Index: src/math.js |
diff --git a/src/math.js b/src/math.js |
index fb7d30694e48781b80eca7f95748527b1bcbce63..2df0ec2a5f4a442e998afafcddc2c5e542b0da5b 100644 |
--- a/src/math.js |
+++ b/src/math.js |
@@ -79,8 +79,7 @@ function MathCeil(x) { |
// ECMA 262 - 15.8.2.7 |
function MathCos(x) { |
- x = MathAbs(x); // Convert to number and get rid of -0. |
- return TrigonometricInterpolation(x, 1); |
+ return MathCosImpl(x); |
} |
// ECMA 262 - 15.8.2.8 |
@@ -169,15 +168,8 @@ function MathPow(x, y) { |
} |
// ECMA 262 - 15.8.2.14 |
-var rngstate; // Initialized to a Uint32Array during genesis. |
function MathRandom() { |
- var r0 = (MathImul(18273, rngstate[0] & 0xFFFF) + (rngstate[0] >>> 16)) | 0; |
- rngstate[0] = r0; |
- var r1 = (MathImul(36969, rngstate[1] & 0xFFFF) + (rngstate[1] >>> 16)) | 0; |
- rngstate[1] = r1; |
- var x = ((r0 << 16) + (r1 & 0xFFFF)) | 0; |
- // Division by 0x100000000 through multiplication by reciprocal. |
- return (x < 0 ? (x + 0x100000000) : x) * 2.3283064365386962890625e-10; |
+ return %_RandomHeapNumber(); |
} |
// ECMA 262 - 15.8.2.15 |
@@ -187,9 +179,7 @@ function MathRound(x) { |
// ECMA 262 - 15.8.2.16 |
function MathSin(x) { |
- x = x * 1; // Convert to number and deal with -0. |
- if (%_IsMinusZero(x)) return x; |
- return TrigonometricInterpolation(x, 0); |
+ return MathSinImpl(x); |
} |
// ECMA 262 - 15.8.2.17 |
@@ -199,7 +189,7 @@ function MathSqrt(x) { |
// ECMA 262 - 15.8.2.18 |
function MathTan(x) { |
- return MathSin(x) / MathCos(x); |
+ return MathSinImpl(x) / MathCosImpl(x); |
} |
// Non-standard extension. |
@@ -208,73 +198,119 @@ function MathImul(x, y) { |
} |
-var kInversePiHalf = 0.636619772367581343; // 2 / pi |
-var kInversePiHalfS26 = 9.48637384723993156e-9; // 2 / pi / (2^26) |
-var kS26 = 1 << 26; |
-var kTwoStepThreshold = 1 << 27; |
-// pi / 2 rounded up |
-var kPiHalf = 1.570796326794896780; // 0x192d4454fb21f93f |
-// We use two parts for pi/2 to emulate a higher precision. |
-// pi_half_1 only has 26 significant bits for mantissa. |
-// Note that pi_half > pi_half_1 + pi_half_2 |
-var kPiHalf1 = 1.570796325802803040; // 0x00000054fb21f93f |
-var kPiHalf2 = 9.920935796805404252e-10; // 0x3326a611460b113e |
- |
-var kSamples; // Initialized to a number during genesis. |
-var kIndexConvert; // Initialized to kSamples / (pi/2) during genesis. |
-var kSinTable; // Initialized to a Float64Array during genesis. |
-var kCosXIntervalTable; // Initialized to a Float64Array during genesis. |
- |
-// This implements sine using the following algorithm. |
-// 1) Multiplication takes care of to-number conversion. |
-// 2) Reduce x to the first quadrant [0, pi/2]. |
-// Conveniently enough, in case of +/-Infinity, we get NaN. |
-// Note that we try to use only 26 instead of 52 significant bits for |
-// mantissa to avoid rounding errors when multiplying. For very large |
-// input we therefore have additional steps. |
-// 3) Replace x by (pi/2-x) if x was in the 2nd or 4th quadrant. |
-// 4) Do a table lookup for the closest samples to the left and right of x. |
-// 5) Find the derivatives at those sampling points by table lookup: |
-// dsin(x)/dx = cos(x) = sin(pi/2-x) for x in [0, pi/2]. |
