| Index: crypto/p224.cc | 
| diff --git a/crypto/p224.cc b/crypto/p224.cc | 
| new file mode 100644 | 
| index 0000000000000000000000000000000000000000..1202e8dec27024297ec21b7f7a9fbc46fccc91bd | 
| --- /dev/null | 
| +++ b/crypto/p224.cc | 
| @@ -0,0 +1,652 @@ | 
| +// Copyright (c) 2011 The Chromium Authors. All rights reserved. | 
| +// Use of this source code is governed by a BSD-style license that can be | 
| +// found in the LICENSE file. | 
| + | 
| +// This is an implementation of the P224 elliptic curve group. It's written to | 
| +// be short and simple rather than fast, although it's still constant-time. | 
| +// | 
| +// See http://www.imperialviolet.org/2010/12/04/ecc.html ([1]) for background. | 
| + | 
| +#include "crypto/p224.h" | 
| + | 
| +#include <string.h> | 
| + | 
| +#include "build/build_config.h" | 
| + | 
| +// For htonl and ntohl. | 
| +#if defined(OS_WIN) | 
| +#include <winsock2.h> | 
| +#else | 
| +#include <arpa/inet.h> | 
| +#endif | 
| + | 
| +namespace { | 
| + | 
| +// Field element functions. | 
| +// | 
| +// The field that we're dealing with is ℤ/pℤ where p = 2**224 - 2**96 + 1. | 
| +// | 
| +// Field elements are represented by a FieldElement, which is a typedef to an | 
| +// array of 8 uint32's. The value of a FieldElement, a, is: | 
| +//   a[0] + 2**28·a[1] + 2**56·a[1] + ... + 2**196·a[7] | 
| +// | 
| +// Using 28-bit limbs means that there's only 4 bits of headroom, which is less | 
| +// than we would really like. But it has the useful feature that we hit 2**224 | 
| +// exactly, making the reflections during a reduce much nicer. | 
| + | 
| +using crypto::p224::FieldElement; | 
| + | 
| +// Add computes *out = a+b | 
| +// | 
| +// a[i] + b[i] < 2**32 | 
| +void Add(FieldElement* out, const FieldElement& a, const FieldElement& b) { | 
| +  for (int i = 0; i < 8; i++) { | 
| +    (*out)[i] = a[i] + b[i]; | 
| +  } | 
| +} | 
| + | 
| +static const uint32 kTwo31p3 = (1u<<31) + (1u<<3); | 
| +static const uint32 kTwo31m3 = (1u<<31) - (1u<<3); | 
| +static const uint32 kTwo31m15m3 = (1u<<31) - (1u<<15) - (1u<<3); | 
| +// kZero31ModP is 0 mod p where bit 31 is set in all limbs so that we can | 
| +// subtract smaller amounts without underflow. See the section "Subtraction" in | 
| +// [1] for why. | 
| +static const FieldElement kZero31ModP = { | 
| +  kTwo31p3, kTwo31m3, kTwo31m3, kTwo31m15m3, | 
| +  kTwo31m3, kTwo31m3, kTwo31m3, kTwo31m3 | 
| +}; | 
| + | 
| +// Subtract computes *out = a-b | 
| +// | 
| +// a[i], b[i] < 2**30 | 
| +// out[i] < 2**32 | 
| +void Subtract(FieldElement* out, const FieldElement& a, const FieldElement& b) { | 
| +  for (int i = 0; i < 8; i++) { | 
| +    // See the section on "Subtraction" in [1] for details. | 
| +    (*out)[i] = a[i] + kZero31ModP[i] - b[i]; | 
| +  } | 
| +} | 
| + | 
| +static const uint64 kTwo63p35 = (1ull<<63) + (1ull<<35); | 
| +static const uint64 kTwo63m35 = (1ull<<63) - (1ull<<35); | 
