| Index: core/src/fxge/fx_freetype/fxft2.5.01/src/raster/ftraster.c
|
| diff --git a/core/src/fxge/fx_freetype/fxft2.5.01/src/raster/ftraster.c b/core/src/fxge/fx_freetype/fxft2.5.01/src/raster/ftraster.c
|
| deleted file mode 100644
|
| index 264f6b09573de658b2767ffb2cc8673c6e589fb0..0000000000000000000000000000000000000000
|
| --- a/core/src/fxge/fx_freetype/fxft2.5.01/src/raster/ftraster.c
|
| +++ /dev/null
|
| @@ -1,3640 +0,0 @@
|
| -/***************************************************************************/
|
| -/* */
|
| -/* ftraster.c */
|
| -/* */
|
| -/* The FreeType glyph rasterizer (body). */
|
| -/* */
|
| -/* Copyright 1996-2003, 2005, 2007-2013 by */
|
| -/* David Turner, Robert Wilhelm, and Werner Lemberg. */
|
| -/* */
|
| -/* This file is part of the FreeType project, and may only be used, */
|
| -/* modified, and distributed under the terms of the FreeType project */
|
| -/* license, LICENSE.TXT. By continuing to use, modify, or distribute */
|
| -/* this file you indicate that you have read the license and */
|
| -/* understand and accept it fully. */
|
| -/* */
|
| -/***************************************************************************/
|
| -
|
| - /*************************************************************************/
|
| - /* */
|
| - /* This file can be compiled without the rest of the FreeType engine, by */
|
| - /* defining the _STANDALONE_ macro when compiling it. You also need to */
|
| - /* put the files `ftimage.h' and `ftmisc.h' into the $(incdir) */
|
| - /* directory. Typically, you should do something like */
|
| - /* */
|
| - /* - copy `src/raster/ftraster.c' (this file) to your current directory */
|
| - /* */
|
| - /* - copy `include/freetype/ftimage.h' and `src/raster/ftmisc.h' */
|
| - /* to your current directory */
|
| - /* */
|
| - /* - compile `ftraster' with the _STANDALONE_ macro defined, as in */
|
| - /* */
|
| - /* cc -c -D_STANDALONE_ ftraster.c */
|
| - /* */
|
| - /* The renderer can be initialized with a call to */
|
| - /* `ft_standard_raster.raster_new'; a bitmap can be generated */
|
| - /* with a call to `ft_standard_raster.raster_render'. */
|
| - /* */
|
| - /* See the comments and documentation in the file `ftimage.h' for more */
|
| - /* details on how the raster works. */
|
| - /* */
|
| - /*************************************************************************/
|
| -
|
| -
|
| - /*************************************************************************/
|
| - /* */
|
| - /* This is a rewrite of the FreeType 1.x scan-line converter */
|
| - /* */
|
| - /*************************************************************************/
|
| -
|
| -#ifdef _STANDALONE_
|
| -
|
| -#define FT_CONFIG_STANDARD_LIBRARY_H <stdlib.h>
|
| -
|
| -#include <string.h> /* for memset */
|
| -
|
| -#include "ftmisc.h"
|
| -#include "ftimage.h"
|
| -
|
| -#else /* !_STANDALONE_ */
|
| -
|
| -#include "../../include/ft2build.h"
|
| -#include "ftraster.h"
|
| -#include "../../include/freetype/internal/ftcalc.h" /* for FT_MulDiv and FT_MulDiv_No_Round */
|
| -
|
| -#include "rastpic.h"
|
| -
|
| -#endif /* !_STANDALONE_ */
|
| -
|
| -
|
| - /*************************************************************************/
|
| - /* */
|
| - /* A simple technical note on how the raster works */
|
| - /* ----------------------------------------------- */
|
| - /* */
|
| - /* Converting an outline into a bitmap is achieved in several steps: */
|
| - /* */
|
| - /* 1 - Decomposing the outline into successive `profiles'. Each */
|
| - /* profile is simply an array of scanline intersections on a given */
|
| - /* dimension. A profile's main attributes are */
|
| - /* */
|
| - /* o its scanline position boundaries, i.e. `Ymin' and `Ymax' */
|
| - /* */
|
| - /* o an array of intersection coordinates for each scanline */
|
| - /* between `Ymin' and `Ymax' */
|
| - /* */
|
| - /* o a direction, indicating whether it was built going `up' or */
|
| - /* `down', as this is very important for filling rules */
|
| - /* */
|
| - /* o its drop-out mode */
|
| - /* */
|
| - /* 2 - Sweeping the target map's scanlines in order to compute segment */
|
| - /* `spans' which are then filled. Additionally, this pass */
|
| - /* performs drop-out control. */
|
| - /* */
|
| - /* The outline data is parsed during step 1 only. The profiles are */
|
| - /* built from the bottom of the render pool, used as a stack. The */
|
| - /* following graphics shows the profile list under construction: */
|
| - /* */
|
| - /* __________________________________________________________ _ _ */
|
| - /* | | | | | */
|
| - /* | profile | coordinates for | profile | coordinates for |--> */
|
| - /* | 1 | profile 1 | 2 | profile 2 |--> */
|
| - /* |_________|_________________|_________|_________________|__ _ _ */
|
| - /* */
|
| - /* ^ ^ */
|
| - /* | | */
|
| - /* start of render pool top */
|
| - /* */
|
| - /* The top of the profile stack is kept in the `top' variable. */
|
| - /* */
|
| - /* As you can see, a profile record is pushed on top of the render */
|
| - /* pool, which is then followed by its coordinates/intersections. If */
|
| - /* a change of direction is detected in the outline, a new profile is */
|
| - /* generated until the end of the outline. */
|
| - /* */
|
| - /* Note that when all profiles have been generated, the function */
|
| - /* Finalize_Profile_Table() is used to record, for each profile, its */
|
| - /* bottom-most scanline as well as the scanline above its upmost */
|
| - /* boundary. These positions are called `y-turns' because they (sort */
|
| - /* of) correspond to local extrema. They are stored in a sorted list */
|
| - /* built from the top of the render pool as a downwards stack: */
|
| - /* */
|
| - /* _ _ _______________________________________ */
|
| - /* | | */
|
| - /* <--| sorted list of | */
|
| - /* <--| extrema scanlines | */
|
| - /* _ _ __________________|____________________| */
|
| - /* */
|
| - /* ^ ^ */
|
| - /* | | */
|
| - /* maxBuff sizeBuff = end of pool */
|
| - /* */
|
| - /* This list is later used during the sweep phase in order to */
|
| - /* optimize performance (see technical note on the sweep below). */
|
| - /* */
|
| - /* Of course, the raster detects whether the two stacks collide and */
|
| - /* handles the situation properly. */
|
| - /* */
|
| - /*************************************************************************/
|
| -
|
| -
|
| - /*************************************************************************/
|
| - /*************************************************************************/
|
| - /** **/
|
| - /** CONFIGURATION MACROS **/
|
| - /** **/
|
| - /*************************************************************************/
|
| - /*************************************************************************/
|
| -
|
| - /* define DEBUG_RASTER if you want to compile a debugging version */
|
| -/* #define DEBUG_RASTER */
|
| -
|
| - /* define FT_RASTER_OPTION_ANTI_ALIASING if you want to support */
|
| - /* 5-levels anti-aliasing */
|
| -/* #define FT_RASTER_OPTION_ANTI_ALIASING */
|
| -
|
| - /* The size of the two-lines intermediate bitmap used */
|
| - /* for anti-aliasing, in bytes. */
|
| -#define RASTER_GRAY_LINES 2048
|
| -
|
| -
|
| - /*************************************************************************/
|
| - /*************************************************************************/
|
| - /** **/
|
| - /** OTHER MACROS (do not change) **/
|
| - /** **/
|
| - /*************************************************************************/
|
| - /*************************************************************************/
|
| -
|
| - /*************************************************************************/
|
| - /* */
|
| - /* The macro FT_COMPONENT is used in trace mode. It is an implicit */
|
| - /* parameter of the FT_TRACE() and FT_ERROR() macros, used to print/log */
|
| - /* messages during execution. */
|
| - /* */
|
| -#undef FT_COMPONENT
|
| -#define FT_COMPONENT trace_raster
|
| -
|
| -
|
| -#ifdef _STANDALONE_
|
| -
|
| - /* Auxiliary macros for token concatenation. */
|
| -#define FT_ERR_XCAT( x, y ) x ## y
|
| -#define FT_ERR_CAT( x, y ) FT_ERR_XCAT( x, y )
|
| -
|
| - /* This macro is used to indicate that a function parameter is unused. */
|
| - /* Its purpose is simply to reduce compiler warnings. Note also that */
|
| - /* simply defining it as `(void)x' doesn't avoid warnings with certain */
|
| - /* ANSI compilers (e.g. LCC). */
|
| -#define FT_UNUSED( x ) (x) = (x)
|
| -
|
| - /* Disable the tracing mechanism for simplicity -- developers can */
|
| - /* activate it easily by redefining these macros. */
|
| -#ifndef FT_ERROR
|
| -#define FT_ERROR( x ) do { } while ( 0 ) /* nothing */
|
| -#endif
|
| -
|
| -#ifndef FT_TRACE
|
| -#define FT_TRACE( x ) do { } while ( 0 ) /* nothing */
|
| -#define FT_TRACE1( x ) do { } while ( 0 ) /* nothing */
|
| -#define FT_TRACE6( x ) do { } while ( 0 ) /* nothing */
|
| -#endif
|
| -
|
| -#ifndef FT_THROW
|
| -#define FT_THROW( e ) FT_ERR_CAT( Raster_Err_, e )
|
| -#endif
|
| -
|
| -#define Raster_Err_None 0
|
| -#define Raster_Err_Not_Ini -1
|
| -#define Raster_Err_Overflow -2
|
| -#define Raster_Err_Neg_Height -3
|
| -#define Raster_Err_Invalid -4
|
| -#define Raster_Err_Unsupported -5
|
| -
|
| -#define ft_memset memset
|
| -
|
| -#define FT_DEFINE_RASTER_FUNCS( class_, glyph_format_, raster_new_, \
|
| - raster_reset_, raster_set_mode_, \
|
| - raster_render_, raster_done_ ) \
|
| - const FT_Raster_Funcs class_ = \
|
| - { \
|
| - glyph_format_, \
|
| - raster_new_, \
|
| - raster_reset_, \
|
| - raster_set_mode_, \
|
| - raster_render_, \
|
| - raster_done_ \
|
| - };
|
| -
|
| -#else /* !_STANDALONE_ */
|
| -
|
| -
|
| -#include "../../include/freetype/internal/ftobjs.h"
|
| -#include "../../include/freetype/internal/ftdebug.h" /* for FT_TRACE, FT_ERROR, and FT_THROW */
|
| -
|
| -#include "rasterrs.h"
|
| -
|
| -#define Raster_Err_None FT_Err_Ok
|
| -#define Raster_Err_Not_Ini Raster_Err_Raster_Uninitialized
|
| -#define Raster_Err_Overflow Raster_Err_Raster_Overflow
|
| -#define Raster_Err_Neg_Height Raster_Err_Raster_Negative_Height
|
| -#define Raster_Err_Invalid Raster_Err_Invalid_Outline
|
| -#define Raster_Err_Unsupported Raster_Err_Cannot_Render_Glyph
|
| -
|
| -
|
| -#endif /* !_STANDALONE_ */
|
| -
|
| -
|
| -#ifndef FT_MEM_SET
|
| -#define FT_MEM_SET( d, s, c ) ft_memset( d, s, c )
|
| -#endif
|
| -
|
| -#ifndef FT_MEM_ZERO
|
| -#define FT_MEM_ZERO( dest, count ) FT_MEM_SET( dest, 0, count )
|
| -#endif
|
| -
|
| - /* FMulDiv means `Fast MulDiv'; it is used in case where `b' is */
|
| - /* typically a small value and the result of a*b is known to fit into */
|
| - /* 32 bits. */
|
| -#define FMulDiv( a, b, c ) ( (a) * (b) / (c) )
|
| -
|
| - /* On the other hand, SMulDiv means `Slow MulDiv', and is used typically */
|
| - /* for clipping computations. It simply uses the FT_MulDiv() function */
|
| - /* defined in `ftcalc.h'. */
|
| -#define SMulDiv FT_MulDiv
|
| -#define SMulDiv_No_Round FT_MulDiv_No_Round
|
| -
|
| - /* The rasterizer is a very general purpose component; please leave */
|
| - /* the following redefinitions there (you never know your target */
|
| - /* environment). */
|
| -
|
| -#ifndef TRUE
|
| -#define TRUE 1
|
| -#endif
|
| -
|
| -#ifndef FALSE
|
| -#define FALSE 0
|
| -#endif
|
| -
|
| -#ifndef NULL
|
| -#define NULL (void*)0
|
| -#endif
|
| -
|
| -#ifndef SUCCESS
|
| -#define SUCCESS 0
|
| -#endif
|
| -
|
| -#ifndef FAILURE
|
| -#define FAILURE 1
|
| -#endif
|
| -
|
| -
|
| -#define MaxBezier 32 /* The maximum number of stacked Bezier curves. */
|
| - /* Setting this constant to more than 32 is a */
|
| - /* pure waste of space. */
|
| -
|
| -#define Pixel_Bits 6 /* fractional bits of *input* coordinates */
|
| -
|
| -
|
| - /*************************************************************************/
|
| - /*************************************************************************/
|
| - /** **/
|
| - /** SIMPLE TYPE DECLARATIONS **/
|
| - /** **/
|
| - /*************************************************************************/
|
| - /*************************************************************************/
|
| -
|
| - typedef int Int;
|
| - typedef unsigned int UInt;
|
| - typedef short Short;
|
| - typedef unsigned short UShort, *PUShort;
|
| - typedef long Long, *PLong;
