Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(436)

Side by Side Diff: test/cctest/compiler/test-loop-analysis.cc

Issue 803993002: [turbofan] First version of loop analysis: loop finder on the soup of nodes. (Closed) Base URL: https://chromium.googlesource.com/v8/v8.git@master
Patch Set: Created 6 years ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
(Empty)
1 // Copyright 2014 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/v8.h"
6
7 #include "src/compiler/access-builder.h"
8 #include "src/compiler/common-operator.h"
9 #include "src/compiler/graph.h"
10 #include "src/compiler/graph-visualizer.h"
11 #include "src/compiler/js-graph.h"
12 #include "src/compiler/js-operator.h"
13 #include "src/compiler/loop-analysis.h"
14 #include "src/compiler/node.h"
15 #include "src/compiler/opcodes.h"
16 #include "src/compiler/operator.h"
17 #include "src/compiler/schedule.h"
18 #include "src/compiler/scheduler.h"
19 #include "src/compiler/simplified-operator.h"
20 #include "src/compiler/verifier.h"
21 #include "test/cctest/cctest.h"
22
23 using namespace v8::internal;
24 using namespace v8::internal::compiler;
25
26 static Operator kIntAdd(IrOpcode::kInt32Add, Operator::kPure, "Int32Add", 2, 0,
27 0, 1, 0, 0);
28 static Operator kIntLt(IrOpcode::kInt32LessThan, Operator::kPure,
29 "Int32LessThan", 2, 0, 0, 1, 0, 0);
30 static Operator kStore(IrOpcode::kStore, Operator::kNoProperties, "Store", 0, 2,
31 1, 0, 1, 0);
32
33 static const int kNumLeafs = 4;
34
35 // A helper for all tests dealing with LoopFinder.
36 class LoopFinderTester : HandleAndZoneScope {
37 public:
38 LoopFinderTester()
39 : isolate(main_isolate()),
40 common(main_zone()),
41 graph(main_zone()),
42 jsgraph(&graph, &common, NULL, NULL),
43 start(graph.NewNode(common.Start(1))),
44 end(graph.NewNode(common.End(), start)),
45 p0(graph.NewNode(common.Parameter(0), start)),
46 zero(jsgraph.Int32Constant(0)),
47 one(jsgraph.OneConstant()),
48 half(jsgraph.Constant(0.5)),
49 self(graph.NewNode(common.Int32Constant(0xaabbccdd))),
50 dead(graph.NewNode(common.Dead())),
51 loop_tree(NULL) {
52 graph.SetEnd(end);
53 graph.SetStart(start);
54 leaf[0] = zero;
55 leaf[1] = one;
56 leaf[2] = half;
57 leaf[3] = p0;
58 }
59
60 Isolate* isolate;
61 CommonOperatorBuilder common;
62 Graph graph;
63 JSGraph jsgraph;
64 Node* start;
65 Node* end;
66 Node* p0;
67 Node* zero;
68 Node* one;
69 Node* half;
70 Node* self;
71 Node* dead;
72 Node* leaf[kNumLeafs];
73 LoopTree* loop_tree;
74
75 Node* Phi(Node* a) {
76 return SetSelfReferences(graph.NewNode(op(1, false), a, start));
77 }
78
79 Node* Phi(Node* a, Node* b) {
80 return SetSelfReferences(graph.NewNode(op(2, false), a, b, start));
81 }
82
83 Node* Phi(Node* a, Node* b, Node* c) {
84 return SetSelfReferences(graph.NewNode(op(3, false), a, b, c, start));
85 }
86
87 Node* Phi(Node* a, Node* b, Node* c, Node* d) {
88 return SetSelfReferences(graph.NewNode(op(4, false), a, b, c, d, start));
