1258 | |
| 1259 /* reconstitute omitted fromUnicode data ------------------------------------ */ | |
| 1260 | |
| 1261 /* for details, compare with genmbcs.c MBCSAddFromUnicode() and transformEUC() *
/ | |
| 1262 static UBool U_CALLCONV | |
| 1263 writeStage3Roundtrip(const void *context, uint32_t value, UChar32 codePoints[32]
) { | |
| 1264 UConverterMBCSTable *mbcsTable=(UConverterMBCSTable *)context; | |
| 1265 const uint16_t *table; | |
| 1266 uint32_t *stage2; | |
| 1267 uint8_t *bytes, *p; | |
| 1268 UChar32 c; | |
| 1269 int32_t i, st3; | |
| 1270 | |
| 1271 table=mbcsTable->fromUnicodeTable; | |
| 1272 bytes=(uint8_t *)mbcsTable->fromUnicodeBytes; | |
| 1273 | |
| 1274 /* for EUC outputTypes, modify the value like genmbcs.c's transformEUC() */ | |
| 1275 switch(mbcsTable->outputType) { | |
| 1276 case MBCS_OUTPUT_3_EUC: | |
| 1277 if(value<=0xffff) { | |
| 1278 /* short sequences are stored directly */ | |
| 1279 /* code set 0 or 1 */ | |
| 1280 } else if(value<=0x8effff) { | |
| 1281 /* code set 2 */ | |
| 1282 value&=0x7fff; | |
| 1283 } else /* first byte is 0x8f */ { | |
| 1284 /* code set 3 */ | |
| 1285 value&=0xff7f; | |
| 1286 } | |
| 1287 break; | |
| 1288 case MBCS_OUTPUT_4_EUC: | |
| 1289 if(value<=0xffffff) { | |
| 1290 /* short sequences are stored directly */ | |
| 1291 /* code set 0 or 1 */ | |
| 1292 } else if(value<=0x8effffff) { | |
| 1293 /* code set 2 */ | |
| 1294 value&=0x7fffff; | |
| 1295 } else /* first byte is 0x8f */ { | |
| 1296 /* code set 3 */ | |
| 1297 value&=0xff7fff; | |
| 1298 } | |
| 1299 break; | |
| 1300 default: | |
| 1301 break; | |
| 1302 } | |
| 1303 | |
| 1304 for(i=0; i<=0x1f; ++value, ++i) { | |
| 1305 c=codePoints[i]; | |
| 1306 if(c<0) { | |
| 1307 continue; | |
| 1308 } | |
| 1309 | |
| 1310 /* locate the stage 2 & 3 data */ | |
| 1311 stage2=((uint32_t *)table)+table[c>>10]+((c>>4)&0x3f); | |
| 1312 p=bytes; | |
| 1313 st3=(int32_t)(uint16_t)*stage2*16+(c&0xf); | |
| 1314 | |
| 1315 /* write the codepage bytes into stage 3 */ | |
| 1316 switch(mbcsTable->outputType) { | |
| 1317 case MBCS_OUTPUT_3: | |
| 1318 case MBCS_OUTPUT_4_EUC: | |
| 1319 p+=st3*3; | |
| 1320 p[0]=(uint8_t)(value>>16); | |
| 1321 p[1]=(uint8_t)(value>>8); | |
| 1322 p[2]=(uint8_t)value; | |
| 1323 break; | |
| 1324 case MBCS_OUTPUT_4: | |
| 1325 ((uint32_t *)p)[st3]=value; | |
| 1326 break; | |
| 1327 default: | |
| 1328 /* 2 bytes per character */ | |
| 1329 ((uint16_t *)p)[st3]=(uint16_t)value; | |
| 1330 break; | |
| 1331 } | |
| 1332 | |
| 1333 /* set the roundtrip flag */ | |
| 1334 *stage2|=(1UL<<(16+(c&0xf))); | |
| 1335 } | |
| 1336 return TRUE; | |
| 1337 } | |
| 1338 | |
| 1339 static void | |
| 1340 reconstituteData(UConverterMBCSTable *mbcsTable, | |
| 1341 uint32_t stage1Length, uint32_t stage2Length, | |
| 1342 uint32_t fullStage2Length, /* lengths are numbers of units, no
t bytes */ | |
| 1343 UErrorCode *pErrorCode) { | |
| 1344 uint16_t *stage1; | |
| 1345 uint32_t *stage2; | |
| 1346 uint32_t dataLength=stage1Length*2+fullStage2Length*4+mbcsTable->fromUBytesL
ength; | |
| 1347 mbcsTable->reconstitutedData=(uint8_t *)uprv_malloc(dataLength); | |
| 1348 if(mbcsTable->reconstitutedData==NULL) { | |
| 1349 *pErrorCode=U_MEMORY_ALLOCATION_ERROR; | |
| 1350 return; | |
| 1351 } | |
| 1352 uprv_memset(mbcsTable->reconstitutedData, 0, dataLength); | |
| 1353 | |
| 1354 /* copy existing data and reroute the pointers */ | |
| 1355 stage1=(uint16_t *)mbcsTable->reconstitutedData; | |
| 1356 uprv_memcpy(stage1, mbcsTable->fromUnicodeTable, stage1Length*2); | |
| 1357 | |
| 1358 stage2=(uint32_t *)(stage1+stage1Length); | |
| 1359 uprv_memcpy(stage2+(fullStage2Length-stage2Length), | |
| 1360 mbcsTable->fromUnicodeTable+stage1Length, | |
| 1361 stage2Length*4); | |
| 1362 | |
| 1363 mbcsTable->fromUnicodeTable=stage1; | |
| 1364 mbcsTable->fromUnicodeBytes=(uint8_t *)(stage2+fullStage2Length); | |
| 1365 | |
| 1366 /* indexes into stage 2 count from the bottom of the fromUnicodeTable */ | |
| 1367 stage2=(uint32_t *)stage1; | |
| 1368 | |
| 1369 /* reconstitute the initial part of stage 2 from the mbcsIndex */ | |
| 1370 { | |
| 1371 int32_t stageUTF8Length=((int32_t)mbcsTable->maxFastUChar+1)>>6; | |
| 1372 int32_t stageUTF8Index=0; | |
| 1373 int32_t st1, st2, st3, i; | |
| 1374 | |
| 1375 for(st1=0; stageUTF8Index<stageUTF8Length; ++st1) { | |
| 1376 st2=stage1[st1]; | |
| 1377 if(st2!=stage1Length/2) { | |
| 1378 /* each stage 2 block has 64 entries corresponding to 16 entries
in the mbcsIndex */ | |
| 1379 for(i=0; i<16; ++i) { | |
| 1380 st3=mbcsTable->mbcsIndex[stageUTF8Index++]; | |
| 1381 if(st3!=0) { | |
| 1382 /* an stage 2 entry's index is per stage 3 16-block, not
per stage 3 entry */ | |
| 1383 st3>>=4; | |
| 1384 /* | |
| 1385 * 4 stage 2 entries point to 4 consecutive stage 3 16-b
locks which are | |
| 1386 * allocated together as a single 64-block for access fr
om the mbcsIndex | |
| 1387 */ | |
| 1388 stage2[st2++]=st3++; | |
| 1389 stage2[st2++]=st3++; | |
| 1390 stage2[st2++]=st3++; | |
| 1391 stage2[st2++]=st3; | |
| 1392 } else { | |
| 1393 /* no stage 3 block, skip */ | |
| 1394 st2+=4; | |
| 1395 } | |
| 1396 } | |
| 1397 } else { | |
| 1398 /* no stage 2 block, skip */ | |
| 1399 stageUTF8Index+=16; | |
| 1400 } | |
| 1401 } | |
| 1402 } | |
| 1403 | |
| 1404 /* reconstitute fromUnicodeBytes with roundtrips from toUnicode data */ | |
| 1405 ucnv_MBCSEnumToUnicode(mbcsTable, writeStage3Roundtrip, mbcsTable, pErrorCod
e); | |
| 1406 } | |
| 1407 | |
| 1408 /* MBCS setup functions ----------------------------------------------------- */ | |
| 1409 | |
| 1410 static void | |
| 1411 ucnv_MBCSLoad(UConverterSharedData *sharedData, | |
| 1412 UConverterLoadArgs *pArgs, | |
| 1413 const uint8_t *raw, | |
| 1414 UErrorCode *pErrorCode) { | |
| 1415 UDataInfo info; | |
| 1416 UConverterMBCSTable *mbcsTable=&sharedData->mbcs; | |
| 1417 _MBCSHeader *header=(_MBCSHeader *)raw; | |
| 1418 uint32_t offset; | |
| 1419 uint32_t headerLength; | |
| 1420 UBool noFromU=FALSE; | |
| 1421 | |
| 1422 if(header->version[0]==4) { | |
| 1423 headerLength=MBCS_HEADER_V4_LENGTH; | |
| 1424 } else if(header->version[0]==5 && header->version[1]>=3 && | |
| 1425 (header->options&MBCS_OPT_UNKNOWN_INCOMPATIBLE_MASK)==0) { | |
| 1426 headerLength=header->options&MBCS_OPT_LENGTH_MASK; | |
| 1427 noFromU=(UBool)((header->options&MBCS_OPT_NO_FROM_U)!=0); | |
| 1428 } else { | |
| 1429 *pErrorCode=U_INVALID_TABLE_FORMAT; | |
| 1430 return; | |
| 1431 } | |
| 1432 | |
| 1433 mbcsTable->outputType=(uint8_t)header->flags; | |
| 1434 if(noFromU && mbcsTable->outputType==MBCS_OUTPUT_1) { | |
| 1435 *pErrorCode=U_INVALID_TABLE_FORMAT; | |
| 1436 return; | |
| 1437 } | |
| 1438 | |
| 1439 /* extension data, header version 4.2 and higher */ | |
| 1440 offset=header->flags>>8; | |
| 1441 if(offset!=0) { | |
| 1442 mbcsTable->extIndexes=(const int32_t *)(raw+offset); | |
| 1443 } | |
| 1444 | |
| 1445 if(mbcsTable->outputType==MBCS_OUTPUT_EXT_ONLY) { | |
| 1446 UConverterLoadArgs args={ 0 }; | |
| 1447 UConverterSharedData *baseSharedData; | |
| 1448 const int32_t *extIndexes; | |
| 1449 const char *baseName; | |
| 1450 | |
| 1451 /* extension-only file, load the base table and set values appropriately
*/ | |
| 1452 if((extIndexes=mbcsTable->extIndexes)==NULL) { | |
| 1453 /* extension-only file without extension */ | |
| 1454 *pErrorCode=U_INVALID_TABLE_FORMAT; | |
| 1455 return; | |
| 1456 } | |
| 1457 | |
| 1458 if(pArgs->nestedLoads!=1) { | |
| 1459 /* an extension table must not be loaded as a base table */ | |
| 1460 *pErrorCode=U_INVALID_TABLE_FILE; | |
| 1461 return; | |
| 1462 } | |
| 1463 | |
| 1464 /* load the base table */ | |
| 1465 baseName=(const char *)header+headerLength*4; | |
| 1466 if(0==uprv_strcmp(baseName, sharedData->staticData->name)) { | |
| 1467 /* forbid loading this same extension-only file */ | |
| 1468 *pErrorCode=U_INVALID_TABLE_FORMAT; | |
| 1469 return; | |
| 1470 } | |
| 1471 | |
| 1472 /* TODO parse package name out of the prefix of the base name in the ext
ension .cnv file? */ | |
| 1473 args.size=sizeof(UConverterLoadArgs); | |
| 1474 args.nestedLoads=2; | |
| 1475 args.onlyTestIsLoadable=pArgs->onlyTestIsLoadable; | |
| 1476 args.reserved=pArgs->reserved; | |
| 1477 args.options=pArgs->options; | |
| 1478 args.pkg=pArgs->pkg; | |
| 1479 args.name=baseName; | |
| 1480 baseSharedData=ucnv_load(&args, pErrorCode); | |
| 1481 if(U_FAILURE(*pErrorCode)) { | |
| 1482 return; | |
| 1483 } | |
| 1484 if( baseSharedData->staticData->conversionType!=UCNV_MBCS || | |
| 1485 baseSharedData->mbcs.baseSharedData!=NULL | |
| 1486 ) { | |
| 1487 ucnv_unload(baseSharedData); | |
| 1488 *pErrorCode=U_INVALID_TABLE_FORMAT; | |
| 1489 return; | |
| 1490 } | |
| 1491 if(pArgs->onlyTestIsLoadable) { | |
| 1492 /* | |
| 1493 * Exit as soon as we know that we can load the converter | |
| 1494 * and the format is valid and supported. | |
| 1495 * The worst that can happen in the following code is a memory | |
| 1496 * allocation error. | |
| 1497 */ | |
| 1498 ucnv_unload(baseSharedData); | |
| 1499 return; | |
| 1500 } | |
| 1501 | |
| 1502 /* copy the base table data */ | |
| 1503 uprv_memcpy(mbcsTable, &baseSharedData->mbcs, sizeof(UConverterMBCSTable
)); | |
| 1504 | |
| 1505 /* overwrite values with relevant ones for the extension converter */ | |
| 1506 mbcsTable->baseSharedData=baseSharedData; | |
| 1507 mbcsTable->extIndexes=extIndexes; | |
| 1508 | |
| 1509 /* | |
| 1510 * It would be possible to share the swapLFNL data with a base converter
, | |
| 1511 * but the generated name would have to be different, and the memory | |
| 1512 * would have to be free'd only once. | |
| 1513 * It is easier to just create the data for the extension converter | |
| 1514 * separately when it is requested. | |
| 1515 */ | |
| 1516 mbcsTable->swapLFNLStateTable=NULL; | |
| 1517 mbcsTable->swapLFNLFromUnicodeBytes=NULL; | |
| 1518 mbcsTable->swapLFNLName=NULL; | |
| 1519 | |
| 1520 /* | |
| 1521 * The reconstitutedData must be deleted only when the base converter | |
| 1522 * is unloaded. | |
| 1523 */ | |
| 1524 mbcsTable->reconstitutedData=NULL; | |
| 1525 | |
| 1526 /* | |
| 1527 * Set a special, runtime-only outputType if the extension converter | |
| 1528 * is a DBCS version of a base converter that also maps single bytes. | |
| 1529 */ | |
| 1530 if( sharedData->staticData->conversionType==UCNV_DBCS || | |
| 1531 (sharedData->staticData->conversionType==UCNV_MBCS && | |
| 1532 sharedData->staticData->minBytesPerChar>=2) | |
| 1533 ) { | |
| 1534 if(baseSharedData->mbcs.outputType==MBCS_OUTPUT_2_SISO) { | |
| 1535 /* the base converter is SI/SO-stateful */ | |
| 1536 int32_t entry; | |
| 1537 | |
| 1538 /* get the dbcs state from the state table entry for SO=0x0e */ | |
| 1539 entry=mbcsTable->stateTable[0][0xe]; | |
| 1540 if( MBCS_ENTRY_IS_FINAL(entry) && | |
| 1541 MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_CHANGE_ONLY && | |
| 1542 MBCS_ENTRY_FINAL_STATE(entry)!=0 | |
| 1543 ) { | |
| 1544 mbcsTable->dbcsOnlyState=(uint8_t)MBCS_ENTRY_FINAL_STATE(ent
ry); | |
| 1545 | |
| 1546 mbcsTable->outputType=MBCS_OUTPUT_DBCS_ONLY; | |
| 1547 } | |
| 1548 } else if( | |
| 1549 baseSharedData->staticData->conversionType==UCNV_MBCS && | |
| 1550 baseSharedData->staticData->minBytesPerChar==1 && | |
| 1551 baseSharedData->staticData->maxBytesPerChar==2 && | |
| 1552 mbcsTable->countStates<=127 | |
| 1553 ) { | |
| 1554 /* non-stateful base converter, need to modify the state table *
/ | |
| 1555 int32_t (*newStateTable)[256]; | |
| 1556 int32_t *state; | |
| 1557 int32_t i, count; | |
| 1558 | |
| 1559 /* allocate a new state table and copy the base state table cont
ents */ | |
| 1560 count=mbcsTable->countStates; | |
| 1561 newStateTable=(int32_t (*)[256])uprv_malloc((count+1)*1024); | |
| 1562 if(newStateTable==NULL) { | |
| 1563 ucnv_unload(baseSharedData); | |
| 1564 *pErrorCode=U_MEMORY_ALLOCATION_ERROR; | |
| 1565 return; | |
| 1566 } | |
| 1567 | |
| 1568 uprv_memcpy(newStateTable, mbcsTable->stateTable, count*1024); | |
| 1569 | |
| 1570 /* change all final single-byte entries to go to a new all-illeg
al state */ | |
| 1571 state=newStateTable[0]; | |
| 1572 for(i=0; i<256; ++i) { | |
| 1573 if(MBCS_ENTRY_IS_FINAL(state[i])) { | |
| 1574 state[i]=MBCS_ENTRY_TRANSITION(count, 0); | |
| 1575 } | |
| 1576 } | |
| 1577 | |
| 1578 /* build the new all-illegal state */ | |
| 1579 state=newStateTable[count]; | |
| 1580 for(i=0; i<256; ++i) { | |
| 1581 state[i]=MBCS_ENTRY_FINAL(0, MBCS_STATE_ILLEGAL, 0); | |
| 1582 } | |
| 1583 mbcsTable->stateTable=(const int32_t (*)[256])newStateTable; | |
| 1584 mbcsTable->countStates=(uint8_t)(count+1); | |
| 1585 mbcsTable->stateTableOwned=TRUE; | |
| 1586 | |
| 1587 mbcsTable->outputType=MBCS_OUTPUT_DBCS_ONLY; | |
| 1588 } | |
| 1589 } | |
| 1590 | |
| 1591 /* | |
| 1592 * unlike below for files with base tables, do not get the unicodeMask | |
| 1593 * from the sharedData; instead, use the base table's unicodeMask, | |
| 1594 * which we copied in the memcpy above; | |
| 1595 * this is necessary because the static data unicodeMask, especially | |
| 1596 * the UCNV_HAS_SUPPLEMENTARY flag, is part of the base table data | |
| 1597 */ | |
| 1598 } else { | |
| 1599 /* conversion file with a base table; an additional extension table is o
ptional */ | |
| 1600 /* make sure that the output type is known */ | |
| 1601 switch(mbcsTable->outputType) { | |
| 1602 case MBCS_OUTPUT_1: | |
| 1603 case MBCS_OUTPUT_2: | |
| 1604 case MBCS_OUTPUT_3: | |
| 1605 case MBCS_OUTPUT_4: | |
| 1606 case MBCS_OUTPUT_3_EUC: | |
| 1607 case MBCS_OUTPUT_4_EUC: | |
| 1608 case MBCS_OUTPUT_2_SISO: | |
| 1609 /* OK */ | |
| 1610 break; | |
| 1611 default: | |
| 1612 *pErrorCode=U_INVALID_TABLE_FORMAT; | |
| 1613 return; | |
| 1614 } | |
| 1615 if(pArgs->onlyTestIsLoadable) { | |
| 1616 /* | |
| 1617 * Exit as soon as we know that we can load the converter | |
| 1618 * and the format is valid and supported. | |
| 1619 * The worst that can happen in the following code is a memory | |
| 1620 * allocation error. | |
| 1621 */ | |
| 1622 return; | |
| 1623 } | |
| 1624 | |
| 1625 mbcsTable->countStates=(uint8_t)header->countStates; | |
| 1626 mbcsTable->countToUFallbacks=header->countToUFallbacks; | |
| 1627 mbcsTable->stateTable=(const int32_t (*)[256])(raw+headerLength*4); | |
| 1628 mbcsTable->toUFallbacks=(const _MBCSToUFallback *)(mbcsTable->stateTable
+header->countStates); | |
| 1629 mbcsTable->unicodeCodeUnits=(const uint16_t *)(raw+header->offsetToUCode
Units); | |
| 1630 | |
| 1631 mbcsTable->fromUnicodeTable=(const uint16_t *)(raw+header->offsetFromUTa
ble); | |
| 1632 mbcsTable->fromUnicodeBytes=(const uint8_t *)(raw+header->offsetFromUByt
es); | |
| 1633 mbcsTable->fromUBytesLength=header->fromUBytesLength; | |
| 1634 | |
| 1635 /* | |
| 1636 * converter versions 6.1 and up contain a unicodeMask that is | |
| 1637 * used here to select the most efficient function implementations | |
| 1638 */ | |
| 1639 info.size=sizeof(UDataInfo); | |
| 1640 udata_getInfo((UDataMemory *)sharedData->dataMemory, &info); | |
| 1641 if(info.formatVersion[0]>6 || (info.formatVersion[0]==6 && info.formatVe
rsion[1]>=1)) { | |
| 1642 /* mask off possible future extensions to be safe */ | |
| 1643 mbcsTable->unicodeMask=(uint8_t)(sharedData->staticData->unicodeMask
&3); | |
| 1644 } else { | |
| 1645 /* for older versions, assume worst case: contains anything possible
(prevent over-optimizations) */ | |
| 1646 mbcsTable->unicodeMask=UCNV_HAS_SUPPLEMENTARY|UCNV_HAS_SURROGATES; | |
| 1647 } | |
| 1648 | |
| 1649 /* | |
| 1650 * _MBCSHeader.version 4.3 adds utf8Friendly data structures. | |
| 1651 * Check for the header version, SBCS vs. MBCS, and for whether the | |
| 1652 * data structures are optimized for code points as high as what the | |
| 1653 * runtime code is designed for. | |
| 1654 * The implementation does not handle mapping tables with entries for | |
| 1655 * unpaired surrogates. | |
| 1656 */ | |
| 1657 if( header->version[1]>=3 && | |
| 1658 (mbcsTable->unicodeMask&UCNV_HAS_SURROGATES)==0 && | |
| 1659 (mbcsTable->countStates==1 ? | |
| 1660 (header->version[2]>=(SBCS_FAST_MAX>>8)) : | |
| 1661 (header->version[2]>=(MBCS_FAST_MAX>>8)) | |
| 1662 ) | |
| 1663 ) { | |
| 1664 mbcsTable->utf8Friendly=TRUE; | |
| 1665 | |
| 1666 if(mbcsTable->countStates==1) { | |
| 1667 /* | |
| 1668 * SBCS: Stage 3 is allocated in 64-entry blocks for U+0000..SBC
S_FAST_MAX or higher. | |
| 1669 * Build a table with indexes to each block, to be used instead
of | |
| 1670 * the regular stage 1/2 table. | |
| 1671 */ | |
| 1672 int32_t i; | |
| 1673 for(i=0; i<(SBCS_FAST_LIMIT>>6); ++i) { | |
| 1674 mbcsTable->sbcsIndex[i]=mbcsTable->fromUnicodeTable[mbcsTabl
e->fromUnicodeTable[i>>4]+((i<<2)&0x3c)]; | |
| 1675 } | |
| 1676 /* set SBCS_FAST_MAX to reflect the reach of sbcsIndex[] even if
header->version[2]>(SBCS_FAST_MAX>>8) */ | |
| 1677 mbcsTable->maxFastUChar=SBCS_FAST_MAX; | |
| 1678 } else { | |
| 1679 /* | |
| 1680 * MBCS: Stage 3 is allocated in 64-entry blocks for U+0000..MBC
S_FAST_MAX or higher. | |
| 1681 * The .cnv file is prebuilt with an additional stage table with
indexes | |
| 1682 * to each block. | |
| 1683 */ | |
| 1684 mbcsTable->mbcsIndex=(const uint16_t *) | |
| 1685 (mbcsTable->fromUnicodeBytes+ | |
| 1686 (noFromU ? 0 : mbcsTable->fromUBytesLength)); | |
| 1687 mbcsTable->maxFastUChar=(((UChar)header->version[2])<<8)|0xff; | |
| 1688 } | |
| 1689 } | |
| 1690 | |
| 1691 /* calculate a bit set of 4 ASCII characters per bit that round-trip to
ASCII bytes */ | |
| 1692 { | |
| 1693 uint32_t asciiRoundtrips=0xffffffff; | |
| 1694 int32_t i; | |
| 1695 | |
| 1696 for(i=0; i<0x80; ++i) { | |
| 1697 if(mbcsTable->stateTable[0][i]!=MBCS_ENTRY_FINAL(0, MBCS_STATE_V
ALID_DIRECT_16, i)) { | |
| 1698 asciiRoundtrips&=~((uint32_t)1<<(i>>2)); | |
| 1699 } | |
| 1700 } | |
| 1701 mbcsTable->asciiRoundtrips=asciiRoundtrips; | |
| 1702 } | |
| 1703 | |
| 1704 if(noFromU) { | |
| 1705 uint32_t stage1Length= | |
| 1706 mbcsTable->unicodeMask&UCNV_HAS_SUPPLEMENTARY ? | |
| 1707 0x440 : 0x40; | |
| 1708 uint32_t stage2Length= | |
| 1709 (header->offsetFromUBytes-header->offsetFromUTable)/4- | |
| 1710 stage1Length/2; | |
| 1711 reconstituteData(mbcsTable, stage1Length, stage2Length, header->full
Stage2Length, pErrorCode); | |
| 1712 } | |
| 1713 } | |
| 1714 | |
| 1715 /* Set the impl pointer here so that it is set for both extension-only and b
ase tables. */ | |
| 1716 if(mbcsTable->utf8Friendly) { | |
| 1717 if(mbcsTable->countStates==1) { | |
| 1718 sharedData->impl=&_SBCSUTF8Impl; | |
| 1719 } else { | |
| 1720 if(mbcsTable->outputType==MBCS_OUTPUT_2) { | |
| 1721 sharedData->impl=&_DBCSUTF8Impl; | |
| 1722 } | |
| 1723 } | |
| 1724 } | |
| 1725 | |
| 1726 if(mbcsTable->outputType==MBCS_OUTPUT_DBCS_ONLY || mbcsTable->outputType==MB
CS_OUTPUT_2_SISO) { | |
| 1727 /* | |
| 1728 * MBCS_OUTPUT_DBCS_ONLY: No SBCS mappings, therefore ASCII does not rou
ndtrip. | |
| 1729 * MBCS_OUTPUT_2_SISO: Bypass the ASCII fastpath to handle prevLength co
rrectly. | |
| 1730 */ | |
| 1731 mbcsTable->asciiRoundtrips=0; | |
| 1732 } | |
| 1733 } | |
| 1734 | |
| 1735 static void | |
| 1736 ucnv_MBCSUnload(UConverterSharedData *sharedData) { | |
| 1737 UConverterMBCSTable *mbcsTable=&sharedData->mbcs; | |
| 1738 | |
| 1739 if(mbcsTable->swapLFNLStateTable!=NULL) { | |
| 1740 uprv_free(mbcsTable->swapLFNLStateTable); | |
| 1741 } | |
| 1742 if(mbcsTable->stateTableOwned) { | |
| 1743 uprv_free((void *)mbcsTable->stateTable); | |
| 1744 } | |
| 1745 if(mbcsTable->baseSharedData!=NULL) { | |
| 1746 ucnv_unload(mbcsTable->baseSharedData); | |
| 1747 } | |
| 1748 if(mbcsTable->reconstitutedData!=NULL) { | |
| 1749 uprv_free(mbcsTable->reconstitutedData); | |
| 1750 } | |
| 1751 } | |
| 1752 | |
| 1753 static void | |
| 1754 ucnv_MBCSOpen(UConverter *cnv, | |
| 1755 UConverterLoadArgs *pArgs, | |
| 1756 UErrorCode *pErrorCode) { | |
| 1757 UConverterMBCSTable *mbcsTable; | |
| 1758 const int32_t *extIndexes; | |
| 1759 uint8_t outputType; | |
| 1760 int8_t maxBytesPerUChar; | |
| 1761 | |
| 1762 if(pArgs->onlyTestIsLoadable) { | |
| 1763 return; | |
| 1764 } | |
| 1765 | |
| 1766 mbcsTable=&cnv->sharedData->mbcs; | |
