Index: crypto/p224.cc |
diff --git a/crypto/p224.cc b/crypto/p224.cc |
new file mode 100644 |
index 0000000000000000000000000000000000000000..1202e8dec27024297ec21b7f7a9fbc46fccc91bd |
--- /dev/null |
+++ b/crypto/p224.cc |
@@ -0,0 +1,652 @@ |
+// Copyright (c) 2011 The Chromium Authors. All rights reserved. |
+// Use of this source code is governed by a BSD-style license that can be |
+// found in the LICENSE file. |
+ |
+// This is an implementation of the P224 elliptic curve group. It's written to |
+// be short and simple rather than fast, although it's still constant-time. |
+// |
+// See http://www.imperialviolet.org/2010/12/04/ecc.html ([1]) for background. |
+ |
+#include "crypto/p224.h" |
+ |
+#include <string.h> |
+ |
+#include "build/build_config.h" |
+ |
+// For htonl and ntohl. |
+#if defined(OS_WIN) |
+#include <winsock2.h> |
+#else |
+#include <arpa/inet.h> |
+#endif |
+ |
+namespace { |
+ |
+// Field element functions. |
+// |
+// The field that we're dealing with is ℤ/pℤ where p = 2**224 - 2**96 + 1. |
+// |
+// Field elements are represented by a FieldElement, which is a typedef to an |
+// array of 8 uint32's. The value of a FieldElement, a, is: |
+// a[0] + 2**28·a[1] + 2**56·a[1] + ... + 2**196·a[7] |
+// |
+// Using 28-bit limbs means that there's only 4 bits of headroom, which is less |
+// than we would really like. But it has the useful feature that we hit 2**224 |
+// exactly, making the reflections during a reduce much nicer. |
+ |
+using crypto::p224::FieldElement; |
+ |
+// Add computes *out = a+b |
+// |
+// a[i] + b[i] < 2**32 |
+void Add(FieldElement* out, const FieldElement& a, const FieldElement& b) { |
+ for (int i = 0; i < 8; i++) { |
+ (*out)[i] = a[i] + b[i]; |
+ } |
+} |
+ |
+static const uint32 kTwo31p3 = (1u<<31) + (1u<<3); |
+static const uint32 kTwo31m3 = (1u<<31) - (1u<<3); |
+static const uint32 kTwo31m15m3 = (1u<<31) - (1u<<15) - (1u<<3); |
+// kZero31ModP is 0 mod p where bit 31 is set in all limbs so that we can |
+// subtract smaller amounts without underflow. See the section "Subtraction" in |
+// [1] for why. |
+static const FieldElement kZero31ModP = { |
+ kTwo31p3, kTwo31m3, kTwo31m3, kTwo31m15m3, |
+ kTwo31m3, kTwo31m3, kTwo31m3, kTwo31m3 |
+}; |
+ |
+// Subtract computes *out = a-b |
+// |
+// a[i], b[i] < 2**30 |
+// out[i] < 2**32 |
+void Subtract(FieldElement* out, const FieldElement& a, const FieldElement& b) { |
+ for (int i = 0; i < 8; i++) { |
+ // See the section on "Subtraction" in [1] for details. |
+ (*out)[i] = a[i] + kZero31ModP[i] - b[i]; |
+ } |
+} |
+ |
+static const uint64 kTwo63p35 = (1ull<<63) + (1ull<<35); |
+static const uint64 kTwo63m35 = (1ull<<63) - (1ull<<35); |
+static const uint64 kTwo63m35m19 = (1ull<<63) - (1ull<<35) - (1ull<<19); |
+// kZero63ModP is 0 mod p where bit 63 is set in all limbs. See the section |
+// "Subtraction" in [1] for why. |