|
| - typedef unsigned long ULong;
|
| -
|
| - typedef unsigned char Byte, *PByte;
|
| - typedef char Bool;
|
| -
|
| -
|
| - typedef union Alignment_
|
| - {
|
| - long l;
|
| - void* p;
|
| - void (*f)(void);
|
| -
|
| - } Alignment, *PAlignment;
|
| -
|
| -
|
| - typedef struct TPoint_
|
| - {
|
| - Long x;
|
| - Long y;
|
| -
|
| - } TPoint;
|
| -
|
| -
|
| - /* values for the `flags' bit field */
|
| -#define Flow_Up 0x8
|
| -#define Overshoot_Top 0x10
|
| -#define Overshoot_Bottom 0x20
|
| -
|
| -
|
| - /* States of each line, arc, and profile */
|
| - typedef enum TStates_
|
| - {
|
| - Unknown_State,
|
| - Ascending_State,
|
| - Descending_State,
|
| - Flat_State
|
| -
|
| - } TStates;
|
| -
|
| -
|
| - typedef struct TProfile_ TProfile;
|
| - typedef TProfile* PProfile;
|
| -
|
| - struct TProfile_
|
| - {
|
| - FT_F26Dot6 X; /* current coordinate during sweep */
|
| - PProfile link; /* link to next profile (various purposes) */
|
| - PLong offset; /* start of profile's data in render pool */
|
| - unsigned flags; /* Bit 0-2: drop-out mode */
|
| - /* Bit 3: profile orientation (up/down) */
|
| - /* Bit 4: is top profile? */
|
| - /* Bit 5: is bottom profile? */
|
| - long height; /* profile's height in scanlines */
|
| - long start; /* profile's starting scanline */
|
| -
|
| - unsigned countL; /* number of lines to step before this */
|
| - /* profile becomes drawable */
|
| -
|
| - PProfile next; /* next profile in same contour, used */
|
| - /* during drop-out control */
|
| - };
|
| -
|
| - typedef PProfile TProfileList;
|
| - typedef PProfile* PProfileList;
|
| -
|
| -
|
| - /* Simple record used to implement a stack of bands, required */
|
| - /* by the sub-banding mechanism */
|
| - typedef struct black_TBand_
|
| - {
|
| - Short y_min; /* band's minimum */
|
| - Short y_max; /* band's maximum */
|
| -
|
| - } black_TBand;
|
| -
|
| -
|
| -#define AlignProfileSize \
|
| - ( ( sizeof ( TProfile ) + sizeof ( Alignment ) - 1 ) / sizeof ( long ) )
|
| -
|
| -
|
| -#undef RAS_ARG
|
| -#undef RAS_ARGS
|
| -#undef RAS_VAR
|
| -#undef RAS_VARS
|
| -
|
| -#ifdef FT_STATIC_RASTER
|
| -
|
| -
|
| -#define RAS_ARGS /* void */
|
| -#define RAS_ARG /* void */
|
| -
|
| -#define RAS_VARS /* void */
|
| -#define RAS_VAR /* void */
|
| -
|
| -#define FT_UNUSED_RASTER do { } while ( 0 )
|
| -
|
| -
|
| -#else /* !FT_STATIC_RASTER */
|
| -
|
| -
|
| -#define RAS_ARGS black_PWorker worker,
|
| -#define RAS_ARG black_PWorker worker
|
| -
|
| -#define RAS_VARS worker,
|
| -#define RAS_VAR worker
|
| -
|
| -#define FT_UNUSED_RASTER FT_UNUSED( worker )
|
| -
|
| -
|
| -#endif /* !FT_STATIC_RASTER */
|
| -
|
| -
|
| - typedef struct black_TWorker_ black_TWorker, *black_PWorker;
|
| -
|
| -
|
| - /* prototypes used for sweep function dispatch */
|
| - typedef void
|
| - Function_Sweep_Init( RAS_ARGS Short* min,
|
| - Short* max );
|
| -
|
| - typedef void
|
| - Function_Sweep_Span( RAS_ARGS Short y,
|
| - FT_F26Dot6 x1,
|
| - FT_F26Dot6 x2,
|
| - PProfile left,
|
| - PProfile right );
|
| -
|
| - typedef void
|
| - Function_Sweep_Step( RAS_ARG );
|
| -
|
| -
|
| - /* NOTE: These operations are only valid on 2's complement processors */
|
| -#undef FLOOR
|
| -#undef CEILING
|
| -#undef TRUNC
|
| -#undef SCALED
|
| -
|
| -#define FLOOR( x ) ( (x) & -ras.precision )
|
| -#define CEILING( x ) ( ( (x) + ras.precision - 1 ) & -ras.precision )
|
| -#define TRUNC( x ) ( (Long)(x) >> ras.precision_bits )
|
| -#define FRAC( x ) ( (x) & ( ras.precision - 1 ) )
|
| -#define SCALED( x ) ( ( (ULong)(x) << ras.scale_shift ) - ras.precision_half )
|
| -
|
| -#define IS_BOTTOM_OVERSHOOT( x ) \
|
| - (Bool)( CEILING( x ) - x >= ras.precision_half )
|
| -#define IS_TOP_OVERSHOOT( x ) \
|
| - (Bool)( x - FLOOR( x ) >= ras.precision_half )
|
| -
|
| - /* The most used variables are positioned at the top of the structure. */
|
| - /* Thus, their offset can be coded with less opcodes, resulting in a */
|
| - /* smaller executable. */
|
| -
|
| - struct black_TWorker_
|
| - {
|
| - Int precision_bits; /* precision related variables */
|
| - Int precision;
|
| - Int precision_half;
|
| - Int precision_shift;
|
| - Int precision_step;
|
| - Int precision_jitter;
|
| -
|
| - Int scale_shift; /* == precision_shift for bitmaps */
|
| - /* == precision_shift+1 for pixmaps */
|
| -
|
| - PLong buff; /* The profiles buffer */
|
| - PLong sizeBuff; /* Render pool size */
|
| - PLong maxBuff; /* Profiles buffer size */
|
| - PLong top; /* Current cursor in buffer */
|
| -
|
| - FT_Error error;
|
| -
|
| - Int numTurns; /* number of Y-turns in outline */
|
| -
|
| - TPoint* arc; /* current Bezier arc pointer */
|
| -
|
| - UShort bWidth; /* target bitmap width */
|
| - PByte bTarget; /* target bitmap buffer */
|
| - PByte gTarget; /* target pixmap buffer */
|
| -
|
| - Long lastX, lastY;
|
| - Long minY, maxY;
|
| -
|
| - UShort num_Profs; /* current number of profiles */
|
| -
|
| - Bool fresh; /* signals a fresh new profile which */
|
| - /* `start' field must be completed */
|
| - Bool joint; /* signals that the last arc ended */
|
| - /* exactly on a scanline. Allows */
|
| - /* removal of doublets */
|
| - PProfile cProfile; /* current profile */
|
| - PProfile fProfile; /* head of linked list of profiles */
|
| - PProfile gProfile; /* contour's first profile in case */
|
| - /* of impact */
|
| -
|
| - TStates state; /* rendering state */
|
| -
|
| - FT_Bitmap target; /* description of target bit/pixmap */
|
| - FT_Outline outline;
|
| -
|
| - Long traceOfs; /* current offset in target bitmap */
|
| - Long traceG; /* current offset in target pixmap */
|
| -
|
| - Short traceIncr; /* sweep's increment in target bitmap */
|
| -
|
| - Short gray_min_x; /* current min x during gray rendering */
|
| - Short gray_max_x; /* current max x during gray rendering */
|
| -
|
| - /* dispatch variables */
|
| -
|
| - Function_Sweep_Init* Proc_Sweep_Init;
|
| - Function_Sweep_Span* Proc_Sweep_Span;
|
| - Function_Sweep_Span* Proc_Sweep_Drop;
|
| - Function_Sweep_Step* Proc_Sweep_Step;
|
| -
|
| - Byte dropOutControl; /* current drop_out control method */
|
| -
|
| - Bool second_pass; /* indicates whether a horizontal pass */
|
| - /* should be performed to control */
|
| - /* drop-out accurately when calling */
|
| - /* Render_Glyph. Note that there is */
|
| - /* no horizontal pass during gray */
|
| - /* rendering. */
|
| -
|
| - TPoint arcs[3 * MaxBezier + 1]; /* The Bezier stack */
|
| -
|
| - black_TBand band_stack[16]; /* band stack used for sub-banding */
|
| - Int band_top; /* band stack top */
|
| -
|
| -#ifdef FT_RASTER_OPTION_ANTI_ALIASING
|
| -
|
| - Byte* grays;
|
| -
|
| - Byte gray_lines[RASTER_GRAY_LINES];
|
| - /* Intermediate table used to render the */
|
| - /* graylevels pixmaps. */
|
| - /* gray_lines is a buffer holding two */
|
| - /* monochrome scanlines */
|
| -
|
| - Short gray_width; /* width in bytes of one monochrome */
|
| - /* intermediate scanline of gray_lines. */
|
| - /* Each gray pixel takes 2 bits long there */
|
| -
|
| - /* The gray_lines must hold 2 lines, thus with size */
|
| - /* in bytes of at least `gray_width*2'. */
|
| -
|
| -#endif /* FT_RASTER_ANTI_ALIASING */
|
| -
|
| - };
|
| -
|
| -
|
| - typedef struct black_TRaster_
|
| - {
|
| - char* buffer;
|
| - long buffer_size;
|
| - void* memory;
|
| - black_PWorker worker;
|
| - Byte grays[5];
|
| - Short gray_width;
|
| -
|
| - } black_TRaster, *black_PRaster;
|
| -
|
| -#ifdef FT_STATIC_RASTER
|
| -
|
| - static black_TWorker cur_ras;
|
| -#define ras cur_ras
|
| -
|
| -#else /* !FT_STATIC_RASTER */
|
| -
|
| -#define ras (*worker)
|
| -
|
| -#endif /* !FT_STATIC_RASTER */
|
| -
|
| -
|
| -#ifdef FT_RASTER_OPTION_ANTI_ALIASING
|
| -
|
| - /* A lookup table used to quickly count set bits in four gray 2x2 */
|
| - /* cells. The values of the table have been produced with the */
|
| - /* following code: */
|
| - /* */
|
| - /* for ( i = 0; i < 256; i++ ) */
|
| - /* { */
|
| - /* l = 0; */
|
| - /* j = i; */
|
| - /* */
|
| - /* for ( c = 0; c < 4; c++ ) */
|
| - /* { */
|
| - /* l <<= 4; */
|
| - /* */
|
| - /* if ( j & 0x80 ) l++; */
|
| - /* if ( j & 0x40 ) l++; */
|
| - /* */
|
| - /* j = ( j << 2 ) & 0xFF; */
|
| - /* } */
|
| - /* printf( "0x%04X", l ); */
|
| - /* } */
|
| - /* */
|
| -
|
| - static const short count_table[256] =
|
| - {
|
| - 0x0000, 0x0001, 0x0001, 0x0002, 0x0010, 0x0011, 0x0011, 0x0012,
|
| - 0x0010, 0x0011, 0x0011, 0x0012, 0x0020, 0x0021, 0x0021, 0x0022,
|
| - 0x0100, 0x0101, 0x0101, 0x0102, 0x0110, 0x0111, 0x0111, 0x0112,
|
| - 0x0110, 0x0111, 0x0111, 0x0112, 0x0120, 0x0121, 0x0121, 0x0122,
|
| - 0x0100, 0x0101, 0x0101, 0x0102, 0x0110, 0x0111, 0x0111, 0x0112,
|
| - 0x0110, 0x0111, 0x0111, 0x0112, 0x0120, 0x0121, 0x0121, 0x0122,
|
| - 0x0200, 0x0201, 0x0201, 0x0202, 0x0210, 0x0211, 0x0211, 0x0212,
|
| - 0x0210, 0x0211, 0x0211, 0x0212, 0x0220, 0x0221, 0x0221, 0x0222,
|
| - 0x1000, 0x1001, 0x1001, 0x1002, 0x1010, 0x1011, 0x1011, 0x1012,
|
| - 0x1010, 0x1011, 0x1011, 0x1012, 0x1020, 0x1021, 0x1021, 0x1022,
|
| - 0x1100, 0x1101, 0x1101, 0x1102, 0x1110, 0x1111, 0x1111, 0x1112,
|
| - 0x1110, 0x1111, 0x1111, 0x1112, 0x1120, 0x1121, 0x1121, 0x1122,
|
| - 0x1100, 0x1101, 0x1101, 0x1102, 0x1110, 0x1111, 0x1111, 0x1112,
|
| - 0x1110, 0x1111, 0x1111, 0x1112, 0x1120, 0x1121, 0x1121, 0x1122,
|
| - 0x1200, 0x1201, 0x1201, 0x1202, 0x1210, 0x1211, 0x1211, 0x1212,
|
| - 0x1210, 0x1211, 0x1211, 0x1212, 0x1220, 0x1221, 0x1221, 0x1222,
|
| - 0x1000, 0x1001, 0x1001, 0x1002, 0x1010, 0x1011, 0x1011, 0x1012,
|
| - 0x1010, 0x1011, 0x1011, 0x1012, 0x1020, 0x1021, 0x1021, 0x1022,
|
| - 0x1100, 0x1101, 0x1101, 0x1102, 0x1110, 0x1111, 0x1111, 0x1112,
|
| - 0x1110, 0x1111, 0x1111, 0x1112, 0x1120, 0x1121, 0x1121, 0x1122,
|
| - 0x1100, 0x1101, 0x1101, 0x1102, 0x1110, 0x1111, 0x1111, 0x1112,
|
| - 0x1110, 0x1111, 0x1111, 0x1112, 0x1120, 0x1121, 0x1121, 0x1122,
|
| - 0x1200, 0x1201, 0x1201, 0x1202, 0x1210, 0x1211, 0x1211, 0x1212,
|
| - 0x1210, 0x1211, 0x1211, 0x1212, 0x1220, 0x1221, 0x1221, 0x1222,
|
| - 0x2000, 0x2001, 0x2001, 0x2002, 0x2010, 0x2011, 0x2011, 0x2012,
|
| - 0x2010, 0x2011, 0x2011, 0x2012, 0x2020, 0x2021, 0x2021, 0x2022,
|
| - 0x2100, 0x2101, 0x2101, 0x2102, 0x2110, 0x2111, 0x2111, 0x2112,
|
| - 0x2110, 0x2111, 0x2111, 0x2112, 0x2120, 0x2121, 0x2121, 0x2122,
|
| - 0x2100, 0x2101, 0x2101, 0x2102, 0x2110, 0x2111, 0x2111, 0x2112,
|
| - 0x2110, 0x2111, 0x2111, 0x2112, 0x2120, 0x2121, 0x2121, 0x2122,
|
| - 0x2200, 0x2201, 0x2201, 0x2202, 0x2210, 0x2211, 0x2211, 0x2212,
|
| - 0x2210, 0x2211, 0x2211, 0x2212, 0x2220, 0x2221, 0x2221, 0x2222
|
| - };
|
| -
|
| -#endif /* FT_RASTER_OPTION_ANTI_ALIASING */
|
| -
|
| -
|
| -
|
| - /*************************************************************************/
|
| - /*************************************************************************/
|
| - /** **/
|
| - /** PROFILES COMPUTATION **/
|
| - /** **/
|
| - /*************************************************************************/
|
| - /*************************************************************************/
|
| -
|
| -
|
| - /*************************************************************************/
|
| - /* */
|
| - /* <Function> */
|
| - /* Set_High_Precision */
|
| - /* */
|
| - /* <Description> */
|
| - /* Set precision variables according to param flag. */
|
| - /* */
|
| - /* <Input> */
|
| - /* High :: Set to True for high precision (typically for ppem < 24), */
|
| - /* false otherwise. */
|
| - /* */
|
| - static void
|
| - Set_High_Precision( RAS_ARGS Int High )
|
| - {
|
| - /*
|
| - * `precision_step' is used in `Bezier_Up' to decide when to split a
|
| - * given y-monotonous Bezier arc that crosses a scanline before
|
| - * approximating it as a straight segment. The default value of 32 (for
|
| - * low accuracy) corresponds to
|
| - *
|
| - * 32 / 64 == 0.5 pixels ,
|
| - *
|
| - * while for the high accuracy case we have
|
| - *
|
| - * 256/ (1 << 12) = 0.0625 pixels .
|
| - *
|
| - * `precision_jitter' is an epsilon threshold used in
|
| - * `Vertical_Sweep_Span' to deal with small imperfections in the Bezier
|
| - * decomposition (after all, we are working with approximations only);
|
| - * it avoids switching on additional pixels which would cause artifacts
|
| - * otherwise.
|
| - *
|
| - * The value of `precision_jitter' has been determined heuristically.
