| Index: third_party/freetype/src/base/ftbbox.c
|
| diff --git a/core/src/fxge/fx_freetype/fxft2.5.01/src/base/ftbbox.c b/third_party/freetype/src/base/ftbbox.c
|
| similarity index 63%
|
| rename from core/src/fxge/fx_freetype/fxft2.5.01/src/base/ftbbox.c
|
| rename to third_party/freetype/src/base/ftbbox.c
|
| index a5862c5b91c519e654f4b0ae7c439841a5c6bd6f..c775d5c8cf0f7133db97fd35ebda16373b41fb1d 100644
|
| --- a/core/src/fxge/fx_freetype/fxft2.5.01/src/base/ftbbox.c
|
| +++ b/third_party/freetype/src/base/ftbbox.c
|
| @@ -4,7 +4,7 @@
|
| /* */
|
| /* FreeType bbox computation (body). */
|
| /* */
|
| -/* Copyright 1996-2002, 2004, 2006, 2010, 2013 by */
|
| +/* Copyright 1996-2002, 2004, 2006, 2010, 2013, 2014 by */
|
| /* David Turner, Robert Wilhelm, and Werner Lemberg. */
|
| /* */
|
| /* This file is part of the FreeType project, and may only be used */
|
| @@ -24,14 +24,14 @@
|
| /*************************************************************************/
|
|
|
|
|
| -#include "../../include/ft2build.h"
|
| -#include "../../include/freetype/internal/ftdebug.h"
|
| +#include <ft2build.h>
|
| +#include FT_INTERNAL_DEBUG_H
|
|
|
| -#include "../../include/freetype/ftbbox.h"
|
| -#include "../../include/freetype/ftimage.h"
|
| -#include "../../include/freetype/ftoutln.h"
|
| -#include "../../include/freetype/internal/ftcalc.h"
|
| -#include "../../include/freetype/internal/ftobjs.h"
|
| +#include FT_BBOX_H
|
| +#include FT_IMAGE_H
|
| +#include FT_OUTLINE_H
|
| +#include FT_INTERNAL_CALC_H
|
| +#include FT_INTERNAL_OBJECTS_H
|
|
|
|
|
| typedef struct TBBox_Rec_
|
| @@ -42,16 +42,35 @@
|
| } TBBox_Rec;
|
|
|
|
|
| +#define FT_UPDATE_BBOX(p, bbox) \
|
| + FT_BEGIN_STMNT \
|
| + if ( p->x < bbox.xMin ) \
|
| + bbox.xMin = p->x; \
|
| + if ( p->x > bbox.xMax ) \
|
| + bbox.xMax = p->x; \
|
| + if ( p->y < bbox.yMin ) \
|
| + bbox.yMin = p->y; \
|
| + if ( p->y > bbox.yMax ) \
|
| + bbox.yMax = p->y; \
|
| + FT_END_STMNT
|
| +
|
| +#define CHECK_X( p, bbox ) \
|
| + ( p->x < bbox.xMin || p->x > bbox.xMax )
|
| +
|
| +#define CHECK_Y( p, bbox ) \
|
| + ( p->y < bbox.yMin || p->y > bbox.yMax )
|
| +
|
| +
|
| /*************************************************************************/
|
| /* */
|
| /* <Function> */
|
| /* BBox_Move_To */
|
| /* */
|
| /* <Description> */
|
| - /* This function is used as a `move_to' and `line_to' emitter during */
|
| + /* This function is used as a `move_to' emitter during */
|
| /* FT_Outline_Decompose(). It simply records the destination point */
|
| - /* in `user->last'; no further computations are necessary since we */
|
| - /* use the cbox as the starting bbox which must be refined. */
|
| + /* in `user->last'. We also update bbox in case contour starts with */
|
| + /* an implicit `on' point. */
|
| /* */
|
| /* <Input> */
|
| /* to :: A pointer to the destination vector. */
|
