Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(614)

Unified Diff: conformance/more/performance/bandwidth.html

Issue 8342021: Add webgl conformance tests r15841. (Closed) Base URL: svn://chrome-svn/chrome/trunk/deps/third_party/webgl/sdk/tests/
Patch Set: Created 9 years, 2 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « conformance/more/performance/CPUvsGPU.html ('k') | conformance/more/performance/jsGCPause.html » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: conformance/more/performance/bandwidth.html
===================================================================
--- conformance/more/performance/bandwidth.html (revision 0)
+++ conformance/more/performance/bandwidth.html (revision 0)
@@ -0,0 +1,238 @@
+<!DOCTYPE html>
+<html><head>
+<meta charset="utf-8">
+<!--
+Tests for the OpenGL ES 2.0 HTML Canvas context
+
+Copyright (C) 2011 Ilmari Heikkinen <ilmari.heikkinen@gmail.com>
+
+Permission is hereby granted, free of charge, to any person
+obtaining a copy of this software and associated documentation
+files (the "Software"), to deal in the Software without
+restriction, including without limitation the rights to use,
+copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the
+Software is furnished to do so, subject to the following
+conditions:
+
+The above copyright notice and this permission notice shall be
+included in all copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
+OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
+HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
+WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
+OTHER DEALINGS IN THE SOFTWARE.
+
+-->
+
+<link rel="stylesheet" type="text/css" href="../unit.css" />
+<script type="application/x-javascript" src="../unit.js"></script>
+<script type="application/x-javascript" src="../util.js"></script>
+<script type="application/x-javascript">
+
+Tests.autorun = false;
+Tests.message = "This might take a second or two. Take the upload numbers with a dose of salt, as there's no drawing code using the data.";
+
+Tests.startUnit = function () {
+ var canvas = document.getElementById('gl');
+ var gl = canvas.getContext(GL_CONTEXT_ID);
+ return [gl];
+}
+
+Tests.testTexImage2D = function(gl) {
+ var tex = gl.createTexture();
+ var texArr = new Array(256*256*4);
+ var bufData = new Array(256*256*4);
+ for (var i=0; i<texArr.length; i++) texArr[i] = 0;
+ for (var i=0; i<bufData.length; i++) bufData[i] = 0.5;
+ gl.bindTexture(gl.TEXTURE_2D, tex);
+ time("texImage2D", function() {
+ for (var i=0; i<100; i++)
+ gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, 256, 256, 0, gl.RGBA, gl.UNSIGNED_BYTE, texArr);
+ });
+ time("texImage2D", function() {
+ for (var i=0; i<100; i++)
+ gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, 256, 256, 0, gl.RGBA, gl.UNSIGNED_BYTE, texArr);
+ });
+ time("texSubImage2D", function() {
+ for (var i=0; i<100; i++)
+ gl.texSubImage2D(gl.TEXTURE_2D, 0, 0, 0, 256, 256, gl.RGBA, gl.UNSIGNED_BYTE, texArr);
+ });
+ var img = document.getElementById('logo');
+ time("texImage2DHTML", function() {
+ for (var i=0; i<100; i++)
+ gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, gl.RGBA, gl.UNSIGNED_BYTE, img);
+ });
+ time("texSubImage2DHTML", function() {
+ for (var i=0; i<100; i++)
+ gl.texSubImage2D(gl.TEXTURE_2D, 0, 0, 0, gl.RGBA, gl.UNSIGNED_BYTE, img);
+ });
+ var bufs = [gl.createBuffer(), gl.createBuffer()];
+ var buf = bufs[0], buf2 = bufs[1];
+ gl.bindBuffer(gl.ARRAY_BUFFER, buf);
+ var bufArr = new Float32Array(bufData);
+ time("bufferDataNoChange", function() {
+ for (var i=0; i<100; i++)
+ gl.bufferData(gl.ARRAY_BUFFER, bufArr, gl.STATIC_DRAW);
+ });
+ time("bufferSubDataNoChange", function() {
+ for (var i=0; i<100; i++)
+ gl.bufferSubData(gl.ARRAY_BUFFER, 0, bufArr);
+ });
+ time("bufferData", function() {
+ var bufArr = new Float32Array(bufData);
+ for (var i=0; i<25; i++)
+ gl.bufferData(gl.ARRAY_BUFFER, bufArr, gl.STATIC_DRAW);
+ });
+ time("bufferSubData", function() {
+ var bufArr = new Float32Array(bufData);
+ for (var i=0; i<25; i++)
+ gl.bufferSubData(gl.ARRAY_BUFFER, 0, bufArr);
+ });
+ var sh = new Shader(gl, 'vert-v', 'frag-v');
+ gl.disable(gl.DEPTH_TEST);
+ sh.use();
+ var v = sh.attrib('Vertex');
+ for (var i=0; i<16; i++)
+ gl.disableVertexAttribArray(i);
+ gl.enableVertexAttribArray(v);
+ gl.vertexAttribPointer(v, 4, gl.FLOAT, false, 0, 0);
+ time("verticeDraw", function() {
+ for (var i=0; i<100; i++)
+ gl.drawArrays(gl.TRIANGLES, 0, 256*256);
+ gl.readPixels(0,0,1,1,gl.RGBA, gl.UNSIGNED_BYTE);
+ });
+ gl.bindBuffer(gl.ARRAY_BUFFER, buf2);
+ gl.bufferData(gl.ARRAY_BUFFER, bufArr, gl.STATIC_DRAW);
+ time("verticeDrawC", function() {
+ for (var i=0; i<100; i++) {
+ gl.bindBuffer(gl.ARRAY_BUFFER, (i % 2 == 0) ? buf : buf2);
+ gl.drawArrays(gl.TRIANGLES, 0, 256*256);
+ }
+ gl.readPixels(0,0,1,1,gl.RGBA, gl.UNSIGNED_BYTE);
+ });
+ // Drawing arrays with vertexAttribPointer seems to have been removed from WebGL.
