Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(436)

Unified Diff: src/math.js

Issue 80513004: Revert 17963, 17962 and 17955: Random number generator in JS changes (Closed) Base URL: https://v8.googlecode.com/svn/branches/bleeding_edge
Patch Set: Remove Yang's changes, too Created 7 years, 1 month ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « src/ia32/lithium-ia32.cc ('k') | src/mips/full-codegen-mips.cc » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: src/math.js
diff --git a/src/math.js b/src/math.js
index fb7d30694e48781b80eca7f95748527b1bcbce63..2df0ec2a5f4a442e998afafcddc2c5e542b0da5b 100644
--- a/src/math.js
+++ b/src/math.js
@@ -79,8 +79,7 @@ function MathCeil(x) {
// ECMA 262 - 15.8.2.7
function MathCos(x) {
- x = MathAbs(x); // Convert to number and get rid of -0.
- return TrigonometricInterpolation(x, 1);
+ return MathCosImpl(x);
}
// ECMA 262 - 15.8.2.8
@@ -169,15 +168,8 @@ function MathPow(x, y) {
}
// ECMA 262 - 15.8.2.14
-var rngstate; // Initialized to a Uint32Array during genesis.
function MathRandom() {
- var r0 = (MathImul(18273, rngstate[0] & 0xFFFF) + (rngstate[0] >>> 16)) | 0;
- rngstate[0] = r0;
- var r1 = (MathImul(36969, rngstate[1] & 0xFFFF) + (rngstate[1] >>> 16)) | 0;
- rngstate[1] = r1;
- var x = ((r0 << 16) + (r1 & 0xFFFF)) | 0;
- // Division by 0x100000000 through multiplication by reciprocal.
- return (x < 0 ? (x + 0x100000000) : x) * 2.3283064365386962890625e-10;
+ return %_RandomHeapNumber();
}
// ECMA 262 - 15.8.2.15
@@ -187,9 +179,7 @@ function MathRound(x) {
// ECMA 262 - 15.8.2.16
function MathSin(x) {
- x = x * 1; // Convert to number and deal with -0.
- if (%_IsMinusZero(x)) return x;
- return TrigonometricInterpolation(x, 0);
+ return MathSinImpl(x);
}
// ECMA 262 - 15.8.2.17
@@ -199,7 +189,7 @@ function MathSqrt(x) {
// ECMA 262 - 15.8.2.18
function MathTan(x) {
- return MathSin(x) / MathCos(x);
+ return MathSinImpl(x) / MathCosImpl(x);
}
// Non-standard extension.
@@ -208,73 +198,119 @@ function MathImul(x, y) {
}
-var kInversePiHalf = 0.636619772367581343; // 2 / pi
-var kInversePiHalfS26 = 9.48637384723993156e-9; // 2 / pi / (2^26)
-var kS26 = 1 << 26;
-var kTwoStepThreshold = 1 << 27;
-// pi / 2 rounded up
-var kPiHalf = 1.570796326794896780; // 0x192d4454fb21f93f
-// We use two parts for pi/2 to emulate a higher precision.
-// pi_half_1 only has 26 significant bits for mantissa.
-// Note that pi_half > pi_half_1 + pi_half_2
-var kPiHalf1 = 1.570796325802803040; // 0x00000054fb21f93f
-var kPiHalf2 = 9.920935796805404252e-10; // 0x3326a611460b113e
-
-var kSamples; // Initialized to a number during genesis.
-var kIndexConvert; // Initialized to kSamples / (pi/2) during genesis.
-var kSinTable; // Initialized to a Float64Array during genesis.
-var kCosXIntervalTable; // Initialized to a Float64Array during genesis.
-
-// This implements sine using the following algorithm.
-// 1) Multiplication takes care of to-number conversion.
-// 2) Reduce x to the first quadrant [0, pi/2].
-// Conveniently enough, in case of +/-Infinity, we get NaN.
-// Note that we try to use only 26 instead of 52 significant bits for
-// mantissa to avoid rounding errors when multiplying. For very large
-// input we therefore have additional steps.