|
| - *
|
| - */
|
| -
|
| - if ( High )
|
| - {
|
| - ras.precision_bits = 12;
|
| - ras.precision_step = 256;
|
| - ras.precision_jitter = 30;
|
| - }
|
| - else
|
| - {
|
| - ras.precision_bits = 6;
|
| - ras.precision_step = 32;
|
| - ras.precision_jitter = 2;
|
| - }
|
| -
|
| - FT_TRACE6(( "Set_High_Precision(%s)\n", High ? "true" : "false" ));
|
| -
|
| - ras.precision = 1 << ras.precision_bits;
|
| - ras.precision_half = ras.precision / 2;
|
| - ras.precision_shift = ras.precision_bits - Pixel_Bits;
|
| - }
|
| -
|
| -
|
| - /*************************************************************************/
|
| - /* */
|
| - /* <Function> */
|
| - /* New_Profile */
|
| - /* */
|
| - /* <Description> */
|
| - /* Create a new profile in the render pool. */
|
| - /* */
|
| - /* <Input> */
|
| - /* aState :: The state/orientation of the new profile. */
|
| - /* */
|
| - /* overshoot :: Whether the profile's unrounded start position */
|
| - /* differs by at least a half pixel. */
|
| - /* */
|
| - /* <Return> */
|
| - /* SUCCESS on success. FAILURE in case of overflow or of incoherent */
|
| - /* profile. */
|
| - /* */
|
| - static Bool
|
| - New_Profile( RAS_ARGS TStates aState,
|
| - Bool overshoot )
|
| - {
|
| - if ( !ras.fProfile )
|
| - {
|
| - ras.cProfile = (PProfile)ras.top;
|
| - ras.fProfile = ras.cProfile;
|
| - ras.top += AlignProfileSize;
|
| - }
|
| -
|
| - if ( ras.top >= ras.maxBuff )
|
| - {
|
| - ras.error = FT_THROW( Overflow );
|
| - return FAILURE;
|
| - }
|
| -
|
| - ras.cProfile->flags = 0;
|
| - ras.cProfile->start = 0;
|
| - ras.cProfile->height = 0;
|
| - ras.cProfile->offset = ras.top;
|
| - ras.cProfile->link = (PProfile)0;
|
| - ras.cProfile->next = (PProfile)0;
|
| - ras.cProfile->flags = ras.dropOutControl;
|
| -
|
| - switch ( aState )
|
| - {
|
| - case Ascending_State:
|
| - ras.cProfile->flags |= Flow_Up;
|
| - if ( overshoot )
|
| - ras.cProfile->flags |= Overshoot_Bottom;
|
| -
|
| - FT_TRACE6(( "New ascending profile = %p\n", ras.cProfile ));
|
| - break;
|
| -
|
| - case Descending_State:
|
| - if ( overshoot )
|
| - ras.cProfile->flags |= Overshoot_Top;
|
| - FT_TRACE6(( "New descending profile = %p\n", ras.cProfile ));
|
| - break;
|
| -
|
| - default:
|
| - FT_ERROR(( "New_Profile: invalid profile direction\n" ));
|
| - ras.error = FT_THROW( Invalid );
|
| - return FAILURE;
|
| - }
|
| -
|
| - if ( !ras.gProfile )
|
| - ras.gProfile = ras.cProfile;
|
| -
|
| - ras.state = aState;
|
| - ras.fresh = TRUE;
|
| - ras.joint = FALSE;
|
| -
|
| - return SUCCESS;
|
| - }
|
| -
|
| -
|
| - /*************************************************************************/
|
| - /* */
|
| - /* <Function> */
|
| - /* End_Profile */
|
| - /* */
|
| - /* <Description> */
|
| - /* Finalize the current profile. */
|
| - /* */
|
| - /* <Input> */
|
| - /* overshoot :: Whether the profile's unrounded end position differs */
|
| - /* by at least a half pixel. */
|
| - /* */
|
| - /* <Return> */
|
| - /* SUCCESS on success. FAILURE in case of overflow or incoherency. */
|
| - /* */
|
| - static Bool
|
| - End_Profile( RAS_ARGS Bool overshoot )
|
| - {
|
| - Long h;
|
| -
|
| -
|
| - h = (Long)( ras.top - ras.cProfile->offset );
|
| -
|
| - if ( h < 0 )
|
| - {
|
| - FT_ERROR(( "End_Profile: negative height encountered\n" ));
|
| - ras.error = FT_THROW( Neg_Height );
|
| - return FAILURE;
|
| - }
|
| -
|
| - if ( h > 0 )
|
| - {
|
| - PProfile oldProfile;
|
| -
|
| -
|
| - FT_TRACE6(( "Ending profile %p, start = %ld, height = %ld\n",
|
| - ras.cProfile, ras.cProfile->start, h ));
|
| -
|
| - ras.cProfile->height = h;
|
| - if ( overshoot )
|
| - {
|
| - if ( ras.cProfile->flags & Flow_Up )
|
| - ras.cProfile->flags |= Overshoot_Top;
|
| - else
|
| - ras.cProfile->flags |= Overshoot_Bottom;
|
| - }
|
| -
|
| - oldProfile = ras.cProfile;
|
| - ras.cProfile = (PProfile)ras.top;
|
| -
|
| - ras.top += AlignProfileSize;
|
| -
|
| - ras.cProfile->height = 0;
|
| - ras.cProfile->offset = ras.top;
|
| -
|
| - oldProfile->next = ras.cProfile;
|
| - ras.num_Profs++;
|
| - }
|
| -
|
| - if ( ras.top >= ras.maxBuff )
|
| - {
|
| - FT_TRACE1(( "overflow in End_Profile\n" ));
|
| - ras.error = FT_THROW( Overflow );
|
| - return FAILURE;
|
| - }
|
| -
|
| - ras.joint = FALSE;
|
| -
|
| - return SUCCESS;
|
| - }
|
| -
|
| -
|
| - /*************************************************************************/
|
| - /* */
|
| - /* <Function> */
|
| - /* Insert_Y_Turn */
|
| - /* */
|
| - /* <Description> */
|
| - /* Insert a salient into the sorted list placed on top of the render */
|
| - /* pool. */
|
| - /* */
|
| - /* <Input> */
|
| - /* New y scanline position. */
|
| - /* */
|
| - /* <Return> */
|
| - /* SUCCESS on success. FAILURE in case of overflow. */
|
| - /* */
|
| - static Bool
|
| - Insert_Y_Turn( RAS_ARGS Int y )
|
| - {
|
| - PLong y_turns;
|
| - Int n;
|
| -
|
| -
|
| - n = ras.numTurns - 1;
|
| - y_turns = ras.sizeBuff - ras.numTurns;
|
| -
|
| - /* look for first y value that is <= */
|
| - while ( n >= 0 && y < y_turns[n] )
|
| - n--;
|
| -
|
| - /* if it is <, simply insert it, ignore if == */
|
| - if ( n >= 0 && y > y_turns[n] )
|
| - while ( n >= 0 )
|
| - {
|
| - Int y2 = (Int)y_turns[n];
|
| -
|
| -
|
| - y_turns[n] = y;
|
| - y = y2;
|
| - n--;
|
| - }
|
| -
|
| - if ( n < 0 )
|
| - {
|
| - ras.maxBuff--;
|
| - if ( ras.maxBuff <= ras.top )
|
| - {
|
| - ras.error = FT_THROW( Overflow );
|
| - return FAILURE;
|
| - }
|
| - ras.numTurns++;
|
| - ras.sizeBuff[-ras.numTurns] = y;
|
| - }
|
| -
|
| - return SUCCESS;
|
| - }
|
| -
|
| -
|
| - /*************************************************************************/
|
| - /* */
|
| - /* <Function> */
|
| - /* Finalize_Profile_Table */
|
| - /* */
|
| - /* <Description> */
|
| - /* Adjust all links in the profiles list. */
|
| - /* */
|
| - /* <Return> */
|
| - /* SUCCESS on success. FAILURE in case of overflow. */
|
| - /* */
|
| - static Bool
|
| - Finalize_Profile_Table( RAS_ARG )
|
| - {
|
| - UShort n;
|
| - PProfile p;
|
| -
|
| -
|
| - n = ras.num_Profs;
|
| - p = ras.fProfile;
|
| -
|
| - if ( n > 1 && p )
|
| - {
|
| - while ( n > 0 )
|
| - {
|
| - Int bottom, top;
|
| -
|
| -
|
| - if ( n > 1 )
|
| - p->link = (PProfile)( p->offset + p->height );
|
| - else
|
| - p->link = NULL;
|
| -
|
| - if ( p->flags & Flow_Up )
|
| - {
|
| - bottom = (Int)p->start;
|
| - top = (Int)( p->start + p->height - 1 );
|
| - }
|
| - else
|
| - {
|
| - bottom = (Int)( p->start - p->height + 1 );
|
| - top = (Int)p->start;
|
| - p->start = bottom;
|
| - p->offset += p->height - 1;
|
| - }
|
| -
|
| - if ( Insert_Y_Turn( RAS_VARS bottom ) ||
|
| - Insert_Y_Turn( RAS_VARS top + 1 ) )
|
| - return FAILURE;
|
| -
|
| - p = p->link;
|
| - n--;
|
| - }
|
| - }
|
| - else
|
| - ras.fProfile = NULL;
|
| -
|
| - return SUCCESS;
|
| - }
|
| -
|
| -
|
| - /*************************************************************************/
|
| - /* */
|
| - /* <Function> */
|
| - /* Split_Conic */
|
| - /* */
|
| - /* <Description> */
|
| - /* Subdivide one conic Bezier into two joint sub-arcs in the Bezier */
|
| - /* stack. */
|
| - /* */
|
| - /* <Input> */
|
| - /* None (subdivided Bezier is taken from the top of the stack). */
|
| - /* */
|
| - /* <Note> */
|
| - /* This routine is the `beef' of this component. It is _the_ inner */
|
| - /* loop that should be optimized to hell to get the best performance. */
|
| - /* */
|
| - static void
|
| - Split_Conic( TPoint* base )
|
| - {
|
| - Long a, b;
|
| -
|
| -
|
| - base[4].x = base[2].x;
|
| - b = base[1].x;
|
| - a = base[3].x = ( base[2].x + b ) / 2;
|
| - b = base[1].x = ( base[0].x + b ) / 2;
|
| - base[2].x = ( a + b ) / 2;
|
| -
|
| - base[4].y = base[2].y;
|
| - b = base[1].y;
|
| - a = base[3].y = ( base[2].y + b ) / 2;
|
| - b = base[1].y = ( base[0].y + b ) / 2;
|
| - base[2].y = ( a + b ) / 2;
|
| -
|
| - /* hand optimized. gcc doesn't seem to be too good at common */
|
| - /* expression substitution and instruction scheduling ;-) */
|
| - }
|
| -
|
| -
|
| - /*************************************************************************/
|
| - /* */
|
| - /* <Function> */
|
| - /* Split_Cubic */
|
| - /* */
|
| - /* <Description> */
|
| - /* Subdivide a third-order Bezier arc into two joint sub-arcs in the */
|
| - /* Bezier stack. */
|
| - /* */
|
| - /* <Note> */
|
| - /* This routine is the `beef' of the component. It is one of _the_ */
|
| - /* inner loops that should be optimized like hell to get the best */
|
| - /* performance. */
|
| - /* */
|
| - static void
|
| - Split_Cubic( TPoint* base )
|
| - {
|
| - Long a, b, c, d;
|
| -
|
| -
|
| - base[6].x = base[3].x;
|
| - c = base[1].x;
|
| - d = base[2].x;
|
| - base[1].x = a = ( base[0].x + c + 1 ) >> 1;
|
| - base[5].x = b = ( base[3].x + d + 1 ) >> 1;
|
| - c = ( c + d + 1 ) >> 1;
|
| - base[2].x = a = ( a + c + 1 ) >> 1;
|
| - base[4].x = b = ( b + c + 1 ) >> 1;
|
| - base[3].x = ( a + b + 1 ) >> 1;
|
| -
|
| - base[6].y = base[3].y;
|
| - c = base[1].y;
|
| - d = base[2].y;
|
| - base[1].y = a = ( base[0].y + c + 1 ) >> 1;
|
| - base[5].y = b = ( base[3].y + d + 1 ) >> 1;
|
| - c = ( c + d + 1 ) >> 1;
|
| - base[2].y = a = ( a + c + 1 ) >> 1;
|
| - base[4].y = b = ( b + c + 1 ) >> 1;
|
| - base[3].y = ( a + b + 1 ) >> 1;
|
| - }
|
| -
|
| -
|
| - /*************************************************************************/
|
| - /* */
|
| - /* <Function> */
|
| - /* Line_Up */
|
| - /* */
|
| - /* <Description> */
|
| - /* Compute the x-coordinates of an ascending line segment and store */
|
| - /* them in the render pool. */
|
| - /* */
|
| - /* <Input> */
|
| - /* x1 :: The x-coordinate of the segment's start point. */
|
| - /* */
|
| - /* y1 :: The y-coordinate of the segment's start point. */
|
| - /* */
|
| - /* x2 :: The x-coordinate of the segment's end point. */
|
| - /* */
|
| - /* y2 :: The y-coordinate of the segment's end point. */
|
| - /* */
|
| - /* miny :: A lower vertical clipping bound value. */
|
| - /* */
|
| - /* maxy :: An upper vertical clipping bound value. */
|
| - /* */
|
| - /* <Return> */
|
| - /* SUCCESS on success, FAILURE on render pool overflow. */
|
| - /* */
|
| - static Bool
|
| - Line_Up( RAS_ARGS Long x1,
|
| - Long y1,
|
| - Long x2,
|
| - Long y2,
|
| - Long miny,
|
| - Long maxy )
|
| - {
|
| - Long Dx, Dy;
|
| - Int e1, e2, f1, f2, size; /* XXX: is `Short' sufficient? */
|
| - Long Ix, Rx, Ax;
|
| -
|
| - PLong top;
|
| -
|
| -
|
| - Dx = x2 - x1;
|
| - Dy = y2 - y1;
|
| -
|
| - if ( Dy <= 0 || y2 < miny || y1 > maxy )
|
| - return SUCCESS;
|
| -
|
| - if ( y1 < miny )
|
| - {
|
| - /* Take care: miny-y1 can be a very large value; we use */
|
| - /* a slow MulDiv function to avoid clipping bugs */
|
| - x1 += SMulDiv( Dx, miny - y1, Dy );
|
| - e1 = (Int)TRUNC( miny );
|
| - f1 = 0;
|
| - }
|
| - else
|
| - {
|
| - e1 = (Int)TRUNC( y1 );
|
| - f1 = (Int)FRAC( y1 );
|
| - }
|
| -
|
| - if ( y2 > maxy )
|
| - {
|
| - /* x2 += FMulDiv( Dx, maxy - y2, Dy ); UNNECESSARY */
|
| - e2 = (Int)TRUNC( maxy );
|
| - f2 = 0;
|
| - }
|
| - else
|
| - {
|
| - e2 = (Int)TRUNC( y2 );
|
| - f2 = (Int)FRAC( y2 );
|
| - }
|
| -
|
| - if ( f1 > 0 )
|
| - {
|
| - if ( e1 == e2 )
|
| - return SUCCESS;
|
| - else
|
| - {
|
| - x1 += SMulDiv( Dx, ras.precision - f1, Dy );
|
| - e1 += 1;
|
| - }
|
| - }
|
| - else
|
| - if ( ras.joint )
|
| - {
|
| - ras.top--;
|
| - ras.joint = FALSE;
|
| - }
|
| -
|
| - ras.joint = (char)( f2 == 0 );
|
| -
|
| - if ( ras.fresh )
|
| - {
|
| - ras.cProfile->start = e1;
|
| - ras.fresh = FALSE;
|
| - }
|
| -
|
| - size = e2 - e1 + 1;
|
| - if ( ras.top + size >= ras.maxBuff )
|
| - {
|
| - ras.error = FT_THROW( Overflow );
|
| - return FAILURE;