| @@ -66,17 +85,42 @@
|
| BBox_Move_To( FT_Vector* to,
|
| TBBox_Rec* user )
|
| {
|
| + FT_UPDATE_BBOX( to, user->bbox );
|
| +
|
| user->last = *to;
|
|
|
| return 0;
|
| }
|
|
|
|
|
| -#define CHECK_X( p, bbox ) \
|
| - ( p->x < bbox.xMin || p->x > bbox.xMax )
|
| + /*************************************************************************/
|
| + /* */
|
| + /* <Function> */
|
| + /* BBox_Line_To */
|
| + /* */
|
| + /* <Description> */
|
| + /* This function is used as a `line_to' emitter during */
|
| + /* FT_Outline_Decompose(). It simply records the destination point */
|
| + /* in `user->last'; no further computations are necessary because */
|
| + /* bbox already contains both explicit ends of the line segment. */
|
| + /* */
|
| + /* <Input> */
|
| + /* to :: A pointer to the destination vector. */
|
| + /* */
|
| + /* <InOut> */
|
| + /* user :: A pointer to the current walk context. */
|
| + /* */
|
| + /* <Return> */
|
| + /* Always 0. Needed for the interface only. */
|
| + /* */
|
| + static int
|
| + BBox_Line_To( FT_Vector* to,
|
| + TBBox_Rec* user )
|
| + {
|
| + user->last = *to;
|
|
|
| -#define CHECK_Y( p, bbox ) \
|
| - ( p->y < bbox.yMin || p->y > bbox.yMax )
|
| + return 0;
|
| + }
|
|
|
|
|
| /*************************************************************************/
|
| @@ -85,7 +129,7 @@
|
| /* BBox_Conic_Check */
|
| /* */
|
| /* <Description> */
|
| - /* Finds the extrema of a 1-dimensional conic Bezier curve and update */
|
| + /* Find the extrema of a 1-dimensional conic Bezier curve and update */
|
| /* a bounding range. This version uses direct computation, as it */
|
| /* doesn't need square roots. */
|
| /* */
|
| @@ -108,30 +152,19 @@
|
| FT_Pos* min,
|
| FT_Pos* max )
|
| {
|
| - if ( y1 <= y3 && y2 == y1 ) /* flat arc */
|
| - goto Suite;
|
| -
|
| - if ( y1 < y3 )
|
| - {
|
| - if ( y2 >= y1 && y2 <= y3 ) /* ascending arc */
|
| - goto Suite;
|
| - }
|
| - else
|
| - {
|
| - if ( y2 >= y3 && y2 <= y1 ) /* descending arc */
|
| - {
|
| - y2 = y1;
|
| - y1 = y3;
|
| - y3 = y2;
|
| - goto Suite;
|
| - }
|
| - }
|
| -
|
| - y1 = y3 = y1 - FT_MulDiv( y2 - y1, y2 - y1, y1 - 2*y2 + y3 );
|
| -
|
| - Suite:
|
| - if ( y1 < *min ) *min = y1;
|
| - if ( y3 > *max ) *max = y3;
|
| + /* This function is only called when a control off-point is outside */
|
| + /* the bbox that contains all on-points. It finds a local extremum */
|
| + /* within the segment, equal to (y1*y3 - y2*y2)/(y1 - 2*y2 + y3). */
|
| + /* Or, offsetting from y2, we get */
|
| +
|
| + y1 -= y2;
|
| + y3 -= y2;
|
| + y2 += FT_MulDiv( y1, y3, y1 + y3 );
|
| +
|
| + if ( y2 < *min )
|
| + *min = y2;
|
| + if ( y2 > *max )
|
| + *max = y2;
|
| }
|
|
|
|
|
| @@ -166,8 +199,8 @@
|
| FT_Vector* to,
|
| TBBox_Rec* user )
|
| {
|
| - /* we don't need to check `to' since it is always an `on' point, thus */
|
| - /* within the bbox */