| 1767 outputType=mbcsTable->outputType; | |
| 1768 | |
| 1769 if(outputType==MBCS_OUTPUT_DBCS_ONLY) { | |
| 1770 /* the swaplfnl option does not apply, remove it */ | |
| 1771 cnv->options=pArgs->options&=~UCNV_OPTION_SWAP_LFNL; | |
| 1772 } | |
| 1773 | |
| 1774 if((pArgs->options&UCNV_OPTION_SWAP_LFNL)!=0) { | |
| 1775 /* do this because double-checked locking is broken */ | |
| 1776 UBool isCached; | |
| 1777 | |
| 1778 umtx_lock(NULL); | |
| 1779 isCached=mbcsTable->swapLFNLStateTable!=NULL; | |
| 1780 umtx_unlock(NULL); | |
| 1781 | |
| 1782 if(!isCached) { | |
| 1783 if(!_EBCDICSwapLFNL(cnv->sharedData, pErrorCode)) { | |
| 1784 if(U_FAILURE(*pErrorCode)) { | |
| 1785 return; /* something went wrong */ | |
| 1786 } | |
| 1787 | |
| 1788 /* the option does not apply, remove it */ | |
| 1789 cnv->options=pArgs->options&=~UCNV_OPTION_SWAP_LFNL; | |
| 1790 } | |
| 1791 } | |
| 1792 } | |
| 1793 | |
| 1794 if(uprv_strstr(pArgs->name, "18030")!=NULL) { | |
| 1795 if(uprv_strstr(pArgs->name, "gb18030")!=NULL || uprv_strstr(pArgs->name,
"GB18030")!=NULL) { | |
| 1796 /* set a flag for GB 18030 mode, which changes the callback behavior
*/ | |
| 1797 cnv->options|=_MBCS_OPTION_GB18030; | |
| 1798 } | |
| 1799 } else if((uprv_strstr(pArgs->name, "KEIS")!=NULL) || (uprv_strstr(pArgs->na
me, "keis")!=NULL)) { | |
| 1800 /* set a flag for KEIS converter, which changes the SI/SO character sequ
ence */ | |
| 1801 cnv->options|=_MBCS_OPTION_KEIS; | |
| 1802 } else if((uprv_strstr(pArgs->name, "JEF")!=NULL) || (uprv_strstr(pArgs->nam
e, "jef")!=NULL)) { | |
| 1803 /* set a flag for JEF converter, which changes the SI/SO character seque
nce */ | |
| 1804 cnv->options|=_MBCS_OPTION_JEF; | |
| 1805 } else if((uprv_strstr(pArgs->name, "JIPS")!=NULL) || (uprv_strstr(pArgs->na
me, "jips")!=NULL)) { | |
| 1806 /* set a flag for JIPS converter, which changes the SI/SO character sequ
ence */ | |
| 1807 cnv->options|=_MBCS_OPTION_JIPS; | |
| 1808 } | |
| 1809 | |
| 1810 /* fix maxBytesPerUChar depending on outputType and options etc. */ | |
| 1811 if(outputType==MBCS_OUTPUT_2_SISO) { | |
| 1812 cnv->maxBytesPerUChar=3; /* SO+DBCS */ | |
| 1813 } | |
| 1814 | |
| 1815 extIndexes=mbcsTable->extIndexes; | |
| 1816 if(extIndexes!=NULL) { | |
| 1817 maxBytesPerUChar=(int8_t)UCNV_GET_MAX_BYTES_PER_UCHAR(extIndexes); | |
| 1818 if(outputType==MBCS_OUTPUT_2_SISO) { | |
| 1819 ++maxBytesPerUChar; /* SO + multiple DBCS */ | |
| 1820 } | |
| 1821 | |
| 1822 if(maxBytesPerUChar>cnv->maxBytesPerUChar) { | |
| 1823 cnv->maxBytesPerUChar=maxBytesPerUChar; | |
| 1824 } | |
| 1825 } | |
| 1826 | |
| 1827 #if 0 | |
| 1828 /* | |
| 1829 * documentation of UConverter fields used for status | |
| 1830 * all of these fields are (re)set to 0 by ucnv_bld.c and ucnv_reset() | |
| 1831 */ | |
| 1832 | |
| 1833 /* toUnicode */ | |
| 1834 cnv->toUnicodeStatus=0; /* offset */ | |
| 1835 cnv->mode=0; /* state */ | |
| 1836 cnv->toULength=0; /* byteIndex */ | |
| 1837 | |
| 1838 /* fromUnicode */ | |
| 1839 cnv->fromUChar32=0; | |
| 1840 cnv->fromUnicodeStatus=1; /* prevLength */ | |
| 1841 #endif | |
| 1842 } | |
| 1843 | |
| 1844 static const char * | |
| 1845 ucnv_MBCSGetName(const UConverter *cnv) { | |
| 1846 if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0 && cnv->sharedData->mbcs.swapLFNL
Name!=NULL) { | |
| 1847 return cnv->sharedData->mbcs.swapLFNLName; | |
| 1848 } else { | |
| 1849 return cnv->sharedData->staticData->name; | |
| 1850 } | |
| 1851 } | |
| 1852 | |
| 1853 /* MBCS-to-Unicode conversion functions ------------------------------------- */ | |
| 1854 | |
| 1855 static UChar32 | |
| 1856 ucnv_MBCSGetFallback(UConverterMBCSTable *mbcsTable, uint32_t offset) { | |
| 1857 const _MBCSToUFallback *toUFallbacks; | |
| 1858 uint32_t i, start, limit; | |
| 1859 | |
| 1860 limit=mbcsTable->countToUFallbacks; | |
| 1861 if(limit>0) { | |
| 1862 /* do a binary search for the fallback mapping */ | |
| 1863 toUFallbacks=mbcsTable->toUFallbacks; | |
| 1864 start=0; | |
| 1865 while(start<limit-1) { | |
| 1866 i=(start+limit)/2; | |
| 1867 if(offset<toUFallbacks[i].offset) { | |
| 1868 limit=i; | |
| 1869 } else { | |
| 1870 start=i; | |
| 1871 } | |
| 1872 } | |
| 1873 | |
| 1874 /* did we really find it? */ | |
| 1875 if(offset==toUFallbacks[start].offset) { | |
| 1876 return toUFallbacks[start].codePoint; | |
| 1877 } | |
| 1878 } | |
| 1879 | |
| 1880 return 0xfffe; | |
| 1881 } | |
| 1882 | |
| 1883 /* This version of ucnv_MBCSToUnicodeWithOffsets() is optimized for single-byte,
single-state codepages. */ | |
| 1884 static void | |
| 1885 ucnv_MBCSSingleToUnicodeWithOffsets(UConverterToUnicodeArgs *pArgs, | |
| 1886 UErrorCode *pErrorCode) { | |
| 1887 UConverter *cnv; | |
| 1888 const uint8_t *source, *sourceLimit; | |
| 1889 UChar *target; | |
| 1890 const UChar *targetLimit; | |
| 1891 int32_t *offsets; | |
| 1892 | |
| 1893 const int32_t (*stateTable)[256]; | |
| 1894 | |
| 1895 int32_t sourceIndex; | |
| 1896 | |
| 1897 int32_t entry; | |
| 1898 UChar c; | |
| 1899 uint8_t action; | |
| 1900 | |
| 1901 /* set up the local pointers */ | |
| 1902 cnv=pArgs->converter; | |
| 1903 source=(const uint8_t *)pArgs->source; | |
| 1904 sourceLimit=(const uint8_t *)pArgs->sourceLimit; | |
| 1905 target=pArgs->target; | |
| 1906 targetLimit=pArgs->targetLimit; | |
| 1907 offsets=pArgs->offsets; | |
| 1908 | |
| 1909 if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { | |
| 1910 stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTa
ble; | |
| 1911 } else { | |
| 1912 stateTable=cnv->sharedData->mbcs.stateTable; | |
| 1913 } | |
| 1914 | |
| 1915 /* sourceIndex=-1 if the current character began in the previous buffer */ | |
| 1916 sourceIndex=0; | |
| 1917 | |
| 1918 /* conversion loop */ | |
| 1919 while(source<sourceLimit) { | |
| 1920 /* | |
| 1921 * This following test is to see if available input would overflow the o
utput. | |
| 1922 * It does not catch output of more than one code unit that | |
| 1923 * overflows as a result of a surrogate pair or callback output | |
| 1924 * from the last source byte. | |
| 1925 * Therefore, those situations also test for overflows and will | |
| 1926 * then break the loop, too. | |
| 1927 */ | |
| 1928 if(target>=targetLimit) { | |
| 1929 /* target is full */ | |
| 1930 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; | |
| 1931 break; | |
| 1932 } | |
| 1933 | |
| 1934 entry=stateTable[0][*source++]; | |
| 1935 /* MBCS_ENTRY_IS_FINAL(entry) */ | |
| 1936 | |
| 1937 /* test the most common case first */ | |
| 1938 if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) { | |
| 1939 /* output BMP code point */ | |
| 1940 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); | |
| 1941 if(offsets!=NULL) { | |
| 1942 *offsets++=sourceIndex; | |
| 1943 } | |
| 1944 | |
| 1945 /* normal end of action codes: prepare for a new character */ | |
| 1946 ++sourceIndex; | |
| 1947 continue; | |
| 1948 } | |
| 1949 | |
| 1950 /* | |
| 1951 * An if-else-if chain provides more reliable performance for | |
| 1952 * the most common cases compared to a switch. | |
| 1953 */ | |
| 1954 action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry)); | |
| 1955 if(action==MBCS_STATE_VALID_DIRECT_20 || | |
| 1956 (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv)
) | |
| 1957 ) { | |
| 1958 entry=MBCS_ENTRY_FINAL_VALUE(entry); | |
| 1959 /* output surrogate pair */ | |
| 1960 *target++=(UChar)(0xd800|(UChar)(entry>>10)); | |
| 1961 if(offsets!=NULL) { | |
| 1962 *offsets++=sourceIndex; | |
| 1963 } | |
| 1964 c=(UChar)(0xdc00|(UChar)(entry&0x3ff)); | |
| 1965 if(target<targetLimit) { | |
| 1966 *target++=c; | |
| 1967 if(offsets!=NULL) { | |
| 1968 *offsets++=sourceIndex; | |
| 1969 } | |
| 1970 } else { | |
| 1971 /* target overflow */ | |
| 1972 cnv->UCharErrorBuffer[0]=c; | |
| 1973 cnv->UCharErrorBufferLength=1; | |
| 1974 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; | |
| 1975 break; | |
| 1976 } | |
| 1977 | |
| 1978 ++sourceIndex; | |
| 1979 continue; | |
| 1980 } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) { | |
| 1981 if(UCNV_TO_U_USE_FALLBACK(cnv)) { | |
| 1982 /* output BMP code point */ | |
| 1983 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); | |
| 1984 if(offsets!=NULL) { | |
| 1985 *offsets++=sourceIndex; | |
| 1986 } | |
| 1987 | |
| 1988 ++sourceIndex; | |
| 1989 continue; | |
| 1990 } | |
| 1991 } else if(action==MBCS_STATE_UNASSIGNED) { | |
| 1992 /* just fall through */ | |
| 1993 } else if(action==MBCS_STATE_ILLEGAL) { | |
| 1994 /* callback(illegal) */ | |
| 1995 *pErrorCode=U_ILLEGAL_CHAR_FOUND; | |
| 1996 } else { | |
| 1997 /* reserved, must never occur */ | |
| 1998 ++sourceIndex; | |
| 1999 continue; | |
| 2000 } | |
| 2001 | |
| 2002 if(U_FAILURE(*pErrorCode)) { | |
| 2003 /* callback(illegal) */ | |
| 2004 break; | |
| 2005 } else /* unassigned sequences indicated with byteIndex>0 */ { | |
| 2006 /* try an extension mapping */ | |
| 2007 pArgs->source=(const char *)source; | |
| 2008 cnv->toUBytes[0]=*(source-1); | |
| 2009 cnv->toULength=_extToU(cnv, cnv->sharedData, | |
| 2010 1, &source, sourceLimit, | |
| 2011 &target, targetLimit, | |
| 2012 &offsets, sourceIndex, | |
| 2013 pArgs->flush, | |
| 2014 pErrorCode); | |
| 2015 sourceIndex+=1+(int32_t)(source-(const uint8_t *)pArgs->source); | |
| 2016 | |
| 2017 if(U_FAILURE(*pErrorCode)) { | |
| 2018 /* not mappable or buffer overflow */ | |
| 2019 break; | |
| 2020 } | |
| 2021 } | |
| 2022 } | |
| 2023 | |
| 2024 /* write back the updated pointers */ | |
| 2025 pArgs->source=(const char *)source; | |
| 2026 pArgs->target=target; | |
| 2027 pArgs->offsets=offsets; | |
| 2028 } | |
| 2029 | |
| 2030 /* | |
| 2031 * This version of ucnv_MBCSSingleToUnicodeWithOffsets() is optimized for single
-byte, single-state codepages | |
| 2032 * that only map to and from the BMP. | |
| 2033 * In addition to single-byte optimizations, the offset calculations | |
| 2034 * become much easier. | |
| 2035 */ | |
| 2036 static void | |
| 2037 ucnv_MBCSSingleToBMPWithOffsets(UConverterToUnicodeArgs *pArgs, | |
| 2038 UErrorCode *pErrorCode) { | |
| 2039 UConverter *cnv; | |
| 2040 const uint8_t *source, *sourceLimit, *lastSource; | |
| 2041 UChar *target; | |
| 2042 int32_t targetCapacity, length; | |
| 2043 int32_t *offsets; | |
| 2044 | |
| 2045 const int32_t (*stateTable)[256]; | |
| 2046 | |
| 2047 int32_t sourceIndex; | |
| 2048 | |
| 2049 int32_t entry; | |
| 2050 uint8_t action; | |
| 2051 | |
| 2052 /* set up the local pointers */ | |
| 2053 cnv=pArgs->converter; | |
| 2054 source=(const uint8_t *)pArgs->source; | |
| 2055 sourceLimit=(const uint8_t *)pArgs->sourceLimit; | |
| 2056 target=pArgs->target; | |
| 2057 targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target); | |
| 2058 offsets=pArgs->offsets; | |
| 2059 | |
| 2060 if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { | |
| 2061 stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTa
ble; | |
| 2062 } else { | |
| 2063 stateTable=cnv->sharedData->mbcs.stateTable; | |
| 2064 } | |
| 2065 | |
| 2066 /* sourceIndex=-1 if the current character began in the previous buffer */ | |
| 2067 sourceIndex=0; | |
| 2068 lastSource=source; | |
| 2069 | |
| 2070 /* | |
| 2071 * since the conversion here is 1:1 UChar:uint8_t, we need only one counter | |
| 2072 * for the minimum of the sourceLength and targetCapacity | |
| 2073 */ | |
| 2074 length=(int32_t)(sourceLimit-source); | |
| 2075 if(length<targetCapacity) { | |
| 2076 targetCapacity=length; | |
| 2077 } | |
| 2078 | |
| 2079 #if MBCS_UNROLL_SINGLE_TO_BMP | |
| 2080 /* unrolling makes it faster on Pentium III/Windows 2000 */ | |
| 2081 /* unroll the loop with the most common case */ | |
| 2082 unrolled: | |
| 2083 if(targetCapacity>=16) { | |
| 2084 int32_t count, loops, oredEntries; | |
| 2085 | |
| 2086 loops=count=targetCapacity>>4; | |
| 2087 do { | |
| 2088 oredEntries=entry=stateTable[0][*source++]; | |
| 2089 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); | |
| 2090 oredEntries|=entry=stateTable[0][*source++]; | |
| 2091 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); | |
| 2092 oredEntries|=entry=stateTable[0][*source++]; | |
| 2093 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); | |
| 2094 oredEntries|=entry=stateTable[0][*source++]; | |
| 2095 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); | |
| 2096 oredEntries|=entry=stateTable[0][*source++]; | |
| 2097 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); | |
| 2098 oredEntries|=entry=stateTable[0][*source++]; | |
| 2099 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); | |
| 2100 oredEntries|=entry=stateTable[0][*source++]; | |
| 2101 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); | |
| 2102 oredEntries|=entry=stateTable[0][*source++]; | |
| 2103 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); | |
| 2104 oredEntries|=entry=stateTable[0][*source++]; | |
| 2105 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); | |
| 2106 oredEntries|=entry=stateTable[0][*source++]; | |
| 2107 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); | |
| 2108 oredEntries|=entry=stateTable[0][*source++]; | |
| 2109 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); | |
| 2110 oredEntries|=entry=stateTable[0][*source++]; | |
| 2111 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); | |
| 2112 oredEntries|=entry=stateTable[0][*source++]; | |
| 2113 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); | |
| 2114 oredEntries|=entry=stateTable[0][*source++]; | |
| 2115 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); | |
| 2116 oredEntries|=entry=stateTable[0][*source++]; | |
| 2117 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); | |
| 2118 oredEntries|=entry=stateTable[0][*source++]; | |
| 2119 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); | |
| 2120 | |
| 2121 /* were all 16 entries really valid? */ | |
| 2122 if(!MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(oredEntries)) { | |
| 2123 /* no, return to the first of these 16 */ | |
| 2124 source-=16; | |
| 2125 target-=16; | |
| 2126 break; | |
| 2127 } | |
| 2128 } while(--count>0); | |
| 2129 count=loops-count; | |
| 2130 targetCapacity-=16*count; | |
| 2131 | |
| 2132 if(offsets!=NULL) { | |
| 2133 lastSource+=16*count; | |
| 2134 while(count>0) { | |
| 2135 *offsets++=sourceIndex++; | |
| 2136 *offsets++=sourceIndex++; | |
| 2137 *offsets++=sourceIndex++; | |
| 2138 *offsets++=sourceIndex++; | |
| 2139 *offsets++=sourceIndex++; | |
| 2140 *offsets++=sourceIndex++; | |
| 2141 *offsets++=sourceIndex++; | |
| 2142 *offsets++=sourceIndex++; | |
| 2143 *offsets++=sourceIndex++; | |
| 2144 *offsets++=sourceIndex++; | |
| 2145 *offsets++=sourceIndex++; | |
| 2146 *offsets++=sourceIndex++; | |
| 2147 *offsets++=sourceIndex++; | |
| 2148 *offsets++=sourceIndex++; | |
| 2149 *offsets++=sourceIndex++; | |
| 2150 *offsets++=sourceIndex++; | |
| 2151 --count; | |
| 2152 } | |
| 2153 } | |
| 2154 } | |
| 2155 #endif | |
| 2156 | |
| 2157 /* conversion loop */ | |
| 2158 while(targetCapacity > 0 && source < sourceLimit) { | |
| 2159 entry=stateTable[0][*source++]; | |
| 2160 /* MBCS_ENTRY_IS_FINAL(entry) */ | |
| 2161 | |
| 2162 /* test the most common case first */ | |
| 2163 if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) { | |
| 2164 /* output BMP code point */ | |
| 2165 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); | |
| 2166 --targetCapacity; | |
| 2167 continue; | |
| 2168 } | |
| 2169 | |
| 2170 /* | |
| 2171 * An if-else-if chain provides more reliable performance for | |
| 2172 * the most common cases compared to a switch. | |
| 2173 */ | |
| 2174 action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry)); | |
| 2175 if(action==MBCS_STATE_FALLBACK_DIRECT_16) { | |
| 2176 if(UCNV_TO_U_USE_FALLBACK(cnv)) { | |
| 2177 /* output BMP code point */ | |
| 2178 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); | |
| 2179 --targetCapacity; | |
| 2180 continue; | |
| 2181 } | |
| 2182 } else if(action==MBCS_STATE_UNASSIGNED) { | |
| 2183 /* just fall through */ | |
| 2184 } else if(action==MBCS_STATE_ILLEGAL) { | |
| 2185 /* callback(illegal) */ | |
| 2186 *pErrorCode=U_ILLEGAL_CHAR_FOUND; | |
| 2187 } else { | |
| 2188 /* reserved, must never occur */ | |
| 2189 continue; | |
| 2190 } | |
| 2191 | |
| 2192 /* set offsets since the start or the last extension */ | |
| 2193 if(offsets!=NULL) { | |
| 2194 int32_t count=(int32_t)(source-lastSource); | |
| 2195 | |
| 2196 /* predecrement: do not set the offset for the callback-causing char
acter */ | |
| 2197 while(--count>0) { | |
| 2198 *offsets++=sourceIndex++; | |
| 2199 } | |
| 2200 /* offset and sourceIndex are now set for the current character */ | |
| 2201 } | |
| 2202 | |
| 2203 if(U_FAILURE(*pErrorCode)) { | |
| 2204 /* callback(illegal) */ | |
| 2205 break; | |
| 2206 } else /* unassigned sequences indicated with byteIndex>0 */ { | |
| 2207 /* try an extension mapping */ | |
| 2208 lastSource=source; | |
| 2209 cnv->toUBytes[0]=*(source-1); | |
| 2210 cnv->toULength=_extToU(cnv, cnv->sharedData, | |
| 2211 1, &source, sourceLimit, | |
| 2212 &target, pArgs->targetLimit, | |
| 2213 &offsets, sourceIndex, | |
| 2214 pArgs->flush, | |
| 2215 pErrorCode); | |
| 2216 sourceIndex+=1+(int32_t)(source-lastSource); | |
| 2217 | |
| 2218 if(U_FAILURE(*pErrorCode)) { | |
| 2219 /* not mappable or buffer overflow */ | |
| 2220 break; | |
| 2221 } | |
| 2222 | |
| 2223 /* recalculate the targetCapacity after an extension mapping */ | |
| 2224 targetCapacity=(int32_t)(pArgs->targetLimit-target); | |
| 2225 length=(int32_t)(sourceLimit-source); | |
| 2226 if(length<targetCapacity) { | |
| 2227 targetCapacity=length; | |
| 2228 } | |
| 2229 } | |
| 2230 | |
| 2231 #if MBCS_UNROLL_SINGLE_TO_BMP | |
| 2232 /* unrolling makes it faster on Pentium III/Windows 2000 */ | |
| 2233 goto unrolled; | |
| 2234 #endif | |
| 2235 } | |
| 2236 | |
| 2237 if(U_SUCCESS(*pErrorCode) && source<sourceLimit && target>=pArgs->targetLimi
t) { | |
| 2238 /* target is full */ | |
| 2239 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; | |
| 2240 } | |
| 2241 | |
| 2242 /* set offsets since the start or the last callback */ | |
| 2243 if(offsets!=NULL) { | |
| 2244 size_t count=source-lastSource; | |
| 2245 while(count>0) { | |
| 2246 *offsets++=sourceIndex++; | |
| 2247 --count; | |
| 2248 } | |
| 2249 } | |
| 2250 | |
| 2251 /* write back the updated pointers */ | |
| 2252 pArgs->source=(const char *)source; | |
| 2253 pArgs->target=target; | |
| 2254 pArgs->offsets=offsets; | |
| 2255 } | |
| 2256 | |
| 2257 static UBool | |
| 2258 hasValidTrailBytes(const int32_t (*stateTable)[256], uint8_t state) { | |
| 2259 const int32_t *row=stateTable[state]; | |
| 2260 int32_t b, entry; | |
| 2261 /* First test for final entries in this state for some commonly valid byte v
alues. */ | |
| 2262 entry=row[0xa1]; | |
| 2263 if( !MBCS_ENTRY_IS_TRANSITION(entry) && | |
| 2264 MBCS_ENTRY_FINAL_ACTION(entry)!=MBCS_STATE_ILLEGAL | |
| 2265 ) { | |
| 2266 return TRUE; | |
| 2267 } | |
| 2268 entry=row[0x41]; | |
| 2269 if( !MBCS_ENTRY_IS_TRANSITION(entry) && | |
| 2270 MBCS_ENTRY_FINAL_ACTION(entry)!=MBCS_STATE_ILLEGAL | |
| 2271 ) { | |
| 2272 return TRUE; | |
| 2273 } | |
| 2274 /* Then test for final entries in this state. */ | |
| 2275 for(b=0; b<=0xff; ++b) { | |
| 2276 entry=row[b]; | |
| 2277 if( !MBCS_ENTRY_IS_TRANSITION(entry) && | |
| 2278 MBCS_ENTRY_FINAL_ACTION(entry)!=MBCS_STATE_ILLEGAL | |
| 2279 ) { | |
| 2280 return TRUE; | |
| 2281 } | |
| 2282 } | |
| 2283 /* Then recurse for transition entries. */ | |
| 2284 for(b=0; b<=0xff; ++b) { | |
| 2285 entry=row[b]; | |
| 2286 if( MBCS_ENTRY_IS_TRANSITION(entry) && | |
| 2287 hasValidTrailBytes(stateTable, (uint8_t)MBCS_ENTRY_TRANSITION_STATE(
entry)) | |
| 2288 ) { | |
| 2289 return TRUE; | |
| 2290 } | |
| 2291 } | |
| 2292 return FALSE; | |
| 2293 } | |
| 2294 | |
| 2295 /* | |
| 2296 * Is byte b a single/lead byte in this state? | |
| 2297 * Recurse for transition states, because here we don't want to say that | |
| 2298 * b is a lead byte if all byte sequences that start with b are illegal. | |
| 2299 */ | |
| 2300 static UBool | |
| 2301 isSingleOrLead(const int32_t (*stateTable)[256], uint8_t state, UBool isDBCSOnly