|
| - }
|
| -
|
| - if ( Dx > 0 )
|
| - {
|
| - Ix = SMulDiv_No_Round( ras.precision, Dx, Dy );
|
| - Rx = ( ras.precision * Dx ) % Dy;
|
| - Dx = 1;
|
| - }
|
| - else
|
| - {
|
| - Ix = -SMulDiv_No_Round( ras.precision, -Dx, Dy );
|
| - Rx = ( ras.precision * -Dx ) % Dy;
|
| - Dx = -1;
|
| - }
|
| -
|
| - Ax = -Dy;
|
| - top = ras.top;
|
| -
|
| - while ( size > 0 )
|
| - {
|
| - *top++ = x1;
|
| -
|
| - x1 += Ix;
|
| - Ax += Rx;
|
| - if ( Ax >= 0 )
|
| - {
|
| - Ax -= Dy;
|
| - x1 += Dx;
|
| - }
|
| - size--;
|
| - }
|
| -
|
| - ras.top = top;
|
| - return SUCCESS;
|
| - }
|
| -
|
| -
|
| - /*************************************************************************/
|
| - /* */
|
| - /* <Function> */
|
| - /* Line_Down */
|
| - /* */
|
| - /* <Description> */
|
| - /* Compute the x-coordinates of an descending line segment and store */
|
| - /* them in the render pool. */
|
| - /* */
|
| - /* <Input> */
|
| - /* x1 :: The x-coordinate of the segment's start point. */
|
| - /* */
|
| - /* y1 :: The y-coordinate of the segment's start point. */
|
| - /* */
|
| - /* x2 :: The x-coordinate of the segment's end point. */
|
| - /* */
|
| - /* y2 :: The y-coordinate of the segment's end point. */
|
| - /* */
|
| - /* miny :: A lower vertical clipping bound value. */
|
| - /* */
|
| - /* maxy :: An upper vertical clipping bound value. */
|
| - /* */
|
| - /* <Return> */
|
| - /* SUCCESS on success, FAILURE on render pool overflow. */
|
| - /* */
|
| - static Bool
|
| - Line_Down( RAS_ARGS Long x1,
|
| - Long y1,
|
| - Long x2,
|
| - Long y2,
|
| - Long miny,
|
| - Long maxy )
|
| - {
|
| - Bool result, fresh;
|
| -
|
| -
|
| - fresh = ras.fresh;
|
| -
|
| - result = Line_Up( RAS_VARS x1, -y1, x2, -y2, -maxy, -miny );
|
| -
|
| - if ( fresh && !ras.fresh )
|
| - ras.cProfile->start = -ras.cProfile->start;
|
| -
|
| - return result;
|
| - }
|
| -
|
| -
|
| - /* A function type describing the functions used to split Bezier arcs */
|
| - typedef void (*TSplitter)( TPoint* base );
|
| -
|
| -
|
| - /*************************************************************************/
|
| - /* */
|
| - /* <Function> */
|
| - /* Bezier_Up */
|
| - /* */
|
| - /* <Description> */
|
| - /* Compute the x-coordinates of an ascending Bezier arc and store */
|
| - /* them in the render pool. */
|
| - /* */
|
| - /* <Input> */
|
| - /* degree :: The degree of the Bezier arc (either 2 or 3). */
|
| - /* */
|
| - /* splitter :: The function to split Bezier arcs. */
|
| - /* */
|
| - /* miny :: A lower vertical clipping bound value. */
|
| - /* */
|
| - /* maxy :: An upper vertical clipping bound value. */
|
| - /* */
|
| - /* <Return> */
|
| - /* SUCCESS on success, FAILURE on render pool overflow. */
|
| - /* */
|
| - static Bool
|
| - Bezier_Up( RAS_ARGS Int degree,
|
| - TSplitter splitter,
|
| - Long miny,
|
| - Long maxy )
|
| - {
|
| - Long y1, y2, e, e2, e0;
|
| - Short f1;
|
| -
|
| - TPoint* arc;
|
| - TPoint* start_arc;
|
| -
|
| - PLong top;
|
| -
|
| -
|
| - arc = ras.arc;
|
| - y1 = arc[degree].y;
|
| - y2 = arc[0].y;
|
| - top = ras.top;
|
| -
|
| - if ( y2 < miny || y1 > maxy )
|
| - goto Fin;
|
| -
|
| - e2 = FLOOR( y2 );
|
| -
|
| - if ( e2 > maxy )
|
| - e2 = maxy;
|
| -
|
| - e0 = miny;
|
| -
|
| - if ( y1 < miny )
|
| - e = miny;
|
| - else
|
| - {
|
| - e = CEILING( y1 );
|
| - f1 = (Short)( FRAC( y1 ) );
|
| - e0 = e;
|
| -
|
| - if ( f1 == 0 )
|
| - {
|
| - if ( ras.joint )
|
| - {
|
| - top--;
|
| - ras.joint = FALSE;
|
| - }
|
| -
|
| - *top++ = arc[degree].x;
|
| -
|
| - e += ras.precision;
|
| - }
|
| - }
|
| -
|
| - if ( ras.fresh )
|
| - {
|
| - ras.cProfile->start = TRUNC( e0 );
|
| - ras.fresh = FALSE;
|
| - }
|
| -
|
| - if ( e2 < e )
|
| - goto Fin;
|
| -
|
| - if ( ( top + TRUNC( e2 - e ) + 1 ) >= ras.maxBuff )
|
| - {
|
| - ras.top = top;
|
| - ras.error = FT_THROW( Overflow );
|
| - return FAILURE;
|
| - }
|
| -
|
| - start_arc = arc;
|
| -
|
| - while ( arc >= start_arc && e <= e2 )
|
| - {
|
| - ras.joint = FALSE;
|
| -
|
| - y2 = arc[0].y;
|
| -
|
| - if ( y2 > e )
|
| - {
|
| - y1 = arc[degree].y;
|
| - if ( y2 - y1 >= ras.precision_step )
|
| - {
|
| - splitter( arc );
|
| - arc += degree;
|
| - }
|
| - else
|
| - {
|
| - *top++ = arc[degree].x + FMulDiv( arc[0].x - arc[degree].x,
|
| - e - y1, y2 - y1 );
|
| - arc -= degree;
|
| - e += ras.precision;
|
| - }
|
| - }
|
| - else
|
| - {
|
| - if ( y2 == e )
|
| - {
|
| - ras.joint = TRUE;
|
| - *top++ = arc[0].x;
|
| -
|
| - e += ras.precision;
|
| - }
|
| - arc -= degree;
|
| - }
|
| - }
|
| -
|
| - Fin:
|
| - ras.top = top;
|
| - ras.arc -= degree;
|
| - return SUCCESS;
|
| - }
|
| -
|
| -
|
| - /*************************************************************************/
|
| - /* */
|
| - /* <Function> */
|
| - /* Bezier_Down */
|
| - /* */
|
| - /* <Description> */
|
| - /* Compute the x-coordinates of an descending Bezier arc and store */
|
| - /* them in the render pool. */
|
| - /* */
|
| - /* <Input> */
|
| - /* degree :: The degree of the Bezier arc (either 2 or 3). */
|
| - /* */
|
| - /* splitter :: The function to split Bezier arcs. */
|
| - /* */
|
| - /* miny :: A lower vertical clipping bound value. */
|
| - /* */
|
| - /* maxy :: An upper vertical clipping bound value. */
|
| - /* */
|
| - /* <Return> */
|
| - /* SUCCESS on success, FAILURE on render pool overflow. */
|
| - /* */
|
| - static Bool
|
| - Bezier_Down( RAS_ARGS Int degree,
|
| - TSplitter splitter,
|
| - Long miny,
|
| - Long maxy )
|
| - {
|
| - TPoint* arc = ras.arc;
|
| - Bool result, fresh;
|
| -
|
| -
|
| - arc[0].y = -arc[0].y;
|
| - arc[1].y = -arc[1].y;
|
| - arc[2].y = -arc[2].y;
|
| - if ( degree > 2 )
|
| - arc[3].y = -arc[3].y;
|
| -
|
| - fresh = ras.fresh;
|
| -
|
| - result = Bezier_Up( RAS_VARS degree, splitter, -maxy, -miny );
|
| -
|
| - if ( fresh && !ras.fresh )
|
| - ras.cProfile->start = -ras.cProfile->start;
|
| -
|
| - arc[0].y = -arc[0].y;
|
| - return result;
|
| - }
|
| -
|
| -
|
| - /*************************************************************************/
|
| - /* */
|
| - /* <Function> */
|
| - /* Line_To */
|
| - /* */
|
| - /* <Description> */
|
| - /* Inject a new line segment and adjust the Profiles list. */
|
| - /* */
|
| - /* <Input> */
|
| - /* x :: The x-coordinate of the segment's end point (its start point */
|
| - /* is stored in `lastX'). */
|
| - /* */
|
| - /* y :: The y-coordinate of the segment's end point (its start point */
|
| - /* is stored in `lastY'). */
|
| - /* */
|
| - /* <Return> */
|
| - /* SUCCESS on success, FAILURE on render pool overflow or incorrect */
|
| - /* profile. */
|
| - /* */
|
| - static Bool
|
| - Line_To( RAS_ARGS Long x,
|
| - Long y )
|
| - {
|
| - /* First, detect a change of direction */
|
| -
|
| - switch ( ras.state )
|
| - {
|
| - case Unknown_State:
|
| - if ( y > ras.lastY )
|
| - {
|
| - if ( New_Profile( RAS_VARS Ascending_State,
|
| - IS_BOTTOM_OVERSHOOT( ras.lastY ) ) )
|
| - return FAILURE;
|
| - }
|
| - else
|
| - {
|
| - if ( y < ras.lastY )
|
| - if ( New_Profile( RAS_VARS Descending_State,
|
| - IS_TOP_OVERSHOOT( ras.lastY ) ) )
|
| - return FAILURE;
|
| - }
|
| - break;
|
| -
|
| - case Ascending_State:
|
| - if ( y < ras.lastY )
|
| - {
|
| - if ( End_Profile( RAS_VARS IS_TOP_OVERSHOOT( ras.lastY ) ) ||
|
| - New_Profile( RAS_VARS Descending_State,
|
| - IS_TOP_OVERSHOOT( ras.lastY ) ) )
|
| - return FAILURE;
|
| - }
|
| - break;
|
| -
|
| - case Descending_State:
|
| - if ( y > ras.lastY )
|
| - {
|
| - if ( End_Profile( RAS_VARS IS_BOTTOM_OVERSHOOT( ras.lastY ) ) ||
|
| - New_Profile( RAS_VARS Ascending_State,
|
| - IS_BOTTOM_OVERSHOOT( ras.lastY ) ) )
|
| - return FAILURE;
|
| - }
|
| - break;
|
| -
|
| - default:
|
| - ;
|
| - }
|
| -
|
| - /* Then compute the lines */
|
| -
|
| - switch ( ras.state )
|
| - {
|
| - case Ascending_State:
|
| - if ( Line_Up( RAS_VARS ras.lastX, ras.lastY,
|
| - x, y, ras.minY, ras.maxY ) )
|
| - return FAILURE;
|
| - break;
|
| -
|
| - case Descending_State:
|
| - if ( Line_Down( RAS_VARS ras.lastX, ras.lastY,
|
| - x, y, ras.minY, ras.maxY ) )
|
| - return FAILURE;
|
| - break;
|
| -
|
| - default:
|
| - ;
|
| - }
|
| -
|
| - ras.lastX = x;
|
| - ras.lastY = y;
|
| -
|
| - return SUCCESS;
|
| - }
|
| -
|
| -
|
| - /*************************************************************************/
|
| - /* */
|
| - /* <Function> */
|
| - /* Conic_To */
|
| - /* */
|
| - /* <Description> */
|
| - /* Inject a new conic arc and adjust the profile list. */
|
| - /* */
|
| - /* <Input> */
|
| - /* cx :: The x-coordinate of the arc's new control point. */
|
| - /* */
|
| - /* cy :: The y-coordinate of the arc's new control point. */
|
| - /* */
|
| - /* x :: The x-coordinate of the arc's end point (its start point is */
|
| - /* stored in `lastX'). */
|
| - /* */
|
| - /* y :: The y-coordinate of the arc's end point (its start point is */
|
| - /* stored in `lastY'). */
|
| - /* */
|
| - /* <Return> */
|
| - /* SUCCESS on success, FAILURE on render pool overflow or incorrect */
|
| - /* profile. */
|
| - /* */
|
| - static Bool
|
| - Conic_To( RAS_ARGS Long cx,
|
| - Long cy,
|
| - Long x,
|
| - Long y )
|
| - {
|
| - Long y1, y2, y3, x3, ymin, ymax;
|
| - TStates state_bez;
|
| -
|
| -
|
| - ras.arc = ras.arcs;
|
| - ras.arc[2].x = ras.lastX;
|
| - ras.arc[2].y = ras.lastY;
|
| - ras.arc[1].x = cx;
|
| - ras.arc[1].y = cy;
|
| - ras.arc[0].x = x;
|
| - ras.arc[0].y = y;
|
| -
|
| - do
|
| - {
|
| - y1 = ras.arc[2].y;
|
| - y2 = ras.arc[1].y;
|
| - y3 = ras.arc[0].y;
|
| - x3 = ras.arc[0].x;
|
| -
|
| - /* first, categorize the Bezier arc */
|
| -
|
| - if ( y1 <= y3 )
|
| - {
|
| - ymin = y1;
|
| - ymax = y3;
|
| - }
|
| - else
|
| - {
|
| - ymin = y3;
|
| - ymax = y1;
|
| - }
|
| -
|
| - if ( y2 < ymin || y2 > ymax )
|
| - {
|
| - /* this arc has no given direction, split it! */
|
| - Split_Conic( ras.arc );
|
| - ras.arc += 2;
|
| - }
|
| - else if ( y1 == y3 )
|
| - {
|
| - /* this arc is flat, ignore it and pop it from the Bezier stack */
|
| - ras.arc -= 2;
|
| - }
|
| - else
|
| - {
|
| - /* the arc is y-monotonous, either ascending or descending */
|
| - /* detect a change of direction */
|
| - state_bez = y1 < y3 ? Ascending_State : Descending_State;
|
| - if ( ras.state != state_bez )
|
| - {
|
| - Bool o = state_bez == Ascending_State ? IS_BOTTOM_OVERSHOOT( y1 )
|
| - : IS_TOP_OVERSHOOT( y1 );
|
| -
|
| -
|
| - /* finalize current profile if any */
|
| - if ( ras.state != Unknown_State &&
|
| - End_Profile( RAS_VARS o ) )
|
| - goto Fail;
|
| -
|
| - /* create a new profile */
|
| - if ( New_Profile( RAS_VARS state_bez, o ) )
|
| - goto Fail;
|
| - }
|
| -
|
| - /* now call the appropriate routine */
|
| - if ( state_bez == Ascending_State )
|
| - {
|
| - if ( Bezier_Up( RAS_VARS 2, Split_Conic, ras.minY, ras.maxY ) )
|
| - goto Fail;
|
| - }
|
| - else
|
| - if ( Bezier_Down( RAS_VARS 2, Split_Conic, ras.minY, ras.maxY ) )
|
| - goto Fail;
|
| - }
|
| -
|
| - } while ( ras.arc >= ras.arcs );
|
| -
|
| - ras.lastX = x3;
|
| - ras.lastY = y3;
|
| -
|
| - return SUCCESS;
|
| -
|
| - Fail:
|
| - return FAILURE;
|
| - }
|
| -
|
| -
|
| - /*************************************************************************/
|
| - /* */
|
| - /* <Function> */
|
| - /* Cubic_To */
|
| - /* */
|
| - /* <Description> */
|
| - /* Inject a new cubic arc and adjust the profile list. */
|
| - /* */
|
| - /* <Input> */
|
| - /* cx1 :: The x-coordinate of the arc's first new control point. */
|
| - /* */
|
| - /* cy1 :: The y-coordinate of the arc's first new control point. */
|
| - /* */
|
| - /* cx2 :: The x-coordinate of the arc's second new control point. */
|
| - /* */
|