89 }
90
91 Node* EffectPhi(Node* a) {
92 return SetSelfReferences(graph.NewNode(op(1, true), a, start));
93 }
94
95 Node* EffectPhi(Node* a, Node* b) {
96 return SetSelfReferences(graph.NewNode(op(2, true), a, b, start));
97 }
98
99 Node* EffectPhi(Node* a, Node* b, Node* c) {
100 return SetSelfReferences(graph.NewNode(op(3, true), a, b, c, start));
101 }
102
103 Node* EffectPhi(Node* a, Node* b, Node* c, Node* d) {
104 return SetSelfReferences(graph.NewNode(op(4, true), a, b, c, d, start));
105 }
106
107 Node* SetSelfReferences(Node* node) {
108 for (Edge edge : node->input_edges()) {
109 if (edge.to() == self) node->ReplaceInput(edge.index(), node);
110 }
111 return node;
112 }
113
114 const Operator* op(int count, bool effect) {
115 return effect ? common.EffectPhi(count) : common.Phi(kMachAnyTagged, count);
116 }
117
118 Node* Return(Node* val, Node* effect, Node* control) {
119 Node* ret = graph.NewNode(common.Return(), val, effect, control);
120 end->ReplaceInput(0, ret);
121 return ret;
122 }
123
124 LoopTree* GetLoopTree() {
125 if (loop_tree == NULL) {
126 if (FLAG_trace_turbo_graph) {
127 OFStream os(stdout);
128 os << AsRPO(graph);
129 }
130 Zone zone(isolate);
131 loop_tree = LoopFinder::BuildLoopTree(&graph, &zone);
132 }
133 return loop_tree;
134 }
135
136 void CheckLoop(Node** header, int header_count, Node** body, int body_count) {
137 LoopTree* tree = GetLoopTree();
138 LoopTree::Loop* loop = tree->ContainingLoop(header[0]);
139 CHECK_NE(NULL, loop);
140
141 CHECK(header_count == static_cast<int>(loop->HeaderSize()));
142 for (int i = 0; i < header_count; i++) {
143 // Each header node should be in the loop.
144 CHECK_EQ(loop, tree->ContainingLoop(header[i]));
145 CheckRangeContains(tree->HeaderNodes(loop), header[i]);
146 }
147
148 CHECK_EQ(body_count, static_cast<int>(loop->BodySize()));
149 for (int i = 0; i < body_count; i++) {
150 // Each body node should be contained in the loop.
151 CHECK(tree->Contains(loop, body[i]));
152 CheckRangeContains(tree->BodyNodes(loop), body[i]);
153 }
154 }
155
156 void CheckRangeContains(PtrRange<Node*> range, Node* node) {
Benedikt Meurer 2014/12/16 06:10:25 As Sven mentioned, this is just std::find().
titzer 2014/12/16 07:55:10 Done.
157 // O(n) ftw.
158 bool found = false;
159 for (Node* n : range)
160 if (n == node) return;
161 CHECK(found); // not found.
162 }
163
164 void CheckNestedLoops(Node** chain, int chain_count) {
165 LoopTree* tree = GetLoopTree();
166 for (int i = 0; i < chain_count; i++) {
167 Node* header = chain[i];
168 // Each header should be in a loop.
169 LoopTree::Loop* loop = tree->ContainingLoop(header);
170 CHECK_NE(NULL, loop);
171 // Check parentage.
172 LoopTree::Loop* parent =
173 i == 0 ? NULL : tree->ContainingLoop(chain[i - 1]);
174 CHECK_EQ(parent, loop->parent());
175 for (int j = i - 1; j >= 0; j--) {
176 // This loop should be nested inside all the outer loops.