-// 3) Replace x by (pi/2-x) if x was in the 2nd or 4th quadrant.
-// 4) Do a table lookup for the closest samples to the left and right of x.
-// 5) Find the derivatives at those sampling points by table lookup:
-// dsin(x)/dx = cos(x) = sin(pi/2-x) for x in [0, pi/2].
-// 6) Use cubic spline interpolation to approximate sin(x).
-// 7) Negate the result if x was in the 3rd or 4th quadrant.
-// 8) Get rid of -0 by adding 0.
-function TrigonometricInterpolation(x, phase) {
- if (x < 0 || x > kPiHalf) {
- var multiple;
- while (x < -kTwoStepThreshold || x > kTwoStepThreshold) {
- // Let's assume this loop does not terminate.
- // All numbers x in each loop forms a set S.
- // (1) abs(x) > 2^27 for all x in S.
- // (2) abs(multiple) != 0 since (2^27 * inverse_pi_half_s26) > 1
- // (3) multiple is rounded down in 2^26 steps, so the rounding error is
- // at most max(ulp, 2^26).
- // (4) so for x > 2^27, we subtract at most (1+pi/4)x and at least
- // (1-pi/4)x
- // (5) The subtraction results in x' so that abs(x') <= abs(x)*pi/4.
- // Note that this difference cannot be simply rounded off.
- // Set S cannot exist since (5) violates (1). Loop must terminate.
- multiple = MathFloor(x * kInversePiHalfS26) * kS26;
- x = x - multiple * kPiHalf1 - multiple * kPiHalf2;
+var MathSinImpl = function(x) {
+ InitTrigonometricFunctions();
+ return MathSinImpl(x);
+}
+
+
+var MathCosImpl = function(x) {
+ InitTrigonometricFunctions();
+ return MathCosImpl(x);
+}
+
+
+var InitTrigonometricFunctions;
+
+
+// Define constants and interpolation functions.
+// Also define the initialization function that populates the lookup table
+// and then wires up the function definitions.
+function SetupTrigonometricFunctions() {
+ var samples = 1800; // Table size. Do not change arbitrarily.
+ var inverse_pi_half = 0.636619772367581343; // 2 / pi
+ var inverse_pi_half_s_26 = 9.48637384723993156e-9; // 2 / pi / (2^26)
+ var s_26 = 1 << 26;
+ var two_step_threshold = 1 << 27;
+ var index_convert = 1145.915590261646418; // samples / (pi / 2)
+ // pi / 2 rounded up
+ var pi_half = 1.570796326794896780; // 0x192d4454fb21f93f
+ // We use two parts for pi/2 to emulate a higher precision.
+ // pi_half_1 only has 26 significant bits for mantissa.
+ // Note that pi_half > pi_half_1 + pi_half_2
+ var pi_half_1 = 1.570796325802803040; // 0x00000054fb21f93f
+ var pi_half_2 = 9.920935796805404252e-10; // 0x3326a611460b113e
+ var table_sin;
+ var table_cos_interval;
+
+ // This implements sine using the following algorithm.
+ // 1) Multiplication takes care of to-number conversion.
+ // 2) Reduce x to the first quadrant [0, pi/2].
+ // Conveniently enough, in case of +/-Infinity, we get NaN.
+ // Note that we try to use only 26 instead of 52 significant bits for
+ // mantissa to avoid rounding errors when multiplying. For very large
+ // input we therefore have additional steps.
+ // 3) Replace x by (pi/2-x) if x was in the 2nd or 4th quadrant.
+ // 4) Do a table lookup for the closest samples to the left and right of x.
+ // 5) Find the derivatives at those sampling points by table lookup:
+ // dsin(x)/dx = cos(x) = sin(pi/2-x) for x in [0, pi/2].
+ // 6) Use cubic spline interpolation to approximate sin(x).
+ // 7) Negate the result if x was in the 3rd or 4th quadrant.
+ // 8) Get rid of -0 by adding 0.