|
| + /* in case `to' is implicit and not included in bbox yet */
|
| + FT_UPDATE_BBOX( to, user->bbox );
|
|
|
| if ( CHECK_X( control, user->bbox ) )
|
| BBox_Conic_Check( user->last.x,
|
| @@ -195,9 +228,9 @@
|
| /* BBox_Cubic_Check */
|
| /* */
|
| /* <Description> */
|
| - /* Finds the extrema of a 1-dimensional cubic Bezier curve and */
|
| - /* updates a bounding range. This version uses splitting because we */
|
| - /* don't want to use square roots and extra accuracy. */
|
| + /* Find the extrema of a 1-dimensional cubic Bezier curve and */
|
| + /* update a bounding range. This version uses iterative splitting */
|
| + /* because it is faster than the exact solution with square roots. */
|
| /* */
|
| /* <Input> */
|
| /* p1 :: The start coordinate. */
|
| @@ -213,28 +246,49 @@
|
| /* */
|
| /* max :: The address of the current maximum. */
|
| /* */
|
| -
|
| -#if 0
|
| -
|
| - static void
|
| - BBox_Cubic_Check( FT_Pos p1,
|
| - FT_Pos p2,
|
| - FT_Pos p3,
|
| - FT_Pos p4,
|
| - FT_Pos* min,
|
| - FT_Pos* max )
|
| + static FT_Pos
|
| + cubic_peak( FT_Pos q1,
|
| + FT_Pos q2,
|
| + FT_Pos q3,
|
| + FT_Pos q4 )
|
| {
|
| - FT_Pos q1, q2, q3, q4;
|
| -
|
| -
|
| - q1 = p1;
|
| - q2 = p2;
|
| - q3 = p3;
|
| - q4 = p4;
|
| + FT_Pos peak = 0;
|
| + FT_Int shift;
|
| +
|
| + /* This function finds a peak of a cubic segment if it is above 0 */
|
| + /* using iterative bisection of the segment, or returns 0. */
|
| + /* The fixed-point arithmetic of bisection is inherently stable */
|
| + /* but may loose accuracy in the two lowest bits. To compensate, */
|
| + /* we upscale the segment if there is room. Large values may need */
|
| + /* to be downscaled to avoid overflows during bisection. */
|
| + /* It is called with either q2 or q3 positive, which is necessary */
|
| + /* for the peak to exist and avoids undefined FT_MSB. */
|
| +
|
| + shift = 27 -
|
| + FT_MSB( FT_ABS( q1 ) | FT_ABS( q2 ) | FT_ABS( q3 ) | FT_ABS( q4 ) );
|
| +
|
| + if ( shift > 0 )
|
| + {
|
| + /* upscaling too much just wastes time */
|
| + if ( shift > 2 )
|
| + shift = 2;
|
| +
|
| + q1 <<= shift;
|
| + q2 <<= shift;
|
| + q3 <<= shift;
|
| + q4 <<= shift;
|
| + }
|
| + else
|
| + {
|
| + q1 >>= -shift;
|
| + q2 >>= -shift;
|
| + q3 >>= -shift;
|
| + q4 >>= -shift;
|
| + }
|
|
|
| - /* for a conic segment to possibly reach new maximum */
|
| - /* one of its off-points must be above the current value */
|
| - while ( q2 > *max || q3 > *max )
|
| + /* for a peak to exist above 0, the cubic segment must have */
|
| + /* at least one of its control off-points above 0. */
|
| + while ( q2 > 0 || q3 > 0 )
|
| {
|
| /* determine which half contains the maximum and split */
|
| if ( q1 + q2 > q3 + q4 ) /* first half */
|
| @@ -260,232 +314,49 @@
|
| q3 = q3 / 2;
|
| }
|
|
|
| - /* check if either end reached the maximum */
|