| +static const uint64 kTwo63m35m19 = (1ull<<63) - (1ull<<35) - (1ull<<19); | 
| +// kZero63ModP is 0 mod p where bit 63 is set in all limbs. See the section | 
| +// "Subtraction" in [1] for why. | 
| +static const uint64 kZero63ModP[8] = { | 
| +  kTwo63p35, kTwo63m35, kTwo63m35, kTwo63m35, | 
| +  kTwo63m35m19, kTwo63m35, kTwo63m35, kTwo63m35, | 
| +}; | 
| + | 
| +static const uint32 kBottom28Bits = 0xfffffff; | 
| + | 
| +// LargeFieldElement also represents an element of the field. The limbs are | 
| +// still spaced 28-bits apart and in little-endian order. So the limbs are at | 
| +// 0, 28, 56, ..., 392 bits, each 64-bits wide. | 
| +typedef uint64 LargeFieldElement[15]; | 
| + | 
| +// ReduceLarge converts a LargeFieldElement to a FieldElement. | 
| +// | 
| +// in[i] < 2**62 | 
| +void ReduceLarge(FieldElement* out, LargeFieldElement* inptr) { | 
| +  LargeFieldElement& in(*inptr); | 
| + | 
| +  for (int i = 0; i < 8; i++) { | 
| +    in[i] += kZero63ModP[i]; | 
| +  } | 
| + | 
| +  // Eliminate the coefficients at 2**224 and greater while maintaining the | 
| +  // same value mod p. | 
| +  for (int i = 14; i >= 8; i--) { | 
| +    in[i-8] -= in[i];  // reflection off the "+1" term of p. | 
| +    in[i-5] += (in[i] & 0xffff) << 12;  // part of the "-2**96" reflection. | 
| +    in[i-4] += in[i] >> 16;  // the rest of the "-2**96" reflection. | 
| +  } | 
| +  in[8] = 0; | 
| +  // in[0..8] < 2**64 | 
| + | 
| +  // As the values become small enough, we start to store them in |out| and use | 
| +  // 32-bit operations. | 
| +  for (int i = 1; i < 8; i++) { | 
| +    in[i+1] += in[i] >> 28; | 
| +    (*out)[i] = static_cast<uint32>(in[i] & kBottom28Bits); | 
| +  } | 
| +  // Eliminate the term at 2*224 that we introduced while keeping the same | 
| +  // value mod p. | 
| +  in[0] -= in[8];  // reflection off the "+1" term of p. | 
| +  (*out)[3] += static_cast<uint32>(in[8] & 0xffff) << 12; // "-2**96" term | 
| +  (*out)[4] += static_cast<uint32>(in[8] >> 16);  // rest of "-2**96" term | 
| +  // in[0] < 2**64 | 
| +  // out[3] < 2**29 | 
| +  // out[4] < 2**29 | 
| +  // out[1,2,5..7] < 2**28 | 
| + | 
| +  (*out)[0] = static_cast<uint32>(in[0] & kBottom28Bits); | 
| +  (*out)[1] += static_cast<uint32>((in[0] >> 28) & kBottom28Bits); | 
| +  (*out)[2] += static_cast<uint32>(in[0] >> 56); | 
| +  // out[0] < 2**28 | 
| +  // out[1..4] < 2**29 | 
| +  // out[5..7] < 2**28 | 
| +} | 
| + | 
| +// Mul computes *out = a*b | 
| +// | 
| +// a[i] < 2**29, b[i] < 2**30 (or vice versa) | 
| +// out[i] < 2**29 | 
| +void Mul(FieldElement* out, const FieldElement& a, const FieldElement& b) { | 
| +  LargeFieldElement tmp; | 
| +  memset(&tmp, 0, sizeof(tmp)); | 
| + | 
| +  for (int i = 0; i < 8; i++) { | 
| +    for (int j = 0; j < 8; j++) { | 
| +      tmp[i+j] += static_cast<uint64>(a[i]) * static_cast<uint64>(b[j]); | 
| +    } | 
| +  } | 
| + | 