| - /* cy2 :: The y-coordinate of the arc's second new control point. */
|
| - /* */
|
| - /* x :: The x-coordinate of the arc's end point (its start point is */
|
| - /* stored in `lastX'). */
|
| - /* */
|
| - /* y :: The y-coordinate of the arc's end point (its start point is */
|
| - /* stored in `lastY'). */
|
| - /* */
|
| - /* <Return> */
|
| - /* SUCCESS on success, FAILURE on render pool overflow or incorrect */
|
| - /* profile. */
|
| - /* */
|
| - static Bool
|
| - Cubic_To( RAS_ARGS Long cx1,
|
| - Long cy1,
|
| - Long cx2,
|
| - Long cy2,
|
| - Long x,
|
| - Long y )
|
| - {
|
| - Long y1, y2, y3, y4, x4, ymin1, ymax1, ymin2, ymax2;
|
| - TStates state_bez;
|
| -
|
| -
|
| - ras.arc = ras.arcs;
|
| - ras.arc[3].x = ras.lastX;
|
| - ras.arc[3].y = ras.lastY;
|
| - ras.arc[2].x = cx1;
|
| - ras.arc[2].y = cy1;
|
| - ras.arc[1].x = cx2;
|
| - ras.arc[1].y = cy2;
|
| - ras.arc[0].x = x;
|
| - ras.arc[0].y = y;
|
| -
|
| - do
|
| - {
|
| - y1 = ras.arc[3].y;
|
| - y2 = ras.arc[2].y;
|
| - y3 = ras.arc[1].y;
|
| - y4 = ras.arc[0].y;
|
| - x4 = ras.arc[0].x;
|
| -
|
| - /* first, categorize the Bezier arc */
|
| -
|
| - if ( y1 <= y4 )
|
| - {
|
| - ymin1 = y1;
|
| - ymax1 = y4;
|
| - }
|
| - else
|
| - {
|
| - ymin1 = y4;
|
| - ymax1 = y1;
|
| - }
|
| -
|
| - if ( y2 <= y3 )
|
| - {
|
| - ymin2 = y2;
|
| - ymax2 = y3;
|
| - }
|
| - else
|
| - {
|
| - ymin2 = y3;
|
| - ymax2 = y2;
|
| - }
|
| -
|
| - if ( ymin2 < ymin1 || ymax2 > ymax1 )
|
| - {
|
| - /* this arc has no given direction, split it! */
|
| - Split_Cubic( ras.arc );
|
| - ras.arc += 3;
|
| - }
|
| - else if ( y1 == y4 )
|
| - {
|
| - /* this arc is flat, ignore it and pop it from the Bezier stack */
|
| - ras.arc -= 3;
|
| - }
|
| - else
|
| - {
|
| - state_bez = ( y1 <= y4 ) ? Ascending_State : Descending_State;
|
| -
|
| - /* detect a change of direction */
|
| - if ( ras.state != state_bez )
|
| - {
|
| - Bool o = state_bez == Ascending_State ? IS_BOTTOM_OVERSHOOT( y1 )
|
| - : IS_TOP_OVERSHOOT( y1 );
|
| -
|
| -
|
| - /* finalize current profile if any */
|
| - if ( ras.state != Unknown_State &&
|
| - End_Profile( RAS_VARS o ) )
|
| - goto Fail;
|
| -
|
| - if ( New_Profile( RAS_VARS state_bez, o ) )
|
| - goto Fail;
|
| - }
|
| -
|
| - /* compute intersections */
|
| - if ( state_bez == Ascending_State )
|
| - {
|
| - if ( Bezier_Up( RAS_VARS 3, Split_Cubic, ras.minY, ras.maxY ) )
|
| - goto Fail;
|
| - }
|
| - else
|
| - if ( Bezier_Down( RAS_VARS 3, Split_Cubic, ras.minY, ras.maxY ) )
|
| - goto Fail;
|
| - }
|
| -
|
| - } while ( ras.arc >= ras.arcs );
|
| -
|
| - ras.lastX = x4;
|
| - ras.lastY = y4;
|
| -
|
| - return SUCCESS;
|
| -
|
| - Fail:
|
| - return FAILURE;
|
| - }
|
| -
|
| -
|
| -#undef SWAP_
|
| -#define SWAP_( x, y ) do \
|
| - { \
|
| - Long swap = x; \
|
| - \
|
| - \
|
| - x = y; \
|
| - y = swap; \
|
| - } while ( 0 )
|
| -
|
| -
|
| - /*************************************************************************/
|
| - /* */
|
| - /* <Function> */
|
| - /* Decompose_Curve */
|
| - /* */
|
| - /* <Description> */
|
| - /* Scan the outline arrays in order to emit individual segments and */
|
| - /* Beziers by calling Line_To() and Bezier_To(). It handles all */
|
| - /* weird cases, like when the first point is off the curve, or when */
|
| - /* there are simply no `on' points in the contour! */
|
| - /* */
|
| - /* <Input> */
|
| - /* first :: The index of the first point in the contour. */
|
| - /* */
|
| - /* last :: The index of the last point in the contour. */
|
| - /* */
|
| - /* flipped :: If set, flip the direction of the curve. */
|
| - /* */
|
| - /* <Return> */
|
| - /* SUCCESS on success, FAILURE on error. */
|
| - /* */
|
| - static Bool
|
| - Decompose_Curve( RAS_ARGS UShort first,
|
| - UShort last,
|
| - int flipped )
|
| - {
|
| - FT_Vector v_last;
|
| - FT_Vector v_control;
|
| - FT_Vector v_start;
|
| -
|
| - FT_Vector* points;
|
| - FT_Vector* point;
|
| - FT_Vector* limit;
|
| - char* tags;
|
| -
|
| - unsigned tag; /* current point's state */
|
| -
|
| -
|
| - points = ras.outline.points;
|
| - limit = points + last;
|
| -
|
| - v_start.x = SCALED( points[first].x );
|
| - v_start.y = SCALED( points[first].y );
|
| - v_last.x = SCALED( points[last].x );
|
| - v_last.y = SCALED( points[last].y );
|
| -
|
| - if ( flipped )
|
| - {
|
| - SWAP_( v_start.x, v_start.y );
|
| - SWAP_( v_last.x, v_last.y );
|
| - }
|
| -
|
| - v_control = v_start;
|
| -
|
| - point = points + first;
|
| - tags = ras.outline.tags + first;
|
| -
|
| - /* set scan mode if necessary */
|
| - if ( tags[0] & FT_CURVE_TAG_HAS_SCANMODE )
|
| - ras.dropOutControl = (Byte)tags[0] >> 5;
|
| -
|
| - tag = FT_CURVE_TAG( tags[0] );
|
| -
|
| - /* A contour cannot start with a cubic control point! */
|
| - if ( tag == FT_CURVE_TAG_CUBIC )
|
| - goto Invalid_Outline;
|
| -
|
| - /* check first point to determine origin */
|
| - if ( tag == FT_CURVE_TAG_CONIC )
|
| - {
|
| - /* first point is conic control. Yes, this happens. */
|
| - if ( FT_CURVE_TAG( ras.outline.tags[last] ) == FT_CURVE_TAG_ON )
|
| - {
|
| - /* start at last point if it is on the curve */
|
| - v_start = v_last;
|
| - limit--;
|
| - }
|
| - else
|
| - {
|
| - /* if both first and last points are conic, */
|
| - /* start at their middle and record its position */
|
| - /* for closure */
|
| - v_start.x = ( v_start.x + v_last.x ) / 2;
|
| - v_start.y = ( v_start.y + v_last.y ) / 2;
|
| -
|
| - v_last = v_start;
|
| - }
|
| - point--;
|
| - tags--;
|
| - }
|
| -
|
| - ras.lastX = v_start.x;
|
| - ras.lastY = v_start.y;
|
| -
|
| - while ( point < limit )
|
| - {
|
| - point++;
|
| - tags++;
|
| -
|
| - tag = FT_CURVE_TAG( tags[0] );
|
| -
|
| - switch ( tag )
|
| - {
|
| - case FT_CURVE_TAG_ON: /* emit a single line_to */
|
| - {
|
| - Long x, y;
|
| -
|
| -
|
| - x = SCALED( point->x );
|
| - y = SCALED( point->y );
|
| - if ( flipped )
|
| - SWAP_( x, y );
|
| -
|
| - if ( Line_To( RAS_VARS x, y ) )
|
| - goto Fail;
|
| - continue;
|
| - }
|
| -
|
| - case FT_CURVE_TAG_CONIC: /* consume conic arcs */
|
| - v_control.x = SCALED( point[0].x );
|
| - v_control.y = SCALED( point[0].y );
|
| -
|
| - if ( flipped )
|
| - SWAP_( v_control.x, v_control.y );
|
| -
|
| - Do_Conic:
|
| - if ( point < limit )
|
| - {
|
| - FT_Vector v_middle;
|
| - Long x, y;
|
| -
|
| -
|
| - point++;
|
| - tags++;
|
| - tag = FT_CURVE_TAG( tags[0] );
|
| -
|
| - x = SCALED( point[0].x );
|
| - y = SCALED( point[0].y );
|
| -
|
| - if ( flipped )
|
| - SWAP_( x, y );
|
| -
|
| - if ( tag == FT_CURVE_TAG_ON )
|
| - {
|
| - if ( Conic_To( RAS_VARS v_control.x, v_control.y, x, y ) )
|
| - goto Fail;
|
| - continue;
|
| - }
|
| -
|
| - if ( tag != FT_CURVE_TAG_CONIC )
|
| - goto Invalid_Outline;
|
| -
|
| - v_middle.x = ( v_control.x + x ) / 2;
|
| - v_middle.y = ( v_control.y + y ) / 2;
|
| -
|
| - if ( Conic_To( RAS_VARS v_control.x, v_control.y,
|
| - v_middle.x, v_middle.y ) )
|
| - goto Fail;
|
| -
|
| - v_control.x = x;
|
| - v_control.y = y;
|
| -
|
| - goto Do_Conic;
|
| - }
|
| -
|
| - if ( Conic_To( RAS_VARS v_control.x, v_control.y,
|
| - v_start.x, v_start.y ) )
|
| - goto Fail;
|
| -
|
| - goto Close;
|
| -
|
| - default: /* FT_CURVE_TAG_CUBIC */
|
| - {
|
| - Long x1, y1, x2, y2, x3, y3;
|
| -
|
| -
|
| - if ( point + 1 > limit ||
|
| - FT_CURVE_TAG( tags[1] ) != FT_CURVE_TAG_CUBIC )
|
| - goto Invalid_Outline;
|
| -
|
| - point += 2;
|
| - tags += 2;
|
| -
|
| - x1 = SCALED( point[-2].x );
|
| - y1 = SCALED( point[-2].y );
|
| - x2 = SCALED( point[-1].x );
|
| - y2 = SCALED( point[-1].y );
|
| -
|
| - if ( flipped )
|
| - {
|
| - SWAP_( x1, y1 );
|
| - SWAP_( x2, y2 );
|
| - }
|
| -
|
| - if ( point <= limit )
|
| - {
|
| - x3 = SCALED( point[0].x );
|
| - y3 = SCALED( point[0].y );
|
| -
|
| - if ( flipped )
|
| - SWAP_( x3, y3 );
|
| -
|
| - if ( Cubic_To( RAS_VARS x1, y1, x2, y2, x3, y3 ) )
|
| - goto Fail;
|
| - continue;
|
| - }
|
| -
|
| - if ( Cubic_To( RAS_VARS x1, y1, x2, y2, v_start.x, v_start.y ) )
|
| - goto Fail;
|
| - goto Close;
|
| - }
|
| - }
|
| - }
|
| -
|
| - /* close the contour with a line segment */
|
| - if ( Line_To( RAS_VARS v_start.x, v_start.y ) )
|
| - goto Fail;
|
| -
|
| - Close:
|
| - return SUCCESS;
|
| -
|
| - Invalid_Outline:
|
| - ras.error = FT_THROW( Invalid );
|
| -
|
| - Fail:
|
| - return FAILURE;
|
| - }
|
| -
|
| -
|
| - /*************************************************************************/
|
| - /* */
|
| - /* <Function> */
|
| - /* Convert_Glyph */
|
| - /* */
|
| - /* <Description> */
|
| - /* Convert a glyph into a series of segments and arcs and make a */
|
| - /* profiles list with them. */
|
| - /* */
|
| - /* <Input> */
|
| - /* flipped :: If set, flip the direction of curve. */
|
| - /* */
|
| - /* <Return> */
|
| - /* SUCCESS on success, FAILURE if any error was encountered during */
|
| - /* rendering. */
|
| - /* */
|
| - static Bool
|
| - Convert_Glyph( RAS_ARGS int flipped )
|
| - {
|
| - int i;
|
| - unsigned start;
|
| -
|
| -
|
| - ras.fProfile = NULL;
|
| - ras.joint = FALSE;
|
| - ras.fresh = FALSE;
|
| -
|
| - ras.maxBuff = ras.sizeBuff - AlignProfileSize;
|
| -
|
| - ras.numTurns = 0;
|
| -
|
| - ras.cProfile = (PProfile)ras.top;
|
| - ras.cProfile->offset = ras.top;
|
| - ras.num_Profs = 0;
|
| -
|
| - start = 0;
|
| -
|
| - for ( i = 0; i < ras.outline.n_contours; i++ )
|
| - {
|
| - PProfile lastProfile;
|
| - Bool o;
|
| -
|
| -
|
| - ras.state = Unknown_State;
|
| - ras.gProfile = NULL;
|
| -
|
| - if ( Decompose_Curve( RAS_VARS (unsigned short)start,
|
| - ras.outline.contours[i],
|
| - flipped ) )
|
| - return FAILURE;
|
| -
|
| - start = ras.outline.contours[i] + 1;
|
| -
|
| - /* we must now check whether the extreme arcs join or not */
|
| - if ( FRAC( ras.lastY ) == 0 &&
|
| - ras.lastY >= ras.minY &&
|
| - ras.lastY <= ras.maxY )
|
| - if ( ras.gProfile &&
|
| - ( ras.gProfile->flags & Flow_Up ) ==
|
| - ( ras.cProfile->flags & Flow_Up ) )
|
| - ras.top--;
|
| - /* Note that ras.gProfile can be nil if the contour was too small */
|
| - /* to be drawn. */
|
| -
|
| - lastProfile = ras.cProfile;
|
| - if ( ras.cProfile->flags & Flow_Up )
|
| - o = IS_TOP_OVERSHOOT( ras.lastY );
|
| - else
|
| - o = IS_BOTTOM_OVERSHOOT( ras.lastY );
|
| - if ( End_Profile( RAS_VARS o ) )
|
| - return FAILURE;
|
| -
|
| - /* close the `next profile in contour' linked list */
|
| - if ( ras.gProfile )
|
| - lastProfile->next = ras.gProfile;
|
| - }
|
| -
|
| - if ( Finalize_Profile_Table( RAS_VAR ) )
|
| - return FAILURE;
|
| -
|
| - return (Bool)( ras.top < ras.maxBuff ? SUCCESS : FAILURE );
|
| - }
|
| -
|
| -
|
| - /*************************************************************************/
|
| - /*************************************************************************/
|
| - /** **/
|
| - /** SCAN-LINE SWEEPS AND DRAWING **/
|
| - /** **/
|
| - /*************************************************************************/
|
| - /*************************************************************************/
|
| -
|
| -
|
| - /*************************************************************************/
|
| - /* */
|
| - /* Init_Linked */
|
| - /* */
|
| - /* Initializes an empty linked list. */
|
| - /* */
|
| - static void
|
| - Init_Linked( TProfileList* l )
|
| - {
|
| - *l = NULL;
|
| - }
|
| -
|
| -
|
| - /*************************************************************************/
|
| - /* */
|
| - /* InsNew */
|
| - /* */
|
| - /* Inserts a new profile in a linked list. */
|
| - /* */
|
| - static void
|
| - InsNew( PProfileList list,
|
| - PProfile profile )
|
| - {
|
| - PProfile *old, current;
|
| - Long x;
|
| -
|
| -
|
| - old = list;
|
| - current = *old;
|
| - x = profile->X;