+static const uint64 kZero63ModP[8] = { |
+ kTwo63p35, kTwo63m35, kTwo63m35, kTwo63m35, |
+ kTwo63m35m19, kTwo63m35, kTwo63m35, kTwo63m35, |
+}; |
+ |
+static const uint32 kBottom28Bits = 0xfffffff; |
+ |
+// LargeFieldElement also represents an element of the field. The limbs are |
+// still spaced 28-bits apart and in little-endian order. So the limbs are at |
+// 0, 28, 56, ..., 392 bits, each 64-bits wide. |
+typedef uint64 LargeFieldElement[15]; |
+ |
+// ReduceLarge converts a LargeFieldElement to a FieldElement. |
+// |
+// in[i] < 2**62 |
+void ReduceLarge(FieldElement* out, LargeFieldElement* inptr) { |
+ LargeFieldElement& in(*inptr); |
+ |
+ for (int i = 0; i < 8; i++) { |
+ in[i] += kZero63ModP[i]; |
+ } |
+ |
+ // Eliminate the coefficients at 2**224 and greater while maintaining the |
+ // same value mod p. |
+ for (int i = 14; i >= 8; i--) { |
+ in[i-8] -= in[i]; // reflection off the "+1" term of p. |
+ in[i-5] += (in[i] & 0xffff) << 12; // part of the "-2**96" reflection. |
+ in[i-4] += in[i] >> 16; // the rest of the "-2**96" reflection. |
+ } |
+ in[8] = 0; |
+ // in[0..8] < 2**64 |
+ |
+ // As the values become small enough, we start to store them in |out| and use |
+ // 32-bit operations. |
+ for (int i = 1; i < 8; i++) { |
+ in[i+1] += in[i] >> 28; |
+ (*out)[i] = static_cast<uint32>(in[i] & kBottom28Bits); |
+ } |
+ // Eliminate the term at 2*224 that we introduced while keeping the same |
+ // value mod p. |
+ in[0] -= in[8]; // reflection off the "+1" term of p. |
+ (*out)[3] += static_cast<uint32>(in[8] & 0xffff) << 12; // "-2**96" term |
+ (*out)[4] += static_cast<uint32>(in[8] >> 16); // rest of "-2**96" term |
+ // in[0] < 2**64 |
+ // out[3] < 2**29 |
+ // out[4] < 2**29 |
+ // out[1,2,5..7] < 2**28 |
+ |
+ (*out)[0] = static_cast<uint32>(in[0] & kBottom28Bits); |
+ (*out)[1] += static_cast<uint32>((in[0] >> 28) & kBottom28Bits); |
+ (*out)[2] += static_cast<uint32>(in[0] >> 56); |
+ // out[0] < 2**28 |
+ // out[1..4] < 2**29 |
+ // out[5..7] < 2**28 |
+} |
+ |
+// Mul computes *out = a*b |
+// |
+// a[i] < 2**29, b[i] < 2**30 (or vice versa) |
+// out[i] < 2**29 |
+void Mul(FieldElement* out, const FieldElement& a, const FieldElement& b) { |
+ LargeFieldElement tmp; |
+ memset(&tmp, 0, sizeof(tmp)); |
+ |
+ for (int i = 0; i < 8; i++) { |
+ for (int j = 0; j < 8; j++) { |
+ tmp[i+j] += static_cast<uint64>(a[i]) * static_cast<uint64>(b[j]); |
+ } |
+ } |
+ |
+ ReduceLarge(out, &tmp); |
+} |
+ |
+// Square computes *out = a*a |
+// |
+// a[i] < 2**29 |
+// out[i] < 2**29 |
+void Square(FieldElement* out, const FieldElement& a) { |
+ LargeFieldElement tmp; |
+ memset(&tmp, 0, sizeof(tmp)); |
+ |
+ for (int i = 0; i < 8; i++) { |
+ for (int j = 0; j <= i; j++) { |
+ uint64 r = static_cast<uint64>(a[i]) * static_cast<uint64>(a[j]); |
+ if (i == j) { |
+ tmp[i+j] += r; |
+ } else { |
+ tmp[i+j] += r << 1; |