, uint8_t b) { | |
| 2302 const int32_t *row=stateTable[state]; | |
| 2303 int32_t entry=row[b]; | |
| 2304 if(MBCS_ENTRY_IS_TRANSITION(entry)) { /* lead byte */ | |
| 2305 return hasValidTrailBytes(stateTable, (uint8_t)MBCS_ENTRY_TRANSITION_STA
TE(entry)); | |
| 2306 } else { | |
| 2307 uint8_t action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry)); | |
| 2308 if(action==MBCS_STATE_CHANGE_ONLY && isDBCSOnly) { | |
| 2309 return FALSE; /* SI/SO are illegal for DBCS-only conversion */ | |
| 2310 } else { | |
| 2311 return action!=MBCS_STATE_ILLEGAL; | |
| 2312 } | |
| 2313 } | |
| 2314 } | |
| 2315 | |
| 2316 U_CFUNC void | |
| 2317 ucnv_MBCSToUnicodeWithOffsets(UConverterToUnicodeArgs *pArgs, | |
| 2318 UErrorCode *pErrorCode) { | |
| 2319 UConverter *cnv; | |
| 2320 const uint8_t *source, *sourceLimit; | |
| 2321 UChar *target; | |
| 2322 const UChar *targetLimit; | |
| 2323 int32_t *offsets; | |
| 2324 | |
| 2325 const int32_t (*stateTable)[256]; | |
| 2326 const uint16_t *unicodeCodeUnits; | |
| 2327 | |
| 2328 uint32_t offset; | |
| 2329 uint8_t state; | |
| 2330 int8_t byteIndex; | |
| 2331 uint8_t *bytes; | |
| 2332 | |
| 2333 int32_t sourceIndex, nextSourceIndex; | |
| 2334 | |
| 2335 int32_t entry; | |
| 2336 UChar c; | |
| 2337 uint8_t action; | |
| 2338 | |
| 2339 /* use optimized function if possible */ | |
| 2340 cnv=pArgs->converter; | |
| 2341 | |
| 2342 if(cnv->preToULength>0) { | |
| 2343 /* | |
| 2344 * pass sourceIndex=-1 because we continue from an earlier buffer | |
| 2345 * in the future, this may change with continuous offsets | |
| 2346 */ | |
| 2347 ucnv_extContinueMatchToU(cnv, pArgs, -1, pErrorCode); | |
| 2348 | |
| 2349 if(U_FAILURE(*pErrorCode) || cnv->preToULength<0) { | |
| 2350 return; | |
| 2351 } | |
| 2352 } | |
| 2353 | |
| 2354 if(cnv->sharedData->mbcs.countStates==1) { | |
| 2355 if(!(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY)) { | |
| 2356 ucnv_MBCSSingleToBMPWithOffsets(pArgs, pErrorCode); | |
| 2357 } else { | |
| 2358 ucnv_MBCSSingleToUnicodeWithOffsets(pArgs, pErrorCode); | |
| 2359 } | |
| 2360 return; | |
| 2361 } | |
| 2362 | |
| 2363 /* set up the local pointers */ | |
| 2364 source=(const uint8_t *)pArgs->source; | |
| 2365 sourceLimit=(const uint8_t *)pArgs->sourceLimit; | |
| 2366 target=pArgs->target; | |
| 2367 targetLimit=pArgs->targetLimit; | |
| 2368 offsets=pArgs->offsets; | |
| 2369 | |
| 2370 if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { | |
| 2371 stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTa
ble; | |
| 2372 } else { | |
| 2373 stateTable=cnv->sharedData->mbcs.stateTable; | |
| 2374 } | |
| 2375 unicodeCodeUnits=cnv->sharedData->mbcs.unicodeCodeUnits; | |
| 2376 | |
| 2377 /* get the converter state from UConverter */ | |
| 2378 offset=cnv->toUnicodeStatus; | |
| 2379 byteIndex=cnv->toULength; | |
| 2380 bytes=cnv->toUBytes; | |
| 2381 | |
| 2382 /* | |
| 2383 * if we are in the SBCS state for a DBCS-only converter, | |
| 2384 * then load the DBCS state from the MBCS data | |
| 2385 * (dbcsOnlyState==0 if it is not a DBCS-only converter) | |
| 2386 */ | |
| 2387 if((state=(uint8_t)(cnv->mode))==0) { | |
| 2388 state=cnv->sharedData->mbcs.dbcsOnlyState; | |
| 2389 } | |
| 2390 | |
| 2391 /* sourceIndex=-1 if the current character began in the previous buffer */ | |
| 2392 sourceIndex=byteIndex==0 ? 0 : -1; | |
| 2393 nextSourceIndex=0; | |
| 2394 | |
| 2395 /* conversion loop */ | |
| 2396 while(source<sourceLimit) { | |
| 2397 /* | |
| 2398 * This following test is to see if available input would overflow the o
utput. | |
| 2399 * It does not catch output of more than one code unit that | |
| 2400 * overflows as a result of a surrogate pair or callback output | |
| 2401 * from the last source byte. | |
| 2402 * Therefore, those situations also test for overflows and will | |
| 2403 * then break the loop, too. | |
| 2404 */ | |
| 2405 if(target>=targetLimit) { | |
| 2406 /* target is full */ | |
| 2407 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; | |
| 2408 break; | |
| 2409 } | |
| 2410 | |
| 2411 if(byteIndex==0) { | |
| 2412 /* optimized loop for 1/2-byte input and BMP output */ | |
| 2413 if(offsets==NULL) { | |
| 2414 do { | |
| 2415 entry=stateTable[state][*source]; | |
| 2416 if(MBCS_ENTRY_IS_TRANSITION(entry)) { | |
| 2417 state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry); | |
| 2418 offset=MBCS_ENTRY_TRANSITION_OFFSET(entry); | |
| 2419 | |
| 2420 ++source; | |
| 2421 if( source<sourceLimit && | |
| 2422 MBCS_ENTRY_IS_FINAL(entry=stateTable[state][*source]
) && | |
| 2423 MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_16
&& | |
| 2424 (c=unicodeCodeUnits[offset+MBCS_ENTRY_FINAL_VALUE_16
(entry)])<0xfffe | |
| 2425 ) { | |
| 2426 ++source; | |
| 2427 *target++=c; | |
| 2428 state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typ
ically 0 */ | |
| 2429 offset=0; | |
| 2430 } else { | |
| 2431 /* set the state and leave the optimized loop */ | |
| 2432 bytes[0]=*(source-1); | |
| 2433 byteIndex=1; | |
| 2434 break; | |
| 2435 } | |
| 2436 } else { | |
| 2437 if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) { | |
| 2438 /* output BMP code point */ | |
| 2439 ++source; | |
| 2440 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); | |
| 2441 state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typ
ically 0 */ | |
| 2442 } else { | |
| 2443 /* leave the optimized loop */ | |
| 2444 break; | |
| 2445 } | |
| 2446 } | |
| 2447 } while(source<sourceLimit && target<targetLimit); | |
| 2448 } else /* offsets!=NULL */ { | |
| 2449 do { | |
| 2450 entry=stateTable[state][*source]; | |
| 2451 if(MBCS_ENTRY_IS_TRANSITION(entry)) { | |
| 2452 state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry); | |
| 2453 offset=MBCS_ENTRY_TRANSITION_OFFSET(entry); | |
| 2454 | |
| 2455 ++source; | |
| 2456 if( source<sourceLimit && | |
| 2457 MBCS_ENTRY_IS_FINAL(entry=stateTable[state][*source]
) && | |
| 2458 MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_16
&& | |
| 2459 (c=unicodeCodeUnits[offset+MBCS_ENTRY_FINAL_VALUE_16
(entry)])<0xfffe | |
| 2460 ) { | |
| 2461 ++source; | |
| 2462 *target++=c; | |
| 2463 if(offsets!=NULL) { | |
| 2464 *offsets++=sourceIndex; | |
| 2465 sourceIndex=(nextSourceIndex+=2); | |
| 2466 } | |
| 2467 state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typ
ically 0 */ | |
| 2468 offset=0; | |
| 2469 } else { | |
| 2470 /* set the state and leave the optimized loop */ | |
| 2471 ++nextSourceIndex; | |
| 2472 bytes[0]=*(source-1); | |
| 2473 byteIndex=1; | |
| 2474 break; | |
| 2475 } | |
| 2476 } else { | |
| 2477 if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) { | |
| 2478 /* output BMP code point */ | |
| 2479 ++source; | |
| 2480 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); | |
| 2481 if(offsets!=NULL) { | |
| 2482 *offsets++=sourceIndex; | |
| 2483 sourceIndex=++nextSourceIndex; | |
| 2484 } | |
| 2485 state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typ
ically 0 */ | |
| 2486 } else { | |
| 2487 /* leave the optimized loop */ | |
| 2488 break; | |
| 2489 } | |
| 2490 } | |
| 2491 } while(source<sourceLimit && target<targetLimit); | |
| 2492 } | |
| 2493 | |
| 2494 /* | |
| 2495 * these tests and break statements could be put inside the loop | |
| 2496 * if C had "break outerLoop" like Java | |
| 2497 */ | |
| 2498 if(source>=sourceLimit) { | |
| 2499 break; | |
| 2500 } | |
| 2501 if(target>=targetLimit) { | |
| 2502 /* target is full */ | |
| 2503 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; | |
| 2504 break; | |
| 2505 } | |
| 2506 | |
| 2507 ++nextSourceIndex; | |
| 2508 bytes[byteIndex++]=*source++; | |
| 2509 } else /* byteIndex>0 */ { | |
| 2510 ++nextSourceIndex; | |
| 2511 entry=stateTable[state][bytes[byteIndex++]=*source++]; | |
| 2512 } | |
| 2513 | |
| 2514 if(MBCS_ENTRY_IS_TRANSITION(entry)) { | |
| 2515 state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry); | |
| 2516 offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry); | |
| 2517 continue; | |
| 2518 } | |
| 2519 | |
| 2520 /* save the previous state for proper extension mapping with SI/SO-state
ful converters */ | |
| 2521 cnv->mode=state; | |
| 2522 | |
| 2523 /* set the next state early so that we can reuse the entry variable */ | |
| 2524 state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */ | |
| 2525 | |
| 2526 /* | |
| 2527 * An if-else-if chain provides more reliable performance for | |
| 2528 * the most common cases compared to a switch. | |
| 2529 */ | |
| 2530 action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry)); | |
| 2531 if(action==MBCS_STATE_VALID_16) { | |
| 2532 offset+=MBCS_ENTRY_FINAL_VALUE_16(entry); | |
| 2533 c=unicodeCodeUnits[offset]; | |
| 2534 if(c<0xfffe) { | |
| 2535 /* output BMP code point */ | |
| 2536 *target++=c; | |
| 2537 if(offsets!=NULL) { | |
| 2538 *offsets++=sourceIndex; | |
| 2539 } | |
| 2540 byteIndex=0; | |
| 2541 } else if(c==0xfffe) { | |
| 2542 if(UCNV_TO_U_USE_FALLBACK(cnv) && (entry=(int32_t)ucnv_MBCSGetFa
llback(&cnv->sharedData->mbcs, offset))!=0xfffe) { | |
| 2543 /* output fallback BMP code point */ | |
| 2544 *target++=(UChar)entry; | |
| 2545 if(offsets!=NULL) { | |
| 2546 *offsets++=sourceIndex; | |
| 2547 } | |
| 2548 byteIndex=0; | |
| 2549 } | |
| 2550 } else { | |
| 2551 /* callback(illegal) */ | |
| 2552 *pErrorCode=U_ILLEGAL_CHAR_FOUND; | |
| 2553 } | |
| 2554 } else if(action==MBCS_STATE_VALID_DIRECT_16) { | |
| 2555 /* output BMP code point */ | |
| 2556 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); | |
| 2557 if(offsets!=NULL) { | |
| 2558 *offsets++=sourceIndex; | |
| 2559 } | |
| 2560 byteIndex=0; | |
| 2561 } else if(action==MBCS_STATE_VALID_16_PAIR) { | |
| 2562 offset+=MBCS_ENTRY_FINAL_VALUE_16(entry); | |
| 2563 c=unicodeCodeUnits[offset++]; | |
| 2564 if(c<0xd800) { | |
| 2565 /* output BMP code point below 0xd800 */ | |
| 2566 *target++=c; | |
| 2567 if(offsets!=NULL) { | |
| 2568 *offsets++=sourceIndex; | |
| 2569 } | |
| 2570 byteIndex=0; | |
| 2571 } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? c<=0xdfff : c<=0xdbff) { | |
| 2572 /* output roundtrip or fallback surrogate pair */ | |
| 2573 *target++=(UChar)(c&0xdbff); | |
| 2574 if(offsets!=NULL) { | |
| 2575 *offsets++=sourceIndex; | |
| 2576 } | |
| 2577 byteIndex=0; | |
| 2578 if(target<targetLimit) { | |
| 2579 *target++=unicodeCodeUnits[offset]; | |
| 2580 if(offsets!=NULL) { | |
| 2581 *offsets++=sourceIndex; | |
| 2582 } | |
| 2583 } else { | |
| 2584 /* target overflow */ | |
| 2585 cnv->UCharErrorBuffer[0]=unicodeCodeUnits[offset]; | |
| 2586 cnv->UCharErrorBufferLength=1; | |
| 2587 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; | |
| 2588 | |
| 2589 offset=0; | |
| 2590 break; | |
| 2591 } | |
| 2592 } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? (c&0xfffe)==0xe000 : c==0xe0
00) { | |
| 2593 /* output roundtrip BMP code point above 0xd800 or fallback BMP
code point */ | |
| 2594 *target++=unicodeCodeUnits[offset]; | |
| 2595 if(offsets!=NULL) { | |
| 2596 *offsets++=sourceIndex; | |
| 2597 } | |
| 2598 byteIndex=0; | |
| 2599 } else if(c==0xffff) { | |
| 2600 /* callback(illegal) */ | |
| 2601 *pErrorCode=U_ILLEGAL_CHAR_FOUND; | |
| 2602 } | |
| 2603 } else if(action==MBCS_STATE_VALID_DIRECT_20 || | |
| 2604 (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBA
CK(cnv)) | |
| 2605 ) { | |
| 2606 entry=MBCS_ENTRY_FINAL_VALUE(entry); | |
| 2607 /* output surrogate pair */ | |
| 2608 *target++=(UChar)(0xd800|(UChar)(entry>>10)); | |
| 2609 if(offsets!=NULL) { | |
| 2610 *offsets++=sourceIndex; | |
| 2611 } | |
| 2612 byteIndex=0; | |
| 2613 c=(UChar)(0xdc00|(UChar)(entry&0x3ff)); | |
| 2614 if(target<targetLimit) { | |
| 2615 *target++=c; | |
| 2616 if(offsets!=NULL) { | |
| 2617 *offsets++=sourceIndex; | |
| 2618 } | |
| 2619 } else { | |
| 2620 /* target overflow */ | |
| 2621 cnv->UCharErrorBuffer[0]=c; | |
| 2622 cnv->UCharErrorBufferLength=1; | |
| 2623 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; | |
| 2624 | |
| 2625 offset=0; | |
| 2626 break; | |
| 2627 } | |
| 2628 } else if(action==MBCS_STATE_CHANGE_ONLY) { | |
| 2629 /* | |
| 2630 * This serves as a state change without any output. | |
| 2631 * It is useful for reading simple stateful encodings, | |
| 2632 * for example using just Shift-In/Shift-Out codes. | |
| 2633 * The 21 unused bits may later be used for more sophisticated | |
| 2634 * state transitions. | |
| 2635 */ | |
| 2636 if(cnv->sharedData->mbcs.dbcsOnlyState==0) { | |
| 2637 byteIndex=0; | |
| 2638 } else { | |
| 2639 /* SI/SO are illegal for DBCS-only conversion */ | |
| 2640 state=(uint8_t)(cnv->mode); /* restore the previous state */ | |
| 2641 | |
| 2642 /* callback(illegal) */ | |
| 2643 *pErrorCode=U_ILLEGAL_CHAR_FOUND; | |
| 2644 } | |
| 2645 } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) { | |
| 2646 if(UCNV_TO_U_USE_FALLBACK(cnv)) { | |
| 2647 /* output BMP code point */ | |
| 2648 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); | |
| 2649 if(offsets!=NULL) { | |
| 2650 *offsets++=sourceIndex; | |
| 2651 } | |
| 2652 byteIndex=0; | |
| 2653 } | |
| 2654 } else if(action==MBCS_STATE_UNASSIGNED) { | |
| 2655 /* just fall through */ | |
| 2656 } else if(action==MBCS_STATE_ILLEGAL) { | |
| 2657 /* callback(illegal) */ | |
| 2658 *pErrorCode=U_ILLEGAL_CHAR_FOUND; | |
| 2659 } else { | |
| 2660 /* reserved, must never occur */ | |
| 2661 byteIndex=0; | |
| 2662 } | |
| 2663 | |
| 2664 /* end of action codes: prepare for a new character */ | |
| 2665 offset=0; | |
| 2666 | |
| 2667 if(byteIndex==0) { | |
| 2668 sourceIndex=nextSourceIndex; | |
| 2669 } else if(U_FAILURE(*pErrorCode)) { | |
| 2670 /* callback(illegal) */ | |
| 2671 if(byteIndex>1) { | |
| 2672 /* | |
| 2673 * Ticket 5691: consistent illegal sequences: | |
| 2674 * - We include at least the first byte in the illegal sequence. | |
| 2675 * - If any of the non-initial bytes could be the start of a cha
racter, | |
| 2676 * we stop the illegal sequence before the first one of those. | |
| 2677 */ | |
| 2678 UBool isDBCSOnly=(UBool)(cnv->sharedData->mbcs.dbcsOnlyState!=0)
; | |
| 2679 int8_t i; | |
| 2680 for(i=1; | |
| 2681 i<byteIndex && !isSingleOrLead(stateTable, state, isDBCSOnly
, bytes[i]); | |
| 2682 ++i) {} | |
| 2683 if(i<byteIndex) { | |
| 2684 /* Back out some bytes. */ | |
| 2685 int8_t backOutDistance=byteIndex-i; | |
| 2686 int32_t bytesFromThisBuffer=(int32_t)(source-(const uint8_t
*)pArgs->source); | |
| 2687 byteIndex=i; /* length of reported illegal byte sequence */ | |
| 2688 if(backOutDistance<=bytesFromThisBuffer) { | |
| 2689 source-=backOutDistance; | |
| 2690 } else { | |
| 2691 /* Back out bytes from the previous buffer: Need to repl
ay them. */ | |
| 2692 cnv->preToULength=(int8_t)(bytesFromThisBuffer-backOutDi
stance); | |
| 2693 /* preToULength is negative! */ | |
| 2694 uprv_memcpy(cnv->preToU, bytes+i, -cnv->preToULength); | |
| 2695 source=(const uint8_t *)pArgs->source; | |
| 2696 } | |
| 2697 } | |
| 2698 } | |
| 2699 break; | |
| 2700 } else /* unassigned sequences indicated with byteIndex>0 */ { | |
| 2701 /* try an extension mapping */ | |
| 2702 pArgs->source=(const char *)source; | |
| 2703 byteIndex=_extToU(cnv, cnv->sharedData, | |
| 2704 byteIndex, &source, sourceLimit, | |
| 2705 &target, targetLimit, | |
| 2706 &offsets, sourceIndex, | |
| 2707 pArgs->flush, | |
| 2708 pErrorCode); | |
| 2709 sourceIndex=nextSourceIndex+=(int32_t)(source-(const uint8_t *)pArgs
->source); | |
| 2710 | |
| 2711 if(U_FAILURE(*pErrorCode)) { | |
| 2712 /* not mappable or buffer overflow */ | |
| 2713 break; | |
| 2714 } | |
| 2715 } | |
| 2716 } | |
| 2717 | |
| 2718 /* set the converter state back into UConverter */ | |
| 2719 cnv->toUnicodeStatus=offset; | |
| 2720 cnv->mode=state; | |
| 2721 cnv->toULength=byteIndex; | |
| 2722 | |
| 2723 /* write back the updated pointers */ | |
| 2724 pArgs->source=(const char *)source; | |
| 2725 pArgs->target=target; | |
| 2726 pArgs->offsets=offsets; | |
| 2727 } | |
| 2728 | |
| 2729 /* | |
| 2730 * This version of ucnv_MBCSGetNextUChar() is optimized for single-byte, single-
state codepages. | |
| 2731 * We still need a conversion loop in case we find reserved action codes, which
are to be ignored. | |
| 2732 */ | |
| 2733 static UChar32 | |
| 2734 ucnv_MBCSSingleGetNextUChar(UConverterToUnicodeArgs *pArgs, | |
| 2735 UErrorCode *pErrorCode) { | |
| 2736 UConverter *cnv; | |
| 2737 const int32_t (*stateTable)[256]; | |
| 2738 const uint8_t *source, *sourceLimit; | |
| 2739 | |
| 2740 int32_t entry; | |
| 2741 uint8_t action; | |
| 2742 | |
| 2743 /* set up the local pointers */ | |
| 2744 cnv=pArgs->converter; | |
| 2745 source=(const uint8_t *)pArgs->source; | |
| 2746 sourceLimit=(const uint8_t *)pArgs->sourceLimit; | |
| 2747 if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { | |
| 2748 stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTa
ble; | |
| 2749 } else { | |
| 2750 stateTable=cnv->sharedData->mbcs.stateTable; | |
| 2751 } | |
| 2752 | |
| 2753 /* conversion loop */ | |
| 2754 while(source<sourceLimit) { | |
| 2755 entry=stateTable[0][*source++]; | |
| 2756 /* MBCS_ENTRY_IS_FINAL(entry) */ | |
| 2757 | |
| 2758 /* write back the updated pointer early so that we can return directly *
/ | |
| 2759 pArgs->source=(const char *)source; | |
| 2760 | |
| 2761 if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) { | |
| 2762 /* output BMP code point */ | |
| 2763 return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); | |
| 2764 } | |
| 2765 | |
| 2766 /* | |
| 2767 * An if-else-if chain provides more reliable performance for | |
| 2768 * the most common cases compared to a switch. | |
| 2769 */ | |
| 2770 action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry)); | |
| 2771 if( action==MBCS_STATE_VALID_DIRECT_20 || | |
| 2772 (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv
)) | |
| 2773 ) { | |
| 2774 /* output supplementary code point */ | |
| 2775 return (UChar32)(MBCS_ENTRY_FINAL_VALUE(entry)+0x10000); | |
| 2776 } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) { | |
| 2777 if(UCNV_TO_U_USE_FALLBACK(cnv)) { | |
| 2778 /* output BMP code point */ | |
| 2779 return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); | |
| 2780 } | |
| 2781 } else if(action==MBCS_STATE_UNASSIGNED) { | |
| 2782 /* just fall through */ | |
| 2783 } else if(action==MBCS_STATE_ILLEGAL) { | |
| 2784 /* callback(illegal) */ | |
| 2785 *pErrorCode=U_ILLEGAL_CHAR_FOUND; | |
| 2786 } else { | |
| 2787 /* reserved, must never occur */ | |
| 2788 continue; | |
| 2789 } | |
| 2790 | |
| 2791 if(U_FAILURE(*pErrorCode)) { | |
| 2792 /* callback(illegal) */ | |
| 2793 break; | |
| 2794 } else /* unassigned sequence */ { | |
| 2795 /* defer to the generic implementation */ | |
| 2796 pArgs->source=(const char *)source-1; | |
| 2797 return UCNV_GET_NEXT_UCHAR_USE_TO_U; | |
| 2798 } | |
| 2799 } | |
| 2800 | |
| 2801 /* no output because of empty input or only state changes */ | |
| 2802 *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; | |
| 2803 return 0xffff; | |
| 2804 } | |
| 2805 | |
| 2806 /* | |
| 2807 * Version of _MBCSToUnicodeWithOffsets() optimized for single-character | |
| 2808 * conversion without offset handling. | |
| 2809 * | |
| 2810 * When a character does not have a mapping to Unicode, then we return to the | |
| 2811 * generic ucnv_getNextUChar() code for extension/GB 18030 and error/callback | |
| 2812 * handling. | |
| 2813 * We also defer to the generic code in other complicated cases and have them | |
| 2814 * ultimately handled by _MBCSToUnicodeWithOffsets() itself. | |
| 2815 * | |
| 2816 * All normal mappings and errors are handled here. | |
| 2817 */ | |
| 2818 static UChar32 | |
| 2819 ucnv_MBCSGetNextUChar(UConverterToUnicodeArgs *pArgs, | |
| 2820 UErrorCode *pErrorCode) { | |
| 2821 UConverter *cnv; | |
| 2822 const uint8_t *source, *sourceLimit, *lastSource; | |
| 2823 | |
| 2824 const int32_t (*stateTable)[256]; | |
| 2825 const uint16_t *unicodeCodeUnits; | |
| 2826 | |
| 2827 uint32_t offset; | |
| 2828 uint8_t state; | |
| 2829 | |
| 2830 int32_t entry; | |
| 2831 UChar32 c; | |
| 2832 uint8_t action; | |
| 2833 | |
