| Index: core/src/fxge/fx_freetype/fxft2.5.01/src/base/ftbbox.c
|
| diff --git a/core/src/fxge/fx_freetype/fxft2.5.01/src/base/ftbbox.c b/core/src/fxge/fx_freetype/fxft2.5.01/src/base/ftbbox.c
|
| deleted file mode 100644
|
| index a5862c5b91c519e654f4b0ae7c439841a5c6bd6f..0000000000000000000000000000000000000000
|
| --- a/core/src/fxge/fx_freetype/fxft2.5.01/src/base/ftbbox.c
|
| +++ /dev/null
|
| @@ -1,649 +0,0 @@
|
| -/***************************************************************************/
|
| -/* */
|
| -/* ftbbox.c */
|
| -/* */
|
| -/* FreeType bbox computation (body). */
|
| -/* */
|
| -/* Copyright 1996-2002, 2004, 2006, 2010, 2013 by */
|
| -/* David Turner, Robert Wilhelm, and Werner Lemberg. */
|
| -/* */
|
| -/* This file is part of the FreeType project, and may only be used */
|
| -/* modified and distributed under the terms of the FreeType project */
|
| -/* license, LICENSE.TXT. By continuing to use, modify, or distribute */
|
| -/* this file you indicate that you have read the license and */
|
| -/* understand and accept it fully. */
|
| -/* */
|
| -/***************************************************************************/
|
| -
|
| -
|
| - /*************************************************************************/
|
| - /* */
|
| - /* This component has a _single_ role: to compute exact outline bounding */
|
| - /* boxes. */
|
| - /* */
|
| - /*************************************************************************/
|
| -
|
| -
|
| -#include "../../include/ft2build.h"
|
| -#include "../../include/freetype/internal/ftdebug.h"
|
| -
|
| -#include "../../include/freetype/ftbbox.h"
|
| -#include "../../include/freetype/ftimage.h"
|
| -#include "../../include/freetype/ftoutln.h"
|
| -#include "../../include/freetype/internal/ftcalc.h"
|
| -#include "../../include/freetype/internal/ftobjs.h"
|
| -
|
| -
|
| - typedef struct TBBox_Rec_
|
| - {
|
| - FT_Vector last;
|
| - FT_BBox bbox;
|
| -
|
| - } TBBox_Rec;
|
| -
|
| -
|
| - /*************************************************************************/
|
| - /* */
|
| - /* <Function> */
|
| - /* BBox_Move_To */
|
| - /* */
|
| - /* <Description> */
|
| - /* This function is used as a `move_to' and `line_to' emitter during */
|
| - /* FT_Outline_Decompose(). It simply records the destination point */
|
| - /* in `user->last'; no further computations are necessary since we */
|
| - /* use the cbox as the starting bbox which must be refined. */
|
| - /* */
|
| - /* <Input> */
|
| - /* to :: A pointer to the destination vector. */
|
| - /* */
|
| - /* <InOut> */
|
| - /* user :: A pointer to the current walk context. */
|
| - /* */
|
| - /* <Return> */
|
| - /* Always 0. Needed for the interface only. */
|
| - /* */
|
| - static int
|
| - BBox_Move_To( FT_Vector* to,
|
| - TBBox_Rec* user )
|
| - {
|
| - user->last = *to;
|
| -
|
| - return 0;
|
| - }
|
| -
|
| -
|
| -#define CHECK_X( p, bbox ) \
|
| - ( p->x < bbox.xMin || p->x > bbox.xMax )
|
| -
|