+ } |
+ } |
+ } |
+ |
+ ReduceLarge(out, &tmp); |
+} |
+ |
+// Reduce reduces the coefficients of in_out to smaller bounds. |
+// |
+// On entry: a[i] < 2**31 + 2**30 |
+// On exit: a[i] < 2**29 |
+void Reduce(FieldElement* in_out) { |
+ FieldElement& a = *in_out; |
+ |
+ for (int i = 0; i < 7; i++) { |
+ a[i+1] += a[i] >> 28; |
+ a[i] &= kBottom28Bits; |
+ } |
+ uint32 top = a[7] >> 28; |
+ a[7] &= kBottom28Bits; |
+ |
+ // top < 2**4 |
+ // Constant-time: mask = (top != 0) ? 0xffffffff : 0 |
+ uint32 mask = top; |
+ mask |= mask >> 2; |
+ mask |= mask >> 1; |
+ mask <<= 31; |
+ mask = static_cast<uint32>(static_cast<int32>(mask) >> 31); |
+ |
+ // Eliminate top while maintaining the same value mod p. |
+ a[0] -= top; |
+ a[3] += top << 12; |
+ |
+ // We may have just made a[0] negative but, if we did, then we must |
+ // have added something to a[3], thus it's > 2**12. Therefore we can |
+ // carry down to a[0]. |
+ a[3] -= 1 & mask; |
+ a[2] += mask & ((1<<28) - 1); |
+ a[1] += mask & ((1<<28) - 1); |
+ a[0] += mask & (1<<28); |
+} |
+ |
+// Invert calcuates *out = in**-1 by computing in**(2**224 - 2**96 - 1), i.e. |
+// Fermat's little theorem. |
+void Invert(FieldElement* out, const FieldElement& in) { |
+ FieldElement f1, f2, f3, f4; |
+ |
+ Square(&f1, in); // 2 |
+ Mul(&f1, f1, in); // 2**2 - 1 |
+ Square(&f1, f1); // 2**3 - 2 |
+ Mul(&f1, f1, in); // 2**3 - 1 |
+ Square(&f2, f1); // 2**4 - 2 |
+ Square(&f2, f2); // 2**5 - 4 |
+ Square(&f2, f2); // 2**6 - 8 |
+ Mul(&f1, f1, f2); // 2**6 - 1 |
+ Square(&f2, f1); // 2**7 - 2 |
+ for (int i = 0; i < 5; i++) { // 2**12 - 2**6 |
+ Square(&f2, f2); |
+ } |
+ Mul(&f2, f2, f1); // 2**12 - 1 |
+ Square(&f3, f2); // 2**13 - 2 |
+ for (int i = 0; i < 11; i++) { // 2**24 - 2**12 |
+ Square(&f3, f3); |
+ } |
+ Mul(&f2, f3, f2); // 2**24 - 1 |
+ Square(&f3, f2); // 2**25 - 2 |
+ for (int i = 0; i < 23; i++) { // 2**48 - 2**24 |
+ Square(&f3, f3); |
+ } |
+ Mul(&f3, f3, f2); // 2**48 - 1 |
+ Square(&f4, f3); // 2**49 - 2 |
+ for (int i = 0; i < 47; i++) { // 2**96 - 2**48 |
+ Square(&f4, f4); |
+ } |
+ Mul(&f3, f3, f4); // 2**96 - 1 |
+ Square(&f4, f3); // 2**97 - 2 |
+ for (int i = 0; i < 23; i++) { // 2**120 - 2**24 |
+ Square(&f4, f4); |
+ } |
+ Mul(&f2, f4, f2); // 2**120 - 1 |
+ for (int i = 0; i < 6; i++) { // 2**126 - 2**6 |
+ Square(&f2, f2); |
+ } |
+ Mul(&f1, f1, f2); // 2**126 - 1 |
+ Square(&f1, f1); // 2**127 - 2 |
+ Mul(&f1, f1, in); // 2**127 - 1 |
+ for (int i = 0; i < 97; i++) { // 2**224 - 2**97 |
+ Square(&f1, f1); |
+ } |
+ Mul(out, f1, f3); // 2**224 - 2**96 - 1 |
+} |
+ |
+// Contract converts a FieldElement to its minimal, distinguished form. |
+// |
+// On entry, in[i] < 2**32 |
+// On exit, in[i] < 2**28 |
+void Contract(FieldElement* inout) { |
+ FieldElement& out = *inout; |
+ |
+ // Reduce the coefficients to < 2**28. |
+ for (int i = 0; i < 7; i++) { |