| 2834 /* use optimized function if possible */ | |
| 2835 cnv=pArgs->converter; | |
| 2836 | |
| 2837 if(cnv->preToULength>0) { | |
| 2838 /* use the generic code in ucnv_getNextUChar() to continue with a partia
l match */ | |
| 2839 return UCNV_GET_NEXT_UCHAR_USE_TO_U; | |
| 2840 } | |
| 2841 | |
| 2842 if(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SURROGATES) { | |
| 2843 /* | |
| 2844 * Using the generic ucnv_getNextUChar() code lets us deal correctly | |
| 2845 * with the rare case of a codepage that maps single surrogates | |
| 2846 * without adding the complexity to this already complicated function he
re. | |
| 2847 */ | |
| 2848 return UCNV_GET_NEXT_UCHAR_USE_TO_U; | |
| 2849 } else if(cnv->sharedData->mbcs.countStates==1) { | |
| 2850 return ucnv_MBCSSingleGetNextUChar(pArgs, pErrorCode); | |
| 2851 } | |
| 2852 | |
| 2853 /* set up the local pointers */ | |
| 2854 source=lastSource=(const uint8_t *)pArgs->source; | |
| 2855 sourceLimit=(const uint8_t *)pArgs->sourceLimit; | |
| 2856 | |
| 2857 if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { | |
| 2858 stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTa
ble; | |
| 2859 } else { | |
| 2860 stateTable=cnv->sharedData->mbcs.stateTable; | |
| 2861 } | |
| 2862 unicodeCodeUnits=cnv->sharedData->mbcs.unicodeCodeUnits; | |
| 2863 | |
| 2864 /* get the converter state from UConverter */ | |
| 2865 offset=cnv->toUnicodeStatus; | |
| 2866 | |
| 2867 /* | |
| 2868 * if we are in the SBCS state for a DBCS-only converter, | |
| 2869 * then load the DBCS state from the MBCS data | |
| 2870 * (dbcsOnlyState==0 if it is not a DBCS-only converter) | |
| 2871 */ | |
| 2872 if((state=(uint8_t)(cnv->mode))==0) { | |
| 2873 state=cnv->sharedData->mbcs.dbcsOnlyState; | |
| 2874 } | |
| 2875 | |
| 2876 /* conversion loop */ | |
| 2877 c=U_SENTINEL; | |
| 2878 while(source<sourceLimit) { | |
| 2879 entry=stateTable[state][*source++]; | |
| 2880 if(MBCS_ENTRY_IS_TRANSITION(entry)) { | |
| 2881 state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry); | |
| 2882 offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry); | |
| 2883 | |
| 2884 /* optimization for 1/2-byte input and BMP output */ | |
| 2885 if( source<sourceLimit && | |
| 2886 MBCS_ENTRY_IS_FINAL(entry=stateTable[state][*source]) && | |
| 2887 MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_16 && | |
| 2888 (c=unicodeCodeUnits[offset+MBCS_ENTRY_FINAL_VALUE_16(entry)])<0x
fffe | |
| 2889 ) { | |
| 2890 ++source; | |
| 2891 state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */ | |
| 2892 /* output BMP code point */ | |
| 2893 break; | |
| 2894 } | |
| 2895 } else { | |
| 2896 /* save the previous state for proper extension mapping with SI/SO-s
tateful converters */ | |
| 2897 cnv->mode=state; | |
| 2898 | |
| 2899 /* set the next state early so that we can reuse the entry variable
*/ | |
| 2900 state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */ | |
| 2901 | |
| 2902 /* | |
| 2903 * An if-else-if chain provides more reliable performance for | |
| 2904 * the most common cases compared to a switch. | |
| 2905 */ | |
| 2906 action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry)); | |
| 2907 if(action==MBCS_STATE_VALID_DIRECT_16) { | |
| 2908 /* output BMP code point */ | |
| 2909 c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); | |
| 2910 break; | |
| 2911 } else if(action==MBCS_STATE_VALID_16) { | |
| 2912 offset+=MBCS_ENTRY_FINAL_VALUE_16(entry); | |
| 2913 c=unicodeCodeUnits[offset]; | |
| 2914 if(c<0xfffe) { | |
| 2915 /* output BMP code point */ | |
| 2916 break; | |
| 2917 } else if(c==0xfffe) { | |
| 2918 if(UCNV_TO_U_USE_FALLBACK(cnv) && (c=ucnv_MBCSGetFallback(&c
nv->sharedData->mbcs, offset))!=0xfffe) { | |
| 2919 break; | |
| 2920 } | |
| 2921 } else { | |
| 2922 /* callback(illegal) */ | |
| 2923 *pErrorCode=U_ILLEGAL_CHAR_FOUND; | |
| 2924 } | |
| 2925 } else if(action==MBCS_STATE_VALID_16_PAIR) { | |
| 2926 offset+=MBCS_ENTRY_FINAL_VALUE_16(entry); | |
| 2927 c=unicodeCodeUnits[offset++]; | |
| 2928 if(c<0xd800) { | |
| 2929 /* output BMP code point below 0xd800 */ | |
| 2930 break; | |
| 2931 } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? c<=0xdfff : c<=0xdbff) { | |
| 2932 /* output roundtrip or fallback supplementary code point */ | |
| 2933 c=((c&0x3ff)<<10)+unicodeCodeUnits[offset]+(0x10000-0xdc00); | |
| 2934 break; | |
| 2935 } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? (c&0xfffe)==0xe000 : c==
0xe000) { | |
| 2936 /* output roundtrip BMP code point above 0xd800 or fallback
BMP code point */ | |
| 2937 c=unicodeCodeUnits[offset]; | |
| 2938 break; | |
| 2939 } else if(c==0xffff) { | |
| 2940 /* callback(illegal) */ | |
| 2941 *pErrorCode=U_ILLEGAL_CHAR_FOUND; | |
| 2942 } | |
| 2943 } else if(action==MBCS_STATE_VALID_DIRECT_20 || | |
| 2944 (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FA
LLBACK(cnv)) | |
| 2945 ) { | |
| 2946 /* output supplementary code point */ | |
| 2947 c=(UChar32)(MBCS_ENTRY_FINAL_VALUE(entry)+0x10000); | |
| 2948 break; | |
| 2949 } else if(action==MBCS_STATE_CHANGE_ONLY) { | |
| 2950 /* | |
| 2951 * This serves as a state change without any output. | |
| 2952 * It is useful for reading simple stateful encodings, | |
| 2953 * for example using just Shift-In/Shift-Out codes. | |
| 2954 * The 21 unused bits may later be used for more sophisticated | |
| 2955 * state transitions. | |
| 2956 */ | |
| 2957 if(cnv->sharedData->mbcs.dbcsOnlyState!=0) { | |
| 2958 /* SI/SO are illegal for DBCS-only conversion */ | |
| 2959 state=(uint8_t)(cnv->mode); /* restore the previous state */ | |
| 2960 | |
| 2961 /* callback(illegal) */ | |
| 2962 *pErrorCode=U_ILLEGAL_CHAR_FOUND; | |
| 2963 } | |
| 2964 } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) { | |
| 2965 if(UCNV_TO_U_USE_FALLBACK(cnv)) { | |
| 2966 /* output BMP code point */ | |
| 2967 c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); | |
| 2968 break; | |
| 2969 } | |
| 2970 } else if(action==MBCS_STATE_UNASSIGNED) { | |
| 2971 /* just fall through */ | |
| 2972 } else if(action==MBCS_STATE_ILLEGAL) { | |
| 2973 /* callback(illegal) */ | |
| 2974 *pErrorCode=U_ILLEGAL_CHAR_FOUND; | |
| 2975 } else { | |
| 2976 /* reserved (must never occur), or only state change */ | |
| 2977 offset=0; | |
| 2978 lastSource=source; | |
| 2979 continue; | |
| 2980 } | |
| 2981 | |
| 2982 /* end of action codes: prepare for a new character */ | |
| 2983 offset=0; | |
| 2984 | |
| 2985 if(U_FAILURE(*pErrorCode)) { | |
| 2986 /* callback(illegal) */ | |
| 2987 break; | |
| 2988 } else /* unassigned sequence */ { | |
| 2989 /* defer to the generic implementation */ | |
| 2990 cnv->toUnicodeStatus=0; | |
| 2991 cnv->mode=state; | |
| 2992 pArgs->source=(const char *)lastSource; | |
| 2993 return UCNV_GET_NEXT_UCHAR_USE_TO_U; | |
| 2994 } | |
| 2995 } | |
| 2996 } | |
| 2997 | |
| 2998 if(c<0) { | |
| 2999 if(U_SUCCESS(*pErrorCode) && source==sourceLimit && lastSource<source) { | |
| 3000 /* incomplete character byte sequence */ | |
| 3001 uint8_t *bytes=cnv->toUBytes; | |
| 3002 cnv->toULength=(int8_t)(source-lastSource); | |
| 3003 do { | |
| 3004 *bytes++=*lastSource++; | |
| 3005 } while(lastSource<source); | |
| 3006 *pErrorCode=U_TRUNCATED_CHAR_FOUND; | |
| 3007 } else if(U_FAILURE(*pErrorCode)) { | |
| 3008 /* callback(illegal) */ | |
| 3009 /* | |
| 3010 * Ticket 5691: consistent illegal sequences: | |
| 3011 * - We include at least the first byte in the illegal sequence. | |
| 3012 * - If any of the non-initial bytes could be the start of a charact
er, | |
| 3013 * we stop the illegal sequence before the first one of those. | |
| 3014 */ | |
| 3015 UBool isDBCSOnly=(UBool)(cnv->sharedData->mbcs.dbcsOnlyState!=0); | |
| 3016 uint8_t *bytes=cnv->toUBytes; | |
| 3017 *bytes++=*lastSource++; /* first byte */ | |
| 3018 if(lastSource==source) { | |
| 3019 cnv->toULength=1; | |
| 3020 } else /* lastSource<source: multi-byte character */ { | |
| 3021 int8_t i; | |
| 3022 for(i=1; | |
| 3023 lastSource<source && !isSingleOrLead(stateTable, state, isDB
CSOnly, *lastSource); | |
| 3024 ++i | |
| 3025 ) { | |
| 3026 *bytes++=*lastSource++; | |
| 3027 } | |
| 3028 cnv->toULength=i; | |
| 3029 source=lastSource; | |
| 3030 } | |
| 3031 } else { | |
| 3032 /* no output because of empty input or only state changes */ | |
| 3033 *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; | |
| 3034 } | |
| 3035 c=0xffff; | |
| 3036 } | |
| 3037 | |
| 3038 /* set the converter state back into UConverter, ready for a new character *
/ | |
| 3039 cnv->toUnicodeStatus=0; | |
| 3040 cnv->mode=state; | |
| 3041 | |
| 3042 /* write back the updated pointer */ | |
| 3043 pArgs->source=(const char *)source; | |
| 3044 return c; | |
| 3045 } | |
| 3046 | |
| 3047 #if 0 | |
| 3048 /* | |
| 3049 * Code disabled 2002dec09 (ICU 2.4) because it is not currently used in ICU. ma
rkus | |
| 3050 * Removal improves code coverage. | |
| 3051 */ | |
| 3052 /** | |
| 3053 * This version of ucnv_MBCSSimpleGetNextUChar() is optimized for single-byte, s
ingle-state codepages. | |
| 3054 * It does not handle the EBCDIC swaplfnl option (set in UConverter). | |
| 3055 * It does not handle conversion extensions (_extToU()). | |
| 3056 */ | |
| 3057 U_CFUNC UChar32 | |
| 3058 ucnv_MBCSSingleSimpleGetNextUChar(UConverterSharedData *sharedData, | |
| 3059 uint8_t b, UBool useFallback) { | |
| 3060 int32_t entry; | |
| 3061 uint8_t action; | |
| 3062 | |
| 3063 entry=sharedData->mbcs.stateTable[0][b]; | |
| 3064 /* MBCS_ENTRY_IS_FINAL(entry) */ | |
| 3065 | |
| 3066 if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) { | |
| 3067 /* output BMP code point */ | |
| 3068 return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); | |
| 3069 } | |
| 3070 | |
| 3071 /* | |
| 3072 * An if-else-if chain provides more reliable performance for | |
| 3073 * the most common cases compared to a switch. | |
| 3074 */ | |
| 3075 action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry)); | |
| 3076 if(action==MBCS_STATE_VALID_DIRECT_20) { | |
| 3077 /* output supplementary code point */ | |
| 3078 return 0x10000+MBCS_ENTRY_FINAL_VALUE(entry); | |
| 3079 } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) { | |
| 3080 if(!TO_U_USE_FALLBACK(useFallback)) { | |
| 3081 return 0xfffe; | |
| 3082 } | |
| 3083 /* output BMP code point */ | |
| 3084 return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); | |
| 3085 } else if(action==MBCS_STATE_FALLBACK_DIRECT_20) { | |
| 3086 if(!TO_U_USE_FALLBACK(useFallback)) { | |
| 3087 return 0xfffe; | |
| 3088 } | |
| 3089 /* output supplementary code point */ | |
| 3090 return 0x10000+MBCS_ENTRY_FINAL_VALUE(entry); | |
| 3091 } else if(action==MBCS_STATE_UNASSIGNED) { | |
| 3092 return 0xfffe; | |
| 3093 } else if(action==MBCS_STATE_ILLEGAL) { | |
| 3094 return 0xffff; | |
| 3095 } else { | |
| 3096 /* reserved, must never occur */ | |
| 3097 return 0xffff; | |
| 3098 } | |
| 3099 } | |
| 3100 #endif | |
| 3101 | |
| 3102 /* | |
| 3103 * This is a simple version of _MBCSGetNextUChar() that is used | |
| 3104 * by other converter implementations. | |
| 3105 * It only returns an "assigned" result if it consumes the entire input. | |
| 3106 * It does not use state from the converter, nor error codes. | |
| 3107 * It does not handle the EBCDIC swaplfnl option (set in UConverter). | |
| 3108 * It handles conversion extensions but not GB 18030. | |
| 3109 * | |
| 3110 * Return value: | |
| 3111 * U+fffe unassigned | |
| 3112 * U+ffff illegal | |
| 3113 * otherwise the Unicode code point | |
| 3114 */ | |
| 3115 U_CFUNC UChar32 | |
| 3116 ucnv_MBCSSimpleGetNextUChar(UConverterSharedData *sharedData, | |
| 3117 const char *source, int32_t length, | |
| 3118 UBool useFallback) { | |
| 3119 const int32_t (*stateTable)[256]; | |
| 3120 const uint16_t *unicodeCodeUnits; | |
| 3121 | |
| 3122 uint32_t offset; | |
| 3123 uint8_t state, action; | |
| 3124 | |
| 3125 UChar32 c; | |
| 3126 int32_t i, entry; | |
| 3127 | |
| 3128 if(length<=0) { | |
| 3129 /* no input at all: "illegal" */ | |
| 3130 return 0xffff; | |
| 3131 } | |
| 3132 | |
| 3133 #if 0 | |
| 3134 /* | |
| 3135 * Code disabled 2002dec09 (ICU 2.4) because it is not currently used in ICU. ma
rkus | |
| 3136 * TODO In future releases, verify that this function is never called for SBCS | |
| 3137 * conversions, i.e., that sharedData->mbcs.countStates==1 is still true. | |
| 3138 * Removal improves code coverage. | |
| 3139 */ | |
| 3140 /* use optimized function if possible */ | |
| 3141 if(sharedData->mbcs.countStates==1) { | |
| 3142 if(length==1) { | |
| 3143 return ucnv_MBCSSingleSimpleGetNextUChar(sharedData, (uint8_t)*sourc
e, useFallback); | |
| 3144 } else { | |
| 3145 return 0xffff; /* illegal: more than a single byte for an SBCS conve
rter */ | |
| 3146 } | |
| 3147 } | |
| 3148 #endif | |
| 3149 | |
| 3150 /* set up the local pointers */ | |
| 3151 stateTable=sharedData->mbcs.stateTable; | |
| 3152 unicodeCodeUnits=sharedData->mbcs.unicodeCodeUnits; | |
| 3153 | |
| 3154 /* converter state */ | |
| 3155 offset=0; | |
| 3156 state=sharedData->mbcs.dbcsOnlyState; | |
| 3157 | |
| 3158 /* conversion loop */ | |
| 3159 for(i=0;;) { | |
| 3160 entry=stateTable[state][(uint8_t)source[i++]]; | |
| 3161 if(MBCS_ENTRY_IS_TRANSITION(entry)) { | |
| 3162 state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry); | |
| 3163 offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry); | |
| 3164 | |
| 3165 if(i==length) { | |
| 3166 return 0xffff; /* truncated character */ | |
| 3167 } | |
| 3168 } else { | |
| 3169 /* | |
| 3170 * An if-else-if chain provides more reliable performance for | |
| 3171 * the most common cases compared to a switch. | |
| 3172 */ | |
| 3173 action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry)); | |
| 3174 if(action==MBCS_STATE_VALID_16) { | |
| 3175 offset+=MBCS_ENTRY_FINAL_VALUE_16(entry); | |
| 3176 c=unicodeCodeUnits[offset]; | |
| 3177 if(c!=0xfffe) { | |
| 3178 /* done */ | |
| 3179 } else if(UCNV_TO_U_USE_FALLBACK(cnv)) { | |
| 3180 c=ucnv_MBCSGetFallback(&sharedData->mbcs, offset); | |
| 3181 /* else done with 0xfffe */ | |
| 3182 } | |
| 3183 break; | |
| 3184 } else if(action==MBCS_STATE_VALID_DIRECT_16) { | |
| 3185 /* output BMP code point */ | |
| 3186 c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); | |
| 3187 break; | |
| 3188 } else if(action==MBCS_STATE_VALID_16_PAIR) { | |
| 3189 offset+=MBCS_ENTRY_FINAL_VALUE_16(entry); | |
| 3190 c=unicodeCodeUnits[offset++]; | |
| 3191 if(c<0xd800) { | |
| 3192 /* output BMP code point below 0xd800 */ | |
| 3193 } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? c<=0xdfff : c<=0xdbff) { | |
| 3194 /* output roundtrip or fallback supplementary code point */ | |
| 3195 c=(UChar32)(((c&0x3ff)<<10)+unicodeCodeUnits[offset]+(0x1000
0-0xdc00)); | |
| 3196 } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? (c&0xfffe)==0xe000 : c==
0xe000) { | |
| 3197 /* output roundtrip BMP code point above 0xd800 or fallback
BMP code point */ | |
| 3198 c=unicodeCodeUnits[offset]; | |
| 3199 } else if(c==0xffff) { | |
| 3200 return 0xffff; | |
| 3201 } else { | |
| 3202 c=0xfffe; | |
| 3203 } | |
| 3204 break; | |
| 3205 } else if(action==MBCS_STATE_VALID_DIRECT_20) { | |
| 3206 /* output supplementary code point */ | |
| 3207 c=0x10000+MBCS_ENTRY_FINAL_VALUE(entry); | |
| 3208 break; | |
| 3209 } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) { | |
| 3210 if(!TO_U_USE_FALLBACK(useFallback)) { | |
| 3211 c=0xfffe; | |
| 3212 break; | |
| 3213 } | |
| 3214 /* output BMP code point */ | |
| 3215 c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); | |
| 3216 break; | |
| 3217 } else if(action==MBCS_STATE_FALLBACK_DIRECT_20) { | |
| 3218 if(!TO_U_USE_FALLBACK(useFallback)) { | |
| 3219 c=0xfffe; | |
| 3220 break; | |
| 3221 } | |
| 3222 /* output supplementary code point */ | |
| 3223 c=0x10000+MBCS_ENTRY_FINAL_VALUE(entry); | |
| 3224 break; | |
| 3225 } else if(action==MBCS_STATE_UNASSIGNED) { | |
| 3226 c=0xfffe; | |
| 3227 break; | |
| 3228 } | |
| 3229 | |
| 3230 /* | |
| 3231 * forbid MBCS_STATE_CHANGE_ONLY for this function, | |
| 3232 * and MBCS_STATE_ILLEGAL and reserved action codes | |
| 3233 */ | |
| 3234 return 0xffff; | |
| 3235 } | |
| 3236 } | |
| 3237 | |
| 3238 if(i!=length) { | |
| 3239 /* illegal for this function: not all input consumed */ | |
| 3240 return 0xffff; | |
| 3241 } | |
| 3242 | |
| 3243 if(c==0xfffe) { | |
| 3244 /* try an extension mapping */ | |
| 3245 const int32_t *cx=sharedData->mbcs.extIndexes; | |
| 3246 if(cx!=NULL) { | |
| 3247 return ucnv_extSimpleMatchToU(cx, source, length, useFallback); | |
| 3248 } | |
| 3249 } | |
| 3250 | |
| 3251 return c; | |
| 3252 } | |
| 3253 | |
| 3254 /* MBCS-from-Unicode conversion functions ----------------------------------- */ | |
| 3255 | |
| 3256 /* This version of ucnv_MBCSFromUnicodeWithOffsets() is optimized for double-byt
e codepages. */ | |
| 3257 static void | |
| 3258 ucnv_MBCSDoubleFromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs, | |
| 3259 UErrorCode *pErrorCode) { | |
| 3260 UConverter *cnv; | |
| 3261 const UChar *source, *sourceLimit; | |
| 3262 uint8_t *target; | |
| 3263 int32_t targetCapacity; | |
| 3264 int32_t *offsets; | |
| 3265 | |
| 3266 const uint16_t *table; | |
| 3267 const uint16_t *mbcsIndex; | |
| 3268 const uint8_t *bytes; | |
| 3269 | |
| 3270 UChar32 c; | |
| 3271 | |
| 3272 int32_t sourceIndex, nextSourceIndex; | |
| 3273 | |
| 3274 uint32_t stage2Entry; | |
| 3275 uint32_t asciiRoundtrips; | |
| 3276 uint32_t value; | |
| 3277 uint8_t unicodeMask; | |
| 3278 | |
| 3279 /* use optimized function if possible */ | |
| 3280 cnv=pArgs->converter; | |
| 3281 unicodeMask=cnv->sharedData->mbcs.unicodeMask; | |
| 3282 | |
| 3283 /* set up the local pointers */ | |
| 3284 source=pArgs->source; | |
| 3285 sourceLimit=pArgs->sourceLimit; | |
| 3286 target=(uint8_t *)pArgs->target; | |
| 3287 targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target); | |
| 3288 offsets=pArgs->offsets; | |
| 3289 | |
| 3290 table=cnv->sharedData->mbcs.fromUnicodeTable; | |
| 3291 mbcsIndex=cnv->sharedData->mbcs.mbcsIndex; | |
| 3292 if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { | |
| 3293 bytes=cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes; | |
| 3294 } else { | |
| 3295 bytes=cnv->sharedData->mbcs.fromUnicodeBytes; | |
| 3296 } | |
| 3297 asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips; | |
| 3298 | |
| 3299 /* get the converter state from UConverter */ | |
| 3300 c=cnv->fromUChar32; | |
| 3301 | |
| 3302 /* sourceIndex=-1 if the current character began in the previous buffer */ | |
| 3303 sourceIndex= c==0 ? 0 : -1; | |
| 3304 nextSourceIndex=0; | |
| 3305 | |
| 3306 /* conversion loop */ | |
| 3307 if(c!=0 && targetCapacity>0) { | |
| 3308 goto getTrail; | |
| 3309 } | |
| 3310 | |
| 3311 while(source<sourceLimit) { | |
| 3312 /* | |
| 3313 * This following test is to see if available input would overflow the o
utput. | |
| 3314 * It does not catch output of more than one byte that | |
| 3315 * overflows as a result of a multi-byte character or callback output | |
| 3316 * from the last source character. | |
| 3317 * Therefore, those situations also test for overflows and will | |
| 3318 * then break the loop, too. | |
| 3319 */ | |
| 3320 if(targetCapacity>0) { | |
| 3321 /* | |
| 3322 * Get a correct Unicode code point: | |
| 3323 * a single UChar for a BMP code point or | |
| 3324 * a matched surrogate pair for a "supplementary code point". | |
| 3325 */ | |
| 3326 c=*source++; | |
| 3327 ++nextSourceIndex; | |
| 3328 if(c<=0x7f && IS_ASCII_ROUNDTRIP(c, asciiRoundtrips)) { | |
| 3329 *target++=(uint8_t)c; | |
| 3330 if(offsets!=NULL) { | |
| 3331 *offsets++=sourceIndex; | |
| 3332 sourceIndex=nextSourceIndex; | |
| 3333 } | |
| 3334 --targetCapacity; | |
| 3335 c=0; | |
| 3336 continue; | |
| 3337 } | |
| 3338 /* | |
| 3339 * utf8Friendly table: Test for <=0xd7ff rather than <=MBCS_FAST_MAX | |
| 3340 * to avoid dealing with surrogates. | |
| 3341 * MBCS_FAST_MAX must be >=0xd7ff. | |
| 3342 */ | |
| 3343 if(c<=0xd7ff) { | |
| 3344 value=DBCS_RESULT_FROM_MOST_BMP(mbcsIndex, (const uint16_t *)byt
es, c); | |
| 3345 /* There are only roundtrips (!=0) and no-mapping (==0) entries.