| +  ReduceLarge(out, &tmp); | 
| +} | 
| + | 
| +// Square computes *out = a*a | 
| +// | 
| +// a[i] < 2**29 | 
| +// out[i] < 2**29 | 
| +void Square(FieldElement* out, const FieldElement& a) { | 
| +  LargeFieldElement tmp; | 
| +  memset(&tmp, 0, sizeof(tmp)); | 
| + | 
| +  for (int i = 0; i < 8; i++) { | 
| +    for (int j = 0; j <= i; j++) { | 
| +      uint64 r = static_cast<uint64>(a[i]) * static_cast<uint64>(a[j]); | 
| +      if (i == j) { | 
| +        tmp[i+j] += r; | 
| +      } else { | 
| +        tmp[i+j] += r << 1; | 
| +      } | 
| +    } | 
| +  } | 
| + | 
| +  ReduceLarge(out, &tmp); | 
| +} | 
| + | 
| +// Reduce reduces the coefficients of in_out to smaller bounds. | 
| +// | 
| +// On entry: a[i] < 2**31 + 2**30 | 
| +// On exit: a[i] < 2**29 | 
| +void Reduce(FieldElement* in_out) { | 
| +  FieldElement& a = *in_out; | 
| + | 
| +  for (int i = 0; i < 7; i++) { | 
| +    a[i+1] += a[i] >> 28; | 
| +    a[i] &= kBottom28Bits; | 
| +  } | 
| +  uint32 top = a[7] >> 28; | 
| +  a[7] &= kBottom28Bits; | 
| + | 
| +  // top < 2**4 | 
| +  // Constant-time: mask = (top != 0) ? 0xffffffff : 0 | 
| +  uint32 mask = top; | 
| +  mask |= mask >> 2; | 
| +  mask |= mask >> 1; | 
| +  mask <<= 31; | 
| +  mask = static_cast<uint32>(static_cast<int32>(mask) >> 31); | 
| + | 
| +  // Eliminate top while maintaining the same value mod p. | 
| +  a[0] -= top; | 
| +  a[3] += top << 12; | 
| + | 
| +  // We may have just made a[0] negative but, if we did, then we must | 
| +  // have added something to a[3], thus it's > 2**12. Therefore we can | 
| +  // carry down to a[0]. | 
| +  a[3] -= 1 & mask; | 
| +  a[2] += mask & ((1<<28) - 1); | 
| +  a[1] += mask & ((1<<28) - 1); | 
| +  a[0] += mask & (1<<28); | 
| +} | 
| + | 
| +// Invert calcuates *out = in**-1 by computing in**(2**224 - 2**96 - 1), i.e. | 
| +// Fermat's little theorem. | 
| +void Invert(FieldElement* out, const FieldElement& in) { | 
| +  FieldElement f1, f2, f3, f4; | 
| + | 
| +  Square(&f1, in);                        // 2 | 
| +  Mul(&f1, f1, in);                       // 2**2 - 1 | 
| +  Square(&f1, f1);                        // 2**3 - 2 | 
| +  Mul(&f1, f1, in);                       // 2**3 - 1 | 
| +  Square(&f2, f1);                        // 2**4 - 2 | 
| +  Square(&f2, f2);                        // 2**5 - 4 | 
| +  Square(&f2, f2);                        // 2**6 - 8 | 
| +  Mul(&f1, f1, f2);                       // 2**6 - 1 | 
| +  Square(&f2, f1);                        // 2**7 - 2 | 
| +  for (int i = 0; i < 5; i++) {           // 2**12 - 2**6 | 
| +    Square(&f2, f2); | 
| +  } | 
| +  Mul(&f2, f2, f1);                       // 2**12 - 1 | 
| +  Square(&f3, f2);                        // 2**13 - 2 | 
| +  for (int i = 0; i < 11; i++) {          // 2**24 - 2**12 | 
| +    Square(&f3, f3); | 
| +  } | 
| +  Mul(&f2, f3, f2);                       // 2**24 - 1 | 