-// 6) Use cubic spline interpolation to approximate sin(x). |
-// 7) Negate the result if x was in the 3rd or 4th quadrant. |
-// 8) Get rid of -0 by adding 0. |
-function TrigonometricInterpolation(x, phase) { |
- if (x < 0 || x > kPiHalf) { |
- var multiple; |
- while (x < -kTwoStepThreshold || x > kTwoStepThreshold) { |
- // Let's assume this loop does not terminate. |
- // All numbers x in each loop forms a set S. |
- // (1) abs(x) > 2^27 for all x in S. |
- // (2) abs(multiple) != 0 since (2^27 * inverse_pi_half_s26) > 1 |
- // (3) multiple is rounded down in 2^26 steps, so the rounding error is |
- // at most max(ulp, 2^26). |
- // (4) so for x > 2^27, we subtract at most (1+pi/4)x and at least |
- // (1-pi/4)x |
- // (5) The subtraction results in x' so that abs(x') <= abs(x)*pi/4. |
- // Note that this difference cannot be simply rounded off. |
- // Set S cannot exist since (5) violates (1). Loop must terminate. |
- multiple = MathFloor(x * kInversePiHalfS26) * kS26; |
- x = x - multiple * kPiHalf1 - multiple * kPiHalf2; |
+var MathSinImpl = function(x) { |
+ InitTrigonometricFunctions(); |
+ return MathSinImpl(x); |
+} |
+ |
+ |
+var MathCosImpl = function(x) { |
+ InitTrigonometricFunctions(); |
+ return MathCosImpl(x); |
+} |
+ |
+ |
+var InitTrigonometricFunctions; |
+ |
+ |
+// Define constants and interpolation functions. |
+// Also define the initialization function that populates the lookup table |
+// and then wires up the function definitions. |
+function SetupTrigonometricFunctions() { |
+ var samples = 1800; // Table size. Do not change arbitrarily. |
+ var inverse_pi_half = 0.636619772367581343; // 2 / pi |
+ var inverse_pi_half_s_26 = 9.48637384723993156e-9; // 2 / pi / (2^26) |
+ var s_26 = 1 << 26; |
+ var two_step_threshold = 1 << 27; |
+ var index_convert = 1145.915590261646418; // samples / (pi / 2) |
+ // pi / 2 rounded up |
+ var pi_half = 1.570796326794896780; // 0x192d4454fb21f93f |
+ // We use two parts for pi/2 to emulate a higher precision. |
+ // pi_half_1 only has 26 significant bits for mantissa. |
+ // Note that pi_half > pi_half_1 + pi_half_2 |
+ var pi_half_1 = 1.570796325802803040; // 0x00000054fb21f93f |
+ var pi_half_2 = 9.920935796805404252e-10; // 0x3326a611460b113e |
+ var table_sin; |
+ var table_cos_interval; |
+ |
+ // This implements sine using the following algorithm. |
+ // 1) Multiplication takes care of to-number conversion. |
+ // 2) Reduce x to the first quadrant [0, pi/2]. |
+ // Conveniently enough, in case of +/-Infinity, we get NaN. |
+ // Note that we try to use only 26 instead of 52 significant bits for |
+ // mantissa to avoid rounding errors when multiplying. For very large |
+ // input we therefore have additional steps. |
+ // 3) Replace x by (pi/2-x) if x was in the 2nd or 4th quadrant. |
+ // 4) Do a table lookup for the closest samples to the left and right of x. |
+ // 5) Find the derivatives at those sampling points by table lookup: |
+ // dsin(x)/dx = cos(x) = sin(pi/2-x) for x in [0, pi/2]. |
+ // 6) Use cubic spline interpolation to approximate sin(x). |
+ // 7) Negate the result if x was in the 3rd or 4th quadrant. |
+ // 8) Get rid of -0 by adding 0. |
+ var Interpolation = function(x, phase) { |