*/ | |
| 3346 if(value==0) { | |
| 3347 goto unassigned; | |
| 3348 } | |
| 3349 /* output the value */ | |
| 3350 } else { | |
| 3351 /* | |
| 3352 * This also tests if the codepage maps single surrogates. | |
| 3353 * If it does, then surrogates are not paired but mapped separat
ely. | |
| 3354 * Note that in this case unmatched surrogates are not detected. | |
| 3355 */ | |
| 3356 if(U16_IS_SURROGATE(c) && !(unicodeMask&UCNV_HAS_SURROGATES)) { | |
| 3357 if(U16_IS_SURROGATE_LEAD(c)) { | |
| 3358 getTrail: | |
| 3359 if(source<sourceLimit) { | |
| 3360 /* test the following code unit */ | |
| 3361 UChar trail=*source; | |
| 3362 if(U16_IS_TRAIL(trail)) { | |
| 3363 ++source; | |
| 3364 ++nextSourceIndex; | |
| 3365 c=U16_GET_SUPPLEMENTARY(c, trail); | |
| 3366 if(!(unicodeMask&UCNV_HAS_SUPPLEMENTARY)) { | |
| 3367 /* BMP-only codepages are stored without sta
ge 1 entries for supplementary code points */ | |
| 3368 /* callback(unassigned) */ | |
| 3369 goto unassigned; | |
| 3370 } | |
| 3371 /* convert this supplementary code point */ | |
| 3372 /* exit this condition tree */ | |
| 3373 } else { | |
| 3374 /* this is an unmatched lead code unit (1st surr
ogate) */ | |
| 3375 /* callback(illegal) */ | |
| 3376 *pErrorCode=U_ILLEGAL_CHAR_FOUND; | |
| 3377 break; | |
| 3378 } | |
| 3379 } else { | |
| 3380 /* no more input */ | |
| 3381 break; | |
| 3382 } | |
| 3383 } else { | |
| 3384 /* this is an unmatched trail code unit (2nd surrogate)
*/ | |
| 3385 /* callback(illegal) */ | |
| 3386 *pErrorCode=U_ILLEGAL_CHAR_FOUND; | |
| 3387 break; | |
| 3388 } | |
| 3389 } | |
| 3390 | |
| 3391 /* convert the Unicode code point in c into codepage bytes */ | |
| 3392 stage2Entry=MBCS_STAGE_2_FROM_U(table, c); | |
| 3393 | |
| 3394 /* get the bytes and the length for the output */ | |
| 3395 /* MBCS_OUTPUT_2 */ | |
| 3396 value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c); | |
| 3397 | |
| 3398 /* is this code point assigned, or do we use fallbacks? */ | |
| 3399 if(!(MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c) || | |
| 3400 (UCNV_FROM_U_USE_FALLBACK(cnv, c) && value!=0)) | |
| 3401 ) { | |
| 3402 /* | |
| 3403 * We allow a 0 byte output if the "assigned" bit is set for
this entry. | |
| 3404 * There is no way with this data structure for fallback out
put | |
| 3405 * to be a zero byte. | |
| 3406 */ | |
| 3407 | |
| 3408 unassigned: | |
| 3409 /* try an extension mapping */ | |
| 3410 pArgs->source=source; | |
| 3411 c=_extFromU(cnv, cnv->sharedData, | |
| 3412 c, &source, sourceLimit, | |
| 3413 &target, target+targetCapacity, | |
| 3414 &offsets, sourceIndex, | |
| 3415 pArgs->flush, | |
| 3416 pErrorCode); | |
| 3417 nextSourceIndex+=(int32_t)(source-pArgs->source); | |
| 3418 | |
| 3419 if(U_FAILURE(*pErrorCode)) { | |
| 3420 /* not mappable or buffer overflow */ | |
| 3421 break; | |
| 3422 } else { | |
| 3423 /* a mapping was written to the target, continue */ | |
| 3424 | |
| 3425 /* recalculate the targetCapacity after an extension map
ping */ | |
| 3426 targetCapacity=(int32_t)(pArgs->targetLimit-(char *)targ
et); | |
| 3427 | |
| 3428 /* normal end of conversion: prepare for a new character
*/ | |
| 3429 sourceIndex=nextSourceIndex; | |
| 3430 continue; | |
| 3431 } | |
| 3432 } | |
| 3433 } | |
| 3434 | |
| 3435 /* write the output character bytes from value and length */ | |
| 3436 /* from the first if in the loop we know that targetCapacity>0 */ | |
| 3437 if(value<=0xff) { | |
| 3438 /* this is easy because we know that there is enough space */ | |
| 3439 *target++=(uint8_t)value; | |
| 3440 if(offsets!=NULL) { | |
| 3441 *offsets++=sourceIndex; | |
| 3442 } | |
| 3443 --targetCapacity; | |
| 3444 } else /* length==2 */ { | |
| 3445 *target++=(uint8_t)(value>>8); | |
| 3446 if(2<=targetCapacity) { | |
| 3447 *target++=(uint8_t)value; | |
| 3448 if(offsets!=NULL) { | |
| 3449 *offsets++=sourceIndex; | |
| 3450 *offsets++=sourceIndex; | |
| 3451 } | |
| 3452 targetCapacity-=2; | |
| 3453 } else { | |
| 3454 if(offsets!=NULL) { | |
| 3455 *offsets++=sourceIndex; | |
| 3456 } | |
| 3457 cnv->charErrorBuffer[0]=(char)value; | |
| 3458 cnv->charErrorBufferLength=1; | |
| 3459 | |
| 3460 /* target overflow */ | |
| 3461 targetCapacity=0; | |
| 3462 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; | |
| 3463 c=0; | |
| 3464 break; | |
| 3465 } | |
| 3466 } | |
| 3467 | |
| 3468 /* normal end of conversion: prepare for a new character */ | |
| 3469 c=0; | |
| 3470 sourceIndex=nextSourceIndex; | |
| 3471 continue; | |
| 3472 } else { | |
| 3473 /* target is full */ | |
| 3474 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; | |
| 3475 break; | |
| 3476 } | |
| 3477 } | |
| 3478 | |
| 3479 /* set the converter state back into UConverter */ | |
| 3480 cnv->fromUChar32=c; | |
| 3481 | |
| 3482 /* write back the updated pointers */ | |
| 3483 pArgs->source=source; | |
| 3484 pArgs->target=(char *)target; | |
| 3485 pArgs->offsets=offsets; | |
| 3486 } | |
| 3487 | |
| 3488 /* This version of ucnv_MBCSFromUnicodeWithOffsets() is optimized for single-byt
e codepages. */ | |
| 3489 static void | |
| 3490 ucnv_MBCSSingleFromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs, | |
| 3491 UErrorCode *pErrorCode) { | |
| 3492 UConverter *cnv; | |
| 3493 const UChar *source, *sourceLimit; | |
| 3494 uint8_t *target; | |
| 3495 int32_t targetCapacity; | |
| 3496 int32_t *offsets; | |
| 3497 | |
| 3498 const uint16_t *table; | |
| 3499 const uint16_t *results; | |
| 3500 | |
| 3501 UChar32 c; | |
| 3502 | |
| 3503 int32_t sourceIndex, nextSourceIndex; | |
| 3504 | |
| 3505 uint16_t value, minValue; | |
| 3506 UBool hasSupplementary; | |
| 3507 | |
| 3508 /* set up the local pointers */ | |
| 3509 cnv=pArgs->converter; | |
| 3510 source=pArgs->source; | |
| 3511 sourceLimit=pArgs->sourceLimit; | |
| 3512 target=(uint8_t *)pArgs->target; | |
| 3513 targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target); | |
| 3514 offsets=pArgs->offsets; | |
| 3515 | |
| 3516 table=cnv->sharedData->mbcs.fromUnicodeTable; | |
| 3517 if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { | |
| 3518 results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes; | |
| 3519 } else { | |
| 3520 results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes; | |
| 3521 } | |
| 3522 | |
| 3523 if(cnv->useFallback) { | |
| 3524 /* use all roundtrip and fallback results */ | |
| 3525 minValue=0x800; | |
| 3526 } else { | |
| 3527 /* use only roundtrips and fallbacks from private-use characters */ | |
| 3528 minValue=0xc00; | |
| 3529 } | |
| 3530 hasSupplementary=(UBool)(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEME
NTARY); | |
| 3531 | |
| 3532 /* get the converter state from UConverter */ | |
| 3533 c=cnv->fromUChar32; | |
| 3534 | |
| 3535 /* sourceIndex=-1 if the current character began in the previous buffer */ | |
| 3536 sourceIndex= c==0 ? 0 : -1; | |
| 3537 nextSourceIndex=0; | |
| 3538 | |
| 3539 /* conversion loop */ | |
| 3540 if(c!=0 && targetCapacity>0) { | |
| 3541 goto getTrail; | |
| 3542 } | |
| 3543 | |
| 3544 while(source<sourceLimit) { | |
| 3545 /* | |
| 3546 * This following test is to see if available input would overflow the o
utput. | |
| 3547 * It does not catch output of more than one byte that | |
| 3548 * overflows as a result of a multi-byte character or callback output | |
| 3549 * from the last source character. | |
| 3550 * Therefore, those situations also test for overflows and will | |
| 3551 * then break the loop, too. | |
| 3552 */ | |
| 3553 if(targetCapacity>0) { | |
| 3554 /* | |
| 3555 * Get a correct Unicode code point: | |
| 3556 * a single UChar for a BMP code point or | |
| 3557 * a matched surrogate pair for a "supplementary code point". | |
| 3558 */ | |
| 3559 c=*source++; | |
| 3560 ++nextSourceIndex; | |
| 3561 if(U16_IS_SURROGATE(c)) { | |
| 3562 if(U16_IS_SURROGATE_LEAD(c)) { | |
| 3563 getTrail: | |
| 3564 if(source<sourceLimit) { | |
| 3565 /* test the following code unit */ | |
| 3566 UChar trail=*source; | |
| 3567 if(U16_IS_TRAIL(trail)) { | |
| 3568 ++source; | |
| 3569 ++nextSourceIndex; | |
| 3570 c=U16_GET_SUPPLEMENTARY(c, trail); | |
| 3571 if(!hasSupplementary) { | |
| 3572 /* BMP-only codepages are stored without stage 1
entries for supplementary code points */ | |
| 3573 /* callback(unassigned) */ | |
| 3574 goto unassigned; | |
| 3575 } | |
| 3576 /* convert this supplementary code point */ | |
| 3577 /* exit this condition tree */ | |
| 3578 } else { | |
| 3579 /* this is an unmatched lead code unit (1st surrogat
e) */ | |
| 3580 /* callback(illegal) */ | |
| 3581 *pErrorCode=U_ILLEGAL_CHAR_FOUND; | |
| 3582 break; | |
| 3583 } | |
| 3584 } else { | |
| 3585 /* no more input */ | |
| 3586 break; | |
| 3587 } | |
| 3588 } else { | |
| 3589 /* this is an unmatched trail code unit (2nd surrogate) */ | |
| 3590 /* callback(illegal) */ | |
| 3591 *pErrorCode=U_ILLEGAL_CHAR_FOUND; | |
| 3592 break; | |
| 3593 } | |
| 3594 } | |
| 3595 | |
| 3596 /* convert the Unicode code point in c into codepage bytes */ | |
| 3597 value=MBCS_SINGLE_RESULT_FROM_U(table, results, c); | |
| 3598 | |
| 3599 /* is this code point assigned, or do we use fallbacks? */ | |
| 3600 if(value>=minValue) { | |
| 3601 /* assigned, write the output character bytes from value and len
gth */ | |
| 3602 /* length==1 */ | |
| 3603 /* this is easy because we know that there is enough space */ | |
| 3604 *target++=(uint8_t)value; | |
| 3605 if(offsets!=NULL) { | |
| 3606 *offsets++=sourceIndex; | |
| 3607 } | |
| 3608 --targetCapacity; | |
| 3609 | |
| 3610 /* normal end of conversion: prepare for a new character */ | |
| 3611 c=0; | |
| 3612 sourceIndex=nextSourceIndex; | |
| 3613 } else { /* unassigned */ | |
| 3614 unassigned: | |
| 3615 /* try an extension mapping */ | |
| 3616 pArgs->source=source; | |
| 3617 c=_extFromU(cnv, cnv->sharedData, | |
| 3618 c, &source, sourceLimit, | |
| 3619 &target, target+targetCapacity, | |
| 3620 &offsets, sourceIndex, | |
| 3621 pArgs->flush, | |
| 3622 pErrorCode); | |
| 3623 nextSourceIndex+=(int32_t)(source-pArgs->source); | |
| 3624 | |
| 3625 if(U_FAILURE(*pErrorCode)) { | |
| 3626 /* not mappable or buffer overflow */ | |
| 3627 break; | |
| 3628 } else { | |
| 3629 /* a mapping was written to the target, continue */ | |
| 3630 | |
| 3631 /* recalculate the targetCapacity after an extension mapping
*/ | |
| 3632 targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target); | |
| 3633 | |
| 3634 /* normal end of conversion: prepare for a new character */ | |
| 3635 sourceIndex=nextSourceIndex; | |
| 3636 } | |
| 3637 } | |
| 3638 } else { | |
| 3639 /* target is full */ | |
| 3640 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; | |
| 3641 break; | |
| 3642 } | |
| 3643 } | |
| 3644 | |
| 3645 /* set the converter state back into UConverter */ | |
| 3646 cnv->fromUChar32=c; | |
| 3647 | |
| 3648 /* write back the updated pointers */ | |
| 3649 pArgs->source=source; | |
| 3650 pArgs->target=(char *)target; | |
| 3651 pArgs->offsets=offsets; | |
| 3652 } | |
| 3653 | |
| 3654 /* | |
| 3655 * This version of ucnv_MBCSFromUnicode() is optimized for single-byte codepages | |
| 3656 * that map only to and from the BMP. | |
| 3657 * In addition to single-byte/state optimizations, the offset calculations | |
| 3658 * become much easier. | |
| 3659 * It would be possible to use the sbcsIndex for UTF-8-friendly tables, | |
| 3660 * but measurements have shown that this diminishes performance | |
| 3661 * in more cases than it improves it. | |
| 3662 * See SVN revision 21013 (2007-feb-06) for the last version with #if switches | |
| 3663 * for various MBCS and SBCS optimizations. | |
| 3664 */ | |
| 3665 static void | |
| 3666 ucnv_MBCSSingleFromBMPWithOffsets(UConverterFromUnicodeArgs *pArgs, | |
| 3667 UErrorCode *pErrorCode) { | |
| 3668 UConverter *cnv; | |
| 3669 const UChar *source, *sourceLimit, *lastSource; | |
| 3670 uint8_t *target; | |
| 3671 int32_t targetCapacity, length; | |
| 3672 int32_t *offsets; | |
| 3673 | |
| 3674 const uint16_t *table; | |
| 3675 const uint16_t *results; | |
| 3676 | |
| 3677 UChar32 c; | |
| 3678 | |
| 3679 int32_t sourceIndex; | |
| 3680 | |
| 3681 uint32_t asciiRoundtrips; | |
| 3682 uint16_t value, minValue; | |
| 3683 | |
| 3684 /* set up the local pointers */ | |
| 3685 cnv=pArgs->converter; | |
| 3686 source=pArgs->source; | |
| 3687 sourceLimit=pArgs->sourceLimit; | |
| 3688 target=(uint8_t *)pArgs->target; | |
| 3689 targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target); | |
| 3690 offsets=pArgs->offsets; | |
| 3691 | |
| 3692 table=cnv->sharedData->mbcs.fromUnicodeTable; | |
| 3693 if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { | |
| 3694 results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes; | |
| 3695 } else { | |
| 3696 results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes; | |
| 3697 } | |
| 3698 asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips; | |
| 3699 | |
| 3700 if(cnv->useFallback) { | |
| 3701 /* use all roundtrip and fallback results */ | |
| 3702 minValue=0x800; | |
| 3703 } else { | |
| 3704 /* use only roundtrips and fallbacks from private-use characters */ | |
| 3705 minValue=0xc00; | |
| 3706 } | |
| 3707 | |
| 3708 /* get the converter state from UConverter */ | |
| 3709 c=cnv->fromUChar32; | |
| 3710 | |
| 3711 /* sourceIndex=-1 if the current character began in the previous buffer */ | |
| 3712 sourceIndex= c==0 ? 0 : -1; | |
| 3713 lastSource=source; | |
| 3714 | |
| 3715 /* | |
| 3716 * since the conversion here is 1:1 UChar:uint8_t, we need only one counter | |
| 3717 * for the minimum of the sourceLength and targetCapacity | |
| 3718 */ | |
| 3719 length=(int32_t)(sourceLimit-source); | |
| 3720 if(length<targetCapacity) { | |
| 3721 targetCapacity=length; | |
| 3722 } | |
| 3723 | |
| 3724 /* conversion loop */ | |
| 3725 if(c!=0 && targetCapacity>0) { | |
| 3726 goto getTrail; | |
| 3727 } | |
| 3728 | |
| 3729 #if MBCS_UNROLL_SINGLE_FROM_BMP | |
| 3730 /* unrolling makes it slower on Pentium III/Windows 2000?! */ | |
| 3731 /* unroll the loop with the most common case */ | |
| 3732 unrolled: | |
| 3733 if(targetCapacity>=4) { | |
| 3734 int32_t count, loops; | |
| 3735 uint16_t andedValues; | |
| 3736 | |
| 3737 loops=count=targetCapacity>>2; | |
| 3738 do { | |
| 3739 c=*source++; | |
| 3740 andedValues=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c); | |
| 3741 *target++=(uint8_t)value; | |
| 3742 c=*source++; | |
| 3743 andedValues&=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c); | |
| 3744 *target++=(uint8_t)value; | |
| 3745 c=*source++; | |
| 3746 andedValues&=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c); | |
| 3747 *target++=(uint8_t)value; | |
| 3748 c=*source++; | |
| 3749 andedValues&=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c); | |
| 3750 *target++=(uint8_t)value; | |
| 3751 | |
| 3752 /* were all 4 entries really valid? */ | |
| 3753 if(andedValues<minValue) { | |
| 3754 /* no, return to the first of these 4 */ | |
| 3755 source-=4; | |
| 3756 target-=4; | |
| 3757 break; | |
| 3758 } | |
| 3759 } while(--count>0); | |
| 3760 count=loops-count; | |
| 3761 targetCapacity-=4*count; | |
| 3762 | |
| 3763 if(offsets!=NULL) { | |
| 3764 lastSource+=4*count; | |
| 3765 while(count>0) { | |
| 3766 *offsets++=sourceIndex++; | |
| 3767 *offsets++=sourceIndex++; | |
| 3768 *offsets++=sourceIndex++; | |
| 3769 *offsets++=sourceIndex++; | |
| 3770 --count; | |
| 3771 } | |
| 3772 } | |
| 3773 | |
| 3774 c=0; | |
| 3775 } | |
| 3776 #endif | |
| 3777 | |
| 3778 while(targetCapacity>0) { | |
| 3779 /* | |
| 3780 * Get a correct Unicode code point: | |
| 3781 * a single UChar for a BMP code point or | |
| 3782 * a matched surrogate pair for a "supplementary code point". | |
| 3783 */ | |
| 3784 c=*source++; | |
| 3785 /* | |
| 3786 * Do not immediately check for single surrogates: | |
| 3787 * Assume that they are unassigned and check for them in that case. | |
| 3788 * This speeds up the conversion of assigned characters. | |
| 3789 */ | |
| 3790 /* convert the Unicode code point in c into codepage bytes */ | |
| 3791 if(c<=0x7f && IS_ASCII_ROUNDTRIP(c, asciiRoundtrips)) { | |
| 3792 *target++=(uint8_t)c; | |
| 3793 --targetCapacity; | |
| 3794 c=0; | |
| 3795 continue; | |
| 3796 } | |
| 3797 value=MBCS_SINGLE_RESULT_FROM_U(table, results, c); | |
| 3798 /* is this code point assigned, or do we use fallbacks? */ | |
| 3799 if(value>=minValue) { | |
| 3800 /* assigned, write the output character bytes from value and length
*/ | |
| 3801 /* length==1 */ | |
| 3802 /* this is easy because we know that there is enough space */ | |
| 3803 *target++=(uint8_t)value; | |
| 3804 --targetCapacity; | |
| 3805 | |
| 3806 /* normal end of conversion: prepare for a new character */ | |
| 3807 c=0; | |
| 3808 continue; | |
| 3809 } else if(!U16_IS_SURROGATE(c)) { | |
| 3810 /* normal, unassigned BMP character */ | |
| 3811 } else if(U16_IS_SURROGATE_LEAD(c)) { | |
| 3812 getTrail: | |
| 3813 if(source<sourceLimit) { | |
| 3814 /* test the following code unit */ | |
| 3815 UChar trail=*source; | |
| 3816 if(U16_IS_TRAIL(trail)) { | |
| 3817 ++source; | |
| 3818 c=U16_GET_SUPPLEMENTARY(c, trail); | |
| 3819 /* this codepage does not map supplementary code points */ | |
| 3820 /* callback(unassigned) */ | |
| 3821 } else { | |
| 3822 /* this is an unmatched lead code unit (1st surrogate) */ | |
| 3823 /* callback(illegal) */ | |
| 3824 *pErrorCode=U_ILLEGAL_CHAR_FOUND; | |
| 3825 break; | |
| 3826 } | |
| 3827 } else { | |
| 3828 /* no more input */ | |
| 3829 if (pArgs->flush) { | |
| 3830 *pErrorCode=U_TRUNCATED_CHAR_FOUND; | |
| 3831 } | |
| 3832 break; | |
| 3833 } | |
| 3834 } else { | |
| 3835 /* this is an unmatched trail code unit (2nd surrogate) */ | |
| 3836 /* callback(illegal) */ | |
| 3837 *pErrorCode=U_ILLEGAL_CHAR_FOUND; | |
| 3838 break; | |
| 3839 } | |
| 3840 | |
| 3841 /* c does not have a mapping */ | |
| 3842 | |
| 3843 /* get the number of code units for c to correctly advance sourceIndex *
/ | |
| 3844 length=U16_LENGTH(c); | |
| 3845 | |
| 3846 /* set offsets since the start or the last extension */ | |
| 3847 if(offsets!=NULL) { | |
| 3848 int32_t count=(int32_t)(source-lastSource); | |
| 3849 | |
| 3850 /* do not set the offset for this character */ | |
| 3851 count-=length; | |
| 3852 | |
| 3853 while(count>0) { | |
| 3854 *offsets++=sourceIndex++; | |
| 3855 --count; | |
| 3856 } | |
| 3857 /* offsets and sourceIndex are now set for the current character */ | |
| 3858 } | |
| 3859 | |
| 3860 /* try an extension mapping */ | |
| 3861 lastSource=source; | |
| 3862 c=_extFromU(cnv, cnv->sharedData, | |
| 3863 c, &source, sourceLimit, | |
| 3864 &target, (const uint8_t *)(pArgs->targetLimit), | |
| 3865 &offsets, sourceIndex, | |
| 3866 pArgs->flush, | |
| 3867 pErrorCode); | |
| 3868 sourceIndex+=length+(int32_t)(source-lastSource); | |
| 3869 lastSource=source; | |
| 3870 | |
| 3871 if(U_FAILURE(*pErrorCode)) { | |
| 3872 /* not mappable or buffer overflow */ | |
| 3873 break; | |
| 3874 } else { | |
| 3875 /* a mapping was written to the target, continue */ | |
| 3876 | |
| 3877 /* recalculate the targetCapacity after an extension mapping */ | |
| 3878 targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target); | |
| 3879 length=(int32_t)(sourceLimit-source); | |
| 3880 if(length<targetCapacity) { | |
| 3881 targetCapacity=length; | |
| 3882 } | |
| 3883 } | |
| 3884 | |
| 3885 #if MBCS_UNROLL_SINGLE_FROM_BMP | |
| 3886 /* unrolling makes it slower on Pentium III/Windows 2000?! */ | |
| 3887 goto unrolled; | |
| 3888 #endif | |
| 3889 } | |
| 3890 | |
| 3891 if(U_SUCCESS(*pErrorCode) && source<sourceLimit && target>=(uint8_t *)pArgs-
>targetLimit) { | |
| 3892 /* target is full */ | |
| 3893 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; | |
| 3894 } | |
| 3895 | |
| 3896 /* set offsets since the start or the last callback */ | |
| 3897 if(offsets!=NULL) { | |
| 3898 size_t count=source-lastSource; | |
| 3899 if (count > 0 && *pErrorCode == U_TRUNCATED_CHAR_FOUND) { | |
| 3900 /* | |
| 3901 Caller gave us a partial supplementary character, | |
| 3902 which this function couldn't convert in any case. | |
| 3903 The callback will handle the offset. | |
| 3904 */ | |
| 3905 count--; | |
| 3906 } | |
| 3907 while(count>0) { | |
| 3908 *offsets++=sourceIndex++; | |
| 3909 --count; | |
| 3910 } | |
| 3911 } | |
| 3912 | |
| 3913 /* set the converter state back into UConverter */ | |
| 3914 cnv->fromUChar32=c; | |
| 3915 | |
| 3916 /* write back the updated pointers */ | |
| 3917 pArgs->source=source; | |
| 3918 pArgs->target=(char *)target; | |
| 3919 pArgs->offsets=offsets; | |
| 3920 } | |
| 3921 | |
| 3922 U_CFUNC void | |
| 3923 ucnv_MBCSFromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs, | |
| 3924 UErrorCode *pErrorCode) { | |
| 3925 UConverter *cnv; | |
| 3926 const UChar *source, *sourceLimit; | |
| 3927 uint8_t *target; | |
| 3928 int32_t targetCapacity; | |
| 3929 int32_t *offsets; | |
| 3930 | |
| 3931 const uint16_t *table; | |
| 3932 const uint16_t *mbcsIndex; | |
| 3933 const uint8_t *p, *bytes; | |
| 3934 uint8_t outputType; | |
| 3935 | |
| 3936 UChar32 c; | |
| 3937 | |
| 3938 int32_t prevSourceIndex, sourceIndex, nextSourceIndex; | |
| 3939 | |
| 3940 uint32_t stage2Entry; | |
| 3941 uint32_t asciiRoundtrips; | |
| 3942 uint32_t value; | |
| 3943 /* Shift-In and Shift-Out byte sequences differ by encoding scheme. */ | |
| 3944 uint8_t siBytes[2] = {0, 0}; | |
| 3945 uint8_t soBytes[2] = {0, 0}; | |
| 3946 uint8_t siLength, soLength; | |
| 3947 int32_t length = 0, prevLength; | |
| 3948 uint8_t unicodeMask; | |
| 3949 | |
| 3950 cnv=pArgs->converter; | |
| 3951 | |
| 3952 if(cnv->preFromUFirstCP>=0) { | |
| 3953 /* | |
| 3954 * pass sourceIndex=-1 because we continue from an earlier buffer | |
| 3955 * in the future, this may change with continuous offsets | |
| 3956 */ | |
| 3957 ucnv_extContinueMatchFromU(cnv, pArgs, -1, pErrorCode); | |
| 3958 | |
| 3959 if(U_FAILURE(*pErrorCode) || cnv->preFromULength<0) { | |
| 3960 return; | |
| 3961 } | |
| 3962 } | |
| 3963 | |
| 3964 /* use optimized function if possible */ | |
| 3965 outputType=cnv->sharedData->mbcs.outputType; | |
| 3966 unicodeMask=cnv->sharedData->mbcs.unicodeMask; | |
| 3967 if(outputType==MBCS_OUTPUT_1 && !(unicodeMask&UCNV_HAS_SURROGATES)) { | |
| 3968 if(!(unicodeMask&UCNV_HAS_SUPPLEMENTARY)) { | |
| 3969 ucnv_MBCSSingleFromBMPWithOffsets(pArgs, pErrorCode); | |
| 3970 } else { | |
| 3971 ucnv_MBCSSingleFromUnicodeWithOffsets(pArgs, pErrorCode); | |
| 3972 } | |
| 3973 return; | |
| 3974 } else if(outputType==MBCS_OUTPUT_2 && cnv->sharedData->mbcs.utf8Friendly) { | |
| 3975 ucnv_MBCSDoubleFromUnicodeWithOffsets(pArgs, pErrorCode); | |
| 3976 return; | |
| 3977 } | |
| 3978 | |
| 3979 /* set up the local pointers */ | |
| 3980 source=pArgs->source; | |
| 3981 sourceLimit=pArgs->sourceLimit; | |
| 3982 target=(uint8_t *)pArgs->target; | |
| 3983 targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target); | |
| 3984 offsets=pArgs->offsets; | |
| 3985 | |
| 3986 table=cnv->sharedData->mbcs.fromUnicodeTable; | |
| 3987 if(cnv->sharedData->mbcs.utf8Friendly) { | |
| 3988 mbcsIndex=cnv->sharedData->mbcs.mbcsIndex; | |
| 3989 } else { | |
| 3990 mbcsIndex=NULL; | |
| 3991 } | |
| 3992 if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { | |
| 3993 bytes=cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes; | |
| 3994 } else { | |
| 3995 bytes=cnv->sharedData->mbcs.fromUnicodeBytes; | |
| 3996 } | |
| 3997 asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips; | |
| 3998 | |
| 3999 /* get the converter state from UConverter */ | |
| 4000 c=cnv->fromUChar32; | |
| 4001 | |
| 4002 if(outputType==MBCS_OUTPUT_2_SISO) { | |
| 4003 prevLength=cnv->fromUnicodeStatus; | |
| 4004 if(prevLength==0) { | |
| 4005 /* set the real value */ | |
| 4006 prevLength=1; | |
| 4007 } | |
| 4008 } else { | |
| 4009 /* prevent fromUnicodeStatus from being set to something non-0 */ | |
| 4010 prevLength=0; | |
| 4011 } | |
| 4012 | |
| 4013 /* sourceIndex=-1 if the current character began in the previous buffer */ | |
| 4014 prevSourceIndex=-1; | |
| 4015 sourceIndex= c==0 ? 0 : -1; | |
| 4016 nextSourceIndex=0; | |
| 4017 | |
| 4018 /* Get the SI/SO character for the converter */ | |
| 4019 siLength = getSISOBytes(SI, cnv->options, siBytes); | |
| 4020 soLength = getSISOBytes(SO, cnv->options, soBytes); | |
| 4021 | |
| 4022 /* conversion loop */ | |
| 4023 /* | |
| 4024 * This is another piece of ugly code: | |
| 4025 * A goto into the loop if the converter state contains a first surrogate | |
| 4026 * from the previous function call. | |
| 4027 * It saves me to check in each loop iteration a check of if(c==0) | |
| 4028 * and duplicating the trail-surrogate-handling code in the else | |
| 4029 * branch of that check. | |
| 4030 * I could not find any other way to get around this other than | |
| 4031 * using a function call for the conversion and callback, which would | |
| 4032 * be even more inefficient. | |
| 4033 * | |
| 4034 * Markus Scherer 2000-jul-19 | |
| 4035 */ | |
| 4036 if(c!=0 && targetCapacity>0) { | |
| 4037 goto getTrail; | |
| 4038 } | |
| 4039 | |
| 4040 while(source<sourceLimit) { | |
| 4041 /* | |
| 4042 * This following test is to see if available input would overflow the o
utput. | |
| 4043 * It does not catch output of more than one byte that | |
| 4044 * overflows as a result of a multi-byte character or callback output | |
| 4045 * from the last source character. | |
| 4046 * Therefore, those situations also test for overflows and will | |
| 4047 * then break the loop, too. | |
| 4048 */ | |
| 4049 if(targetCapacity>0) { | |
| 4050 /* | |
| 4051 * Get a correct Unicode code point: | |
| 4052 * a single UChar for a BMP code point or | |
| 4053 * a matched surrogate pair for a "supplementary code point". | |
| 4054 */ | |
| 4055 c=*source++; | |
| 4056 ++nextSourceIndex; | |
| 4057 if(c<=0x7f && IS_ASCII_ROUNDTRIP(c, asciiRoundtrips)) { | |
| 4058 *target++=(uint8_t)c; | |
| 4059 if(offsets!=NULL) { | |
| 4060 *offsets++=sourceIndex; | |
| 4061 prevSourceIndex=sourceIndex; | |
| 4062 sourceIndex=nextSourceIndex; | |
| 4063 } | |
| 4064 --targetCapacity; | |
| 4065 c=0; | |
| 4066 continue; | |
| 4067 } | |
| 4068 /* | |
| 4069 * utf8Friendly table: Test for <=0xd7ff rather than <=MBCS_FAST_MAX | |
| 4070 * to avoid dealing with surrogates. | |
| 4071 * MBCS_FAST_MAX must be >=0xd7ff. | |
| 4072 */ | |
| 4073 if(c<=0xd7ff && mbcsIndex!=NULL) { | |
| 4074 value=mbcsIndex[c>>6]; | |
| 4075 | |
| 4076 /* get the bytes and the length for the output (copied from belo
w and adapted for utf8Friendly data) */ | |
| 4077 /* There are only roundtrips (!=0) and no-mapping (==0) entries.