| +  Square(&f3, f2);                        // 2**25 - 2 | 
| +  for (int i = 0; i < 23; i++) {          // 2**48 - 2**24 | 
| +    Square(&f3, f3); | 
| +  } | 
| +  Mul(&f3, f3, f2);                       // 2**48 - 1 | 
| +  Square(&f4, f3);                        // 2**49 - 2 | 
| +  for (int i = 0; i < 47; i++) {          // 2**96 - 2**48 | 
| +    Square(&f4, f4); | 
| +  } | 
| +  Mul(&f3, f3, f4);                       // 2**96 - 1 | 
| +  Square(&f4, f3);                        // 2**97 - 2 | 
| +  for (int i = 0; i < 23; i++) {          // 2**120 - 2**24 | 
| +    Square(&f4, f4); | 
| +  } | 
| +  Mul(&f2, f4, f2);                       // 2**120 - 1 | 
| +  for (int i = 0; i < 6; i++) {           // 2**126 - 2**6 | 
| +    Square(&f2, f2); | 
| +  } | 
| +  Mul(&f1, f1, f2);                       // 2**126 - 1 | 
| +  Square(&f1, f1);                        // 2**127 - 2 | 
| +  Mul(&f1, f1, in);                       // 2**127 - 1 | 
| +  for (int i = 0; i < 97; i++) {          // 2**224 - 2**97 | 
| +    Square(&f1, f1); | 
| +  } | 
| +  Mul(out, f1, f3);                       // 2**224 - 2**96 - 1 | 
| +} | 
| + | 
| +// Contract converts a FieldElement to its minimal, distinguished form. | 
| +// | 
| +// On entry, in[i] < 2**32 | 
| +// On exit, in[i] < 2**28 | 
| +void Contract(FieldElement* inout) { | 
| +  FieldElement& out = *inout; | 
| + | 
| +  // Reduce the coefficients to < 2**28. | 
| +  for (int i = 0; i < 7; i++) { | 
| +    out[i+1] += out[i] >> 28; | 
| +    out[i] &= kBottom28Bits; | 
| +  } | 
| +  uint32 top = out[7] >> 28; | 
| +  out[7] &= kBottom28Bits; | 
| + | 
| +  // Eliminate top while maintaining the same value mod p. | 
| +  out[0] -= top; | 
| +  out[3] += top << 12; | 
| + | 
| +  // We may just have made out[0] negative. So we carry down. If we made | 
| +  // out[0] negative then we know that out[3] is sufficiently positive | 
| +  // because we just added to it. | 
| +  for (int i = 0; i < 3; i++) { | 
| +    uint32 mask = static_cast<uint32>(static_cast<int32>(out[i]) >> 31); | 
| +    out[i] += (1 << 28) & mask; | 
| +    out[i+1] -= 1 & mask; | 
| +  } | 
| + | 
| +  // The value is < 2**224, but maybe greater than p. In order to reduce to a | 
| +  // unique, minimal value we see if the value is >= p and, if so, subtract p. | 
| + | 
| +  // First we build a mask from the top four limbs, which must all be | 
| +  // equal to bottom28Bits if the whole value is >= p. If top4AllOnes | 
| +  // ends up with any zero bits in the bottom 28 bits, then this wasn't | 
| +  // true. | 
| +  uint32 top4AllOnes = 0xffffffffu; | 
| +  for (int i = 4; i < 8; i++) { | 
| +    top4AllOnes &= (out[i] & kBottom28Bits) - 1; | 
| +  } | 
| +  top4AllOnes |= 0xf0000000; | 
| +  // Now we replicate any zero bits to all the bits in top4AllOnes. | 
| +  top4AllOnes &= top4AllOnes >> 16; | 
| +  top4AllOnes &= top4AllOnes >> 8; | 
| +  top4AllOnes &= top4AllOnes >> 4; | 