| -#define CHECK_Y( p, bbox ) \
|
| - ( p->y < bbox.yMin || p->y > bbox.yMax )
|
| -
|
| -
|
| - /*************************************************************************/
|
| - /* */
|
| - /* <Function> */
|
| - /* BBox_Conic_Check */
|
| - /* */
|
| - /* <Description> */
|
| - /* Finds the extrema of a 1-dimensional conic Bezier curve and update */
|
| - /* a bounding range. This version uses direct computation, as it */
|
| - /* doesn't need square roots. */
|
| - /* */
|
| - /* <Input> */
|
| - /* y1 :: The start coordinate. */
|
| - /* */
|
| - /* y2 :: The coordinate of the control point. */
|
| - /* */
|
| - /* y3 :: The end coordinate. */
|
| - /* */
|
| - /* <InOut> */
|
| - /* min :: The address of the current minimum. */
|
| - /* */
|
| - /* max :: The address of the current maximum. */
|
| - /* */
|
| - static void
|
| - BBox_Conic_Check( FT_Pos y1,
|
| - FT_Pos y2,
|
| - FT_Pos y3,
|
| - FT_Pos* min,
|
| - FT_Pos* max )
|
| - {
|
| - if ( y1 <= y3 && y2 == y1 ) /* flat arc */
|
| - goto Suite;
|
| -
|
| - if ( y1 < y3 )
|
| - {
|
| - if ( y2 >= y1 && y2 <= y3 ) /* ascending arc */
|
| - goto Suite;
|
| - }
|
| - else
|
| - {
|
| - if ( y2 >= y3 && y2 <= y1 ) /* descending arc */
|
| - {
|
| - y2 = y1;
|
| - y1 = y3;
|
| - y3 = y2;
|
| - goto Suite;
|
| - }
|
| - }
|
| -
|
| - y1 = y3 = y1 - FT_MulDiv( y2 - y1, y2 - y1, y1 - 2*y2 + y3 );
|
| -
|
| - Suite:
|
| - if ( y1 < *min ) *min = y1;
|
| - if ( y3 > *max ) *max = y3;
|
| - }
|
| -
|
| -
|
| - /*************************************************************************/
|
| - /* */
|
| - /* <Function> */
|
| - /* BBox_Conic_To */
|
| - /* */
|
| - /* <Description> */
|
| - /* This function is used as a `conic_to' emitter during */
|
| - /* FT_Outline_Decompose(). It checks a conic Bezier curve with the */
|
| - /* current bounding box, and computes its extrema if necessary to */
|
| - /* update it. */
|
| - /* */
|
| - /* <Input> */
|
| - /* control :: A pointer to a control point. */
|
| - /* */
|
| - /* to :: A pointer to the destination vector. */
|
| - /* */
|
| - /* <InOut> */
|
| - /* user :: The address of the current walk context. */
|
| - /* */
|
| - /* <Return> */
|
| - /* Always 0. Needed for the interface only. */
|
| - /* */
|
| - /* <Note> */
|
| - /* In the case of a non-monotonous arc, we compute directly the */
|
| - /* extremum coordinates, as it is sufficiently fast. */
|
| - /* */
|
| - static int
|
| - BBox_Conic_To( FT_Vector* control,
|
| - FT_Vector* to,
|
| - TBBox_Rec* user )
|
| - {
|
| - /* we don't need to check `to' since it is always an `on' point, thus */
|
| - /* within the bbox */
|
| -
|
| - if ( CHECK_X( control, user->bbox ) )
|
| - BBox_Conic_Check( user->last.x,
|
| - control->x,
|
| - to->x,
|
| - &user->bbox.xMin,
|
| - &user->bbox.xMax );
|
| -
|
| - if ( CHECK_Y( control, user->bbox ) )
|
| - BBox_Conic_Check( user->last.y,
|
| - control->y,
|
| - to->y,
|
| - &user->bbox.yMin,
|
| - &user->bbox.yMax );
|
| -
|
| - user->last = *to;