|
| -
|
| - while ( current )
|
| - {
|
| - if ( x < current->X )
|
| - break;
|
| - old = ¤t->link;
|
| - current = *old;
|
| - }
|
| -
|
| - profile->link = current;
|
| - *old = profile;
|
| - }
|
| -
|
| -
|
| - /*************************************************************************/
|
| - /* */
|
| - /* DelOld */
|
| - /* */
|
| - /* Removes an old profile from a linked list. */
|
| - /* */
|
| - static void
|
| - DelOld( PProfileList list,
|
| - PProfile profile )
|
| - {
|
| - PProfile *old, current;
|
| -
|
| -
|
| - old = list;
|
| - current = *old;
|
| -
|
| - while ( current )
|
| - {
|
| - if ( current == profile )
|
| - {
|
| - *old = current->link;
|
| - return;
|
| - }
|
| -
|
| - old = ¤t->link;
|
| - current = *old;
|
| - }
|
| -
|
| - /* we should never get there, unless the profile was not part of */
|
| - /* the list. */
|
| - }
|
| -
|
| -
|
| - /*************************************************************************/
|
| - /* */
|
| - /* Sort */
|
| - /* */
|
| - /* Sorts a trace list. In 95%, the list is already sorted. We need */
|
| - /* an algorithm which is fast in this case. Bubble sort is enough */
|
| - /* and simple. */
|
| - /* */
|
| - static void
|
| - Sort( PProfileList list )
|
| - {
|
| - PProfile *old, current, next;
|
| -
|
| -
|
| - /* First, set the new X coordinate of each profile */
|
| - current = *list;
|
| - while ( current )
|
| - {
|
| - current->X = *current->offset;
|
| - current->offset += current->flags & Flow_Up ? 1 : -1;
|
| - current->height--;
|
| - current = current->link;
|
| - }
|
| -
|
| - /* Then sort them */
|
| - old = list;
|
| - current = *old;
|
| -
|
| - if ( !current )
|
| - return;
|
| -
|
| - next = current->link;
|
| -
|
| - while ( next )
|
| - {
|
| - if ( current->X <= next->X )
|
| - {
|
| - old = ¤t->link;
|
| - current = *old;
|
| -
|
| - if ( !current )
|
| - return;
|
| - }
|
| - else
|
| - {
|
| - *old = next;
|
| - current->link = next->link;
|
| - next->link = current;
|
| -
|
| - old = list;
|
| - current = *old;
|
| - }
|
| -
|
| - next = current->link;
|
| - }
|
| - }
|
| -
|
| -
|
| - /*************************************************************************/
|
| - /* */
|
| - /* Vertical Sweep Procedure Set */
|
| - /* */
|
| - /* These four routines are used during the vertical black/white sweep */
|
| - /* phase by the generic Draw_Sweep() function. */
|
| - /* */
|
| - /*************************************************************************/
|
| -
|
| - static void
|
| - Vertical_Sweep_Init( RAS_ARGS Short* min,
|
| - Short* max )
|
| - {
|
| - Long pitch = ras.target.pitch;
|
| -
|
| - FT_UNUSED( max );
|
| -
|
| -
|
| - ras.traceIncr = (Short)-pitch;
|
| - ras.traceOfs = -*min * pitch;
|
| - if ( pitch > 0 )
|
| - ras.traceOfs += ( ras.target.rows - 1 ) * pitch;
|
| -
|
| - ras.gray_min_x = 0;
|
| - ras.gray_max_x = 0;
|
| - }
|
| -
|
| -
|
| - static void
|
| - Vertical_Sweep_Span( RAS_ARGS Short y,
|
| - FT_F26Dot6 x1,
|
| - FT_F26Dot6 x2,
|
| - PProfile left,
|
| - PProfile right )
|
| - {
|
| - Long e1, e2;
|
| - Byte* target;
|
| -
|
| - FT_UNUSED( y );
|
| - FT_UNUSED( left );
|
| - FT_UNUSED( right );
|
| -
|
| -
|
| - /* Drop-out control */
|
| -
|
| - e1 = TRUNC( CEILING( x1 ) );
|
| -
|
| - if ( x2 - x1 - ras.precision <= ras.precision_jitter )
|
| - e2 = e1;
|
| - else
|
| - e2 = TRUNC( FLOOR( x2 ) );
|
| -
|
| - if ( e2 >= 0 && e1 < ras.bWidth )
|
| - {
|
| - int c1, c2;
|
| - Byte f1, f2;
|
| -
|
| -
|
| - if ( e1 < 0 )
|
| - e1 = 0;
|
| - if ( e2 >= ras.bWidth )
|
| - e2 = ras.bWidth - 1;
|
| -
|
| - c1 = (Short)( e1 >> 3 );
|
| - c2 = (Short)( e2 >> 3 );
|
| -
|
| - f1 = (Byte) ( 0xFF >> ( e1 & 7 ) );
|
| - f2 = (Byte) ~( 0x7F >> ( e2 & 7 ) );
|
| -
|
| - if ( ras.gray_min_x > c1 )
|
| - ras.gray_min_x = (short)c1;
|
| - if ( ras.gray_max_x < c2 )
|
| - ras.gray_max_x = (short)c2;
|
| -
|
| - target = ras.bTarget + ras.traceOfs + c1;
|
| - c2 -= c1;
|
| -
|
| - if ( c2 > 0 )
|
| - {
|
| - target[0] |= f1;
|
| -
|
| - /* memset() is slower than the following code on many platforms. */
|
| - /* This is due to the fact that, in the vast majority of cases, */
|
| - /* the span length in bytes is relatively small. */
|
| - c2--;
|
| - while ( c2 > 0 )
|
| - {
|
| - *(++target) = 0xFF;
|
| - c2--;
|
| - }
|
| - target[1] |= f2;
|
| - }
|
| - else
|
| - *target |= ( f1 & f2 );
|
| - }
|
| - }
|
| -
|
| -
|
| - static void
|
| - Vertical_Sweep_Drop( RAS_ARGS Short y,
|
| - FT_F26Dot6 x1,
|
| - FT_F26Dot6 x2,
|
| - PProfile left,
|
| - PProfile right )
|
| - {
|
| - Long e1, e2, pxl;
|
| - Short c1, f1;
|
| -
|
| -
|
| - /* Drop-out control */
|
| -
|
| - /* e2 x2 x1 e1 */
|
| - /* */
|
| - /* ^ | */
|
| - /* | | */
|
| - /* +-------------+---------------------+------------+ */
|
| - /* | | */
|
| - /* | v */
|
| - /* */
|
| - /* pixel contour contour pixel */
|
| - /* center center */
|
| -
|
| - /* drop-out mode scan conversion rules (as defined in OpenType) */
|
| - /* --------------------------------------------------------------- */
|
| - /* 0 1, 2, 3 */
|
| - /* 1 1, 2, 4 */
|
| - /* 2 1, 2 */
|
| - /* 3 same as mode 2 */
|
| - /* 4 1, 2, 5 */
|
| - /* 5 1, 2, 6 */
|
| - /* 6, 7 same as mode 2 */
|
| -
|
| - e1 = CEILING( x1 );
|
| - e2 = FLOOR ( x2 );
|
| - pxl = e1;
|
| -
|
| - if ( e1 > e2 )
|
| - {
|
| - Int dropOutControl = left->flags & 7;
|
| -
|
| -
|
| - if ( e1 == e2 + ras.precision )
|
| - {
|
| - switch ( dropOutControl )
|
| - {
|
| - case 0: /* simple drop-outs including stubs */
|
| - pxl = e2;
|
| - break;
|
| -
|
| - case 4: /* smart drop-outs including stubs */
|
| - pxl = FLOOR( ( x1 + x2 - 1 ) / 2 + ras.precision_half );
|
| - break;
|
| -
|
| - case 1: /* simple drop-outs excluding stubs */
|
| - case 5: /* smart drop-outs excluding stubs */
|
| -
|
| - /* Drop-out Control Rules #4 and #6 */
|
| -
|
| - /* The specification neither provides an exact definition */
|
| - /* of a `stub' nor gives exact rules to exclude them. */
|
| - /* */
|
| - /* Here the constraints we use to recognize a stub. */
|
| - /* */
|
| - /* upper stub: */
|
| - /* */
|
| - /* - P_Left and P_Right are in the same contour */
|
| - /* - P_Right is the successor of P_Left in that contour */
|
| - /* - y is the top of P_Left and P_Right */
|
| - /* */
|
| - /* lower stub: */
|
| - /* */
|
| - /* - P_Left and P_Right are in the same contour */
|
| - /* - P_Left is the successor of P_Right in that contour */
|
| - /* - y is the bottom of P_Left */
|
| - /* */
|
| - /* We draw a stub if the following constraints are met. */
|
| - /* */
|
| - /* - for an upper or lower stub, there is top or bottom */
|
| - /* overshoot, respectively */
|
| - /* - the covered interval is greater or equal to a half */
|
| - /* pixel */
|
| -
|
| - /* upper stub test */
|
| - if ( left->next == right &&
|
| - left->height <= 0 &&
|
| - !( left->flags & Overshoot_Top &&
|
| - x2 - x1 >= ras.precision_half ) )
|
| - return;
|
| -
|
| - /* lower stub test */
|
| - if ( right->next == left &&
|
| - left->start == y &&
|
| - !( left->flags & Overshoot_Bottom &&
|
| - x2 - x1 >= ras.precision_half ) )
|
| - return;
|
| -
|
| - if ( dropOutControl == 1 )
|
| - pxl = e2;
|
| - else
|
| - pxl = FLOOR( ( x1 + x2 - 1 ) / 2 + ras.precision_half );
|
| - break;
|
| -
|
| - default: /* modes 2, 3, 6, 7 */
|
| - return; /* no drop-out control */
|
| - }
|
| -
|
| - /* undocumented but confirmed: If the drop-out would result in a */
|
| - /* pixel outside of the bounding box, use the pixel inside of the */
|
| - /* bounding box instead */
|
| - if ( pxl < 0 )
|
| - pxl = e1;
|
| - else if ( TRUNC( pxl ) >= ras.bWidth )
|
| - pxl = e2;
|
| -
|
| - /* check that the other pixel isn't set */
|
| - e1 = pxl == e1 ? e2 : e1;
|
| -
|
| - e1 = TRUNC( e1 );
|
| -
|
| - c1 = (Short)( e1 >> 3 );
|
| - f1 = (Short)( e1 & 7 );
|
| -
|
| - if ( e1 >= 0 && e1 < ras.bWidth &&
|
| - ras.bTarget[ras.traceOfs + c1] & ( 0x80 >> f1 ) )
|
| - return;
|
| - }
|
| - else
|
| - return;
|
| - }
|
| -
|
| - e1 = TRUNC( pxl );
|
| -
|
| - if ( e1 >= 0 && e1 < ras.bWidth )
|
| - {
|
| - c1 = (Short)( e1 >> 3 );
|
| - f1 = (Short)( e1 & 7 );
|
| -
|
| - if ( ras.gray_min_x > c1 )
|
| - ras.gray_min_x = c1;
|
| - if ( ras.gray_max_x < c1 )
|
| - ras.gray_max_x = c1;
|
| -
|
| - ras.bTarget[ras.traceOfs + c1] |= (char)( 0x80 >> f1 );
|
| - }
|
| - }
|
| -
|
| -
|
| - static void
|
| - Vertical_Sweep_Step( RAS_ARG )
|
| - {
|
| - ras.traceOfs += ras.traceIncr;
|
| - }
|
| -
|
| -
|
| - /***********************************************************************/
|
| - /* */
|
| - /* Horizontal Sweep Procedure Set */
|
| - /* */
|
| - /* These four routines are used during the horizontal black/white */
|
| - /* sweep phase by the generic Draw_Sweep() function. */
|
| - /* */
|
| - /***********************************************************************/
|
| -
|
| - static void
|
| - Horizontal_Sweep_Init( RAS_ARGS Short* min,
|
| - Short* max )
|
| - {
|
| - /* nothing, really */
|
| - FT_UNUSED_RASTER;
|
| - FT_UNUSED( min );
|
| - FT_UNUSED( max );
|
| - }
|
| -
|
| -
|
| - static void
|
| - Horizontal_Sweep_Span( RAS_ARGS Short y,
|
| - FT_F26Dot6 x1,
|
| - FT_F26Dot6 x2,
|
| - PProfile left,
|
| - PProfile right )
|
| - {
|
| - FT_UNUSED( left );
|
| - FT_UNUSED( right );
|
| -
|
| -
|
| - if ( x2 - x1 < ras.precision )
|
| - {
|
| - Long e1, e2;
|
| -
|
| -
|
| - e1 = CEILING( x1 );
|
| - e2 = FLOOR ( x2 );
|
| -
|
| - if ( e1 == e2 )
|
| - {
|
| - Byte f1;
|
| - PByte bits;
|
| -
|
| -
|
| - bits = ras.bTarget + ( y >> 3 );
|
| - f1 = (Byte)( 0x80 >> ( y & 7 ) );
|
| -
|
| - e1 = TRUNC( e1 );
|
| -
|
| - if ( e1 >= 0 && e1 < ras.target.rows )
|
| - {
|
| - PByte p;
|
| -
|
| -
|
| - p = bits - e1 * ras.target.pitch;
|
| - if ( ras.target.pitch > 0 )
|
| - p += ( ras.target.rows - 1 ) * ras.target.pitch;
|
| -
|
| - p[0] |= f1;
|
| - }
|
| - }
|
| - }
|
| - }
|
| -
|
| -
|
| - static void
|
| - Horizontal_Sweep_Drop( RAS_ARGS Short y,
|
| - FT_F26Dot6 x1,
|
| - FT_F26Dot6 x2,
|
| - PProfile left,
|
| - PProfile right )
|
| - {
|
| - Long e1, e2, pxl;
|
| - PByte bits;
|
| - Byte f1;
|
| -
|
| -
|
| - /* During the horizontal sweep, we only take care of drop-outs */
|
| -
|
| - /* e1 + <-- pixel center */
|
| - /* | */
|
| - /* x1 ---+--> <-- contour */
|
| - /* | */
|
| - /* | */
|
| - /* x2 <--+--- <-- contour */
|
| - /* | */
|
| - /* | */
|
| - /* e2 + <-- pixel center */
|
| -
|
| - e1 = CEILING( x1 );
|
| - e2 = FLOOR ( x2 );
|
| - pxl = e1;
|
| -
|
| - if ( e1 > e2 )
|
| - {
|
| - Int dropOutControl = left->flags & 7;
|
| -
|
| -
|
| - if ( e1 == e2 + ras.precision )
|
| - {
|
| - switch ( dropOutControl )
|
| - {
|
| - case 0: /* simple drop-outs including stubs */
|
| - pxl = e2;
|
| - break;
|
| -
|
| - case 4: /* smart drop-outs including stubs */
|
| - pxl = FLOOR( ( x1 + x2 - 1 ) / 2 + ras.precision_half );
|
| - break;
|
| -
|
| - case 1: /* simple drop-outs excluding stubs */
|
| - case 5: /* smart drop-outs excluding stubs */
|
| - /* see Vertical_Sweep_Drop for details */
|
| -
|
| - /* rightmost stub test */
|
| - if ( left->next == right &&
|
| - left->height <= 0 &&
|
| - !( left->flags & Overshoot_Top &&
|
| - x2 - x1 >= ras.precision_half ) )
|
| - return;
|
| -
|
| - /* leftmost stub test */
|
| - if ( right->next == left &&
|
| - left->start == y &&
|
| - !( left->flags & Overshoot_Bottom &&
|
| - x2 - x1 >= ras.precision_half ) )
|
| - return;
|
| -
|
| - if ( dropOutControl == 1 )
|
| - pxl = e2;
|
| - else
|
| - pxl = FLOOR( ( x1 + x2 - 1 ) / 2 + ras.precision_half );
|
| - break;
|
| -
|
| - default: /* modes 2, 3, 6, 7 */
|
| - return; /* no drop-out control */
|
| - }
|
| -
|