*/ | |
| 4078 switch(outputType) { | |
| 4079 case MBCS_OUTPUT_2: | |
| 4080 value=((const uint16_t *)bytes)[value +(c&0x3f)]; | |
| 4081 if(value<=0xff) { | |
| 4082 if(value==0) { | |
| 4083 goto unassigned; | |
| 4084 } else { | |
| 4085 length=1; | |
| 4086 } | |
| 4087 } else { | |
| 4088 length=2; | |
| 4089 } | |
| 4090 break; | |
| 4091 case MBCS_OUTPUT_2_SISO: | |
| 4092 /* 1/2-byte stateful with Shift-In/Shift-Out */ | |
| 4093 /* | |
| 4094 * Save the old state in the converter object | |
| 4095 * right here, then change the local prevLength state variab
le if necessary. | |
| 4096 * Then, if this character turns out to be unassigned or a f
allback that | |
| 4097 * is not taken, the callback code must not save the new sta
te in the converter | |
| 4098 * because the new state is for a character that is not outp
ut. | |
| 4099 * However, the callback must still restore the state from t
he converter | |
| 4100 * in case the callback function changed it for its output. | |
| 4101 */ | |
| 4102 cnv->fromUnicodeStatus=prevLength; /* save the old state */ | |
| 4103 value=((const uint16_t *)bytes)[value +(c&0x3f)]; | |
| 4104 if(value<=0xff) { | |
| 4105 if(value==0) { | |
| 4106 goto unassigned; | |
| 4107 } else if(prevLength<=1) { | |
| 4108 length=1; | |
| 4109 } else { | |
| 4110 /* change from double-byte mode to single-byte */ | |
| 4111 if (siLength == 1) { | |
| 4112 value|=(uint32_t)siBytes[0]<<8; | |
| 4113 length = 2; | |
| 4114 } else if (siLength == 2) { | |
| 4115 value|=(uint32_t)siBytes[1]<<8; | |
| 4116 value|=(uint32_t)siBytes[0]<<16; | |
| 4117 length = 3; | |
| 4118 } | |
| 4119 prevLength=1; | |
| 4120 } | |
| 4121 } else { | |
| 4122 if(prevLength==2) { | |
| 4123 length=2; | |
| 4124 } else { | |
| 4125 /* change from single-byte mode to double-byte */ | |
| 4126 if (soLength == 1) { | |
| 4127 value|=(uint32_t)soBytes[0]<<16; | |
| 4128 length = 3; | |
| 4129 } else if (soLength == 2) { | |
| 4130 value|=(uint32_t)soBytes[1]<<16; | |
| 4131 value|=(uint32_t)soBytes[0]<<24; | |
| 4132 length = 4; | |
| 4133 } | |
| 4134 prevLength=2; | |
| 4135 } | |
| 4136 } | |
| 4137 break; | |
| 4138 case MBCS_OUTPUT_DBCS_ONLY: | |
| 4139 /* table with single-byte results, but only DBCS mappings us
ed */ | |
| 4140 value=((const uint16_t *)bytes)[value +(c&0x3f)]; | |
| 4141 if(value<=0xff) { | |
| 4142 /* no mapping or SBCS result, not taken for DBCS-only */ | |
| 4143 goto unassigned; | |
| 4144 } else { | |
| 4145 length=2; | |
| 4146 } | |
| 4147 break; | |
| 4148 case MBCS_OUTPUT_3: | |
| 4149 p=bytes+(value+(c&0x3f))*3; | |
| 4150 value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2]; | |
| 4151 if(value<=0xff) { | |
| 4152 if(value==0) { | |
| 4153 goto unassigned; | |
| 4154 } else { | |
| 4155 length=1; | |
| 4156 } | |
| 4157 } else if(value<=0xffff) { | |
| 4158 length=2; | |
| 4159 } else { | |
| 4160 length=3; | |
| 4161 } | |
| 4162 break; | |
| 4163 case MBCS_OUTPUT_4: | |
| 4164 value=((const uint32_t *)bytes)[value +(c&0x3f)]; | |
| 4165 if(value<=0xff) { | |
| 4166 if(value==0) { | |
| 4167 goto unassigned; | |
| 4168 } else { | |
| 4169 length=1; | |
| 4170 } | |
| 4171 } else if(value<=0xffff) { | |
| 4172 length=2; | |
| 4173 } else if(value<=0xffffff) { | |
| 4174 length=3; | |
| 4175 } else { | |
| 4176 length=4; | |
| 4177 } | |
| 4178 break; | |
| 4179 case MBCS_OUTPUT_3_EUC: | |
| 4180 value=((const uint16_t *)bytes)[value +(c&0x3f)]; | |
| 4181 /* EUC 16-bit fixed-length representation */ | |
| 4182 if(value<=0xff) { | |
| 4183 if(value==0) { | |
| 4184 goto unassigned; | |
| 4185 } else { | |
| 4186 length=1; | |
| 4187 } | |
| 4188 } else if((value&0x8000)==0) { | |
| 4189 value|=0x8e8000; | |
| 4190 length=3; | |
| 4191 } else if((value&0x80)==0) { | |
| 4192 value|=0x8f0080; | |
| 4193 length=3; | |
| 4194 } else { | |
| 4195 length=2; | |
| 4196 } | |
| 4197 break; | |
| 4198 case MBCS_OUTPUT_4_EUC: | |
| 4199 p=bytes+(value+(c&0x3f))*3; | |
| 4200 value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2]; | |
| 4201 /* EUC 16-bit fixed-length representation applied to the fir
st two bytes */ | |
| 4202 if(value<=0xff) { | |
| 4203 if(value==0) { | |
| 4204 goto unassigned; | |
| 4205 } else { | |
| 4206 length=1; | |
| 4207 } | |
| 4208 } else if(value<=0xffff) { | |
| 4209 length=2; | |
| 4210 } else if((value&0x800000)==0) { | |
| 4211 value|=0x8e800000; | |
| 4212 length=4; | |
| 4213 } else if((value&0x8000)==0) { | |
| 4214 value|=0x8f008000; | |
| 4215 length=4; | |
| 4216 } else { | |
| 4217 length=3; | |
| 4218 } | |
| 4219 break; | |
| 4220 default: | |
| 4221 /* must not occur */ | |
| 4222 /* | |
| 4223 * To avoid compiler warnings that value & length may be | |
| 4224 * used without having been initialized, we set them here. | |
| 4225 * In reality, this is unreachable code. | |
| 4226 * Not having a default branch also causes warnings with | |
| 4227 * some compilers. | |
| 4228 */ | |
| 4229 value=0; | |
| 4230 length=0; | |
| 4231 break; | |
| 4232 } | |
| 4233 /* output the value */ | |
| 4234 } else { | |
| 4235 /* | |
| 4236 * This also tests if the codepage maps single surrogates. | |
| 4237 * If it does, then surrogates are not paired but mapped separat
ely. | |
| 4238 * Note that in this case unmatched surrogates are not detected. | |
| 4239 */ | |
| 4240 if(U16_IS_SURROGATE(c) && !(unicodeMask&UCNV_HAS_SURROGATES)) { | |
| 4241 if(U16_IS_SURROGATE_LEAD(c)) { | |
| 4242 getTrail: | |
| 4243 if(source<sourceLimit) { | |
| 4244 /* test the following code unit */ | |
| 4245 UChar trail=*source; | |
| 4246 if(U16_IS_TRAIL(trail)) { | |
| 4247 ++source; | |
| 4248 ++nextSourceIndex; | |
| 4249 c=U16_GET_SUPPLEMENTARY(c, trail); | |
| 4250 if(!(unicodeMask&UCNV_HAS_SUPPLEMENTARY)) { | |
| 4251 /* BMP-only codepages are stored without sta
ge 1 entries for supplementary code points */ | |
| 4252 cnv->fromUnicodeStatus=prevLength; /* save t
he old state */ | |
| 4253 /* callback(unassigned) */ | |
| 4254 goto unassigned; | |
| 4255 } | |
| 4256 /* convert this supplementary code point */ | |
| 4257 /* exit this condition tree */ | |
| 4258 } else { | |
| 4259 /* this is an unmatched lead code unit (1st surr
ogate) */ | |
| 4260 /* callback(illegal) */ | |
| 4261 *pErrorCode=U_ILLEGAL_CHAR_FOUND; | |
| 4262 break; | |
| 4263 } | |
| 4264 } else { | |
| 4265 /* no more input */ | |
| 4266 break; | |
| 4267 } | |
| 4268 } else { | |
| 4269 /* this is an unmatched trail code unit (2nd surrogate)
*/ | |
| 4270 /* callback(illegal) */ | |
| 4271 *pErrorCode=U_ILLEGAL_CHAR_FOUND; | |
| 4272 break; | |
| 4273 } | |
| 4274 } | |
| 4275 | |
| 4276 /* convert the Unicode code point in c into codepage bytes */ | |
| 4277 | |
| 4278 /* | |
| 4279 * The basic lookup is a triple-stage compact array (trie) looku
p. | |
| 4280 * For details see the beginning of this file. | |
| 4281 * | |
| 4282 * Single-byte codepages are handled with a different data struc
ture | |
| 4283 * by _MBCSSingle... functions. | |
| 4284 * | |
| 4285 * The result consists of a 32-bit value from stage 2 and | |
| 4286 * a pointer to as many bytes as are stored per character. | |
| 4287 * The pointer points to the character's bytes in stage 3. | |
| 4288 * Bits 15..0 of the stage 2 entry contain the stage 3 index | |
| 4289 * for that pointer, while bits 31..16 are flags for which of | |
| 4290 * the 16 characters in the block are roundtrip-assigned. | |
| 4291 * | |
| 4292 * For 2-byte and 4-byte codepages, the bytes are stored as uint
16_t | |
| 4293 * respectively as uint32_t, in the platform encoding. | |
| 4294 * For 3-byte codepages, the bytes are always stored in big-endi
an order. | |
| 4295 * | |
| 4296 * For EUC encodings that use only either 0x8e or 0x8f as the fi
rst | |
| 4297 * byte of their longest byte sequences, the first two bytes in | |
| 4298 * this third stage indicate with their 7th bits whether these b
ytes | |
| 4299 * are to be written directly or actually need to be preceeded b
y | |
| 4300 * one of the two Single-Shift codes. With this, the third stage | |
| 4301 * stores one byte fewer per character than the actual maximum l
ength of | |
| 4302 * EUC byte sequences. | |
| 4303 * | |
| 4304 * Other than that, leading zero bytes are removed and the other | |
| 4305 * bytes output. A single zero byte may be output if the "assign
ed" | |
| 4306 * bit in stage 2 was on. | |
| 4307 * The data structure does not support zero byte output as a fal
lback, | |
| 4308 * and also does not allow output of leading zeros. | |
| 4309 */ | |
| 4310 stage2Entry=MBCS_STAGE_2_FROM_U(table, c); | |
| 4311 | |
| 4312 /* get the bytes and the length for the output */ | |
| 4313 switch(outputType) { | |
| 4314 case MBCS_OUTPUT_2: | |
| 4315 value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c); | |
| 4316 if(value<=0xff) { | |
| 4317 length=1; | |
| 4318 } else { | |
| 4319 length=2; | |
| 4320 } | |
| 4321 break; | |
| 4322 case MBCS_OUTPUT_2_SISO: | |
| 4323 /* 1/2-byte stateful with Shift-In/Shift-Out */ | |
| 4324 /* | |
| 4325 * Save the old state in the converter object | |
| 4326 * right here, then change the local prevLength state variab
le if necessary. | |
| 4327 * Then, if this character turns out to be unassigned or a f
allback that | |
| 4328 * is not taken, the callback code must not save the new sta
te in the converter | |
| 4329 * because the new state is for a character that is not outp
ut. | |
| 4330 * However, the callback must still restore the state from t
he converter | |
| 4331 * in case the callback function changed it for its output. | |
| 4332 */ | |
| 4333 cnv->fromUnicodeStatus=prevLength; /* save the old state */ | |
| 4334 value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c); | |
| 4335 if(value<=0xff) { | |
| 4336 if(value==0 && MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c)=
=0) { | |
| 4337 /* no mapping, leave value==0 */ | |
| 4338 length=0; | |
| 4339 } else if(prevLength<=1) { | |
| 4340 length=1; | |
| 4341 } else { | |
| 4342 /* change from double-byte mode to single-byte */ | |
| 4343 if (siLength == 1) { | |
| 4344 value|=(uint32_t)siBytes[0]<<8; | |
| 4345 length = 2; | |
| 4346 } else if (siLength == 2) { | |
| 4347 value|=(uint32_t)siBytes[1]<<8; | |
| 4348 value|=(uint32_t)siBytes[0]<<16; | |
| 4349 length = 3; | |
| 4350 } | |
| 4351 prevLength=1; | |
| 4352 } | |
| 4353 } else { | |
| 4354 if(prevLength==2) { | |
| 4355 length=2; | |
| 4356 } else { | |
| 4357 /* change from single-byte mode to double-byte */ | |
| 4358 if (soLength == 1) { | |
| 4359 value|=(uint32_t)soBytes[0]<<16; | |
| 4360 length = 3; | |
| 4361 } else if (soLength == 2) { | |
| 4362 value|=(uint32_t)soBytes[1]<<16; | |
| 4363 value|=(uint32_t)soBytes[0]<<24; | |
| 4364 length = 4; | |
| 4365 } | |
| 4366 prevLength=2; | |
| 4367 } | |
| 4368 } | |
| 4369 break; | |
| 4370 case MBCS_OUTPUT_DBCS_ONLY: | |
| 4371 /* table with single-byte results, but only DBCS mappings us
ed */ | |
| 4372 value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c); | |
| 4373 if(value<=0xff) { | |
| 4374 /* no mapping or SBCS result, not taken for DBCS-only */ | |
| 4375 value=stage2Entry=0; /* stage2Entry=0 to reset roundtrip
flags */ | |
| 4376 length=0; | |
| 4377 } else { | |
| 4378 length=2; | |
| 4379 } | |
| 4380 break; | |
| 4381 case MBCS_OUTPUT_3: | |
| 4382 p=MBCS_POINTER_3_FROM_STAGE_2(bytes, stage2Entry, c); | |
| 4383 value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2]; | |
| 4384 if(value<=0xff) { | |
| 4385 length=1; | |
| 4386 } else if(value<=0xffff) { | |
| 4387 length=2; | |
| 4388 } else { | |
| 4389 length=3; | |
| 4390 } | |
| 4391 break; | |
| 4392 case MBCS_OUTPUT_4: | |
| 4393 value=MBCS_VALUE_4_FROM_STAGE_2(bytes, stage2Entry, c); | |
| 4394 if(value<=0xff) { | |
| 4395 length=1; | |
| 4396 } else if(value<=0xffff) { | |
| 4397 length=2; | |
| 4398 } else if(value<=0xffffff) { | |
| 4399 length=3; | |
| 4400 } else { | |
| 4401 length=4; | |
| 4402 } | |
| 4403 break; | |
| 4404 case MBCS_OUTPUT_3_EUC: | |
| 4405 value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c); | |
| 4406 /* EUC 16-bit fixed-length representation */ | |
| 4407 if(value<=0xff) { | |
| 4408 length=1; | |
| 4409 } else if((value&0x8000)==0) { | |
| 4410 value|=0x8e8000; | |
| 4411 length=3; | |
| 4412 } else if((value&0x80)==0) { | |
| 4413 value|=0x8f0080; | |
| 4414 length=3; | |
| 4415 } else { | |
| 4416 length=2; | |
| 4417 } | |
| 4418 break; | |
| 4419 case MBCS_OUTPUT_4_EUC: | |
| 4420 p=MBCS_POINTER_3_FROM_STAGE_2(bytes, stage2Entry, c); | |
| 4421 value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2]; | |
| 4422 /* EUC 16-bit fixed-length representation applied to the fir
st two bytes */ | |
| 4423 if(value<=0xff) { | |
| 4424 length=1; | |
| 4425 } else if(value<=0xffff) { | |
| 4426 length=2; | |
| 4427 } else if((value&0x800000)==0) { | |
| 4428 value|=0x8e800000; | |
| 4429 length=4; | |
| 4430 } else if((value&0x8000)==0) { | |
| 4431 value|=0x8f008000; | |
| 4432 length=4; | |
| 4433 } else { | |
| 4434 length=3; | |
| 4435 } | |
| 4436 break; | |
| 4437 default: | |
| 4438 /* must not occur */ | |
| 4439 /* | |
| 4440 * To avoid compiler warnings that value & length may be | |
| 4441 * used without having been initialized, we set them here. | |
| 4442 * In reality, this is unreachable code. | |
| 4443 * Not having a default branch also causes warnings with | |
| 4444 * some compilers. | |
| 4445 */ | |
| 4446 value=stage2Entry=0; /* stage2Entry=0 to reset roundtrip fla
gs */ | |
| 4447 length=0; | |
| 4448 break; | |
| 4449 } | |
| 4450 | |
| 4451 /* is this code point assigned, or do we use fallbacks? */ | |
| 4452 if(!(MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c)!=0 || | |
| 4453 (UCNV_FROM_U_USE_FALLBACK(cnv, c) && value!=0)) | |
| 4454 ) { | |
| 4455 /* | |
| 4456 * We allow a 0 byte output if the "assigned" bit is set for
this entry. | |
| 4457 * There is no way with this data structure for fallback out
put | |
| 4458 * to be a zero byte. | |
| 4459 */ | |
| 4460 | |
| 4461 unassigned: | |
| 4462 /* try an extension mapping */ | |
| 4463 pArgs->source=source; | |
| 4464 c=_extFromU(cnv, cnv->sharedData, | |
| 4465 c, &source, sourceLimit, | |
| 4466 &target, target+targetCapacity, | |
| 4467 &offsets, sourceIndex, | |
| 4468 pArgs->flush, | |
| 4469 pErrorCode); | |
| 4470 nextSourceIndex+=(int32_t)(source-pArgs->source); | |
| 4471 prevLength=cnv->fromUnicodeStatus; /* restore SISO state */ | |
| 4472 | |
| 4473 if(U_FAILURE(*pErrorCode)) { | |
| 4474 /* not mappable or buffer overflow */ | |
| 4475 break; | |
| 4476 } else { | |
| 4477 /* a mapping was written to the target, continue */ | |
| 4478 | |
| 4479 /* recalculate the targetCapacity after an extension map
ping */ | |
| 4480 targetCapacity=(int32_t)(pArgs->targetLimit-(char *)targ
et); | |
| 4481 | |
| 4482 /* normal end of conversion: prepare for a new character
*/ | |
| 4483 if(offsets!=NULL) { | |
| 4484 prevSourceIndex=sourceIndex; | |
| 4485 sourceIndex=nextSourceIndex; | |
| 4486 } | |
| 4487 continue; | |
| 4488 } | |
| 4489 } | |
| 4490 } | |
| 4491 | |
| 4492 /* write the output character bytes from value and length */ | |
| 4493 /* from the first if in the loop we know that targetCapacity>0 */ | |
| 4494 if(length<=targetCapacity) { | |
| 4495 if(offsets==NULL) { | |
| 4496 switch(length) { | |
| 4497 /* each branch falls through to the next one */ | |
| 4498 case 4: | |
| 4499 *target++=(uint8_t)(value>>24); | |
| 4500 case 3: /*fall through*/ | |
| 4501 *target++=(uint8_t)(value>>16); | |
| 4502 case 2: /*fall through*/ | |
| 4503 *target++=(uint8_t)(value>>8); | |
| 4504 case 1: /*fall through*/ | |
| 4505 *target++=(uint8_t)value; | |
| 4506 default: | |
| 4507 /* will never occur */ | |
| 4508 break; | |
| 4509 } | |
| 4510 } else { | |
| 4511 switch(length) { | |
| 4512 /* each branch falls through to the next one */ | |
| 4513 case 4: | |
| 4514 *target++=(uint8_t)(value>>24); | |
| 4515 *offsets++=sourceIndex; | |
| 4516 case 3: /*fall through*/ | |
| 4517 *target++=(uint8_t)(value>>16); | |
| 4518 *offsets++=sourceIndex; | |
| 4519 case 2: /*fall through*/ | |
| 4520 *target++=(uint8_t)(value>>8); | |
| 4521 *offsets++=sourceIndex; | |
| 4522 case 1: /*fall through*/ | |
| 4523 *target++=(uint8_t)value; | |
| 4524 *offsets++=sourceIndex; | |
| 4525 default: | |
| 4526 /* will never occur */ | |
| 4527 break; | |
| 4528 } | |
| 4529 } | |
| 4530 targetCapacity-=length; | |
| 4531 } else { | |
| 4532 uint8_t *charErrorBuffer; | |
| 4533 | |
| 4534 /* | |
| 4535 * We actually do this backwards here: | |
| 4536 * In order to save an intermediate variable, we output | |
| 4537 * first to the overflow buffer what does not fit into the | |
| 4538 * regular target. | |
| 4539 */ | |
| 4540 /* we know that 1<=targetCapacity<length<=4 */ | |
| 4541 length-=targetCapacity; | |
| 4542 charErrorBuffer=(uint8_t *)cnv->charErrorBuffer; | |
| 4543 switch(length) { | |
| 4544 /* each branch falls through to the next one */ | |
| 4545 case 3: | |
| 4546 *charErrorBuffer++=(uint8_t)(value>>16); | |
| 4547 case 2: /*fall through*/ | |
| 4548 *charErrorBuffer++=(uint8_t)(value>>8); | |
| 4549 case 1: /*fall through*/ | |
| 4550 *charErrorBuffer=(uint8_t)value; | |
| 4551 default: | |
| 4552 /* will never occur */ | |
| 4553 break; | |
| 4554 } | |
| 4555 cnv->charErrorBufferLength=(int8_t)length; | |
| 4556 | |
| 4557 /* now output what fits into the regular target */ | |
| 4558 value>>=8*length; /* length was reduced by targetCapacity */ | |
| 4559 switch(targetCapacity) { | |
| 4560 /* each branch falls through to the next one */ | |
| 4561 case 3: | |
| 4562 *target++=(uint8_t)(value>>16); | |
| 4563 if(offsets!=NULL) { | |
| 4564 *offsets++=sourceIndex; | |
| 4565 } | |
| 4566 case 2: /*fall through*/ | |
| 4567 *target++=(uint8_t)(value>>8); | |
| 4568 if(offsets!=NULL) { | |
| 4569 *offsets++=sourceIndex; | |
| 4570 } | |
| 4571 case 1: /*fall through*/ | |
| 4572 *target++=(uint8_t)value; | |
| 4573 if(offsets!=NULL) { | |
| 4574 *offsets++=sourceIndex; | |
| 4575 } | |
| 4576 default: | |
| 4577 /* will never occur */ | |
| 4578 break; | |
| 4579 } | |
| 4580 | |
| 4581 /* target overflow */ | |
| 4582 targetCapacity=0; | |
| 4583 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; | |
| 4584 c=0; | |
| 4585 break; | |
| 4586 } | |
| 4587 | |
| 4588 /* normal end of conversion: prepare for a new character */ | |
| 4589 c=0; | |
| 4590 if(offsets!=NULL) { | |
| 4591 prevSourceIndex=sourceIndex; | |
| 4592 sourceIndex=nextSourceIndex; | |
| 4593 } | |
| 4594 continue; | |
| 4595 } else { | |
| 4596 /* target is full */ | |
| 4597 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; | |
| 4598 break; | |
| 4599 } | |
| 4600 } | |
| 4601 | |
| 4602 /* | |
| 4603 * the end of the input stream and detection of truncated input | |
| 4604 * are handled by the framework, but for EBCDIC_STATEFUL conversion | |
| 4605 * we need to emit an SI at the very end | |
| 4606 * | |
| 4607 * conditions: | |
| 4608 * successful | |
| 4609 * EBCDIC_STATEFUL in DBCS mode | |
| 4610 * end of input and no truncated input | |
| 4611 */ | |
| 4612 if( U_SUCCESS(*pErrorCode) && | |
| 4613 outputType==MBCS_OUTPUT_2_SISO && prevLength==2 && | |
| 4614 pArgs->flush && source>=sourceLimit && c==0 | |
| 4615 ) { | |
| 4616 /* EBCDIC_STATEFUL ending with DBCS: emit an SI to return the output str
eam to SBCS */ | |
| 4617 if(targetCapacity>0) { | |
| 4618 *target++=(uint8_t)siBytes[0]; | |
| 4619 if (siLength == 2) { | |
| 4620 if (targetCapacity<2) { | |
| 4621 cnv->charErrorBuffer[0]=(uint8_t)siBytes[1]; | |
| 4622 cnv->charErrorBufferLength=1; | |
| 4623 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; | |
| 4624 } else { | |
| 4625 *target++=(uint8_t)siBytes[1]; | |
| 4626 } | |
| 4627 } | |
| 4628 if(offsets!=NULL) { | |
| 4629 /* set the last source character's index (sourceIndex points at
sourceLimit now) */ | |
| 4630 *offsets++=prevSourceIndex; | |
| 4631 } | |
| 4632 } else { | |
| 4633 /* target is full */ | |
| 4634 cnv->charErrorBuffer[0]=(uint8_t)siBytes[0]; | |
| 4635 if (siLength == 2) { | |
| 4636 cnv->charErrorBuffer[1]=(uint8_t)siBytes[1]; | |
| 4637 } | |
| 4638 cnv->charErrorBufferLength=siLength; | |
| 4639 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; | |
| 4640 } | |
| 4641 prevLength=1; /* we switched into SBCS */ | |
| 4642 } | |
| 4643 | |
| 4644 /* set the converter state back into UConverter */ | |
| 4645 cnv->fromUChar32=c; | |
| 4646 cnv->fromUnicodeStatus=prevLength; | |
| 4647 | |
| 4648 /* write back the updated pointers */ | |
| 4649 pArgs->source=source; | |
| 4650 pArgs->target=(char *)target; | |
| 4651 pArgs->offsets=offsets; | |
| 4652 } | |
| 4653 | |
| 4654 /* | |
| 4655 * This is another simple conversion function for internal use by other | |
| 4656 * conversion implementations. | |
| 4657 * It does not use the converter state nor call callbacks. | |
| 4658 * It does not handle the EBCDIC swaplfnl option (set in UConverter). | |
| 4659 * It handles conversion extensions but not GB 18030. | |
| 4660 * | |
| 4661 * It converts one single Unicode code point into codepage bytes, encoded | |
| 4662 * as one 32-bit value. The function returns the number of bytes in *pValue: | |
| 4663 * 1..4 the number of bytes in *pValue | |
| 4664 * 0 unassigned (*pValue undefined) | |
| 4665 * -1 illegal (currently not used, *pValue undefined) | |
| 4666 * | |
| 4667 * *pValue will contain the resulting bytes with the last byte in bits 7..0, | |
| 4668 * the second to last byte in bits 15..8, etc. | |
| 4669 * Currently, the function assumes but does not check that 0<=c<=0x10ffff. | |
| 4670 */ | |
| 4671 U_CFUNC int32_t | |
| 4672 ucnv_MBCSFromUChar32(UConverterSharedData *sharedData, | |
| 4673 UChar32 c, uint32_t *pValue, | |
| 4674 UBool useFallback) { | |
| 4675 const int32_t *cx; | |
| 4676 const uint16_t *table; | |
| 4677 #if 0 | |
| 4678 /* #if 0 because this is not currently used in ICU - reduce code, increase code
coverage */ | |
| 4679 const uint8_t *p; | |
| 4680 #endif | |
| 4681 uint32_t stage2Entry; | |
| 4682 uint32_t value; | |
| 4683 int32_t length; | |
| 4684 | |
| 4685 /* BMP-only codepages are stored without stage 1 entries for supplementary c
ode points */ | |
| 4686 if(c<=0xffff || (sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY)) { | |
| 4687 table=sharedData->mbcs.fromUnicodeTable; | |
| 4688 | |
| 4689 /* convert the Unicode code point in c into codepage bytes (same as in _
MBCSFromUnicodeWithOffsets) */ | |
| 4690 if(sharedData->mbcs.outputType==MBCS_OUTPUT_1) { | |
| 4691 value=MBCS_SINGLE_RESULT_FROM_U(table, (uint16_t *)sharedData->mbcs.