|
| -
|
| - return 0;
|
| - }
|
| -
|
| -
|
| - /*************************************************************************/
|
| - /* */
|
| - /* <Function> */
|
| - /* BBox_Cubic_Check */
|
| - /* */
|
| - /* <Description> */
|
| - /* Finds the extrema of a 1-dimensional cubic Bezier curve and */
|
| - /* updates a bounding range. This version uses splitting because we */
|
| - /* don't want to use square roots and extra accuracy. */
|
| - /* */
|
| - /* <Input> */
|
| - /* p1 :: The start coordinate. */
|
| - /* */
|
| - /* p2 :: The coordinate of the first control point. */
|
| - /* */
|
| - /* p3 :: The coordinate of the second control point. */
|
| - /* */
|
| - /* p4 :: The end coordinate. */
|
| - /* */
|
| - /* <InOut> */
|
| - /* min :: The address of the current minimum. */
|
| - /* */
|
| - /* max :: The address of the current maximum. */
|
| - /* */
|
| -
|
| -#if 0
|
| -
|
| - static void
|
| - BBox_Cubic_Check( FT_Pos p1,
|
| - FT_Pos p2,
|
| - FT_Pos p3,
|
| - FT_Pos p4,
|
| - FT_Pos* min,
|
| - FT_Pos* max )
|
| - {
|
| - FT_Pos q1, q2, q3, q4;
|
| -
|
| -
|
| - q1 = p1;
|
| - q2 = p2;
|
| - q3 = p3;
|
| - q4 = p4;
|
| -
|
| - /* for a conic segment to possibly reach new maximum */
|
| - /* one of its off-points must be above the current value */
|
| - while ( q2 > *max || q3 > *max )
|
| - {
|
| - /* determine which half contains the maximum and split */
|
| - if ( q1 + q2 > q3 + q4 ) /* first half */
|
| - {
|
| - q4 = q4 + q3;
|
| - q3 = q3 + q2;
|
| - q2 = q2 + q1;
|
| - q4 = q4 + q3;
|
| - q3 = q3 + q2;
|
| - q4 = ( q4 + q3 ) / 8;
|
| - q3 = q3 / 4;
|
| - q2 = q2 / 2;
|
| - }
|
| - else /* second half */
|
| - {
|
| - q1 = q1 + q2;
|
| - q2 = q2 + q3;
|
| - q3 = q3 + q4;
|
| - q1 = q1 + q2;
|
| - q2 = q2 + q3;
|
| - q1 = ( q1 + q2 ) / 8;
|
| - q2 = q2 / 4;
|
| - q3 = q3 / 2;
|
| - }
|
| -
|
| - /* check if either end reached the maximum */
|
| - if ( q1 == q2 && q1 >= q3 )
|
| - {
|
| - *max = q1;
|
| - break;
|
| - }
|
| - if ( q3 == q4 && q2 <= q4 )
|
| - {
|
| - *max = q4;
|
| - break;
|
| - }
|
| - }
|
| -
|
| - q1 = p1;
|
| - q2 = p2;
|
| - q3 = p3;
|
| - q4 = p4;
|
| -
|
| - /* for a conic segment to possibly reach new minimum */
|
| - /* one of its off-points must be below the current value */
|
| - while ( q2 < *min || q3 < *min )
|
| - {
|
| - /* determine which half contains the minimum and split */
|
| - if ( q1 + q2 < q3 + q4 ) /* first half */
|
| - {
|
| - q4 = q4 + q3;
|
| - q3 = q3 + q2;
|
| - q2 = q2 + q1;
|
| - q4 = q4 + q3;
|
| - q3 = q3 + q2;
|
| - q4 = ( q4 + q3 ) / 8;
|
| - q3 = q3 / 4;
|
| - q2 = q2 / 2;
|
| - }
|
| - else /* second half */
|
| - {
|
| - q1 = q1 + q2;
|
| - q2 = q2 + q3;
|
| - q3 = q3 + q4;
|
| - q1 = q1 + q2;
|
| - q2 = q2 + q3;
|
| - q1 = ( q1 + q2 ) / 8;
|
| - q2 = q2 / 4;
|
| - q3 = q3 / 2;
|
| - }
|
| -
|
| - /* check if either end reached the minimum */
|
| - if ( q1 == q2 && q1 <= q3 )
|
| - {
|
| - *min = q1;
|
| - break;
|
| - }
|