| +  top4AllOnes &= top4AllOnes >> 2; | 
| +  top4AllOnes &= top4AllOnes >> 1; | 
| +  top4AllOnes = | 
| +      static_cast<uint32>(static_cast<int32>(top4AllOnes << 31) >> 31); | 
| + | 
| +  // Now we test whether the bottom three limbs are non-zero. | 
| +  uint32 bottom3NonZero = out[0] | out[1] | out[2]; | 
| +  bottom3NonZero |= bottom3NonZero >> 16; | 
| +  bottom3NonZero |= bottom3NonZero >> 8; | 
| +  bottom3NonZero |= bottom3NonZero >> 4; | 
| +  bottom3NonZero |= bottom3NonZero >> 2; | 
| +  bottom3NonZero |= bottom3NonZero >> 1; | 
| +  bottom3NonZero = | 
| +      static_cast<uint32>(static_cast<int32>(bottom3NonZero << 31) >> 31); | 
| + | 
| +  // Everything depends on the value of out[3]. | 
| +  //    If it's > 0xffff000 and top4AllOnes != 0 then the whole value is >= p | 
| +  //    If it's = 0xffff000 and top4AllOnes != 0 and bottom3NonZero != 0, | 
| +  //      then the whole value is >= p | 
| +  //    If it's < 0xffff000, then the whole value is < p | 
| +  uint32 n = out[3] - 0xffff000; | 
| +  uint32 out3Equal = n; | 
| +  out3Equal |= out3Equal >> 16; | 
| +  out3Equal |= out3Equal >> 8; | 
| +  out3Equal |= out3Equal >> 4; | 
| +  out3Equal |= out3Equal >> 2; | 
| +  out3Equal |= out3Equal >> 1; | 
| +  out3Equal = | 
| +      ~static_cast<uint32>(static_cast<int32>(out3Equal << 31) >> 31); | 
| + | 
| +  // If out[3] > 0xffff000 then n's MSB will be zero. | 
| +  uint32 out3GT = ~static_cast<uint32>(static_cast<int32>(n << 31) >> 31); | 
| + | 
| +  uint32 mask = top4AllOnes & ((out3Equal & bottom3NonZero) | out3GT); | 
| +  out[0] -= 1 & mask; | 
| +  out[3] -= 0xffff000 & mask; | 
| +  out[4] -= 0xfffffff & mask; | 
| +  out[5] -= 0xfffffff & mask; | 
| +  out[6] -= 0xfffffff & mask; | 
| +  out[7] -= 0xfffffff & mask; | 
| +} | 
| + | 
| + | 
| +// Group element functions. | 
| +// | 
| +// These functions deal with group elements. The group is an elliptic curve | 
| +// group with a = -3 defined in FIPS 186-3, section D.2.2. | 
| + | 
| +using crypto::p224::Point; | 
| + | 
| +// kP is the P224 prime. | 
| +const FieldElement kP = { | 
| +  1, 0, 0, 268431360, | 
| +  268435455, 268435455, 268435455, 268435455, | 
| +}; | 
| + | 
| +// kB is parameter of the elliptic curve. | 
| +const FieldElement kB = { | 
| +  55967668, 11768882, 265861671, 185302395, | 
| +  39211076, 180311059, 84673715, 188764328, | 
| +}; | 
| + | 
| +// AddJacobian computes *out = a+b where a != b. | 
| +void AddJacobian(Point *out, | 
| +                 const Point& a, | 
| +                 const Point& b) { | 
| +  // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl | 
| +  FieldElement z1z1, z2z2, u1, u2, s1, s2, h, i, j, r, v; | 
| + | 
| +  // Z1Z1 = Z1² | 
| +  Square(&z1z1, a.z); | 
| + | 
| +  // Z2Z2 = Z2² | 
| +  Square(&z2z2, b.z); | 
| + | 
| +  // U1 = X1*Z2Z2 | 
| +  Mul(&u1, a.x, z2z2); | 
| + | 
| +  // U2 = X2*Z1Z1 | 
| +  Mul(&u2, b.x, z1z1); | 