| + /* check whether either end reached the maximum */
|
| if ( q1 == q2 && q1 >= q3 )
|
| {
|
| - *max = q1;
|
| + peak = q1;
|
| break;
|
| }
|
| if ( q3 == q4 && q2 <= q4 )
|
| {
|
| - *max = q4;
|
| - break;
|
| - }
|
| - }
|
| -
|
| - q1 = p1;
|
| - q2 = p2;
|
| - q3 = p3;
|
| - q4 = p4;
|
| -
|
| - /* for a conic segment to possibly reach new minimum */
|
| - /* one of its off-points must be below the current value */
|
| - while ( q2 < *min || q3 < *min )
|
| - {
|
| - /* determine which half contains the minimum and split */
|
| - if ( q1 + q2 < q3 + q4 ) /* first half */
|
| - {
|
| - q4 = q4 + q3;
|
| - q3 = q3 + q2;
|
| - q2 = q2 + q1;
|
| - q4 = q4 + q3;
|
| - q3 = q3 + q2;
|
| - q4 = ( q4 + q3 ) / 8;
|
| - q3 = q3 / 4;
|
| - q2 = q2 / 2;
|
| - }
|
| - else /* second half */
|
| - {
|
| - q1 = q1 + q2;
|
| - q2 = q2 + q3;
|
| - q3 = q3 + q4;
|
| - q1 = q1 + q2;
|
| - q2 = q2 + q3;
|
| - q1 = ( q1 + q2 ) / 8;
|
| - q2 = q2 / 4;
|
| - q3 = q3 / 2;
|
| - }
|
| -
|
| - /* check if either end reached the minimum */
|
| - if ( q1 == q2 && q1 <= q3 )
|
| - {
|
| - *min = q1;
|
| - break;
|
| - }
|
| - if ( q3 == q4 && q2 >= q4 )
|
| - {
|
| - *min = q4;
|
| + peak = q4;
|
| break;
|
| }
|
| }
|
| - }
|
| -
|
| -#else
|
|
|
| - static void
|
| - test_cubic_extrema( FT_Pos y1,
|
| - FT_Pos y2,
|
| - FT_Pos y3,
|
| - FT_Pos y4,
|
| - FT_Fixed u,
|
| - FT_Pos* min,
|
| - FT_Pos* max )
|
| - {
|
| - /* FT_Pos a = y4 - 3*y3 + 3*y2 - y1; */
|
| - FT_Pos b = y3 - 2*y2 + y1;
|
| - FT_Pos c = y2 - y1;
|
| - FT_Pos d = y1;
|
| - FT_Pos y;
|
| - FT_Fixed uu;
|
| -
|
| - FT_UNUSED ( y4 );
|
| -
|
| -
|
| - /* The polynomial is */
|
| - /* */
|
| - /* P(x) = a*x^3 + 3b*x^2 + 3c*x + d , */
|
| - /* */
|
| - /* dP/dx = 3a*x^2 + 6b*x + 3c . */
|
| - /* */
|
| - /* However, we also have */
|
| - /* */
|
| - /* dP/dx(u) = 0 , */
|
| - /* */
|
| - /* which implies by subtraction that */
|
| - /* */
|
| - /* P(u) = b*u^2 + 2c*u + d . */
|
| -
|
| - if ( u > 0 && u < 0x10000L )
|
| - {
|
| - uu = FT_MulFix( u, u );
|
| - y = d + FT_MulFix( c, 2*u ) + FT_MulFix( b, uu );
|
| + if ( shift > 0 )
|
| + peak >>= shift;
|
| + else
|
| + peak <<= -shift;
|
|
|
| - if ( y < *min ) *min = y;
|
| - if ( y > *max ) *max = y;
|
| - }
|
| + return peak;
|
| }
|
|
|
|
|
| static void
|
| - BBox_Cubic_Check( FT_Pos y1,
|
| - FT_Pos y2,
|
| - FT_Pos y3,
|
| - FT_Pos y4,
|
| + BBox_Cubic_Check( FT_Pos p1,
|
| + FT_Pos p2,
|
| + FT_Pos p3,
|
| + FT_Pos p4,
|
| FT_Pos* min,
|
| FT_Pos* max )
|
| {
|
| - /* always compare first and last points */
|
| - if ( y1 < *min ) *min = y1;
|
| - else if ( y1 > *max ) *max = y1;
|
| + /* This function is only called when a control off-point is outside */
|
| + /* the bbox that contains all on-points. So at least one of the */
|
| + /* conditions below holds and cubic_peak is called with at least one */
|
| + /* non-zero argument. */