+ out[i+1] += out[i] >> 28; |
+ out[i] &= kBottom28Bits; |
+ } |
+ uint32 top = out[7] >> 28; |
+ out[7] &= kBottom28Bits; |
+ |
+ // Eliminate top while maintaining the same value mod p. |
+ out[0] -= top; |
+ out[3] += top << 12; |
+ |
+ // We may just have made out[0] negative. So we carry down. If we made |
+ // out[0] negative then we know that out[3] is sufficiently positive |
+ // because we just added to it. |
+ for (int i = 0; i < 3; i++) { |
+ uint32 mask = static_cast<uint32>(static_cast<int32>(out[i]) >> 31); |
+ out[i] += (1 << 28) & mask; |
+ out[i+1] -= 1 & mask; |
+ } |
+ |
+ // The value is < 2**224, but maybe greater than p. In order to reduce to a |
+ // unique, minimal value we see if the value is >= p and, if so, subtract p. |
+ |
+ // First we build a mask from the top four limbs, which must all be |
+ // equal to bottom28Bits if the whole value is >= p. If top4AllOnes |
+ // ends up with any zero bits in the bottom 28 bits, then this wasn't |
+ // true. |
+ uint32 top4AllOnes = 0xffffffffu; |
+ for (int i = 4; i < 8; i++) { |
+ top4AllOnes &= (out[i] & kBottom28Bits) - 1; |
+ } |
+ top4AllOnes |= 0xf0000000; |
+ // Now we replicate any zero bits to all the bits in top4AllOnes. |
+ top4AllOnes &= top4AllOnes >> 16; |
+ top4AllOnes &= top4AllOnes >> 8; |
+ top4AllOnes &= top4AllOnes >> 4; |
+ top4AllOnes &= top4AllOnes >> 2; |
+ top4AllOnes &= top4AllOnes >> 1; |
+ top4AllOnes = |
+ static_cast<uint32>(static_cast<int32>(top4AllOnes << 31) >> 31); |
+ |
+ // Now we test whether the bottom three limbs are non-zero. |
+ uint32 bottom3NonZero = out[0] | out[1] | out[2]; |
+ bottom3NonZero |= bottom3NonZero >> 16; |
+ bottom3NonZero |= bottom3NonZero >> 8; |
+ bottom3NonZero |= bottom3NonZero >> 4; |
+ bottom3NonZero |= bottom3NonZero >> 2; |
+ bottom3NonZero |= bottom3NonZero >> 1; |
+ bottom3NonZero = |
+ static_cast<uint32>(static_cast<int32>(bottom3NonZero << 31) >> 31); |
+ |
+ // Everything depends on the value of out[3]. |
+ // If it's > 0xffff000 and top4AllOnes != 0 then the whole value is >= p |
+ // If it's = 0xffff000 and top4AllOnes != 0 and bottom3NonZero != 0, |
+ // then the whole value is >= p |
+ // If it's < 0xffff000, then the whole value is < p |
+ uint32 n = out[3] - 0xffff000; |
+ uint32 out3Equal = n; |
+ out3Equal |= out3Equal >> 16; |
+ out3Equal |= out3Equal >> 8; |
+ out3Equal |= out3Equal >> 4; |
+ out3Equal |= out3Equal >> 2; |
+ out3Equal |= out3Equal >> 1; |
+ out3Equal = |
+ ~static_cast<uint32>(static_cast<int32>(out3Equal << 31) >> 31); |
+ |
+ // If out[3] > 0xffff000 then n's MSB will be zero. |
+ uint32 out3GT = ~static_cast<uint32>(static_cast<int32>(n << 31) >> 31); |
+ |
+ uint32 mask = top4AllOnes & ((out3Equal & bottom3NonZero) | out3GT); |
+ out[0] -= 1 & mask; |
+ out[3] -= 0xffff000 & mask; |
+ out[4] -= 0xfffffff & mask; |
+ out[5] -= 0xfffffff & mask; |