| + | 
| +  // S1 = Y1*Z2*Z2Z2 | 
| +  Mul(&s1, b.z, z2z2); | 
| +  Mul(&s1, a.y, s1); | 
| + | 
| +  // S2 = Y2*Z1*Z1Z1 | 
| +  Mul(&s2, a.z, z1z1); | 
| +  Mul(&s2, b.y, s2); | 
| + | 
| +  // H = U2-U1 | 
| +  Subtract(&h, u2, u1); | 
| +  Reduce(&h); | 
| + | 
| +  // I = (2*H)² | 
| +  for (int j = 0; j < 8; j++) { | 
| +    i[j] = h[j] << 1; | 
| +  } | 
| +  Reduce(&i); | 
| +  Square(&i, i); | 
| + | 
| +  // J = H*I | 
| +  Mul(&j, h, i); | 
| +  // r = 2*(S2-S1) | 
| +  Subtract(&r, s2, s1); | 
| +  Reduce(&r); | 
| +  for (int i = 0; i < 8; i++) { | 
| +    r[i] <<= 1; | 
| +  } | 
| +  Reduce(&r); | 
| + | 
| +  // V = U1*I | 
| +  Mul(&v, u1, i); | 
| + | 
| +  // Z3 = ((Z1+Z2)²-Z1Z1-Z2Z2)*H | 
| +  Add(&z1z1, z1z1, z2z2); | 
| +  Add(&z2z2, a.z, b.z); | 
| +  Reduce(&z2z2); | 
| +  Square(&z2z2, z2z2); | 
| +  Subtract(&out->z, z2z2, z1z1); | 
| +  Reduce(&out->z); | 
| +  Mul(&out->z, out->z, h); | 
| + | 
| +  // X3 = r²-J-2*V | 
| +  for (int i = 0; i < 8; i++) { | 
| +    z1z1[i] = v[i] << 1; | 
| +  } | 
| +  Add(&z1z1, j, z1z1); | 
| +  Reduce(&z1z1); | 
| +  Square(&out->x, r); | 
| +  Subtract(&out->x, out->x, z1z1); | 
| +  Reduce(&out->x); | 
| + | 
| +  // Y3 = r*(V-X3)-2*S1*J | 
| +  for (int i = 0; i < 8; i++) { | 
| +    s1[i] <<= 1; | 
| +  } | 
| +  Mul(&s1, s1, j); | 
| +  Subtract(&z1z1, v, out->x); | 
| +  Reduce(&z1z1); | 
| +  Mul(&z1z1, z1z1, r); | 
| +  Subtract(&out->y, z1z1, s1); | 
| +  Reduce(&out->y); | 
| +} | 
| + | 
| +// DoubleJacobian computes *out = a+a. | 
| +void DoubleJacobian(Point* out, const Point& a) { | 
| +  // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b | 
| +  FieldElement delta, gamma, beta, alpha, t; | 
| + | 
| +  Square(&delta, a.z); | 
| +  Square(&gamma, a.y); | 
| +  Mul(&beta, a.x, gamma); | 
| + | 
| +  // alpha = 3*(X1-delta)*(X1+delta) | 
| +  Add(&t, a.x, delta); | 
| +  for (int i = 0; i < 8; i++) { | 
| +          t[i] += t[i] << 1; | 
| +  } | 
| +  Reduce(&t); | 
| +  Subtract(&alpha, a.x, delta); | 
| +  Reduce(&alpha); | 
| +  Mul(&alpha, alpha, t); | 
| + | 
| +  // Z3 = (Y1+Z1)²-gamma-delta | 
| +  Add(&out->z, a.y, a.z); | 
| +  Reduce(&out->z); | 
| +  Square(&out->z, out->z); | 
| +  Subtract(&out->z, out->z, gamma); | 
| +  Reduce(&out->z); | 
| +  Subtract(&out->z, out->z, delta); | 
| +  Reduce(&out->z); | 
| + | 
| +  // X3 = alpha²-8*beta | 
| +  for (int i = 0; i < 8; i++) { | 
| +          delta[i] = beta[i] << 3; | 
| +  } | 
| +  Reduce(&delta); | 
| +  Square(&out->x, alpha); | 
| +  Subtract(&out->x, out->x, delta); | 
| +  Reduce(&out->x); | 
| + | 
| +  // Y3 = alpha*(4*beta-X3)-8*gamma² | 
| +  for (int i = 0; i < 8; i++) { | 
| +          beta[i] <<= 2; | 
| +  } | 
| +  Reduce(&beta); | 
| +  Subtract(&beta, beta, out->x); | 
| +  Reduce(&beta); | 
| +  Square(&gamma, gamma); | 
| +  for (int i = 0; i < 8; i++) { | 
| +          gamma[i] <<= 3; | 
| +  } | 