| - if ( q3 == q4 && q2 >= q4 )
|
| - {
|
| - *min = q4;
|
| - break;
|
| - }
|
| - }
|
| - }
|
| -
|
| -#else
|
| -
|
| - static void
|
| - test_cubic_extrema( FT_Pos y1,
|
| - FT_Pos y2,
|
| - FT_Pos y3,
|
| - FT_Pos y4,
|
| - FT_Fixed u,
|
| - FT_Pos* min,
|
| - FT_Pos* max )
|
| - {
|
| - /* FT_Pos a = y4 - 3*y3 + 3*y2 - y1; */
|
| - FT_Pos b = y3 - 2*y2 + y1;
|
| - FT_Pos c = y2 - y1;
|
| - FT_Pos d = y1;
|
| - FT_Pos y;
|
| - FT_Fixed uu;
|
| -
|
| - FT_UNUSED ( y4 );
|
| -
|
| -
|
| - /* The polynomial is */
|
| - /* */
|
| - /* P(x) = a*x^3 + 3b*x^2 + 3c*x + d , */
|
| - /* */
|
| - /* dP/dx = 3a*x^2 + 6b*x + 3c . */
|
| - /* */
|
| - /* However, we also have */
|
| - /* */
|
| - /* dP/dx(u) = 0 , */
|
| - /* */
|
| - /* which implies by subtraction that */
|
| - /* */
|
| - /* P(u) = b*u^2 + 2c*u + d . */
|
| -
|
| - if ( u > 0 && u < 0x10000L )
|
| - {
|
| - uu = FT_MulFix( u, u );
|
| - y = d + FT_MulFix( c, 2*u ) + FT_MulFix( b, uu );
|
| -
|
| - if ( y < *min ) *min = y;
|
| - if ( y > *max ) *max = y;
|
| - }
|
| - }
|
| -
|
| -
|
| - static void
|
| - BBox_Cubic_Check( FT_Pos y1,
|
| - FT_Pos y2,
|
| - FT_Pos y3,
|
| - FT_Pos y4,
|
| - FT_Pos* min,
|
| - FT_Pos* max )
|
| - {
|
| - /* always compare first and last points */
|
| - if ( y1 < *min ) *min = y1;
|
| - else if ( y1 > *max ) *max = y1;
|
| -
|
| - if ( y4 < *min ) *min = y4;
|
| - else if ( y4 > *max ) *max = y4;
|
| -
|
| - /* now, try to see if there are split points here */
|
| - if ( y1 <= y4 )
|
| - {
|
| - /* flat or ascending arc test */
|
| - if ( y1 <= y2 && y2 <= y4 && y1 <= y3 && y3 <= y4 )
|
| - return;
|
| - }
|
| - else /* y1 > y4 */
|
| - {
|
| - /* descending arc test */
|
| - if ( y1 >= y2 && y2 >= y4 && y1 >= y3 && y3 >= y4 )
|
| - return;
|
| - }
|
| -
|
| - /* There are some split points. Find them. */
|
| - /* We already made sure that a, b, and c below cannot be all zero. */
|
| - {
|
| - FT_Pos a = y4 - 3*y3 + 3*y2 - y1;
|
| - FT_Pos b = y3 - 2*y2 + y1;
|
| - FT_Pos c = y2 - y1;
|
| - FT_Pos d;
|
| - FT_Fixed t;
|
| - FT_Int shift;
|
| -
|
| -
|
| - /* We need to solve `ax^2+2bx+c' here, without floating points! */
|
| - /* The trick is to normalize to a different representation in order */
|
| - /* to use our 16.16 fixed-point routines. */
|
| - /* */
|
| - /* We compute FT_MulFix(b,b) and FT_MulFix(a,c) after normalization. */
|
| - /* These values must fit into a single 16.16 value. */
|
| - /* */
|
| - /* We normalize a, b, and c to `8.16' fixed-point values to ensure */
|
| - /* that their product is held in a `16.16' value including the sign. */
|
| - /* Necessarily, we need to shift `a', `b', and `c' so that the most */
|
| - /* significant bit of their absolute values is at position 22. */
|
| - /* */
|
| - /* This also means that we are using 23 bits of precision to compute */
|
| - /* the zeros, independently of the range of the original polynomial */
|
| - /* coefficients. */
|
| - /* */
|
| - /* This algorithm should ensure reasonably accurate values for the */