fromUnicodeBytes, c); | |
| 4692 /* is this code point assigned, or do we use fallbacks? */ | |
| 4693 if(useFallback ? value>=0x800 : value>=0xc00) { | |
| 4694 *pValue=value&0xff; | |
| 4695 return 1; | |
| 4696 } | |
| 4697 } else /* outputType!=MBCS_OUTPUT_1 */ { | |
| 4698 stage2Entry=MBCS_STAGE_2_FROM_U(table, c); | |
| 4699 | |
| 4700 /* get the bytes and the length for the output */ | |
| 4701 switch(sharedData->mbcs.outputType) { | |
| 4702 case MBCS_OUTPUT_2: | |
| 4703 value=MBCS_VALUE_2_FROM_STAGE_2(sharedData->mbcs.fromUnicodeByte
s, stage2Entry, c); | |
| 4704 if(value<=0xff) { | |
| 4705 length=1; | |
| 4706 } else { | |
| 4707 length=2; | |
| 4708 } | |
| 4709 break; | |
| 4710 #if 0 | |
| 4711 /* #if 0 because this is not currently used in ICU - reduce code, increase code
coverage */ | |
| 4712 case MBCS_OUTPUT_DBCS_ONLY: | |
| 4713 /* table with single-byte results, but only DBCS mappings used *
/ | |
| 4714 value=MBCS_VALUE_2_FROM_STAGE_2(sharedData->mbcs.fromUnicodeByte
s, stage2Entry, c); | |
| 4715 if(value<=0xff) { | |
| 4716 /* no mapping or SBCS result, not taken for DBCS-only */ | |
| 4717 value=stage2Entry=0; /* stage2Entry=0 to reset roundtrip fla
gs */ | |
| 4718 length=0; | |
| 4719 } else { | |
| 4720 length=2; | |
| 4721 } | |
| 4722 break; | |
| 4723 case MBCS_OUTPUT_3: | |
| 4724 p=MBCS_POINTER_3_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes,
stage2Entry, c); | |
| 4725 value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2]; | |
| 4726 if(value<=0xff) { | |
| 4727 length=1; | |
| 4728 } else if(value<=0xffff) { | |
| 4729 length=2; | |
| 4730 } else { | |
| 4731 length=3; | |
| 4732 } | |
| 4733 break; | |
| 4734 case MBCS_OUTPUT_4: | |
| 4735 value=MBCS_VALUE_4_FROM_STAGE_2(sharedData->mbcs.fromUnicodeByte
s, stage2Entry, c); | |
| 4736 if(value<=0xff) { | |
| 4737 length=1; | |
| 4738 } else if(value<=0xffff) { | |
| 4739 length=2; | |
| 4740 } else if(value<=0xffffff) { | |
| 4741 length=3; | |
| 4742 } else { | |
| 4743 length=4; | |
| 4744 } | |
| 4745 break; | |
| 4746 case MBCS_OUTPUT_3_EUC: | |
| 4747 value=MBCS_VALUE_2_FROM_STAGE_2(sharedData->mbcs.fromUnicodeByte
s, stage2Entry, c); | |
| 4748 /* EUC 16-bit fixed-length representation */ | |
| 4749 if(value<=0xff) { | |
| 4750 length=1; | |
| 4751 } else if((value&0x8000)==0) { | |
| 4752 value|=0x8e8000; | |
| 4753 length=3; | |
| 4754 } else if((value&0x80)==0) { | |
| 4755 value|=0x8f0080; | |
| 4756 length=3; | |
| 4757 } else { | |
| 4758 length=2; | |
| 4759 } | |
| 4760 break; | |
| 4761 case MBCS_OUTPUT_4_EUC: | |
| 4762 p=MBCS_POINTER_3_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes,
stage2Entry, c); | |
| 4763 value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2]; | |
| 4764 /* EUC 16-bit fixed-length representation applied to the first t
wo bytes */ | |
| 4765 if(value<=0xff) { | |
| 4766 length=1; | |
| 4767 } else if(value<=0xffff) { | |
| 4768 length=2; | |
| 4769 } else if((value&0x800000)==0) { | |
| 4770 value|=0x8e800000; | |
| 4771 length=4; | |
| 4772 } else if((value&0x8000)==0) { | |
| 4773 value|=0x8f008000; | |
| 4774 length=4; | |
| 4775 } else { | |
| 4776 length=3; | |
| 4777 } | |
| 4778 break; | |
| 4779 #endif | |
| 4780 default: | |
| 4781 /* must not occur */ | |
| 4782 return -1; | |
| 4783 } | |
| 4784 | |
| 4785 /* is this code point assigned, or do we use fallbacks? */ | |
| 4786 if( MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c) || | |
| 4787 (FROM_U_USE_FALLBACK(useFallback, c) && value!=0) | |
| 4788 ) { | |
| 4789 /* | |
| 4790 * We allow a 0 byte output if the "assigned" bit is set for thi
s entry. | |
| 4791 * There is no way with this data structure for fallback output | |
| 4792 * to be a zero byte. | |
| 4793 */ | |
| 4794 /* assigned */ | |
| 4795 *pValue=value; | |
| 4796 return length; | |
| 4797 } | |
| 4798 } | |
| 4799 } | |
| 4800 | |
| 4801 cx=sharedData->mbcs.extIndexes; | |
| 4802 if(cx!=NULL) { | |
| 4803 length=ucnv_extSimpleMatchFromU(cx, c, pValue, useFallback); | |
| 4804 return length>=0 ? length : -length; /* return abs(length); */ | |
| 4805 } | |
| 4806 | |
| 4807 /* unassigned */ | |
| 4808 return 0; | |
| 4809 } | |
| 4810 | |
| 4811 | |
| 4812 #if 0 | |
| 4813 /* | |
| 4814 * This function has been moved to ucnv2022.c for inlining. | |
| 4815 * This implementation is here only for documentation purposes | |
| 4816 */ | |
| 4817 | |
| 4818 /** | |
| 4819 * This version of ucnv_MBCSFromUChar32() is optimized for single-byte codepages
. | |
| 4820 * It does not handle the EBCDIC swaplfnl option (set in UConverter). | |
| 4821 * It does not handle conversion extensions (_extFromU()). | |
| 4822 * | |
| 4823 * It returns the codepage byte for the code point, or -1 if it is unassigned. | |
| 4824 */ | |
| 4825 U_CFUNC int32_t | |
| 4826 ucnv_MBCSSingleFromUChar32(UConverterSharedData *sharedData, | |
| 4827 UChar32 c, | |
| 4828 UBool useFallback) { | |
| 4829 const uint16_t *table; | |
| 4830 int32_t value; | |
| 4831 | |
| 4832 /* BMP-only codepages are stored without stage 1 entries for supplementary c
ode points */ | |
| 4833 if(c>=0x10000 && !(sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY)) { | |
| 4834 return -1; | |
| 4835 } | |
| 4836 | |
| 4837 /* convert the Unicode code point in c into codepage bytes (same as in _MBCS
FromUnicodeWithOffsets) */ | |
| 4838 table=sharedData->mbcs.fromUnicodeTable; | |
| 4839 | |
| 4840 /* get the byte for the output */ | |
| 4841 value=MBCS_SINGLE_RESULT_FROM_U(table, (uint16_t *)sharedData->mbcs.fromUnic
odeBytes, c); | |
| 4842 /* is this code point assigned, or do we use fallbacks? */ | |
| 4843 if(useFallback ? value>=0x800 : value>=0xc00) { | |
| 4844 return value&0xff; | |
| 4845 } else { | |
| 4846 return -1; | |
| 4847 } | |
| 4848 } | |
| 4849 #endif | |
| 4850 | |
| 4851 /* MBCS-from-UTF-8 conversion functions ------------------------------------- */ | |
| 4852 | |
| 4853 /* minimum code point values for n-byte UTF-8 sequences, n=0..4 */ | |
| 4854 static const UChar32 | |
| 4855 utf8_minLegal[5]={ 0, 0, 0x80, 0x800, 0x10000 }; | |
| 4856 | |
| 4857 /* offsets for n-byte UTF-8 sequences that were calculated with ((lead<<6)+trail
)<<6+trail... */ | |
| 4858 static const UChar32 | |
| 4859 utf8_offsets[7]={ 0, 0, 0x3080, 0xE2080, 0x3C82080 }; | |
| 4860 | |
| 4861 static void | |
| 4862 ucnv_SBCSFromUTF8(UConverterFromUnicodeArgs *pFromUArgs, | |
| 4863 UConverterToUnicodeArgs *pToUArgs, | |
| 4864 UErrorCode *pErrorCode) { | |
| 4865 UConverter *utf8, *cnv; | |
| 4866 const uint8_t *source, *sourceLimit; | |
| 4867 uint8_t *target; | |
| 4868 int32_t targetCapacity; | |
| 4869 | |
| 4870 const uint16_t *table, *sbcsIndex; | |
| 4871 const uint16_t *results; | |
| 4872 | |
| 4873 int8_t oldToULength, toULength, toULimit; | |
| 4874 | |
| 4875 UChar32 c; | |
| 4876 uint8_t b, t1, t2; | |
| 4877 | |
| 4878 uint32_t asciiRoundtrips; | |
| 4879 uint16_t value, minValue; | |
| 4880 UBool hasSupplementary; | |
| 4881 | |
| 4882 /* set up the local pointers */ | |
| 4883 utf8=pToUArgs->converter; | |
| 4884 cnv=pFromUArgs->converter; | |
| 4885 source=(uint8_t *)pToUArgs->source; | |
| 4886 sourceLimit=(uint8_t *)pToUArgs->sourceLimit; | |
| 4887 target=(uint8_t *)pFromUArgs->target; | |
| 4888 targetCapacity=(int32_t)(pFromUArgs->targetLimit-pFromUArgs->target); | |
| 4889 | |
| 4890 table=cnv->sharedData->mbcs.fromUnicodeTable; | |
| 4891 sbcsIndex=cnv->sharedData->mbcs.sbcsIndex; | |
| 4892 if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { | |
| 4893 results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes; | |
| 4894 } else { | |
| 4895 results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes; | |
| 4896 } | |
| 4897 asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips; | |
| 4898 | |
| 4899 if(cnv->useFallback) { | |
| 4900 /* use all roundtrip and fallback results */ | |
| 4901 minValue=0x800; | |
| 4902 } else { | |
| 4903 /* use only roundtrips and fallbacks from private-use characters */ | |
| 4904 minValue=0xc00; | |
| 4905 } | |
| 4906 hasSupplementary=(UBool)(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEME
NTARY); | |
| 4907 | |
| 4908 /* get the converter state from the UTF-8 UConverter */ | |
| 4909 c=(UChar32)utf8->toUnicodeStatus; | |
| 4910 if(c!=0) { | |
| 4911 toULength=oldToULength=utf8->toULength; | |
| 4912 toULimit=(int8_t)utf8->mode; | |
| 4913 } else { | |
| 4914 toULength=oldToULength=toULimit=0; | |
| 4915 } | |
| 4916 | |
| 4917 /* | |
| 4918 * Make sure that the last byte sequence before sourceLimit is complete | |
| 4919 * or runs into a lead byte. | |
| 4920 * Do not go back into the bytes that will be read for finishing a partial | |
| 4921 * sequence from the previous buffer. | |
| 4922 * In the conversion loop compare source with sourceLimit only once | |
| 4923 * per multi-byte character. | |
| 4924 */ | |
| 4925 { | |
| 4926 int32_t i, length; | |
| 4927 | |
| 4928 length=(int32_t)(sourceLimit-source) - (toULimit-oldToULength); | |
| 4929 for(i=0; i<3 && i<length;) { | |
| 4930 b=*(sourceLimit-i-1); | |
| 4931 if(U8_IS_TRAIL(b)) { | |
| 4932 ++i; | |
| 4933 } else { | |
| 4934 if(i<U8_COUNT_TRAIL_BYTES(b)) { | |
| 4935 /* exit the conversion loop before the lead byte if there ar
e not enough trail bytes for it */ | |
| 4936 sourceLimit-=i+1; | |
| 4937 } | |
| 4938 break; | |
| 4939 } | |
| 4940 } | |
| 4941 } | |
| 4942 | |
| 4943 if(c!=0 && targetCapacity>0) { | |
| 4944 utf8->toUnicodeStatus=0; | |
| 4945 utf8->toULength=0; | |
| 4946 goto moreBytes; | |
| 4947 /* | |
| 4948 * Note: We could avoid the goto by duplicating some of the moreBytes | |
| 4949 * code, but only up to the point of collecting a complete UTF-8 | |
| 4950 * sequence; then recurse for the toUBytes[toULength] | |
| 4951 * and then continue with normal conversion. | |
| 4952 * | |
| 4953 * If so, move this code to just after initializing the minimum | |
| 4954 * set of local variables for reading the UTF-8 input | |
| 4955 * (utf8, source, target, limits but not cnv, table, minValue, etc.). | |
| 4956 * | |
| 4957 * Potential advantages: | |
| 4958 * - avoid the goto | |
| 4959 * - oldToULength could become a local variable in just those code block
s | |
| 4960 * that deal with buffer boundaries | |
| 4961 * - possibly faster if the goto prevents some compiler optimizations | |
| 4962 * (this would need measuring to confirm) | |
| 4963 * Disadvantage: | |
| 4964 * - code duplication | |
| 4965 */ | |
| 4966 } | |
| 4967 | |
| 4968 /* conversion loop */ | |
| 4969 while(source<sourceLimit) { | |
| 4970 if(targetCapacity>0) { | |
| 4971 b=*source++; | |
| 4972 if((int8_t)b>=0) { | |
| 4973 /* convert ASCII */ | |
| 4974 if(IS_ASCII_ROUNDTRIP(b, asciiRoundtrips)) { | |
| 4975 *target++=(uint8_t)b; | |
| 4976 --targetCapacity; | |
| 4977 continue; | |
| 4978 } else { | |
| 4979 c=b; | |
| 4980 value=SBCS_RESULT_FROM_UTF8(sbcsIndex, results, 0, c); | |
| 4981 } | |
| 4982 } else { | |
| 4983 if(b<0xe0) { | |
| 4984 if( /* handle U+0080..U+07FF inline */ | |
| 4985 b>=0xc2 && | |
| 4986 (t1=(uint8_t)(*source-0x80)) <= 0x3f | |
| 4987 ) { | |
| 4988 c=b&0x1f; | |
| 4989 ++source; | |
| 4990 value=SBCS_RESULT_FROM_UTF8(sbcsIndex, results, c, t1); | |
| 4991 if(value>=minValue) { | |
| 4992 *target++=(uint8_t)value; | |
| 4993 --targetCapacity; | |
| 4994 continue; | |
| 4995 } else { | |
| 4996 c=(c<<6)|t1; | |
| 4997 } | |
| 4998 } else { | |
| 4999 c=-1; | |
| 5000 } | |
| 5001 } else if(b==0xe0) { | |
| 5002 if( /* handle U+0800..U+0FFF inline */ | |
| 5003 (t1=(uint8_t)(source[0]-0x80)) <= 0x3f && t1 >= 0x20 && | |
| 5004 (t2=(uint8_t)(source[1]-0x80)) <= 0x3f | |
| 5005 ) { | |
| 5006 c=t1; | |
| 5007 source+=2; | |
| 5008 value=SBCS_RESULT_FROM_UTF8(sbcsIndex, results, c, t2); | |
| 5009 if(value>=minValue) { | |
| 5010 *target++=(uint8_t)value; | |
| 5011 --targetCapacity; | |
| 5012 continue; | |
| 5013 } else { | |
| 5014 c=(c<<6)|t2; | |
| 5015 } | |
| 5016 } else { | |
| 5017 c=-1; | |
| 5018 } | |
| 5019 } else { | |
| 5020 c=-1; | |
| 5021 } | |
| 5022 | |
| 5023 if(c<0) { | |
| 5024 /* handle "complicated" and error cases, and continuing part
ial characters */ | |
| 5025 oldToULength=0; | |
| 5026 toULength=1; | |
| 5027 toULimit=U8_COUNT_TRAIL_BYTES(b)+1; | |
| 5028 c=b; | |
| 5029 moreBytes: | |
| 5030 while(toULength<toULimit) { | |
| 5031 /* | |
| 5032 * The sourceLimit may have been adjusted before the con
version loop | |
| 5033 * to stop before a truncated sequence. | |
| 5034 * Here we need to use the real limit in case we have tw
o truncated | |
| 5035 * sequences at the end. | |
| 5036 * See ticket #7492. | |
| 5037 */ | |
| 5038 if(source<(uint8_t *)pToUArgs->sourceLimit) { | |
| 5039 b=*source; | |
| 5040 if(U8_IS_TRAIL(b)) { | |
| 5041 ++source; | |
| 5042 ++toULength; | |
| 5043 c=(c<<6)+b; | |
| 5044 } else { | |
| 5045 break; /* sequence too short, stop with toULengt
h<toULimit */ | |
| 5046 } | |
| 5047 } else { | |
| 5048 /* store the partial UTF-8 character, compatible wit
h the regular UTF-8 converter */ | |
| 5049 source-=(toULength-oldToULength); | |
| 5050 while(oldToULength<toULength) { | |
| 5051 utf8->toUBytes[oldToULength++]=*source++; | |
| 5052 } | |
| 5053 utf8->toUnicodeStatus=c; | |
| 5054 utf8->toULength=toULength; | |
| 5055 utf8->mode=toULimit; | |
| 5056 pToUArgs->source=(char *)source; | |
| 5057 pFromUArgs->target=(char *)target; | |
| 5058 return; | |
| 5059 } | |
| 5060 } | |
| 5061 | |
| 5062 if( toULength==toULimit && /* consumed all trail bytes
*/ | |
| 5063 (toULength==3 || toULength==2) && /* BMP */ | |
| 5064 (c-=utf8_offsets[toULength])>=utf8_minLegal[toULength] &
& | |
| 5065 (c<=0xd7ff || 0xe000<=c) /* not a surrogate */ | |
| 5066 ) { | |
| 5067 value=MBCS_SINGLE_RESULT_FROM_U(table, results, c); | |
| 5068 } else if( | |
| 5069 toULength==toULimit && toULength==4 && | |
| 5070 (0x10000<=(c-=utf8_offsets[4]) && c<=0x10ffff) | |
| 5071 ) { | |
| 5072 /* supplementary code point */ | |
| 5073 if(!hasSupplementary) { | |
| 5074 /* BMP-only codepages are stored without stage 1 ent
ries for supplementary code points */ | |
| 5075 value=0; | |
| 5076 } else { | |
| 5077 value=MBCS_SINGLE_RESULT_FROM_U(table, results, c); | |
| 5078 } | |
| 5079 } else { | |
| 5080 /* error handling: illegal UTF-8 byte sequence */ | |
| 5081 source-=(toULength-oldToULength); | |
| 5082 while(oldToULength<toULength) { | |
| 5083 utf8->toUBytes[oldToULength++]=*source++; | |
| 5084 } | |
| 5085 utf8->toULength=toULength; | |
| 5086 pToUArgs->source=(char *)source; | |
| 5087 pFromUArgs->target=(char *)target; | |
| 5088 *pErrorCode=U_ILLEGAL_CHAR_FOUND; | |
| 5089 return; | |
| 5090 } | |
| 5091 } | |
| 5092 } | |
| 5093 | |
| 5094 if(value>=minValue) { | |
| 5095 /* output the mapping for c */ | |
| 5096 *target++=(uint8_t)value; | |
| 5097 --targetCapacity; | |
| 5098 } else { | |
| 5099 /* value<minValue means c is unassigned (unmappable) */ | |
| 5100 /* | |
| 5101 * Try an extension mapping. | |
| 5102 * Pass in no source because we don't have UTF-16 input. | |
| 5103 * If we have a partial match on c, we will return and revert | |
| 5104 * to UTF-8->UTF-16->charset conversion. | |
| 5105 */ | |
| 5106 static const UChar nul=0; | |
| 5107 const UChar *noSource=&nul; | |
| 5108 c=_extFromU(cnv, cnv->sharedData, | |
| 5109 c, &noSource, noSource, | |
| 5110 &target, target+targetCapacity, | |
| 5111 NULL, -1, | |
| 5112 pFromUArgs->flush, | |
| 5113 pErrorCode); | |
| 5114 | |
| 5115 if(U_FAILURE(*pErrorCode)) { | |
| 5116 /* not mappable or buffer overflow */ | |
| 5117 cnv->fromUChar32=c; | |
| 5118 break; | |
| 5119 } else if(cnv->preFromUFirstCP>=0) { | |
| 5120 /* | |
| 5121 * Partial match, return and revert to pivoting. | |
| 5122 * In normal from-UTF-16 conversion, we would just continue | |
| 5123 * but then exit the loop because the extension match would | |
| 5124 * have consumed the source. | |
| 5125 */ | |
| 5126 *pErrorCode=U_USING_DEFAULT_WARNING; | |
| 5127 break; | |
| 5128 } else { | |
| 5129 /* a mapping was written to the target, continue */ | |
| 5130 | |
| 5131 /* recalculate the targetCapacity after an extension mapping
*/ | |
| 5132 targetCapacity=(int32_t)(pFromUArgs->targetLimit-(char *)tar
get); | |
| 5133 } | |
| 5134 } | |
| 5135 } else { | |
| 5136 /* target is full */ | |
| 5137 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; | |
| 5138 break; | |
| 5139 } | |
| 5140 } | |
| 5141 | |
| 5142 /* | |
| 5143 * The sourceLimit may have been adjusted before the conversion loop | |
| 5144 * to stop before a truncated sequence. | |
| 5145 * If so, then collect the truncated sequence now. | |
| 5146 */ | |
| 5147 if(U_SUCCESS(*pErrorCode) && | |
| 5148 cnv->preFromUFirstCP<0 && | |
| 5149 source<(sourceLimit=(uint8_t *)pToUArgs->sourceLimit)) { | |
| 5150 c=utf8->toUBytes[0]=b=*source++; | |
| 5151 toULength=1; | |
| 5152 toULimit=U8_COUNT_TRAIL_BYTES(b)+1; | |
| 5153 while(source<sourceLimit) { | |
| 5154 utf8->toUBytes[toULength++]=b=*source++; | |
| 5155 c=(c<<6)+b; | |
| 5156 } | |
| 5157 utf8->toUnicodeStatus=c; | |
| 5158 utf8->toULength=toULength; | |
| 5159 utf8->mode=toULimit; | |
| 5160 } | |
| 5161 | |