+ out[6] -= 0xfffffff & mask; |
+ out[7] -= 0xfffffff & mask; |
+} |
+ |
+ |
+// Group element functions. |
+// |
+// These functions deal with group elements. The group is an elliptic curve |
+// group with a = -3 defined in FIPS 186-3, section D.2.2. |
+ |
+using crypto::p224::Point; |
+ |
+// kP is the P224 prime. |
+const FieldElement kP = { |
+ 1, 0, 0, 268431360, |
+ 268435455, 268435455, 268435455, 268435455, |
+}; |
+ |
+// kB is parameter of the elliptic curve. |
+const FieldElement kB = { |
+ 55967668, 11768882, 265861671, 185302395, |
+ 39211076, 180311059, 84673715, 188764328, |
+}; |
+ |
+// AddJacobian computes *out = a+b where a != b. |
+void AddJacobian(Point *out, |
+ const Point& a, |
+ const Point& b) { |
+ // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl |
+ FieldElement z1z1, z2z2, u1, u2, s1, s2, h, i, j, r, v; |
+ |
+ // Z1Z1 = Z1² |
+ Square(&z1z1, a.z); |
+ |
+ // Z2Z2 = Z2² |
+ Square(&z2z2, b.z); |
+ |
+ // U1 = X1*Z2Z2 |
+ Mul(&u1, a.x, z2z2); |
+ |
+ // U2 = X2*Z1Z1 |
+ Mul(&u2, b.x, z1z1); |
+ |
+ // S1 = Y1*Z2*Z2Z2 |
+ Mul(&s1, b.z, z2z2); |
+ Mul(&s1, a.y, s1); |
+ |
+ // S2 = Y2*Z1*Z1Z1 |
+ Mul(&s2, a.z, z1z1); |
+ Mul(&s2, b.y, s2); |
+ |
+ // H = U2-U1 |
+ Subtract(&h, u2, u1); |
+ Reduce(&h); |
+ |
+ // I = (2*H)² |
+ for (int j = 0; j < 8; j++) { |
+ i[j] = h[j] << 1; |
+ } |
+ Reduce(&i); |
+ Square(&i, i); |
+ |
+ // J = H*I |
+ Mul(&j, h, i); |
+ // r = 2*(S2-S1) |
+ Subtract(&r, s2, s1); |
+ Reduce(&r); |
+ for (int i = 0; i < 8; i++) { |
+ r[i] <<= 1; |
+ } |
+ Reduce(&r); |
+ |
+ // V = U1*I |
+ Mul(&v, u1, i); |
+ |
+ // Z3 = ((Z1+Z2)²-Z1Z1-Z2Z2)*H |
+ Add(&z1z1, z1z1, z2z2); |
+ Add(&z2z2, a.z, b.z); |
+ Reduce(&z2z2); |
+ Square(&z2z2, z2z2); |
+ Subtract(&out->z, z2z2, z1z1); |
+ Reduce(&out->z); |
+ Mul(&out->z, out->z, h); |
+ |
+ // X3 = r²-J-2*V |
+ for (int i = 0; i < 8; i++) { |
+ z1z1[i] = v[i] << 1; |
+ } |
+ Add(&z1z1, j, z1z1); |
+ Reduce(&z1z1); |
+ Square(&out->x, r); |
+ Subtract(&out->x, out->x, z1z1); |
+ Reduce(&out->x); |
+ |
+ // Y3 = r*(V-X3)-2*S1*J |
+ for (int i = 0; i < 8; i++) { |
+ s1[i] <<= 1; |
+ } |
+ Mul(&s1, s1, j); |
+ Subtract(&z1z1, v, out->x); |
+ Reduce(&z1z1); |
+ Mul(&z1z1, z1z1, r); |
+ Subtract(&out->y, z1z1, s1); |
+ Reduce(&out->y); |
+} |
+ |
+// DoubleJacobian computes *out = a+a. |
+void DoubleJacobian(Point* out, const Point& a) { |
+ // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b |
+ FieldElement delta, gamma, beta, alpha, t; |
+ |
+ Square(&delta, a.z); |
+ Square(&gamma, a.y); |
+ Mul(&beta, a.x, gamma); |
+ |
+ // alpha = 3*(X1-delta)*(X1+delta) |
+ Add(&t, a.x, delta); |
+ for (int i = 0; i < 8; i++) { |
+ t[i] += t[i] << 1; |
+ } |
+ Reduce(&t); |
+ Subtract(&alpha, a.x, delta); |
+ Reduce(&alpha); |
+ Mul(&alpha, alpha, t); |
+ |
+ // Z3 = (Y1+Z1)²-gamma-delta |
+ Add(&out->z, a.y, a.z); |
+ Reduce(&out->z); |
+ Square(&out->z, out->z); |