|
|
|
| - if ( y4 < *min ) *min = y4;
|
| - else if ( y4 > *max ) *max = y4;
|
| + if ( p2 > *max || p3 > *max )
|
| + *max += cubic_peak( p1 - *max, p2 - *max, p3 - *max, p4 - *max );
|
|
|
| - /* now, try to see if there are split points here */
|
| - if ( y1 <= y4 )
|
| - {
|
| - /* flat or ascending arc test */
|
| - if ( y1 <= y2 && y2 <= y4 && y1 <= y3 && y3 <= y4 )
|
| - return;
|
| - }
|
| - else /* y1 > y4 */
|
| - {
|
| - /* descending arc test */
|
| - if ( y1 >= y2 && y2 >= y4 && y1 >= y3 && y3 >= y4 )
|
| - return;
|
| - }
|
| -
|
| - /* There are some split points. Find them. */
|
| - /* We already made sure that a, b, and c below cannot be all zero. */
|
| - {
|
| - FT_Pos a = y4 - 3*y3 + 3*y2 - y1;
|
| - FT_Pos b = y3 - 2*y2 + y1;
|
| - FT_Pos c = y2 - y1;
|
| - FT_Pos d;
|
| - FT_Fixed t;
|
| - FT_Int shift;
|
| -
|
| -
|
| - /* We need to solve `ax^2+2bx+c' here, without floating points! */
|
| - /* The trick is to normalize to a different representation in order */
|
| - /* to use our 16.16 fixed-point routines. */
|
| - /* */
|
| - /* We compute FT_MulFix(b,b) and FT_MulFix(a,c) after normalization. */
|
| - /* These values must fit into a single 16.16 value. */
|
| - /* */
|
| - /* We normalize a, b, and c to `8.16' fixed-point values to ensure */
|
| - /* that their product is held in a `16.16' value including the sign. */
|
| - /* Necessarily, we need to shift `a', `b', and `c' so that the most */
|
| - /* significant bit of their absolute values is at position 22. */
|
| - /* */
|
| - /* This also means that we are using 23 bits of precision to compute */
|
| - /* the zeros, independently of the range of the original polynomial */
|
| - /* coefficients. */
|
| - /* */
|
| - /* This algorithm should ensure reasonably accurate values for the */
|
| - /* zeros. Note that they are only expressed with 16 bits when */
|
| - /* computing the extrema (the zeros need to be in 0..1 exclusive */
|
| - /* to be considered part of the arc). */
|
| -
|
| - shift = FT_MSB( FT_ABS( a ) | FT_ABS( b ) | FT_ABS( c ) );
|
| -
|
| - if ( shift > 22 )
|
| - {
|
| - shift -= 22;
|
| -
|
| - /* this loses some bits of precision, but we use 23 of them */
|
| - /* for the computation anyway */
|
| - a >>= shift;
|
| - b >>= shift;
|
| - c >>= shift;
|
| - }
|
| - else
|
| - {
|
| - shift = 22 - shift;
|
| -
|
| - a <<= shift;
|
| - b <<= shift;
|
| - c <<= shift;
|
| - }
|
| -
|
| - /* handle a == 0 */
|
| - if ( a == 0 )
|
| - {
|
| - if ( b != 0 )
|
| - {
|
| - t = - FT_DivFix( c, b ) / 2;
|
| - test_cubic_extrema( y1, y2, y3, y4, t, min, max );
|
| - }
|
| - }
|
| - else
|
| - {
|
| - /* solve the equation now */
|
| - d = FT_MulFix( b, b ) - FT_MulFix( a, c );
|
| - if ( d < 0 )
|
| - return;
|
| -
|
| - if ( d == 0 )
|
| - {
|
| - /* there is a single split point at -b/a */
|
| - t = - FT_DivFix( b, a );