| 5162 /* write back the updated pointers */ | |
| 5163 pToUArgs->source=(char *)source; | |
| 5164 pFromUArgs->target=(char *)target; | |
| 5165 } | |
| 5166 | |
| 5167 static void | |
| 5168 ucnv_DBCSFromUTF8(UConverterFromUnicodeArgs *pFromUArgs, | |
| 5169 UConverterToUnicodeArgs *pToUArgs, | |
| 5170 UErrorCode *pErrorCode) { | |
| 5171 UConverter *utf8, *cnv; | |
| 5172 const uint8_t *source, *sourceLimit; | |
| 5173 uint8_t *target; | |
| 5174 int32_t targetCapacity; | |
| 5175 | |
| 5176 const uint16_t *table, *mbcsIndex; | |
| 5177 const uint16_t *results; | |
| 5178 | |
| 5179 int8_t oldToULength, toULength, toULimit; | |
| 5180 | |
| 5181 UChar32 c; | |
| 5182 uint8_t b, t1, t2; | |
| 5183 | |
| 5184 uint32_t stage2Entry; | |
| 5185 uint32_t asciiRoundtrips; | |
| 5186 uint16_t value; | |
| 5187 UBool hasSupplementary; | |
| 5188 | |
| 5189 /* set up the local pointers */ | |
| 5190 utf8=pToUArgs->converter; | |
| 5191 cnv=pFromUArgs->converter; | |
| 5192 source=(uint8_t *)pToUArgs->source; | |
| 5193 sourceLimit=(uint8_t *)pToUArgs->sourceLimit; | |
| 5194 target=(uint8_t *)pFromUArgs->target; | |
| 5195 targetCapacity=(int32_t)(pFromUArgs->targetLimit-pFromUArgs->target); | |
| 5196 | |
| 5197 table=cnv->sharedData->mbcs.fromUnicodeTable; | |
| 5198 mbcsIndex=cnv->sharedData->mbcs.mbcsIndex; | |
| 5199 if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { | |
| 5200 results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes; | |
| 5201 } else { | |
| 5202 results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes; | |
| 5203 } | |
| 5204 asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips; | |
| 5205 | |
| 5206 hasSupplementary=(UBool)(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEME
NTARY); | |
| 5207 | |
| 5208 /* get the converter state from the UTF-8 UConverter */ | |
| 5209 c=(UChar32)utf8->toUnicodeStatus; | |
| 5210 if(c!=0) { | |
| 5211 toULength=oldToULength=utf8->toULength; | |
| 5212 toULimit=(int8_t)utf8->mode; | |
| 5213 } else { | |
| 5214 toULength=oldToULength=toULimit=0; | |
| 5215 } | |
| 5216 | |
| 5217 /* | |
| 5218 * Make sure that the last byte sequence before sourceLimit is complete | |
| 5219 * or runs into a lead byte. | |
| 5220 * Do not go back into the bytes that will be read for finishing a partial | |
| 5221 * sequence from the previous buffer. | |
| 5222 * In the conversion loop compare source with sourceLimit only once | |
| 5223 * per multi-byte character. | |
| 5224 */ | |
| 5225 { | |
| 5226 int32_t i, length; | |
| 5227 | |
| 5228 length=(int32_t)(sourceLimit-source) - (toULimit-oldToULength); | |
| 5229 for(i=0; i<3 && i<length;) { | |
| 5230 b=*(sourceLimit-i-1); | |
| 5231 if(U8_IS_TRAIL(b)) { | |
| 5232 ++i; | |
| 5233 } else { | |
| 5234 if(i<U8_COUNT_TRAIL_BYTES(b)) { | |
| 5235 /* exit the conversion loop before the lead byte if there ar
e not enough trail bytes for it */ | |
| 5236 sourceLimit-=i+1; | |
| 5237 } | |
| 5238 break; | |
| 5239 } | |
| 5240 } | |
| 5241 } | |
| 5242 | |
| 5243 if(c!=0 && targetCapacity>0) { | |
| 5244 utf8->toUnicodeStatus=0; | |
| 5245 utf8->toULength=0; | |
| 5246 goto moreBytes; | |
| 5247 /* See note in ucnv_SBCSFromUTF8() about this goto. */ | |
| 5248 } | |
| 5249 | |
| 5250 /* conversion loop */ | |
| 5251 while(source<sourceLimit) { | |
| 5252 if(targetCapacity>0) { | |
| 5253 b=*source++; | |
| 5254 if((int8_t)b>=0) { | |
| 5255 /* convert ASCII */ | |
| 5256 if(IS_ASCII_ROUNDTRIP(b, asciiRoundtrips)) { | |
| 5257 *target++=b; | |
| 5258 --targetCapacity; | |
| 5259 continue; | |
| 5260 } else { | |
| 5261 value=DBCS_RESULT_FROM_UTF8(mbcsIndex, results, 0, b); | |
| 5262 if(value==0) { | |
| 5263 c=b; | |
| 5264 goto unassigned; | |
| 5265 } | |
| 5266 } | |
| 5267 } else { | |
| 5268 if(b>0xe0) { | |
| 5269 if( /* handle U+1000..U+D7FF inline */ | |
| 5270 (((t1=(uint8_t)(source[0]-0x80), b<0xed) && (t1 <= 0x3f)
) || | |
| 5271 (b==0xed && (t1 <= 0x1f)
)) && | |
| 5272 (t2=(uint8_t)(source[1]-0x80)) <= 0x3f | |
| 5273 ) { | |
| 5274 c=((b&0xf)<<6)|t1; | |
| 5275 source+=2; | |
| 5276 value=DBCS_RESULT_FROM_UTF8(mbcsIndex, results, c, t2); | |
| 5277 if(value==0) { | |
| 5278 c=(c<<6)|t2; | |
| 5279 goto unassigned; | |
| 5280 } | |
| 5281 } else { | |
| 5282 c=-1; | |
| 5283 } | |
| 5284 } else if(b<0xe0) { | |
| 5285 if( /* handle U+0080..U+07FF inline */ | |
| 5286 b>=0xc2 && | |
| 5287 (t1=(uint8_t)(*source-0x80)) <= 0x3f | |
| 5288 ) { | |
| 5289 c=b&0x1f; | |
| 5290 ++source; | |
| 5291 value=DBCS_RESULT_FROM_UTF8(mbcsIndex, results, c, t1); | |
| 5292 if(value==0) { | |
| 5293 c=(c<<6)|t1; | |
| 5294 goto unassigned; | |
| 5295 } | |
| 5296 } else { | |
| 5297 c=-1; | |
| 5298 } | |
| 5299 } else { | |
| 5300 c=-1; | |
| 5301 } | |
| 5302 | |
| 5303 if(c<0) { | |
| 5304 /* handle "complicated" and error cases, and continuing part
ial characters */ | |
| 5305 oldToULength=0; | |
| 5306 toULength=1; | |
| 5307 toULimit=U8_COUNT_TRAIL_BYTES(b)+1; | |
| 5308 c=b; | |
| 5309 moreBytes: | |
| 5310 while(toULength<toULimit) { | |
| 5311 /* | |
| 5312 * The sourceLimit may have been adjusted before the con
version loop | |
| 5313 * to stop before a truncated sequence. | |
| 5314 * Here we need to use the real limit in case we have tw
o truncated | |
| 5315 * sequences at the end. | |
| 5316 * See ticket #7492. | |
| 5317 */ | |
| 5318 if(source<(uint8_t *)pToUArgs->sourceLimit) { | |
| 5319 b=*source; | |
| 5320 if(U8_IS_TRAIL(b)) { | |
| 5321 ++source; | |
| 5322 ++toULength; | |
| 5323 c=(c<<6)+b; | |
| 5324 } else { | |
| 5325 break; /* sequence too short, stop with toULengt
h<toULimit */ | |
| 5326 } | |
| 5327 } else { | |
| 5328 /* store the partial UTF-8 character, compatible wit
h the regular UTF-8 converter */ | |
| 5329 source-=(toULength-oldToULength); | |
| 5330 while(oldToULength<toULength) { | |
| 5331 utf8->toUBytes[oldToULength++]=*source++; | |
| 5332 } | |
| 5333 utf8->toUnicodeStatus=c; | |
| 5334 utf8->toULength=toULength; | |
| 5335 utf8->mode=toULimit; | |
| 5336 pToUArgs->source=(char *)source; | |
| 5337 pFromUArgs->target=(char *)target; | |
| 5338 return; | |
| 5339 } | |
| 5340 } | |
| 5341 | |
| 5342 if( toULength==toULimit && /* consumed all trail bytes
*/ | |
| 5343 (toULength==3 || toULength==2) && /* BMP */ | |
| 5344 (c-=utf8_offsets[toULength])>=utf8_minLegal[toULength] &
& | |
| 5345 (c<=0xd7ff || 0xe000<=c) /* not a surrogate */ | |
| 5346 ) { | |
| 5347 stage2Entry=MBCS_STAGE_2_FROM_U(table, c); | |
| 5348 } else if( | |
| 5349 toULength==toULimit && toULength==4 && | |
| 5350 (0x10000<=(c-=utf8_offsets[4]) && c<=0x10ffff) | |
| 5351 ) { | |
| 5352 /* supplementary code point */ | |
| 5353 if(!hasSupplementary) { | |
| 5354 /* BMP-only codepages are stored without stage 1 ent
ries for supplementary code points */ | |
| 5355 stage2Entry=0; | |
| 5356 } else { | |
| 5357 stage2Entry=MBCS_STAGE_2_FROM_U(table, c); | |
| 5358 } | |
| 5359 } else { | |
| 5360 /* error handling: illegal UTF-8 byte sequence */ | |
| 5361 source-=(toULength-oldToULength); | |
| 5362 while(oldToULength<toULength) { | |
| 5363 utf8->toUBytes[oldToULength++]=*source++; | |
| 5364 } | |
| 5365 utf8->toULength=toULength; | |
| 5366 pToUArgs->source=(char *)source; | |
| 5367 pFromUArgs->target=(char *)target; | |
| 5368 *pErrorCode=U_ILLEGAL_CHAR_FOUND; | |
| 5369 return; | |
| 5370 } | |
| 5371 | |
| 5372 /* get the bytes and the length for the output */ | |
| 5373 /* MBCS_OUTPUT_2 */ | |
| 5374 value=MBCS_VALUE_2_FROM_STAGE_2(results, stage2Entry, c); | |
| 5375 | |
| 5376 /* is this code point assigned, or do we use fallbacks? */ | |
| 5377 if(!(MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c) || | |
| 5378 (UCNV_FROM_U_USE_FALLBACK(cnv, c) && value!=0)) | |
| 5379 ) { | |
| 5380 goto unassigned; | |
| 5381 } | |
| 5382 } | |
| 5383 } | |
| 5384 | |
| 5385 /* write the output character bytes from value and length */ | |
| 5386 /* from the first if in the loop we know that targetCapacity>0 */ | |
| 5387 if(value<=0xff) { | |
| 5388 /* this is easy because we know that there is enough space */ | |
| 5389 *target++=(uint8_t)value; | |
| 5390 --targetCapacity; | |
| 5391 } else /* length==2 */ { | |
| 5392 *target++=(uint8_t)(value>>8); | |
| 5393 if(2<=targetCapacity) { | |
| 5394 *target++=(uint8_t)value; | |
| 5395 targetCapacity-=2; | |
| 5396 } else { | |
| 5397 cnv->charErrorBuffer[0]=(char)value; | |
| 5398 cnv->charErrorBufferLength=1; | |
| 5399 | |
| 5400 /* target overflow */ | |
| 5401 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; | |
| 5402 break; | |
| 5403 } | |
| 5404 } | |
| 5405 continue; | |
| 5406 | |
| 5407 unassigned: | |
| 5408 { | |
| 5409 /* | |
| 5410 * Try an extension mapping. | |
| 5411 * Pass in no source because we don't have UTF-16 input. | |
| 5412 * If we have a partial match on c, we will return and revert | |
| 5413 * to UTF-8->UTF-16->charset conversion. | |
| 5414 */ | |
| 5415 static const UChar nul=0; | |
| 5416 const UChar *noSource=&nul; | |
| 5417 c=_extFromU(cnv, cnv->sharedData, | |
| 5418 c, &noSource, noSource, | |
| 5419 &target, target+targetCapacity, | |
| 5420 NULL, -1, | |
| 5421 pFromUArgs->flush, | |
| 5422 pErrorCode); | |
| 5423 | |
| 5424 if(U_FAILURE(*pErrorCode)) { | |
| 5425 /* not mappable or buffer overflow */ | |
| 5426 cnv->fromUChar32=c; | |
| 5427 break; | |
| 5428 } else if(cnv->preFromUFirstCP>=0) { | |
| 5429 /* | |
| 5430 * Partial match, return and revert to pivoting. | |
| 5431 * In normal from-UTF-16 conversion, we would just continue | |
| 5432 * but then exit the loop because the extension match would | |
| 5433 * have consumed the source. | |
| 5434 */ | |
| 5435 *pErrorCode=U_USING_DEFAULT_WARNING; | |
| 5436 break; | |
| 5437 } else { | |
| 5438 /* a mapping was written to the target, continue */ | |
| 5439 | |
| 5440 /* recalculate the targetCapacity after an extension mapping
*/ | |
| 5441 targetCapacity=(int32_t)(pFromUArgs->targetLimit-(char *)tar
get); | |
| 5442 continue; | |
| 5443 } | |
| 5444 } | |
| 5445 } else { | |
| 5446 /* target is full */ | |
| 5447 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; | |
| 5448 break; | |
| 5449 } | |
| 5450 } | |
| 5451 | |
| 5452 /* | |
| 5453 * The sourceLimit may have been adjusted before the conversion loop | |
| 5454 * to stop before a truncated sequence. | |
| 5455 * If so, then collect the truncated sequence now. | |
| 5456 */ | |
| 5457 if(U_SUCCESS(*pErrorCode) && | |
| 5458 cnv->preFromUFirstCP<0 && | |
| 5459 source<(sourceLimit=(uint8_t *)pToUArgs->sourceLimit)) { | |
| 5460 c=utf8->toUBytes[0]=b=*source++; | |
| 5461 toULength=1; | |
| 5462 toULimit=U8_COUNT_TRAIL_BYTES(b)+1; | |
| 5463 while(source<sourceLimit) { | |
| 5464 utf8->toUBytes[toULength++]=b=*source++; | |
| 5465 c=(c<<6)+b; | |
| 5466 } | |
| 5467 utf8->toUnicodeStatus=c; | |
| 5468 utf8->toULength=toULength; | |
| 5469 utf8->mode=toULimit; | |
| 5470 } | |
| 5471 | |
| 5472 /* write back the updated pointers */ | |
| 5473 pToUArgs->source=(char *)source; | |
| 5474 pFromUArgs->target=(char *)target; | |
| 5475 } | |
| 5476 | |
| 5477 /* miscellaneous ------------------------------------------------------------ */ | |
| 5478 | |
| 5479 static void | |
| 5480 ucnv_MBCSGetStarters(const UConverter* cnv, | |
| 5481 UBool starters[256], | |
| 5482 UErrorCode *pErrorCode) { | |
| 5483 const int32_t *state0; | |
| 5484 int i; | |
| 5485 | |
| 5486 state0=cnv->sharedData->mbcs.stateTable[cnv->sharedData->mbcs.dbcsOnlyState]
; | |
| 5487 for(i=0; i<256; ++i) { | |
| 5488 /* all bytes that cause a state transition from state 0 are lead bytes *
/ | |
| 5489 starters[i]= (UBool)MBCS_ENTRY_IS_TRANSITION(state0[i]); | |
| 5490 } | |
| 5491 } | |
| 5492 | |
| 5493 /* | |
| 5494 * This is an internal function that allows other converter implementations | |
| 5495 * to check whether a byte is a lead byte. | |
| 5496 */ | |
| 5497 U_CFUNC UBool | |
| 5498 ucnv_MBCSIsLeadByte(UConverterSharedData *sharedData, char byte) { | |
| 5499 return (UBool)MBCS_ENTRY_IS_TRANSITION(sharedData->mbcs.stateTable[0][(uint8
_t)byte]); | |
| 5500 } | |
| 5501 | |
| 5502 static void | |
| 5503 ucnv_MBCSWriteSub(UConverterFromUnicodeArgs *pArgs, | |
| 5504 int32_t offsetIndex, | |
| 5505 UErrorCode *pErrorCode) { | |
| 5506 UConverter *cnv=pArgs->converter; | |
| 5507 char *p, *subchar; | |
| 5508 char buffer[4]; | |
| 5509 int32_t length; | |
| 5510 | |
| 5511 /* first, select between subChar and subChar1 */ | |
| 5512 if( cnv->subChar1!=0 && | |
| 5513 (cnv->sharedData->mbcs.extIndexes!=NULL ? | |
| 5514 cnv->useSubChar1 : | |
| 5515 (cnv->invalidUCharBuffer[0]<=0xff)) | |
| 5516 ) { | |
| 5517 /* select subChar1 if it is set (not 0) and the unmappable Unicode code
point is up to U+00ff (IBM MBCS behavior) */ | |
| 5518 subchar=(char *)&cnv->subChar1; | |
| 5519 length=1; | |
| 5520 } else { | |
| 5521 /* select subChar in all other cases */ | |
| 5522 subchar=(char *)cnv->subChars; | |
| 5523 length=cnv->subCharLen; | |
| 5524 } | |
| 5525 | |
| 5526 /* reset the selector for the next code point */ | |
| 5527 cnv->useSubChar1=FALSE; | |
| 5528 | |
| 5529 if (cnv->sharedData->mbcs.outputType == MBCS_OUTPUT_2_SISO) { | |
| 5530 p=buffer; | |
| 5531 | |
| 5532 /* fromUnicodeStatus contains prevLength */ | |
| 5533 switch(length) { | |
| 5534 case 1: | |
| 5535 if(cnv->fromUnicodeStatus==2) { | |
| 5536 /* DBCS mode and SBCS sub char: change to SBCS */ | |
| 5537 cnv->fromUnicodeStatus=1; | |
| 5538 *p++=UCNV_SI; | |
| 5539 } | |
| 5540 *p++=subchar[0]; | |
| 5541 break; | |
| 5542 case 2: | |
| 5543 if(cnv->fromUnicodeStatus<=1) { | |
| 5544 /* SBCS mode and DBCS sub char: change to DBCS */ | |
| 5545 cnv->fromUnicodeStatus=2; | |
| 5546 *p++=UCNV_SO; | |
| 5547 } | |
| 5548 *p++=subchar[0]; | |
| 5549 *p++=subchar[1]; | |
| 5550 break; | |
| 5551 default: | |
| 5552 *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; | |
| 5553 return; | |
| 5554 } | |
| 5555 subchar=buffer; | |
| 5556 length=(int32_t)(p-buffer); | |
| 5557 } | |
| 5558 | |
| 5559 ucnv_cbFromUWriteBytes(pArgs, subchar, length, offsetIndex, pErrorCode); | |
| 5560 } | |
| 5561 | |
| 5562 U_CFUNC UConverterType | |
| 5563 ucnv_MBCSGetType(const UConverter* converter) { | |
| 5564 /* SBCS, DBCS, and EBCDIC_STATEFUL are replaced by MBCS, but here we cheat a
little */ | |
| 5565 if(converter->sharedData->mbcs.countStates==1) { | |
| 5566 return (UConverterType)UCNV_SBCS; | |
| 5567 } else if((converter->sharedData->mbcs.outputType&0xff)==MBCS_OUTPUT_2_SISO)
{ | |
| 5568 return (UConverterType)UCNV_EBCDIC_STATEFUL; | |
| 5569 } else if(converter->sharedData->staticData->minBytesPerChar==2 && converter
->sharedData->staticData->maxBytesPerChar==2) { | |
| 5570 return (UConverterType)UCNV_DBCS; | |
| 5571 } | |
| 5572 return (UConverterType)UCNV_MBCS; | |
| 5573 } | |
| 5574 | |
| 5575 static const UConverterImpl _SBCSUTF8Impl={ | |
| 5576 UCNV_MBCS, | |
| 5577 | |
| 5578 ucnv_MBCSLoad, | |
| 5579 ucnv_MBCSUnload, | |
| 5580 | |
| 5581 ucnv_MBCSOpen, | |
| 5582 NULL, | |
| 5583 NULL, | |
| 5584 | |
| 5585 ucnv_MBCSToUnicodeWithOffsets, | |
| 5586 ucnv_MBCSToUnicodeWithOffsets, | |
| 5587 ucnv_MBCSFromUnicodeWithOffsets, | |
| 5588 ucnv_MBCSFromUnicodeWithOffsets, | |
| 5589 ucnv_MBCSGetNextUChar, | |
| 5590 | |
| 5591 ucnv_MBCSGetStarters, | |
| 5592 ucnv_MBCSGetName, | |
| 5593 ucnv_MBCSWriteSub, | |
| 5594 NULL, | |
| 5595 ucnv_MBCSGetUnicodeSet, | |
| 5596 | |
| 5597 NULL, | |
| 5598 ucnv_SBCSFromUTF8 | |
| 5599 }; | |
| 5600 | |
| 5601 static const UConverterImpl _DBCSUTF8Impl={ | |
| 5602 UCNV_MBCS, | |
| 5603 | |
| 5604 ucnv_MBCSLoad, | |
| 5605 ucnv_MBCSUnload, | |
| 5606 | |
| 5607 ucnv_MBCSOpen, | |
| 5608 NULL, | |
| 5609 NULL, | |
| 5610 | |
| 5611 ucnv_MBCSToUnicodeWithOffsets, | |
| 5612 ucnv_MBCSToUnicodeWithOffsets, | |
| 5613 ucnv_MBCSFromUnicodeWithOffsets, | |
| 5614 ucnv_MBCSFromUnicodeWithOffsets, | |
| 5615 ucnv_MBCSGetNextUChar, | |
| 5616 | |
| 5617 ucnv_MBCSGetStarters, | |
| 5618 ucnv_MBCSGetName, | |
| 5619 ucnv_MBCSWriteSub, | |
| 5620 NULL, | |
| 5621 ucnv_MBCSGetUnicodeSet, | |
| 5622 | |
| 5623 NULL, | |
| 5624 ucnv_DBCSFromUTF8 | |
| 5625 }; | |
| 5626 | |
| 5627 static const UConverterImpl _MBCSImpl={ | |
| 5628 UCNV_MBCS, | |
| 5629 | |
| 5630 ucnv_MBCSLoad, | |
| 5631 ucnv_MBCSUnload, | |
| 5632 | |
| 5633 ucnv_MBCSOpen, | |
| 5634 NULL, | |
| 5635 NULL, | |
| 5636 | |
| 5637 ucnv_MBCSToUnicodeWithOffsets, | |
| 5638 ucnv_MBCSToUnicodeWithOffsets, | |
| 5639 ucnv_MBCSFromUnicodeWithOffsets, | |
| 5640 ucnv_MBCSFromUnicodeWithOffsets, | |
| 5641 ucnv_MBCSGetNextUChar, | |
| 5642 | |
| 5643 ucnv_MBCSGetStarters, | |
| 5644 ucnv_MBCSGetName, | |
| 5645 ucnv_MBCSWriteSub, | |
| 5646 NULL, | |
| 5647 ucnv_MBCSGetUnicodeSet | |
| 5648 }; | |
| 5649 | |
| 5650 | |
| 5651 /* Static data is in tools/makeconv/ucnvstat.c for data-based | |
| 5652 * converters. Be sure to update it as well. | |
| 5653 */ | |
| 5654 | |
| 5655 const UConverterSharedData _MBCSData={ | |
| 5656 sizeof(UConverterSharedData), 1, | |
| 5657 NULL, NULL, NULL, FALSE, &_MBCSImpl, | |
| 5658 0 | |
| 5659 }; | |
| 5660 | |
| 5661 #endif /* #if !UCONFIG_NO_LEGACY_CONVERSION */ | |
| OLD | NEW |