+ Subtract(&out->z, out->z, gamma); |
+ Reduce(&out->z); |
+ Subtract(&out->z, out->z, delta); |
+ Reduce(&out->z); |
+ |
+ // X3 = alpha²-8*beta |
+ for (int i = 0; i < 8; i++) { |
+ delta[i] = beta[i] << 3; |
+ } |
+ Reduce(&delta); |
+ Square(&out->x, alpha); |
+ Subtract(&out->x, out->x, delta); |
+ Reduce(&out->x); |
+ |
+ // Y3 = alpha*(4*beta-X3)-8*gamma² |
+ for (int i = 0; i < 8; i++) { |
+ beta[i] <<= 2; |
+ } |
+ Reduce(&beta); |
+ Subtract(&beta, beta, out->x); |
+ Reduce(&beta); |
+ Square(&gamma, gamma); |
+ for (int i = 0; i < 8; i++) { |
+ gamma[i] <<= 3; |
+ } |
+ Reduce(&gamma); |
+ Mul(&out->y, alpha, beta); |
+ Subtract(&out->y, out->y, gamma); |
+ Reduce(&out->y); |
+} |
+ |
+// CopyConditional sets *out=a if mask is 0xffffffff. mask must be either 0 of |
+// 0xffffffff. |
+void CopyConditional(Point* out, |
+ const Point& a, |
+ uint32 mask) { |
+ for (int i = 0; i < 8; i++) { |
+ out->x[i] ^= mask & (a.x[i] ^ out->x[i]); |
+ out->y[i] ^= mask & (a.y[i] ^ out->y[i]); |
+ out->z[i] ^= mask & (a.z[i] ^ out->z[i]); |
+ } |
+} |
+ |
+// ScalarMult calculates *out = a*scalar where scalar is a big-endian number of |
+// length scalar_len and != 0. |
+void ScalarMult(Point* out, const Point& a, |
+ const uint8* scalar, size_t scalar_len) { |
+ memset(out, 0, sizeof(*out)); |
+ Point tmp; |
+ |
+ uint32 first_bit = 0xffffffff; |
+ for (size_t i = 0; i < scalar_len; i++) { |
+ for (unsigned int bit_num = 0; bit_num < 8; bit_num++) { |
+ DoubleJacobian(out, *out); |
+ uint32 bit = static_cast<uint32>(static_cast<int32>( |
+ (((scalar[i] >> (7 - bit_num)) & 1) << 31) >> 31)); |
+ AddJacobian(&tmp, a, *out); |
+ CopyConditional(out, a, first_bit & bit); |
+ CopyConditional(out, tmp, ~first_bit & bit); |
+ first_bit = first_bit & ~bit; |
+ } |
+ } |
+} |
+ |
+// Get224Bits reads 7 words from in and scatters their contents in |
+// little-endian form into 8 words at out, 28 bits per output word. |
+void Get224Bits(uint32* out, const uint32* in) { |
+ out[0] = ntohl(in[6]) & kBottom28Bits; |
+ out[1] = ((ntohl(in[5]) << 4) | (ntohl(in[6]) >> 28)) & kBottom28Bits; |
+ out[2] = ((ntohl(in[4]) << 8) | (ntohl(in[5]) >> 24)) & kBottom28Bits; |
+ out[3] = ((ntohl(in[3]) << 12) | (ntohl(in[4]) >> 20)) & kBottom28Bits; |
+ out[4] = ((ntohl(in[2]) << 16) | (ntohl(in[3]) >> 16)) & kBottom28Bits; |
+ out[5] = ((ntohl(in[1]) << 20) | (ntohl(in[2]) >> 12)) & kBottom28Bits; |
+ out[6] = ((ntohl(in[0]) << 24) | (ntohl(in[1]) >> 8)) & kBottom28Bits; |
+ out[7] = (ntohl(in[0]) >> 4) & kBottom28Bits; |
+} |
+ |
+// Put224Bits performs the inverse operation to Get224Bits: taking 28 bits from |
+// each of 8 input words and writing them in big-endian order to 7 words at |
+// out. |
+void Put224Bits(uint32* out, const uint32* in) { |
+ out[6] = htonl((in[0] >> 0) | (in[1] << 28)); |
+ out[5] = htonl((in[1] >> 4) | (in[2] << 24)); |