+/* gl.bindBuffer(gl.ARRAY_BUFFER, null);
+ gl.vertexAttribPointer(v, 4, gl.FLOAT, false, 0, bufArr);
+ time("verticeDrawVA", function() {
+ for (var i=0; i<100; i++)
+ gl.drawArrays(gl.TRIANGLES, 0, 256*256);
+ gl.readPixels(0,0,1,1,gl.RGBA, gl.UNSIGNED_BYTE);
+ });
+ time("verticeDrawVAC", function() {
+ for (var i=0; i<100; i++) {
+ gl.vertexAttribPointer(v, 4, gl.FLOAT, false, 0, bufArr);
+ gl.drawArrays(gl.TRIANGLES, 0, 256*256);
+ }
+ gl.readPixels(0,0,1,1,gl.RGBA, gl.UNSIGNED_BYTE);
+ });*/
+ sh.destroy();
+ sh = new Filter(gl, 'vert-t', 'frag-t');
+ sh.apply();
+ time("textureDraw", function() {
+ for (var i=0; i<1000; i++)
+ gl.drawArrays(gl.TRIANGLES, 0, 6);
+ gl.readPixels(0,0,1,1,gl.RGBA, gl.UNSIGNED_BYTE);
+ });
+ sh.destroy();
+ time("readPixels", function() {
+ for (var i=0; i<100; i++)
+ gl.readPixels(0, 0, 256, 256, gl.RGBA, gl.UNSIGNED_BYTE);
+ });
+ time("getImageData", function() {
+ for (var i=0; i<100; i++)
+ gl.getImageData(0, 0, 256, 256);
+ });
+ gl.bindTexture(gl.TEXTURE_2D, null);
+ gl.bindBuffer(gl.ARRAY_BUFFER, null);
+ bufs.forEach(function(buf){ gl.deleteBuffer(buf) });
+ gl.deleteTexture(tex);
+}
+
+
+Tests.endUnit = function(gl) {
+}
+
+</script>
+<script id="vert-v" type="x-shader/x-vertex">
+
+ attribute vec4 Vertex;
+ void main()
+ {
+ gl_Position = Vertex;
+ }
+</script>
+<script id="frag-v" type="x-shader/x-fragment">
+
+ precision mediump float;
+
+ void main()
+ {
+ gl_FragColor = vec4(1.0, 0.0, 0.0, 1.0);
+ }
+</script>
+<script id="vert-t" type="x-shader/x-vertex">
+
+
+ attribute vec3 Vertex;
+ attribute vec2 Tex;
+ varying vec2 texCoord0;
+ void main()
+ {
+ gl_Position = vec4(Vertex, 1.0);
+ texCoord0 = Tex;
+ }
+</script>
+<script id="frag-t" type="x-shader/x-fragment">
+
+ precision mediump float;
+
+ uniform sampler2D Texture;
+
+ varying vec2 texCoord0;
+ void main()
+ {
+ gl_FragColor = texture2D(Texture, texCoord0);
+ }
+</script>
+
+<style>canvas{ position:absolute; }
+img{ display:none; }</style>
+</head><body>
+<h3>100x 256x256x4 texture upload with texImage2D (26.2MB total)</h3>
+<p id="texImage2D"></p>
+<h3>100x 256x256x4 texture upload with texSubImage2D (26.2MB total)</h3>
+<p id="texSubImage2D"></p>
+<h3>100x 256x256x4 texture upload with texImage2DHTML (26.2MB total)</h3>
+<p id="texImage2DHTML"></p>
+<h3>100x 256x256x4 texture upload with texSubImage2DHTML (26.2MB total)</h3>
+<p id="texSubImage2DHTML"></p>
+<h3>100x 256x256x4 readPixels (26.2MB total)</h3>
+<p id="readPixels"></p>
+<h3>100x 256x256x4 getImageData (26.2MB total)</h3>
+<p id="getImageData"></p>
+<h3>25x 256x256x4 float bufferData (6.6MB total)</h3>
+<p id="bufferData"></p>
+<h3>25x 256x256x4 float bufferSubData (6.6MB total)</h3>
+<p id="bufferSubData"></p>
+<h3>100x 256x256x4 float bufferData, reuse Float32Array (26.2MB total)</h3>
+<p id="bufferDataNoChange"></p>
+<h3>100x 256x256x4 float bufferSubData, reuse Float32Array (26.2MB total)</h3>
+<p id="bufferSubDataNoChange"></p>
+<h3>100x 256x256 vert VBO draw</h3>
+<p id="verticeDraw"></p>
+<h3>100x 256x256 vert VBO draw, change VBO after each draw</h3>
+<p id="verticeDrawC"></p>
+<!--<h3>100x 256x256 vert vertex array draw</h3>
+<p id="verticeDrawVA"></p>
+<h3>100x 256x256 vert vertex array draw, change array after each draw</h3>
+<p id="verticeDrawVAC"></p>-->
+<h3>1000x 256x256 texture draw</h3>
+<p id="textureDraw"></p>
+<canvas id="gl" width="256" height="256"></canvas>
+<img id="logo" src="" width="256" height="256">
+</body></html>
Property changes on: conformance/more/performance/bandwidth.html
___________________________________________________________________
Added: svn:eol-style
+ LF
« no previous file with comments | « conformance/more/performance/CPUvsGPU.html ('k') | conformance/more/performance/jsGCPause.html » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698