|
| - /* zeros. Note that they are only expressed with 16 bits when */
|
| - /* computing the extrema (the zeros need to be in 0..1 exclusive */
|
| - /* to be considered part of the arc). */
|
| -
|
| - shift = FT_MSB( FT_ABS( a ) | FT_ABS( b ) | FT_ABS( c ) );
|
| -
|
| - if ( shift > 22 )
|
| - {
|
| - shift -= 22;
|
| -
|
| - /* this loses some bits of precision, but we use 23 of them */
|
| - /* for the computation anyway */
|
| - a >>= shift;
|
| - b >>= shift;
|
| - c >>= shift;
|
| - }
|
| - else
|
| - {
|
| - shift = 22 - shift;
|
| -
|
| - a <<= shift;
|
| - b <<= shift;
|
| - c <<= shift;
|
| - }
|
| -
|
| - /* handle a == 0 */
|
| - if ( a == 0 )
|
| - {
|
| - if ( b != 0 )
|
| - {
|
| - t = - FT_DivFix( c, b ) / 2;
|
| - test_cubic_extrema( y1, y2, y3, y4, t, min, max );
|
| - }
|
| - }
|
| - else
|
| - {
|
| - /* solve the equation now */
|
| - d = FT_MulFix( b, b ) - FT_MulFix( a, c );
|
| - if ( d < 0 )
|
| - return;
|
| -
|
| - if ( d == 0 )
|
| - {
|
| - /* there is a single split point at -b/a */
|
| - t = - FT_DivFix( b, a );
|
| - test_cubic_extrema( y1, y2, y3, y4, t, min, max );
|
| - }
|
| - else
|
| - {
|
| - /* there are two solutions; we need to filter them */
|
| - d = FT_SqrtFixed( (FT_Int32)d );
|
| - t = - FT_DivFix( b - d, a );
|
| - test_cubic_extrema( y1, y2, y3, y4, t, min, max );
|
| -
|
| - t = - FT_DivFix( b + d, a );
|
| - test_cubic_extrema( y1, y2, y3, y4, t, min, max );
|
| - }
|
| - }
|
| - }
|
| - }
|
| -
|
| -#endif
|
| -
|
| -
|
| - /*************************************************************************/
|
| - /* */
|
| - /* <Function> */
|
| - /* BBox_Cubic_To */
|
| - /* */
|
| - /* <Description> */
|
| - /* This function is used as a `cubic_to' emitter during */
|
| - /* FT_Outline_Decompose(). It checks a cubic Bezier curve with the */
|
| - /* current bounding box, and computes its extrema if necessary to */
|
| - /* update it. */
|
| - /* */
|
| - /* <Input> */
|
| - /* control1 :: A pointer to the first control point. */
|
| - /* */
|
| - /* control2 :: A pointer to the second control point. */
|
| - /* */
|
| - /* to :: A pointer to the destination vector. */
|
| - /* */
|
| - /* <InOut> */
|
| - /* user :: The address of the current walk context. */
|
| - /* */
|
| - /* <Return> */
|
| - /* Always 0. Needed for the interface only. */
|
| - /* */
|
| - /* <Note> */
|
| - /* In the case of a non-monotonous arc, we don't compute directly */
|
| - /* extremum coordinates, we subdivide instead. */
|
| - /* */
|
| - static int
|
| - BBox_Cubic_To( FT_Vector* control1,
|
| - FT_Vector* control2,
|
| - FT_Vector* to,
|
| - TBBox_Rec* user )
|
| - {
|
| - /* we don't need to check `to' since it is always an `on' point, thus */
|
| - /* within the bbox */
|
| -
|
| - if ( CHECK_X( control1, user->bbox ) ||
|
| - CHECK_X( control2, user->bbox ) )
|
| - BBox_Cubic_Check( user->last.x,
|
| - control1->x,
|
| - control2->x,
|
| - to->x,
|