| +  Reduce(&gamma); | 
| +  Mul(&out->y, alpha, beta); | 
| +  Subtract(&out->y, out->y, gamma); | 
| +  Reduce(&out->y); | 
| +} | 
| + | 
| +// CopyConditional sets *out=a if mask is 0xffffffff. mask must be either 0 of | 
| +// 0xffffffff. | 
| +void CopyConditional(Point* out, | 
| +                     const Point& a, | 
| +                     uint32 mask) { | 
| +  for (int i = 0; i < 8; i++) { | 
| +    out->x[i] ^= mask & (a.x[i] ^ out->x[i]); | 
| +    out->y[i] ^= mask & (a.y[i] ^ out->y[i]); | 
| +    out->z[i] ^= mask & (a.z[i] ^ out->z[i]); | 
| +  } | 
| +} | 
| + | 
| +// ScalarMult calculates *out = a*scalar where scalar is a big-endian number of | 
| +// length scalar_len and != 0. | 
| +void ScalarMult(Point* out, const Point& a, | 
| +                const uint8* scalar, size_t scalar_len) { | 
| +  memset(out, 0, sizeof(*out)); | 
| +  Point tmp; | 
| + | 
| +  uint32 first_bit = 0xffffffff; | 
| +  for (size_t i = 0; i < scalar_len; i++) { | 
| +    for (unsigned int bit_num = 0; bit_num < 8; bit_num++) { | 
| +      DoubleJacobian(out, *out); | 
| +      uint32 bit = static_cast<uint32>(static_cast<int32>( | 
| +          (((scalar[i] >> (7 - bit_num)) & 1) << 31) >> 31)); | 
| +      AddJacobian(&tmp, a, *out); | 
| +      CopyConditional(out, a, first_bit & bit); | 
| +      CopyConditional(out, tmp, ~first_bit & bit); | 
| +      first_bit = first_bit & ~bit; | 
| +    } | 
| +  } | 
| +} | 
| + | 
| +// Get224Bits reads 7 words from in and scatters their contents in | 
| +// little-endian form into 8 words at out, 28 bits per output word. | 
| +void Get224Bits(uint32* out, const uint32* in) { | 
| +  out[0] = ntohl(in[6]) & kBottom28Bits; | 
| +  out[1] = ((ntohl(in[5]) << 4) | (ntohl(in[6]) >> 28)) & kBottom28Bits; | 
| +  out[2] = ((ntohl(in[4]) << 8) | (ntohl(in[5]) >> 24)) & kBottom28Bits; | 
| +  out[3] = ((ntohl(in[3]) << 12) | (ntohl(in[4]) >> 20)) & kBottom28Bits; | 
| +  out[4] = ((ntohl(in[2]) << 16) | (ntohl(in[3]) >> 16)) & kBottom28Bits; | 
| +  out[5] = ((ntohl(in[1]) << 20) | (ntohl(in[2]) >> 12)) & kBottom28Bits; | 
| +  out[6] = ((ntohl(in[0]) << 24) | (ntohl(in[1]) >> 8)) & kBottom28Bits; | 
| +  out[7] = (ntohl(in[0]) >> 4) & kBottom28Bits; | 
| +} | 
| + | 
| +// Put224Bits performs the inverse operation to Get224Bits: taking 28 bits from | 
| +// each of 8 input words and writing them in big-endian order to 7 words at | 
| +// out. | 
| +void Put224Bits(uint32* out, const uint32* in) { | 
| +  out[6] = htonl((in[0] >> 0) | (in[1] << 28)); | 
| +  out[5] = htonl((in[1] >> 4) | (in[2] << 24)); | 
| +  out[4] = htonl((in[2] >> 8) | (in[3] << 20)); | 
| +  out[3] = htonl((in[3] >> 12) | (in[4] << 16)); | 
| +  out[2] = htonl((in[4] >> 16) | (in[5] << 12)); | 
| +  out[1] = htonl((in[5] >> 20) | (in[6] << 8)); | 
| +  out[0] = htonl((in[6] >> 24) | (in[7] << 4)); | 
| +} | 
| + | 
| +} // anonymous namespace | 
| + | 
| +namespace crypto { | 