+ if (x < 0 || x > pi_half) { |
+ var multiple; |
+ while (x < -two_step_threshold || x > two_step_threshold) { |
+ // Let's assume this loop does not terminate. |
+ // All numbers x in each loop forms a set S. |
+ // (1) abs(x) > 2^27 for all x in S. |
+ // (2) abs(multiple) != 0 since (2^27 * inverse_pi_half_s26) > 1 |
+ // (3) multiple is rounded down in 2^26 steps, so the rounding error is |
+ // at most max(ulp, 2^26). |
+ // (4) so for x > 2^27, we subtract at most (1+pi/4)x and at least |
+ // (1-pi/4)x |
+ // (5) The subtraction results in x' so that abs(x') <= abs(x)*pi/4. |
+ // Note that this difference cannot be simply rounded off. |
+ // Set S cannot exist since (5) violates (1). Loop must terminate. |
+ multiple = MathFloor(x * inverse_pi_half_s_26) * s_26; |
+ x = x - multiple * pi_half_1 - multiple * pi_half_2; |
+ } |
+ multiple = MathFloor(x * inverse_pi_half); |
+ x = x - multiple * pi_half_1 - multiple * pi_half_2; |
+ phase += multiple; |
} |
- multiple = MathFloor(x * kInversePiHalf); |
- x = x - multiple * kPiHalf1 - multiple * kPiHalf2; |
- phase += multiple; |
+ var double_index = x * index_convert; |
+ if (phase & 1) double_index = samples - double_index; |
+ var index = double_index | 0; |
+ var t1 = double_index - index; |
+ var t2 = 1 - t1; |
+ var y1 = table_sin[index]; |
+ var y2 = table_sin[index + 1]; |
+ var dy = y2 - y1; |
+ return (t2 * y1 + t1 * y2 + |
+ t1 * t2 * ((table_cos_interval[index] - dy) * t2 + |
+ (dy - table_cos_interval[index + 1]) * t1)) |
+ * (1 - (phase & 2)) + 0; |
+ } |
+ |
+ var MathSinInterpolation = function(x) { |
+ x = x * 1; // Convert to number and deal with -0. |
+ if (%_IsMinusZero(x)) return x; |
+ return Interpolation(x, 0); |
+ } |
+ |
+ // Cosine is sine with a phase offset. |
+ var MathCosInterpolation = function(x) { |
+ x = MathAbs(x); // Convert to number and get rid of -0. |
+ return Interpolation(x, 1); |
+ }; |
+ |
+ %SetInlineBuiltinFlag(Interpolation); |
+ %SetInlineBuiltinFlag(MathSinInterpolation); |
+ %SetInlineBuiltinFlag(MathCosInterpolation); |
+ |
+ InitTrigonometricFunctions = function() { |
+ table_sin = new global.Float64Array(samples + 2); |
+ table_cos_interval = new global.Float64Array(samples + 2); |
+ %PopulateTrigonometricTable(table_sin, table_cos_interval, samples); |
+ MathSinImpl = MathSinInterpolation; |
+ MathCosImpl = MathCosInterpolation; |
} |
- var double_index = x * kIndexConvert; |
- if (phase & 1) double_index = kSamples - double_index; |
- var index = double_index | 0; |
- var t1 = double_index - index; |
- var t2 = 1 - t1; |
- var y1 = kSinTable[index]; |
- var y2 = kSinTable[index + 1]; |
- var dy = y2 - y1; |
- return (t2 * y1 + t1 * y2 + |
- t1 * t2 * ((kCosXIntervalTable[index] - dy) * t2 + |
- (dy - kCosXIntervalTable[index + 1]) * t1)) |
- * (1 - (phase & 2)) + 0; |
} |
+SetupTrigonometricFunctions(); |
+ |
+ |
// ------------------------------------------------------------------- |
function SetUpMath() { |
@@ -351,7 +387,6 @@ function SetUpMath() { |
%SetInlineBuiltinFlag(MathSin); |
%SetInlineBuiltinFlag(MathCos); |
%SetInlineBuiltinFlag(MathTan); |
- %SetInlineBuiltinFlag(TrigonometricInterpolation); |
} |
SetUpMath(); |