177 Node* outer_header = chain[j];
178 LoopTree::Loop* outer = tree->ContainingLoop(outer_header);
179 CHECK(tree->Contains(outer, header));
180 CHECK(!tree->Contains(loop, outer_header));
181 }
182 }
183 }
184 };
185
186
187 struct While {
188 LoopFinderTester& t;
189 Node* branch;
190 Node* if_true;
191 Node* exit;
192 Node* loop;
193
194 While(LoopFinderTester& R, Node* cond) : t(R) {
195 loop = t.graph.NewNode(t.common.Loop(2), t.start, t.start);
196 branch = t.graph.NewNode(t.common.Branch(), cond, loop);
197 if_true = t.graph.NewNode(t.common.IfTrue(), branch);
198 exit = t.graph.NewNode(t.common.IfFalse(), branch);
199 loop->ReplaceInput(1, if_true);
200 }
201
202 void chain(Node* control) { loop->ReplaceInput(0, control); }
203 void nest(While& that) {
204 that.loop->ReplaceInput(1, exit);
205 this->loop->ReplaceInput(0, that.if_true);
206 }
207 };
208
209
210 struct Counter {
211 Node* base;
212 Node* inc;
213 Node* phi;
214 Node* add;
215
216 Counter(While& w, int32_t b, int32_t k)
217 : base(w.t.jsgraph.Int32Constant(b)), inc(w.t.jsgraph.Int32Constant(k)) {
218 Build(w);
219 }
220
221 Counter(While& w, Node* b, Node* k) : base(b), inc(k) { Build(w); }
222
223 void Build(While& w) {
224 phi = w.t.graph.NewNode(w.t.op(2, false), base, base, w.loop);
225 add = w.t.graph.NewNode(&kIntAdd, phi, inc);
226 phi->ReplaceInput(1, add);
227 }
228 };
229
230
231 struct StoreLoop {
232 Node* base;
233 Node* val;
234 Node* phi;
235 Node* store;
236
237 explicit StoreLoop(While& w)
238 : base(w.t.jsgraph.Int32Constant(12)),
239 val(w.t.jsgraph.Int32Constant(13)) {
240 Build(w);
241 }
242
243 StoreLoop(While& w, Node* b, Node* v) : base(b), val(v) { Build(w); }
244
245 void Build(While& w) {
246 phi = w.t.graph.NewNode(w.t.op(2, true), base, base, w.loop);
247 store = w.t.graph.NewNode(&kStore, phi, val, w.loop);
248 phi->ReplaceInput(1, store);
249 }
250 };
251
252
253 TEST(LaLoop1) {
254 // One loop.
255 LoopFinderTester t;
256 While w(t, t.p0);
257 t.Return(t.p0, t.start, w.exit);
258
259 Node* chain[] = {w.loop};
260 t.CheckNestedLoops(chain, 1);
261
262 Node* header[] = {w.loop};
263 Node* body[] = {w.branch, w.if_true};
264 t.CheckLoop(header, 1, body, 2);
265 }
266
267
268 TEST(LaLoop1c) {
269 // One loop with a counter.
270 LoopFinderTester t;
271 While w(t, t.p0);
272 Counter c(w, 0, 1);
273 t.Return(c.phi, t.start, w.exit);
274
275 Node* chain[] = {w.loop};
276 t.CheckNestedLoops(chain, 1);
277
278 Node* header[] = {w.loop, c.phi};
279 Node* body[] = {w.branch, w.if_true, c.add};
280 t.CheckLoop(header, 2, body, 3);
281 }
282
283
284 TEST(LaLoop1e) {
285 // One loop with an effect phi.
286 LoopFinderTester t;
287 While w(t, t.p0);
288 StoreLoop c(w);
289 t.Return(t.p0, c.phi, w.exit);
290
291 Node* chain[] = {w.loop};
292 t.CheckNestedLoops(chain, 1);
293
294 Node* header[] = {w.loop, c.phi};
295 Node* body[] = {w.branch, w.if_true, c.store};
296 t.CheckLoop(header, 2, body, 3);
297 }
298
299
300 TEST(LaLoop1d) {
301 // One loop with two counters.
302 LoopFinderTester t;
303 While w(t, t.p0);
304 Counter c1(w, 0, 1);
305 Counter c2(w, 1, 1);
306 t.Return(t.graph.NewNode(&kIntAdd, c1.phi, c2.phi), t.start, w.exit);
307
308 Node* chain[] = {w.loop};
309 t.CheckNestedLoops(chain, 1);
310
311 Node* header[] = {w.loop, c1.phi, c2.phi};
312 Node* body[] = {w.branch, w.if_true, c1.add, c2.add};
313 t.CheckLoop(header, 3, body, 4);
314 }
315
316
317 TEST(LaLoop2) {
318 // One loop following another.