| + | 
| +namespace p224 { | 
| + | 
| +bool Point::Set(const base::StringPiece& in) { | 
| +  if (in.size() != 2*28) | 
| +    return false; | 
| +  const uint32* inwords = reinterpret_cast<const uint32*>(in.data()); | 
| +  Get224Bits(x, inwords); | 
| +  Get224Bits(y, inwords + 7); | 
| +  memset(&z, 0, sizeof(z)); | 
| +  z[0] = 1; | 
| + | 
| +  // Check that the point is on the curve, i.e. that y² = x³ - 3x + b. | 
| +  FieldElement lhs; | 
| +  Square(&lhs, y); | 
| +  Contract(&lhs); | 
| + | 
| +  FieldElement rhs; | 
| +  Square(&rhs, x); | 
| +  Mul(&rhs, x, rhs); | 
| + | 
| +  FieldElement three_x; | 
| +  for (int i = 0; i < 8; i++) { | 
| +    three_x[i] = x[i] * 3; | 
| +  } | 
| +  Reduce(&three_x); | 
| +  Subtract(&rhs, rhs, three_x); | 
| +  Reduce(&rhs); | 
| + | 
| +  ::Add(&rhs, rhs, kB); | 
| +  Contract(&rhs); | 
| +  return memcmp(&lhs, &rhs, sizeof(lhs)) == 0; | 
| +} | 
| + | 
| +std::string Point::ToString() const { | 
| +  FieldElement zinv, zinv_sq, x, y; | 
| + | 
| +  Invert(&zinv, this->z); | 
| +  Square(&zinv_sq, zinv); | 
| +  Mul(&x, this->x, zinv_sq); | 
| +  Mul(&zinv_sq, zinv_sq, zinv); | 
| +  Mul(&y, this->y, zinv_sq); | 
| + | 
| +  Contract(&x); | 
| +  Contract(&y); | 
| + | 
| +  uint32 outwords[14]; | 
| +  Put224Bits(outwords, x); | 
| +  Put224Bits(outwords + 7, y); | 
| +  return std::string(reinterpret_cast<const char*>(outwords), sizeof(outwords)); | 
| +} | 
| + | 
| +void ScalarMult(const Point& in, const uint8* scalar, Point* out) { | 
| +  ::ScalarMult(out, in, scalar, 28); | 
| +} | 
| + | 
| +// kBasePoint is the base point (generator) of the elliptic curve group. | 
| +static const Point kBasePoint = { | 
| +  {22813985, 52956513, 34677300, 203240812, | 
| +   12143107, 133374265, 225162431, 191946955}, | 
| +  {83918388, 223877528, 122119236, 123340192, | 
| +   266784067, 263504429, 146143011, 198407736}, | 
| +  {1, 0, 0, 0, 0, 0, 0, 0}, | 
| +}; | 
| + | 
| +void ScalarBaseMult(const uint8* scalar, Point* out) { | 
| +  ::ScalarMult(out, kBasePoint, scalar, 28); | 
| +} | 
| + | 
| +void Add(const Point& a, const Point& b, Point* out) { | 
| +  AddJacobian(out, a, b); | 
| +} | 
| + | 
| +void Negate(const Point& in, Point* out) { | 
| +  // Guide to elliptic curve cryptography, page 89 suggests that (X : X+Y : Z) | 
| +  // is the negative in Jacobian coordinates, but it doesn't actually appear to | 
| +  // be true in testing so this performs the negation in affine coordinates. | 
| +  FieldElement zinv, zinv_sq, y; | 
| +  Invert(&zinv, in.z); | 
| +  Square(&zinv_sq, zinv); | 
| +  Mul(&out->x, in.x, zinv_sq); | 
| +  Mul(&zinv_sq, zinv_sq, zinv); | 
| +  Mul(&y, in.y, zinv_sq); | 
| + | 
| +  Subtract(&out->y, kP, y); | 
| +  Reduce(&out->y); | 
| + | 
| +  memset(&out->z, 0, sizeof(out->z)); | 
| +  out->z[0] = 1; | 
| +} | 
| + | 
| +}  // namespace p224 | 
| + | 
| +}  // namespace crypto | 
|  |