|
| - test_cubic_extrema( y1, y2, y3, y4, t, min, max );
|
| - }
|
| - else
|
| - {
|
| - /* there are two solutions; we need to filter them */
|
| - d = FT_SqrtFixed( (FT_Int32)d );
|
| - t = - FT_DivFix( b - d, a );
|
| - test_cubic_extrema( y1, y2, y3, y4, t, min, max );
|
| -
|
| - t = - FT_DivFix( b + d, a );
|
| - test_cubic_extrema( y1, y2, y3, y4, t, min, max );
|
| - }
|
| - }
|
| - }
|
| + /* now flip the signs to update the minimum */
|
| + if ( p2 < *min || p3 < *min )
|
| + *min -= cubic_peak( *min - p1, *min - p2, *min - p3, *min - p4 );
|
| }
|
|
|
| -#endif
|
| -
|
|
|
| /*************************************************************************/
|
| /* */
|
| @@ -521,8 +392,9 @@
|
| FT_Vector* to,
|
| TBBox_Rec* user )
|
| {
|
| - /* we don't need to check `to' since it is always an `on' point, thus */
|
| - /* within the bbox */
|
| + /* We don't need to check `to' since it is always an on-point, */
|
| + /* thus within the bbox. Only segments with an off-point outside */
|
| + /* the bbox can possibly reach new extreme values. */
|
|
|
| if ( CHECK_X( control1, user->bbox ) ||
|
| CHECK_X( control2, user->bbox ) )
|
| @@ -549,7 +421,7 @@
|
|
|
| FT_DEFINE_OUTLINE_FUNCS(bbox_interface,
|
| (FT_Outline_MoveTo_Func) BBox_Move_To,
|
| - (FT_Outline_LineTo_Func) BBox_Move_To,
|
| + (FT_Outline_LineTo_Func) BBox_Line_To,
|
| (FT_Outline_ConicTo_Func)BBox_Conic_To,
|
| (FT_Outline_CubicTo_Func)BBox_Cubic_To,
|
| 0, 0
|
| @@ -561,8 +433,8 @@ FT_DEFINE_OUTLINE_FUNCS(bbox_interface,
|
| FT_Outline_Get_BBox( FT_Outline* outline,
|
| FT_BBox *abbox )
|
| {
|
| - FT_BBox cbox;
|
| - FT_BBox bbox;
|
| + FT_BBox cbox = { 0x7FFFFFFF, 0x7FFFFFFF, -0x7FFFFFFF, -0x7FFFFFFF };
|
| + FT_BBox bbox = { 0x7FFFFFFF, 0x7FFFFFFF, -0x7FFFFFFF, -0x7FFFFFFF };
|
| FT_Vector* vec;
|
| FT_UShort n;
|
|
|
| @@ -586,32 +458,13 @@ FT_DEFINE_OUTLINE_FUNCS(bbox_interface,
|
| /* coincide, we exit immediately. */
|
|
|
| vec = outline->points;
|
| - bbox.xMin = bbox.xMax = cbox.xMin = cbox.xMax = vec->x;
|
| - bbox.yMin = bbox.yMax = cbox.yMin = cbox.yMax = vec->y;
|
| - vec++;
|
|
|
| - for ( n = 1; n < outline->n_points; n++ )
|
| + for ( n = 0; n < outline->n_points; n++ )
|
| {
|
| - FT_Pos x = vec->x;
|
| - FT_Pos y = vec->y;
|
| -
|
| -
|
| - /* update control box */
|
| - if ( x < cbox.xMin ) cbox.xMin = x;
|
| - if ( x > cbox.xMax ) cbox.xMax = x;
|
| -
|
| - if ( y < cbox.yMin ) cbox.yMin = y;
|
| - if ( y > cbox.yMax ) cbox.yMax = y;
|
| + FT_UPDATE_BBOX( vec, cbox);
|
|
|
| if ( FT_CURVE_TAG( outline->tags[n] ) == FT_CURVE_TAG_ON )
|
| - {
|
| - /* update bbox for `on' points only */
|
| - if ( x < bbox.xMin ) bbox.xMin = x;
|
| - if ( x > bbox.xMax ) bbox.xMax = x;
|
| -
|
| - if ( y < bbox.yMin ) bbox.yMin = y;
|
| - if ( y > bbox.yMax ) bbox.yMax = y;
|
| - }
|
| + FT_UPDATE_BBOX( vec, bbox);
|
|
|
| vec++;
|
| }
|
|
|