319 LoopFinderTester t;
320 While w1(t, t.p0);
321 While w2(t, t.p0);
322 w2.chain(w1.exit);
323 t.Return(t.p0, t.start, w2.exit);
324
325 {
326 Node* chain[] = {w1.loop};
327 t.CheckNestedLoops(chain, 1);
328
329 Node* header[] = {w1.loop};
330 Node* body[] = {w1.branch, w1.if_true};
331 t.CheckLoop(header, 1, body, 2);
332 }
333
334 {
335 Node* chain[] = {w2.loop};
336 t.CheckNestedLoops(chain, 1);
337
338 Node* header[] = {w2.loop};
339 Node* body[] = {w2.branch, w2.if_true};
340 t.CheckLoop(header, 1, body, 2);
341 }
342 }
343
344
345 TEST(LaLoop2c) {
346 // One loop following another, each with counters.
347 LoopFinderTester t;
348 While w1(t, t.p0);
349 While w2(t, t.p0);
350 Counter c1(w1, 0, 1);
351 Counter c2(w2, 0, 1);
352 w2.chain(w1.exit);
353 t.Return(t.graph.NewNode(&kIntAdd, c1.phi, c2.phi), t.start, w2.exit);
354
355 {
356 Node* chain[] = {w1.loop};
357 t.CheckNestedLoops(chain, 1);
358
359 Node* header[] = {w1.loop, c1.phi};
360 Node* body[] = {w1.branch, w1.if_true, c1.add};
361 t.CheckLoop(header, 2, body, 3);
362 }
363
364 {
365 Node* chain[] = {w2.loop};
366 t.CheckNestedLoops(chain, 1);
367
368 Node* header[] = {w2.loop, c2.phi};
369 Node* body[] = {w2.branch, w2.if_true, c2.add};
370 t.CheckLoop(header, 2, body, 3);
371 }
372 }
373
374
375 TEST(LaLoop2cc) {
376 // One loop following another; second loop uses phi from first.
377 for (int i = 0; i < 8; i++) {
378 LoopFinderTester t;
379 While w1(t, t.p0);
380 While w2(t, t.p0);
381 Counter c1(w1, 0, 1);
382
383 // various usage scenarios for the second loop.
384 Counter c2(w2, i & 1 ? t.p0 : c1.phi, i & 2 ? t.p0 : c1.phi);
385 if (i & 3) w2.branch->ReplaceInput(0, c1.phi);
386
387 w2.chain(w1.exit);
388 t.Return(t.graph.NewNode(&kIntAdd, c1.phi, c2.phi), t.start, w2.exit);
389
390 {
391 Node* chain[] = {w1.loop};
392 t.CheckNestedLoops(chain, 1);
393
394 Node* header[] = {w1.loop, c1.phi};
395 Node* body[] = {w1.branch, w1.if_true, c1.add};
396 t.CheckLoop(header, 2, body, 3);
397 }
398
399 {
400 Node* chain[] = {w2.loop};
401 t.CheckNestedLoops(chain, 1);
402
403 Node* header[] = {w2.loop, c2.phi};
404 Node* body[] = {w2.branch, w2.if_true, c2.add};
405 t.CheckLoop(header, 2, body, 3);
406 }
407 }
408 }
409
410
411 TEST(LaNestedLoop1) {
412 // One loop nested in another.
413 LoopFinderTester t;
414 While w1(t, t.p0);
415 While w2(t, t.p0);
416 w2.nest(w1);
417 t.Return(t.p0, t.start, w1.exit);
418
419 Node* chain[] = {w1.loop, w2.loop};
420 t.CheckNestedLoops(chain, 2);
421
422 Node* h1[] = {w1.loop};
423 Node* b1[] = {w1.branch, w1.if_true, w2.loop, w2.branch, w2.if_true, w2.exit};
424 t.CheckLoop(h1, 1, b1, 6);
425
426 Node* h2[] = {w2.loop};
427 Node* b2[] = {w2.branch, w2.if_true};
428 t.CheckLoop(h2, 1, b2, 2);
429 }
430
431
432 TEST(LaNestedLoop1c) {
433 // One loop nested in another, each with a counter.