+ out[4] = htonl((in[2] >> 8) | (in[3] << 20)); |
+ out[3] = htonl((in[3] >> 12) | (in[4] << 16)); |
+ out[2] = htonl((in[4] >> 16) | (in[5] << 12)); |
+ out[1] = htonl((in[5] >> 20) | (in[6] << 8)); |
+ out[0] = htonl((in[6] >> 24) | (in[7] << 4)); |
+} |
+ |
+} // anonymous namespace |
+ |
+namespace crypto { |
+ |
+namespace p224 { |
+ |
+bool Point::Set(const base::StringPiece& in) { |
+ if (in.size() != 2*28) |
+ return false; |
+ const uint32* inwords = reinterpret_cast<const uint32*>(in.data()); |
+ Get224Bits(x, inwords); |
+ Get224Bits(y, inwords + 7); |
+ memset(&z, 0, sizeof(z)); |
+ z[0] = 1; |
+ |
+ // Check that the point is on the curve, i.e. that y² = x³ - 3x + b. |
+ FieldElement lhs; |
+ Square(&lhs, y); |
+ Contract(&lhs); |
+ |
+ FieldElement rhs; |
+ Square(&rhs, x); |
+ Mul(&rhs, x, rhs); |
+ |
+ FieldElement three_x; |
+ for (int i = 0; i < 8; i++) { |
+ three_x[i] = x[i] * 3; |
+ } |
+ Reduce(&three_x); |
+ Subtract(&rhs, rhs, three_x); |
+ Reduce(&rhs); |
+ |
+ ::Add(&rhs, rhs, kB); |
+ Contract(&rhs); |
+ return memcmp(&lhs, &rhs, sizeof(lhs)) == 0; |
+} |
+ |
+std::string Point::ToString() const { |
+ FieldElement zinv, zinv_sq, x, y; |
+ |
+ Invert(&zinv, this->z); |
+ Square(&zinv_sq, zinv); |
+ Mul(&x, this->x, zinv_sq); |
+ Mul(&zinv_sq, zinv_sq, zinv); |
+ Mul(&y, this->y, zinv_sq); |
+ |
+ Contract(&x); |
+ Contract(&y); |
+ |
+ uint32 outwords[14]; |
+ Put224Bits(outwords, x); |
+ Put224Bits(outwords + 7, y); |
+ return std::string(reinterpret_cast<const char*>(outwords), sizeof(outwords)); |
+} |
+ |
+void ScalarMult(const Point& in, const uint8* scalar, Point* out) { |
+ ::ScalarMult(out, in, scalar, 28); |
+} |
+ |
+// kBasePoint is the base point (generator) of the elliptic curve group. |
+static const Point kBasePoint = { |
+ {22813985, 52956513, 34677300, 203240812, |
+ 12143107, 133374265, 225162431, 191946955}, |
+ {83918388, 223877528, 122119236, 123340192, |
+ 266784067, 263504429, 146143011, 198407736}, |
+ {1, 0, 0, 0, 0, 0, 0, 0}, |
+}; |
+ |
+void ScalarBaseMult(const uint8* scalar, Point* out) { |
+ ::ScalarMult(out, kBasePoint, scalar, 28); |
+} |
+ |
+void Add(const Point& a, const Point& b, Point* out) { |
+ AddJacobian(out, a, b); |
+} |
+ |
+void Negate(const Point& in, Point* out) { |
+ // Guide to elliptic curve cryptography, page 89 suggests that (X : X+Y : Z) |
+ // is the negative in Jacobian coordinates, but it doesn't actually appear to |
+ // be true in testing so this performs the negation in affine coordinates. |
+ FieldElement zinv, zinv_sq, y; |
+ Invert(&zinv, in.z); |
+ Square(&zinv_sq, zinv); |
+ Mul(&out->x, in.x, zinv_sq); |
+ Mul(&zinv_sq, zinv_sq, zinv); |
+ Mul(&y, in.y, zinv_sq); |
+ |
+ Subtract(&out->y, kP, y); |
+ Reduce(&out->y); |
+ |
+ memset(&out->z, 0, sizeof(out->z)); |
+ out->z[0] = 1; |
+} |
+ |
+} // namespace p224 |
+ |
+} // namespace crypto |