| - /* undocumented but confirmed: If the drop-out would result in a */
|
| - /* pixel outside of the bounding box, use the pixel inside of the */
|
| - /* bounding box instead */
|
| - if ( pxl < 0 )
|
| - pxl = e1;
|
| - else if ( TRUNC( pxl ) >= ras.target.rows )
|
| - pxl = e2;
|
| -
|
| - /* check that the other pixel isn't set */
|
| - e1 = pxl == e1 ? e2 : e1;
|
| -
|
| - e1 = TRUNC( e1 );
|
| -
|
| - bits = ras.bTarget + ( y >> 3 );
|
| - f1 = (Byte)( 0x80 >> ( y & 7 ) );
|
| -
|
| - bits -= e1 * ras.target.pitch;
|
| - if ( ras.target.pitch > 0 )
|
| - bits += ( ras.target.rows - 1 ) * ras.target.pitch;
|
| -
|
| - if ( e1 >= 0 &&
|
| - e1 < ras.target.rows &&
|
| - *bits & f1 )
|
| - return;
|
| - }
|
| - else
|
| - return;
|
| - }
|
| -
|
| - bits = ras.bTarget + ( y >> 3 );
|
| - f1 = (Byte)( 0x80 >> ( y & 7 ) );
|
| -
|
| - e1 = TRUNC( pxl );
|
| -
|
| - if ( e1 >= 0 && e1 < ras.target.rows )
|
| - {
|
| - bits -= e1 * ras.target.pitch;
|
| - if ( ras.target.pitch > 0 )
|
| - bits += ( ras.target.rows - 1 ) * ras.target.pitch;
|
| -
|
| - bits[0] |= f1;
|
| - }
|
| - }
|
| -
|
| -
|
| - static void
|
| - Horizontal_Sweep_Step( RAS_ARG )
|
| - {
|
| - /* Nothing, really */
|
| - FT_UNUSED_RASTER;
|
| - }
|
| -
|
| -
|
| -#ifdef FT_RASTER_OPTION_ANTI_ALIASING
|
| -
|
| -
|
| - /*************************************************************************/
|
| - /* */
|
| - /* Vertical Gray Sweep Procedure Set */
|
| - /* */
|
| - /* These two routines are used during the vertical gray-levels sweep */
|
| - /* phase by the generic Draw_Sweep() function. */
|
| - /* */
|
| - /* NOTES */
|
| - /* */
|
| - /* - The target pixmap's width *must* be a multiple of 4. */
|
| - /* */
|
| - /* - You have to use the function Vertical_Sweep_Span() for the gray */
|
| - /* span call. */
|
| - /* */
|
| - /*************************************************************************/
|
| -
|
| - static void
|
| - Vertical_Gray_Sweep_Init( RAS_ARGS Short* min,
|
| - Short* max )
|
| - {
|
| - Long pitch, byte_len;
|
| -
|
| -
|
| - *min = *min & -2;
|
| - *max = ( *max + 3 ) & -2;
|
| -
|
| - ras.traceOfs = 0;
|
| - pitch = ras.target.pitch;
|
| - byte_len = -pitch;
|
| - ras.traceIncr = (Short)byte_len;
|
| - ras.traceG = ( *min / 2 ) * byte_len;
|
| -
|
| - if ( pitch > 0 )
|
| - {
|
| - ras.traceG += ( ras.target.rows - 1 ) * pitch;
|
| - byte_len = -byte_len;
|
| - }
|
| -
|
| - ras.gray_min_x = (Short)byte_len;
|
| - ras.gray_max_x = -(Short)byte_len;
|
| - }
|
| -
|
| -
|
| - static void
|
| - Vertical_Gray_Sweep_Step( RAS_ARG )
|
| - {
|
| - short* count = (short*)count_table;
|
| - Byte* grays;
|
| -
|
| -
|
| - ras.traceOfs += ras.gray_width;
|
| -
|
| - if ( ras.traceOfs > ras.gray_width )
|
| - {
|
| - PByte pix;
|
| -
|
| -
|
| - pix = ras.gTarget + ras.traceG + ras.gray_min_x * 4;
|
| - grays = ras.grays;
|
| -
|
| - if ( ras.gray_max_x >= 0 )
|
| - {
|
| - Long last_pixel = ras.target.width - 1;
|
| - Int last_cell = last_pixel >> 2;
|
| - Int last_bit = last_pixel & 3;
|
| - Bool over = 0;
|
| -
|
| - Int c1, c2;
|
| - PByte bit, bit2;
|
| -
|
| -
|
| - if ( ras.gray_max_x >= last_cell && last_bit != 3 )
|
| - {
|
| - ras.gray_max_x = last_cell - 1;
|
| - over = 1;
|
| - }
|
| -
|
| - if ( ras.gray_min_x < 0 )
|
| - ras.gray_min_x = 0;
|
| -
|
| - bit = ras.bTarget + ras.gray_min_x;
|
| - bit2 = bit + ras.gray_width;
|
| -
|
| - c1 = ras.gray_max_x - ras.gray_min_x;
|
| -
|
| - while ( c1 >= 0 )
|
| - {
|
| - c2 = count[*bit] + count[*bit2];
|
| -
|
| - if ( c2 )
|
| - {
|
| - pix[0] = grays[(c2 >> 12) & 0x000F];
|
| - pix[1] = grays[(c2 >> 8 ) & 0x000F];
|
| - pix[2] = grays[(c2 >> 4 ) & 0x000F];
|
| - pix[3] = grays[ c2 & 0x000F];
|
| -
|
| - *bit = 0;
|
| - *bit2 = 0;
|
| - }
|
| -
|
| - bit++;
|
| - bit2++;
|
| - pix += 4;
|
| - c1--;
|
| - }
|
| -
|
| - if ( over )
|
| - {
|
| - c2 = count[*bit] + count[*bit2];
|
| - if ( c2 )
|
| - {
|
| - switch ( last_bit )
|
| - {
|
| - case 2:
|
| - pix[2] = grays[(c2 >> 4 ) & 0x000F];
|
| - case 1:
|
| - pix[1] = grays[(c2 >> 8 ) & 0x000F];
|
| - default:
|
| - pix[0] = grays[(c2 >> 12) & 0x000F];
|
| - }
|
| -
|
| - *bit = 0;
|
| - *bit2 = 0;
|
| - }
|
| - }
|
| - }
|
| -
|
| - ras.traceOfs = 0;
|
| - ras.traceG += ras.traceIncr;
|
| -
|
| - ras.gray_min_x = 32000;
|
| - ras.gray_max_x = -32000;
|
| - }
|
| - }
|
| -
|
| -
|
| - static void
|
| - Horizontal_Gray_Sweep_Span( RAS_ARGS Short y,
|
| - FT_F26Dot6 x1,
|
| - FT_F26Dot6 x2,
|
| - PProfile left,
|
| - PProfile right )
|
| - {
|
| - /* nothing, really */
|
| - FT_UNUSED_RASTER;
|
| - FT_UNUSED( y );
|
| - FT_UNUSED( x1 );
|
| - FT_UNUSED( x2 );
|
| - FT_UNUSED( left );
|
| - FT_UNUSED( right );
|
| - }
|
| -
|
| -
|
| - static void
|
| - Horizontal_Gray_Sweep_Drop( RAS_ARGS Short y,
|
| - FT_F26Dot6 x1,
|
| - FT_F26Dot6 x2,
|
| - PProfile left,
|
| - PProfile right )
|
| - {
|
| - Long e1, e2;
|
| - PByte pixel;
|
| -
|
| -
|
| - /* During the horizontal sweep, we only take care of drop-outs */
|
| -
|
| - e1 = CEILING( x1 );
|
| - e2 = FLOOR ( x2 );
|
| -
|
| - if ( e1 > e2 )
|
| - {
|
| - Int dropOutControl = left->flags & 7;
|
| -
|
| -
|
| - if ( e1 == e2 + ras.precision )
|
| - {
|
| - switch ( dropOutControl )
|
| - {
|
| - case 0: /* simple drop-outs including stubs */
|
| - e1 = e2;
|
| - break;
|
| -
|
| - case 4: /* smart drop-outs including stubs */
|
| - e1 = FLOOR( ( x1 + x2 - 1 ) / 2 + ras.precision_half );
|
| - break;
|
| -
|
| - case 1: /* simple drop-outs excluding stubs */
|
| - case 5: /* smart drop-outs excluding stubs */
|
| - /* see Vertical_Sweep_Drop for details */
|
| -
|
| - /* rightmost stub test */
|
| - if ( left->next == right && left->height <= 0 )
|
| - return;
|
| -
|
| - /* leftmost stub test */
|
| - if ( right->next == left && left->start == y )
|
| - return;
|
| -
|
| - if ( dropOutControl == 1 )
|
| - e1 = e2;
|
| - else
|
| - e1 = FLOOR( ( x1 + x2 - 1 ) / 2 + ras.precision_half );
|
| -
|
| - break;
|
| -
|
| - default: /* modes 2, 3, 6, 7 */
|
| - return; /* no drop-out control */
|
| - }
|
| - }
|
| - else
|
| - return;
|
| - }
|
| -
|
| - if ( e1 >= 0 )
|
| - {
|
| - Byte color;
|
| -
|
| -
|
| - if ( x2 - x1 >= ras.precision_half )
|
| - color = ras.grays[2];
|
| - else
|
| - color = ras.grays[1];
|
| -
|
| - e1 = TRUNC( e1 ) / 2;
|
| - if ( e1 < ras.target.rows )
|
| - {
|
| - pixel = ras.gTarget - e1 * ras.target.pitch + y / 2;
|
| - if ( ras.target.pitch > 0 )
|
| - pixel += ( ras.target.rows - 1 ) * ras.target.pitch;
|
| -
|
| - if ( pixel[0] == ras.grays[0] )
|
| - pixel[0] = color;
|
| - }
|
| - }
|
| - }
|
| -
|
| -
|
| -#endif /* FT_RASTER_OPTION_ANTI_ALIASING */
|
| -
|
| -
|
| - /*************************************************************************/
|
| - /* */
|
| - /* Generic Sweep Drawing routine */
|
| - /* */
|
| - /*************************************************************************/
|
| -
|
| - static Bool
|
| - Draw_Sweep( RAS_ARG )
|
| - {
|
| - Short y, y_change, y_height;
|
| -
|
| - PProfile P, Q, P_Left, P_Right;
|
| -
|
| - Short min_Y, max_Y, top, bottom, dropouts;
|
| -
|
| - Long x1, x2, xs, e1, e2;
|
| -
|
| - TProfileList waiting;
|
| - TProfileList draw_left, draw_right;
|
| -
|
| -
|
| - /* initialize empty linked lists */
|
| -
|
| - Init_Linked( &waiting );
|
| -
|
| - Init_Linked( &draw_left );
|
| - Init_Linked( &draw_right );
|
| -
|
| - /* first, compute min and max Y */
|
| -
|
| - P = ras.fProfile;
|
| - max_Y = (Short)TRUNC( ras.minY );
|
| - min_Y = (Short)TRUNC( ras.maxY );
|
| -
|
| - while ( P )
|
| - {
|
| - Q = P->link;
|
| -
|
| - bottom = (Short)P->start;
|
| - top = (Short)( P->start + P->height - 1 );
|
| -
|
| - if ( min_Y > bottom )
|
| - min_Y = bottom;
|
| - if ( max_Y < top )
|
| - max_Y = top;
|
| -
|
| - P->X = 0;
|
| - InsNew( &waiting, P );
|
| -
|
| - P = Q;
|
| - }
|
| -
|
| - /* check the Y-turns */
|
| - if ( ras.numTurns == 0 )
|
| - {
|
| - ras.error = FT_THROW( Invalid );
|
| - return FAILURE;
|
| - }
|
| -
|
| - /* now initialize the sweep */
|
| -
|
| - ras.Proc_Sweep_Init( RAS_VARS &min_Y, &max_Y );
|
| -
|
| - /* then compute the distance of each profile from min_Y */
|
| -
|
| - P = waiting;
|
| -
|
| - while ( P )
|
| - {
|
| - P->countL = (UShort)( P->start - min_Y );
|
| - P = P->link;
|
| - }
|
| -
|
| - /* let's go */
|
| -
|
| - y = min_Y;
|
| - y_height = 0;
|
| -
|
| - if ( ras.numTurns > 0 &&
|
| - ras.sizeBuff[-ras.numTurns] == min_Y )
|
| - ras.numTurns--;
|
| -
|
| - while ( ras.numTurns > 0 )
|
| - {
|
| - /* check waiting list for new activations */
|
| -
|
| - P = waiting;
|
| -
|
| - while ( P )
|
| - {
|
| - Q = P->link;
|
| - P->countL -= y_height;
|
| - if ( P->countL == 0 )
|
| - {
|
| - DelOld( &waiting, P );
|
| -
|
| - if ( P->flags & Flow_Up )
|
| - InsNew( &draw_left, P );
|
| - else
|
| - InsNew( &draw_right, P );
|
| - }
|
| -
|
| - P = Q;
|
| - }
|
| -
|
| - /* sort the drawing lists */
|
| -
|
| - Sort( &draw_left );
|
| - Sort( &draw_right );
|
| -
|
| - y_change = (Short)ras.sizeBuff[-ras.numTurns--];
|
| - y_height = (Short)( y_change - y );
|
| -
|
| - while ( y < y_change )
|
| - {
|
| - /* let's trace */
|
| -
|
| - dropouts = 0;
|
| -
|
| - P_Left = draw_left;
|
| - P_Right = draw_right;
|
| -
|
| - while ( P_Left )
|
| - {
|
| - x1 = P_Left ->X;
|
| - x2 = P_Right->X;
|
| -
|
| - if ( x1 > x2 )
|
| - {
|
| - xs = x1;
|
| - x1 = x2;
|
| - x2 = xs;
|
| - }
|
| -
|
| - e1 = FLOOR( x1 );
|
| - e2 = CEILING( x2 );
|
| -
|
| - if ( x2 - x1 <= ras.precision &&
|
| - e1 != x1 && e2 != x2 )
|
| - {
|
| - if ( e1 > e2 || e2 == e1 + ras.precision )
|
| - {
|
| - Int dropOutControl = P_Left->flags & 7;
|
| -
|
| -
|
| - if ( dropOutControl != 2 )
|
| - {
|
| - /* a drop-out was detected */
|
| -
|
| - P_Left ->X = x1;
|
| - P_Right->X = x2;
|
| -
|
| - /* mark profile for drop-out processing */
|
| - P_Left->countL = 1;
|
| - dropouts++;
|
| - }
|
| -
|
| - goto Skip_To_Next;
|
| - }
|
| - }
|
| -
|
| - ras.Proc_Sweep_Span( RAS_VARS y, x1, x2, P_Left, P_Right );
|
| -
|
| - Skip_To_Next:
|
| -
|
| - P_Left = P_Left->link;
|
| - P_Right = P_Right->link;
|
| - }
|
| -
|
| - /* handle drop-outs _after_ the span drawing -- */
|
| - /* drop-out processing has been moved out of the loop */
|
| - /* for performance tuning */
|
| - if ( dropouts > 0 )
|
| - goto Scan_DropOuts;
|
| -
|
| - Next_Line:
|
| -
|
| - ras.Proc_Sweep_Step( RAS_VAR );
|
| -
|
| - y++;
|
| -
|
| - if ( y < y_change )
|
| - {
|
| - Sort( &draw_left );
|
| - Sort( &draw_right );
|
| - }
|
| - }
|
| -
|
| - /* now finalize the profiles that need it */
|
| -
|
| - P = draw_left;
|
| - while ( P )
|
| - {
|
| - Q = P->link;
|
| - if ( P->height == 0 )
|
| - DelOld( &draw_left, P );
|
| - P = Q;
|
| - }
|
| -
|
| - P = draw_right;
|
| - while ( P )
|
| - {
|
| - Q = P->link;
|
| - if ( P->height == 0 )
|
| - DelOld( &draw_right, P );
|
| - P = Q;
|
| - }
|
| - }
|
| -
|
| - /* for gray-scaling, flush the bitmap scanline cache */
|
| - while ( y <= max_Y )
|
| - {
|
| - ras.Proc_Sweep_Step( RAS_VAR );
|
| - y++;
|
| - }
|
| -
|
| - return SUCCESS;
|
| -
|
| - Scan_DropOuts:
|
| -
|
| - P_Left = draw_left;
|
| - P_Right = draw_right;
|
| -
|
| - while ( P_Left )
|
| - {
|
| - if ( P_Left->countL )
|
| - {
|
| - P_Left->countL = 0;
|
| -#if 0
|
| - dropouts--; /* -- this is useful when debugging only */
|
| -#endif
|
| - ras.Proc_Sweep_Drop( RAS_VARS y,
|
| - P_Left->X,
|
| - P_Right->X,
|
| - P_Left,
|
| - P_Right );
|
| - }
|
| -
|
| - P_Left = P_Left->link;
|
| - P_Right = P_Right->link;
|
| - }
|
| -
|
| - goto Next_Line;
|
| - }
|
| -
|
| -
|
| - /*************************************************************************/
|
| - /* */
|