434 LoopFinderTester t;
435 While w1(t, t.p0);
436 While w2(t, t.p0);
437 Counter c1(w1, 0, 1);
438 Counter c2(w2, 0, 1);
439 w2.branch->ReplaceInput(0, c2.phi);
440 w2.nest(w1);
441 t.Return(c1.phi, t.start, w1.exit);
442
443 Node* chain[] = {w1.loop, w2.loop};
444 t.CheckNestedLoops(chain, 2);
445
446 Node* h1[] = {w1.loop, c1.phi};
447 Node* b1[] = {w1.branch, w1.if_true, w2.loop, w2.branch, w2.if_true,
448 w2.exit, c2.phi, c1.add, c2.add};
449 t.CheckLoop(h1, 2, b1, 9);
450
451 Node* h2[] = {w2.loop, c2.phi};
452 Node* b2[] = {w2.branch, w2.if_true, c2.add};
453 t.CheckLoop(h2, 2, b2, 3);
454 }
455
456
457 TEST(LaNestedLoop2) {
458 // Two loops nested in an outer loop.
459 LoopFinderTester t;
460 While w1(t, t.p0);
461 While w2(t, t.p0);
462 While w3(t, t.p0);
463 w2.nest(w1);
464 w3.nest(w1);
465 w3.chain(w2.exit);
466 t.Return(t.p0, t.start, w1.exit);
467
468 Node* chain1[] = {w1.loop, w2.loop};
469 t.CheckNestedLoops(chain1, 2);
470
471 Node* chain2[] = {w1.loop, w3.loop};
472 t.CheckNestedLoops(chain2, 2);
473
474 Node* h1[] = {w1.loop};
475 Node* b1[] = {w1.branch, w1.if_true, w2.loop, w2.branch, w2.if_true,
476 w2.exit, w3.loop, w3.branch, w3.if_true, w3.exit};
477 t.CheckLoop(h1, 1, b1, 10);
478
479 Node* h2[] = {w2.loop};
480 Node* b2[] = {w2.branch, w2.if_true};
481 t.CheckLoop(h2, 1, b2, 2);
482
483 Node* h3[] = {w3.loop};
484 Node* b3[] = {w3.branch, w3.if_true};
485 t.CheckLoop(h3, 1, b3, 2);
486 }
487
488
489 TEST(LaNestedLoop3) {
490 // Three nested loops.
491 LoopFinderTester t;
492 While w1(t, t.p0);
493 While w2(t, t.p0);
494 While w3(t, t.p0);
495 w2.loop->ReplaceInput(0, w1.if_true);
496 w3.loop->ReplaceInput(0, w2.if_true);
497 w2.loop->ReplaceInput(1, w3.exit);
498 w1.loop->ReplaceInput(1, w2.exit);
499 t.Return(t.p0, t.start, w1.exit);
500
501 Node* chain[] = {w1.loop, w2.loop, w3.loop};
502 t.CheckNestedLoops(chain, 3);
503
504 Node* h1[] = {w1.loop};
505 Node* b1[] = {w1.branch, w1.if_true, w2.loop, w2.branch, w2.if_true,
506 w2.exit, w3.loop, w3.branch, w3.if_true, w3.exit};
507 t.CheckLoop(h1, 1, b1, 10);
508
509 Node* h2[] = {w2.loop};
510 Node* b2[] = {w2.branch, w2.if_true, w3.loop, w3.branch, w3.if_true, w3.exit};
511 t.CheckLoop(h2, 1, b2, 6);
512
513 Node* h3[] = {w3.loop};
514 Node* b3[] = {w3.branch, w3.if_true};
515 t.CheckLoop(h3, 1, b3, 2);
516 }
517
518
519 TEST(LaNestedLoop3c) {
520 // Three nested loops with counters.