+ var Interpolation = function(x, phase) {
+ if (x < 0 || x > pi_half) {
+ var multiple;
+ while (x < -two_step_threshold || x > two_step_threshold) {
+ // Let's assume this loop does not terminate.
+ // All numbers x in each loop forms a set S.
+ // (1) abs(x) > 2^27 for all x in S.
+ // (2) abs(multiple) != 0 since (2^27 * inverse_pi_half_s26) > 1
+ // (3) multiple is rounded down in 2^26 steps, so the rounding error is
+ // at most max(ulp, 2^26).
+ // (4) so for x > 2^27, we subtract at most (1+pi/4)x and at least
+ // (1-pi/4)x
+ // (5) The subtraction results in x' so that abs(x') <= abs(x)*pi/4.
+ // Note that this difference cannot be simply rounded off.
+ // Set S cannot exist since (5) violates (1). Loop must terminate.
+ multiple = MathFloor(x * inverse_pi_half_s_26) * s_26;
+ x = x - multiple * pi_half_1 - multiple * pi_half_2;
+ }
+ multiple = MathFloor(x * inverse_pi_half);
+ x = x - multiple * pi_half_1 - multiple * pi_half_2;
+ phase += multiple;
}
- multiple = MathFloor(x * kInversePiHalf);
- x = x - multiple * kPiHalf1 - multiple * kPiHalf2;
- phase += multiple;
+ var double_index = x * index_convert;
+ if (phase & 1) double_index = samples - double_index;
+ var index = double_index | 0;
+ var t1 = double_index - index;
+ var t2 = 1 - t1;
+ var y1 = table_sin[index];
+ var y2 = table_sin[index + 1];
+ var dy = y2 - y1;
+ return (t2 * y1 + t1 * y2 +
+ t1 * t2 * ((table_cos_interval[index] - dy) * t2 +
+ (dy - table_cos_interval[index + 1]) * t1))
+ * (1 - (phase & 2)) + 0;
+ }
+
+ var MathSinInterpolation = function(x) {
+ x = x * 1; // Convert to number and deal with -0.
+ if (%_IsMinusZero(x)) return x;
+ return Interpolation(x, 0);
+ }
+
+ // Cosine is sine with a phase offset.
+ var MathCosInterpolation = function(x) {
+ x = MathAbs(x); // Convert to number and get rid of -0.
+ return Interpolation(x, 1);
+ };
+
+ %SetInlineBuiltinFlag(Interpolation);
+ %SetInlineBuiltinFlag(MathSinInterpolation);
+ %SetInlineBuiltinFlag(MathCosInterpolation);
+
+ InitTrigonometricFunctions = function() {
+ table_sin = new global.Float64Array(samples + 2);
+ table_cos_interval = new global.Float64Array(samples + 2);
+ %PopulateTrigonometricTable(table_sin, table_cos_interval, samples);
+ MathSinImpl = MathSinInterpolation;
+ MathCosImpl = MathCosInterpolation;
}
- var double_index = x * kIndexConvert;
- if (phase & 1) double_index = kSamples - double_index;
- var index = double_index | 0;
- var t1 = double_index - index;
- var t2 = 1 - t1;
- var y1 = kSinTable[index];
- var y2 = kSinTable[index + 1];
- var dy = y2 - y1;
- return (t2 * y1 + t1 * y2 +
- t1 * t2 * ((kCosXIntervalTable[index] - dy) * t2 +
- (dy - kCosXIntervalTable[index + 1]) * t1))
- * (1 - (phase & 2)) + 0;
}
+SetupTrigonometricFunctions();
+
+
// -------------------------------------------------------------------
function SetUpMath() {
@@ -351,7 +387,6 @@ function SetUpMath() {
%SetInlineBuiltinFlag(MathSin);
%SetInlineBuiltinFlag(MathCos);
%SetInlineBuiltinFlag(MathTan);
- %SetInlineBuiltinFlag(TrigonometricInterpolation);
}
SetUpMath();
« no previous file with comments | « src/ia32/lithium-ia32.cc ('k') | src/mips/full-codegen-mips.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698