| - /* <Function> */
|
| - /* Render_Single_Pass */
|
| - /* */
|
| - /* <Description> */
|
| - /* Perform one sweep with sub-banding. */
|
| - /* */
|
| - /* <Input> */
|
| - /* flipped :: If set, flip the direction of the outline. */
|
| - /* */
|
| - /* <Return> */
|
| - /* Renderer error code. */
|
| - /* */
|
| - static int
|
| - Render_Single_Pass( RAS_ARGS Bool flipped )
|
| - {
|
| - Short i, j, k;
|
| -
|
| -
|
| - while ( ras.band_top >= 0 )
|
| - {
|
| - ras.maxY = (Long)ras.band_stack[ras.band_top].y_max * ras.precision;
|
| - ras.minY = (Long)ras.band_stack[ras.band_top].y_min * ras.precision;
|
| -
|
| - ras.top = ras.buff;
|
| -
|
| - ras.error = Raster_Err_None;
|
| -
|
| - if ( Convert_Glyph( RAS_VARS flipped ) )
|
| - {
|
| - if ( ras.error != Raster_Err_Overflow )
|
| - return FAILURE;
|
| -
|
| - ras.error = Raster_Err_None;
|
| -
|
| - /* sub-banding */
|
| -
|
| -#ifdef DEBUG_RASTER
|
| - ClearBand( RAS_VARS TRUNC( ras.minY ), TRUNC( ras.maxY ) );
|
| -#endif
|
| -
|
| - i = ras.band_stack[ras.band_top].y_min;
|
| - j = ras.band_stack[ras.band_top].y_max;
|
| -
|
| - k = (Short)( ( i + j ) / 2 );
|
| -
|
| - if ( ras.band_top >= 7 || k < i )
|
| - {
|
| - ras.band_top = 0;
|
| - ras.error = FT_THROW( Invalid );
|
| -
|
| - return ras.error;
|
| - }
|
| -
|
| - ras.band_stack[ras.band_top + 1].y_min = k;
|
| - ras.band_stack[ras.band_top + 1].y_max = j;
|
| -
|
| - ras.band_stack[ras.band_top].y_max = (Short)( k - 1 );
|
| -
|
| - ras.band_top++;
|
| - }
|
| - else
|
| - {
|
| - if ( ras.fProfile )
|
| - if ( Draw_Sweep( RAS_VAR ) )
|
| - return ras.error;
|
| - ras.band_top--;
|
| - }
|
| - }
|
| -
|
| - return SUCCESS;
|
| - }
|
| -
|
| -
|
| - /*************************************************************************/
|
| - /* */
|
| - /* <Function> */
|
| - /* Render_Glyph */
|
| - /* */
|
| - /* <Description> */
|
| - /* Render a glyph in a bitmap. Sub-banding if needed. */
|
| - /* */
|
| - /* <Return> */
|
| - /* FreeType error code. 0 means success. */
|
| - /* */
|
| - FT_LOCAL_DEF( FT_Error )
|
| - Render_Glyph( RAS_ARG )
|
| - {
|
| - FT_Error error;
|
| -
|
| -
|
| - Set_High_Precision( RAS_VARS ras.outline.flags &
|
| - FT_OUTLINE_HIGH_PRECISION );
|
| - ras.scale_shift = ras.precision_shift;
|
| -
|
| - if ( ras.outline.flags & FT_OUTLINE_IGNORE_DROPOUTS )
|
| - ras.dropOutControl = 2;
|
| - else
|
| - {
|
| - if ( ras.outline.flags & FT_OUTLINE_SMART_DROPOUTS )
|
| - ras.dropOutControl = 4;
|
| - else
|
| - ras.dropOutControl = 0;
|
| -
|
| - if ( !( ras.outline.flags & FT_OUTLINE_INCLUDE_STUBS ) )
|
| - ras.dropOutControl += 1;
|
| - }
|
| -
|
| - ras.second_pass = (FT_Byte)( !( ras.outline.flags &
|
| - FT_OUTLINE_SINGLE_PASS ) );
|
| -
|
| - /* Vertical Sweep */
|
| - ras.Proc_Sweep_Init = Vertical_Sweep_Init;
|
| - ras.Proc_Sweep_Span = Vertical_Sweep_Span;
|
| - ras.Proc_Sweep_Drop = Vertical_Sweep_Drop;
|
| - ras.Proc_Sweep_Step = Vertical_Sweep_Step;
|
| -
|
| - ras.band_top = 0;
|
| - ras.band_stack[0].y_min = 0;
|
| - ras.band_stack[0].y_max = (short)( ras.target.rows - 1 );
|
| -
|
| - ras.bWidth = (unsigned short)ras.target.width;
|
| - ras.bTarget = (Byte*)ras.target.buffer;
|
| -
|
| - if ( ( error = Render_Single_Pass( RAS_VARS 0 ) ) != 0 )
|
| - return error;
|
| -
|
| - /* Horizontal Sweep */
|
| - if ( ras.second_pass && ras.dropOutControl != 2 )
|
| - {
|
| - ras.Proc_Sweep_Init = Horizontal_Sweep_Init;
|
| - ras.Proc_Sweep_Span = Horizontal_Sweep_Span;
|
| - ras.Proc_Sweep_Drop = Horizontal_Sweep_Drop;
|
| - ras.Proc_Sweep_Step = Horizontal_Sweep_Step;
|
| -
|
| - ras.band_top = 0;
|
| - ras.band_stack[0].y_min = 0;
|
| - ras.band_stack[0].y_max = (short)( ras.target.width - 1 );
|
| -
|
| - if ( ( error = Render_Single_Pass( RAS_VARS 1 ) ) != 0 )
|
| - return error;
|
| - }
|
| -
|
| - return Raster_Err_None;
|
| - }
|
| -
|
| -
|
| -#ifdef FT_RASTER_OPTION_ANTI_ALIASING
|
| -
|
| - /*************************************************************************/
|
| - /* */
|
| - /* <Function> */
|
| - /* Render_Gray_Glyph */
|
| - /* */
|
| - /* <Description> */
|
| - /* Render a glyph with grayscaling. Sub-banding if needed. */
|
| - /* */
|
| - /* <Return> */
|
| - /* FreeType error code. 0 means success. */
|
| - /* */
|
| - FT_LOCAL_DEF( FT_Error )
|
| - Render_Gray_Glyph( RAS_ARG )
|
| - {
|
| - Long pixel_width;
|
| - FT_Error error;
|
| -
|
| -
|
| - Set_High_Precision( RAS_VARS ras.outline.flags &
|
| - FT_OUTLINE_HIGH_PRECISION );
|
| - ras.scale_shift = ras.precision_shift + 1;
|
| -
|
| - if ( ras.outline.flags & FT_OUTLINE_IGNORE_DROPOUTS )
|
| - ras.dropOutControl = 2;
|
| - else
|
| - {
|
| - if ( ras.outline.flags & FT_OUTLINE_SMART_DROPOUTS )
|
| - ras.dropOutControl = 4;
|
| - else
|
| - ras.dropOutControl = 0;
|
| -
|
| - if ( !( ras.outline.flags & FT_OUTLINE_INCLUDE_STUBS ) )
|
| - ras.dropOutControl += 1;
|
| - }
|
| -
|
| - ras.second_pass = !( ras.outline.flags & FT_OUTLINE_SINGLE_PASS );
|
| -
|
| - /* Vertical Sweep */
|
| -
|
| - ras.band_top = 0;
|
| - ras.band_stack[0].y_min = 0;
|
| - ras.band_stack[0].y_max = 2 * ras.target.rows - 1;
|
| -
|
| - ras.bWidth = ras.gray_width;
|
| - pixel_width = 2 * ( ( ras.target.width + 3 ) >> 2 );
|
| -
|
| - if ( ras.bWidth > pixel_width )
|
| - ras.bWidth = pixel_width;
|
| -
|
| - ras.bWidth = ras.bWidth * 8;
|
| - ras.bTarget = (Byte*)ras.gray_lines;
|
| - ras.gTarget = (Byte*)ras.target.buffer;
|
| -
|
| - ras.Proc_Sweep_Init = Vertical_Gray_Sweep_Init;
|
| - ras.Proc_Sweep_Span = Vertical_Sweep_Span;
|
| - ras.Proc_Sweep_Drop = Vertical_Sweep_Drop;
|
| - ras.Proc_Sweep_Step = Vertical_Gray_Sweep_Step;
|
| -
|
| - error = Render_Single_Pass( RAS_VARS 0 );
|
| - if ( error )
|
| - return error;
|
| -
|
| - /* Horizontal Sweep */
|
| - if ( ras.second_pass && ras.dropOutControl != 2 )
|
| - {
|
| - ras.Proc_Sweep_Init = Horizontal_Sweep_Init;
|
| - ras.Proc_Sweep_Span = Horizontal_Gray_Sweep_Span;
|
| - ras.Proc_Sweep_Drop = Horizontal_Gray_Sweep_Drop;
|
| - ras.Proc_Sweep_Step = Horizontal_Sweep_Step;
|
| -
|
| - ras.band_top = 0;
|
| - ras.band_stack[0].y_min = 0;
|
| - ras.band_stack[0].y_max = ras.target.width * 2 - 1;
|
| -
|
| - error = Render_Single_Pass( RAS_VARS 1 );
|
| - if ( error )
|
| - return error;
|
| - }
|
| -
|
| - return Raster_Err_None;
|
| - }
|
| -
|
| -#else /* !FT_RASTER_OPTION_ANTI_ALIASING */
|
| -
|
| - FT_LOCAL_DEF( FT_Error )
|
| - Render_Gray_Glyph( RAS_ARG )
|
| - {
|
| - FT_UNUSED_RASTER;
|
| -
|
| - return FT_THROW( Unsupported );
|
| - }
|
| -
|
| -#endif /* !FT_RASTER_OPTION_ANTI_ALIASING */
|
| -
|
| -
|
| - static void
|
| - ft_black_init( black_PRaster raster )
|
| - {
|
| -#ifdef FT_RASTER_OPTION_ANTI_ALIASING
|
| - FT_UInt n;
|
| -
|
| -
|
| - /* set default 5-levels gray palette */
|
| - for ( n = 0; n < 5; n++ )
|
| - raster->grays[n] = n * 255 / 4;
|
| -
|
| - raster->gray_width = RASTER_GRAY_LINES / 2;
|
| -#else
|
| - FT_UNUSED( raster );
|
| -#endif
|
| - }
|
| -
|
| -
|
| - /**** RASTER OBJECT CREATION: In standalone mode, we simply use *****/
|
| - /**** a static object. *****/
|
| -
|
| -
|
| -#ifdef _STANDALONE_
|
| -
|
| -
|
| - static int
|
| - ft_black_new( void* memory,
|
| - FT_Raster *araster )
|
| - {
|
| - static black_TRaster the_raster;
|
| - FT_UNUSED( memory );
|
| -
|
| -
|
| - *araster = (FT_Raster)&the_raster;
|
| - FT_MEM_ZERO( &the_raster, sizeof ( the_raster ) );
|
| - ft_black_init( &the_raster );
|
| -
|
| - return 0;
|
| - }
|
| -
|
| -
|
| - static void
|
| - ft_black_done( FT_Raster raster )
|
| - {
|
| - /* nothing */
|
| - FT_UNUSED( raster );
|
| - }
|
| -
|
| -
|
| -#else /* !_STANDALONE_ */
|
| -
|
| -
|
| - static int
|
| - ft_black_new( FT_Memory memory,
|
| - black_PRaster *araster )
|
| - {
|
| - FT_Error error;
|
| - black_PRaster raster = NULL;
|
| -
|
| -
|
| - *araster = 0;
|
| - if ( !FT_NEW( raster ) )
|
| - {
|
| - raster->memory = memory;
|
| - ft_black_init( raster );
|
| -
|
| - *araster = raster;
|
| - }
|
| -
|
| - return error;
|
| - }
|
| -
|
| -
|
| - static void
|
| - ft_black_done( black_PRaster raster )
|
| - {
|
| - FT_Memory memory = (FT_Memory)raster->memory;
|
| -
|
| -
|
| - FT_FREE( raster );
|
| - }
|
| -
|
| -
|
| -#endif /* !_STANDALONE_ */
|
| -
|
| -
|
| - static void
|
| - ft_black_reset( black_PRaster raster,
|
| - char* pool_base,
|
| - long pool_size )
|
| - {
|
| - if ( raster )
|
| - {
|
| - if ( pool_base && pool_size >= (long)sizeof ( black_TWorker ) + 2048 )
|
| - {
|
| - black_PWorker worker = (black_PWorker)pool_base;
|
| -
|
| -
|
| - raster->buffer = pool_base + ( ( sizeof ( *worker ) + 7 ) & ~7 );
|
| - raster->buffer_size = (long)( pool_base + pool_size -
|
| - (char*)raster->buffer );
|
| - raster->worker = worker;
|
| - }
|
| - else
|
| - {
|
| - raster->buffer = NULL;
|
| - raster->buffer_size = 0;
|
| - raster->worker = NULL;
|
| - }
|
| - }
|
| - }
|
| -
|
| -
|
| - static void
|
| - ft_black_set_mode( black_PRaster raster,
|
| - unsigned long mode,
|
| - const char* palette )
|
| - {
|
| -#ifdef FT_RASTER_OPTION_ANTI_ALIASING
|
| -
|
| - if ( mode == FT_MAKE_TAG( 'p', 'a', 'l', '5' ) )
|
| - {
|
| - /* set 5-levels gray palette */
|
| - raster->grays[0] = palette[0];
|
| - raster->grays[1] = palette[1];
|
| - raster->grays[2] = palette[2];
|
| - raster->grays[3] = palette[3];
|
| - raster->grays[4] = palette[4];
|
| - }
|
| -
|
| -#else
|
| -
|
| - FT_UNUSED( raster );
|
| - FT_UNUSED( mode );
|
| - FT_UNUSED( palette );
|
| -
|
| -#endif
|
| - }
|
| -
|
| -
|
| - static int
|
| - ft_black_render( black_PRaster raster,
|
| - const FT_Raster_Params* params )
|
| - {
|
| - const FT_Outline* outline = (const FT_Outline*)params->source;
|
| - const FT_Bitmap* target_map = params->target;
|
| - black_PWorker worker;
|
| -
|
| -
|
| - if ( !raster || !raster->buffer || !raster->buffer_size )
|
| - return FT_THROW( Not_Ini );
|
| -
|
| - if ( !outline )
|
| - return FT_THROW( Invalid );
|
| -
|
| - /* return immediately if the outline is empty */
|
| - if ( outline->n_points == 0 || outline->n_contours <= 0 )
|
| - return Raster_Err_None;
|
| -
|
| - if ( !outline->contours || !outline->points )
|
| - return FT_THROW( Invalid );
|
| -
|
| - if ( outline->n_points !=
|
| - outline->contours[outline->n_contours - 1] + 1 )
|
| - return FT_THROW( Invalid );
|
| -
|
| - worker = raster->worker;
|
| -
|
| - /* this version of the raster does not support direct rendering, sorry */
|
| - if ( params->flags & FT_RASTER_FLAG_DIRECT )
|
| - return FT_THROW( Unsupported );
|
| -
|
| - if ( !target_map )
|
| - return FT_THROW( Invalid );
|
| -
|
| - /* nothing to do */
|
| - if ( !target_map->width || !target_map->rows )
|
| - return Raster_Err_None;
|
| -
|
| - if ( !target_map->buffer )
|
| - return FT_THROW( Invalid );
|
| -
|
| - ras.outline = *outline;
|
| - ras.target = *target_map;
|
| -
|
| - worker->buff = (PLong) raster->buffer;
|
| - worker->sizeBuff = worker->buff +
|
| - raster->buffer_size / sizeof ( Long );
|
| -#ifdef FT_RASTER_OPTION_ANTI_ALIASING
|
| - worker->grays = raster->grays;
|
| - worker->gray_width = raster->gray_width;
|
| -
|
| - FT_MEM_ZERO( worker->gray_lines, worker->gray_width * 2 );
|
| -#endif
|
| -
|
| - return ( params->flags & FT_RASTER_FLAG_AA )
|
| - ? Render_Gray_Glyph( RAS_VAR )
|
| - : Render_Glyph( RAS_VAR );
|
| - }
|
| -
|
| -
|
| - FT_DEFINE_RASTER_FUNCS( ft_standard_raster,
|
| - FT_GLYPH_FORMAT_OUTLINE,
|
| - (FT_Raster_New_Func) ft_black_new,
|
| - (FT_Raster_Reset_Func) ft_black_reset,
|
| - (FT_Raster_Set_Mode_Func)ft_black_set_mode,
|
| - (FT_Raster_Render_Func) ft_black_render,
|
| - (FT_Raster_Done_Func) ft_black_done
|
| - )
|
| -
|
| -
|
| -/* END */
|
|
|