| - &user->bbox.xMin,
|
| - &user->bbox.xMax );
|
| -
|
| - if ( CHECK_Y( control1, user->bbox ) ||
|
| - CHECK_Y( control2, user->bbox ) )
|
| - BBox_Cubic_Check( user->last.y,
|
| - control1->y,
|
| - control2->y,
|
| - to->y,
|
| - &user->bbox.yMin,
|
| - &user->bbox.yMax );
|
| -
|
| - user->last = *to;
|
| -
|
| - return 0;
|
| - }
|
| -
|
| -FT_DEFINE_OUTLINE_FUNCS(bbox_interface,
|
| - (FT_Outline_MoveTo_Func) BBox_Move_To,
|
| - (FT_Outline_LineTo_Func) BBox_Move_To,
|
| - (FT_Outline_ConicTo_Func)BBox_Conic_To,
|
| - (FT_Outline_CubicTo_Func)BBox_Cubic_To,
|
| - 0, 0
|
| - )
|
| -
|
| - /* documentation is in ftbbox.h */
|
| -
|
| - FT_EXPORT_DEF( FT_Error )
|
| - FT_Outline_Get_BBox( FT_Outline* outline,
|
| - FT_BBox *abbox )
|
| - {
|
| - FT_BBox cbox;
|
| - FT_BBox bbox;
|
| - FT_Vector* vec;
|
| - FT_UShort n;
|
| -
|
| -
|
| - if ( !abbox )
|
| - return FT_THROW( Invalid_Argument );
|
| -
|
| - if ( !outline )
|
| - return FT_THROW( Invalid_Outline );
|
| -
|
| - /* if outline is empty, return (0,0,0,0) */
|
| - if ( outline->n_points == 0 || outline->n_contours <= 0 )
|
| - {
|
| - abbox->xMin = abbox->xMax = 0;
|
| - abbox->yMin = abbox->yMax = 0;
|
| - return 0;
|
| - }
|
| -
|
| - /* We compute the control box as well as the bounding box of */
|
| - /* all `on' points in the outline. Then, if the two boxes */
|
| - /* coincide, we exit immediately. */
|
| -
|
| - vec = outline->points;
|
| - bbox.xMin = bbox.xMax = cbox.xMin = cbox.xMax = vec->x;
|
| - bbox.yMin = bbox.yMax = cbox.yMin = cbox.yMax = vec->y;
|
| - vec++;
|
| -
|
| - for ( n = 1; n < outline->n_points; n++ )
|
| - {
|
| - FT_Pos x = vec->x;
|
| - FT_Pos y = vec->y;
|
| -
|
| -
|
| - /* update control box */
|
| - if ( x < cbox.xMin ) cbox.xMin = x;
|
| - if ( x > cbox.xMax ) cbox.xMax = x;
|
| -
|
| - if ( y < cbox.yMin ) cbox.yMin = y;
|
| - if ( y > cbox.yMax ) cbox.yMax = y;
|
| -
|
| - if ( FT_CURVE_TAG( outline->tags[n] ) == FT_CURVE_TAG_ON )
|
| - {
|
| - /* update bbox for `on' points only */
|
| - if ( x < bbox.xMin ) bbox.xMin = x;
|
| - if ( x > bbox.xMax ) bbox.xMax = x;
|
| -
|
| - if ( y < bbox.yMin ) bbox.yMin = y;
|
| - if ( y > bbox.yMax ) bbox.yMax = y;
|
| - }
|
| -
|
| - vec++;
|
| - }
|
| -
|
| - /* test two boxes for equality */
|
| - if ( cbox.xMin < bbox.xMin || cbox.xMax > bbox.xMax ||
|
| - cbox.yMin < bbox.yMin || cbox.yMax > bbox.yMax )
|
| - {
|
| - /* the two boxes are different, now walk over the outline to */
|
| - /* get the Bezier arc extrema. */
|
| -
|
| - FT_Error error;
|
| - TBBox_Rec user;
|
| -
|
| -#ifdef FT_CONFIG_OPTION_PIC
|
| - FT_Outline_Funcs bbox_interface;
|
| - Init_Class_bbox_interface(&bbox_interface);
|
| -#endif
|
| -
|
| - user.bbox = bbox;
|
| -
|
| - error = FT_Outline_Decompose( outline, &bbox_interface, &user );
|
| - if ( error )
|
| - return error;
|
| -
|
| - *abbox = user.bbox;
|
| - }
|
| - else
|
| - *abbox = bbox;
|
| -
|
| - return FT_Err_Ok;
|
| - }
|
| -
|
| -
|
| -/* END */
|
|
|