521 LoopFinderTester t;
522 While w1(t, t.p0);
523 Counter c1(w1, 0, 1);
524 While w2(t, t.p0);
525 Counter c2(w2, 0, 1);
526 While w3(t, t.p0);
527 Counter c3(w3, 0, 1);
528 w2.loop->ReplaceInput(0, w1.if_true);
529 w3.loop->ReplaceInput(0, w2.if_true);
530 w2.loop->ReplaceInput(1, w3.exit);
531 w1.loop->ReplaceInput(1, w2.exit);
532 w1.branch->ReplaceInput(0, c1.phi);
533 w2.branch->ReplaceInput(0, c2.phi);
534 w3.branch->ReplaceInput(0, c3.phi);
535 t.Return(c1.phi, t.start, w1.exit);
536
537 Node* chain[] = {w1.loop, w2.loop, w3.loop};
538 t.CheckNestedLoops(chain, 3);
539
540 Node* h1[] = {w1.loop, c1.phi};
541 Node* b1[] = {w1.branch, w1.if_true, c1.add, c2.add, c2.add,
542 c2.phi, c3.phi, w2.loop, w2.branch, w2.if_true,
543 w2.exit, w3.loop, w3.branch, w3.if_true, w3.exit};
544 t.CheckLoop(h1, 2, b1, 15);
545
546 Node* h2[] = {w2.loop, c2.phi};
547 Node* b2[] = {w2.branch, w2.if_true, c2.add, c3.add, c3.phi,
548 w3.loop, w3.branch, w3.if_true, w3.exit};
549 t.CheckLoop(h2, 2, b2, 9);
550
551 Node* h3[] = {w3.loop, c3.phi};
552 Node* b3[] = {w3.branch, w3.if_true, c3.add};
553 t.CheckLoop(h3, 2, b3, 3);
554 }
555
556
557 TEST(LaMultipleExit1) {
558 const int kMaxExits = 10;
559 Node* merge[1 + kMaxExits];
560 Node* body[2 * kMaxExits];
561
562 // A single loop with {i} exits.
563 for (int i = 1; i < kMaxExits; i++) {
564 LoopFinderTester t;
565 Node* cond = t.p0;
566
567 int merge_count = 0;
568 int body_count = 0;
569 Node* loop = t.graph.NewNode(t.common.Loop(2), t.start, t.start);
570 Node* last = loop;
571
572 for (int e = 0; e < i; e++) {
573 Node* branch = t.graph.NewNode(t.common.Branch(), cond, last);
574 Node* if_true = t.graph.NewNode(t.common.IfTrue(), branch);
575 Node* exit = t.graph.NewNode(t.common.IfFalse(), branch);
576 last = if_true;
577
578 body[body_count++] = branch;
579 body[body_count++] = if_true;
580 merge[merge_count++] = exit;
581 }
582
583 loop->ReplaceInput(1, last); // form loop backedge.
584 Node* end = t.graph.NewNode(t.common.Merge(i), i, merge); // form exit.
585 t.graph.SetEnd(end);
586
587 Node* h[] = {loop};
588 t.CheckLoop(h, 1, body, body_count);
589 }
590 }
591
592
593 TEST(LaMultipleBackedge1) {
594 const int kMaxBackedges = 10;
595 Node* loop_inputs[1 + kMaxBackedges];
596 Node* body[3 * kMaxBackedges];
597
598 // A single loop with {i} backedges.
599 for (int i = 1; i < kMaxBackedges; i++) {
600 LoopFinderTester t;
601
602 for (int j = 0; j <= i; j++) loop_inputs[j] = t.start;
603 Node* loop = t.graph.NewNode(t.common.Loop(1 + i), 1 + i, loop_inputs);
604
605 Node* cond = t.p0;
606 int body_count = 0;
607 Node* exit = loop;
608
609 for (int b = 0; b < i; b++) {
610 Node* branch = t.graph.NewNode(t.common.Branch(), cond, exit);
611 Node* if_true = t.graph.NewNode(t.common.IfTrue(), branch);
612 Node* if_false = t.graph.NewNode(t.common.IfFalse(), branch);
613 exit = if_false;
614
615 body[body_count++] = branch;
616 body[body_count++] = if_true;
617 if (b != (i - 1)) body[body_count++] = if_false;
618
619 loop->ReplaceInput(1 + b, if_true);
620 }
621
622 t.graph.SetEnd(exit);
623
624 Node* h[] = {loop};
625 t.CheckLoop(h, 1, body, body_count);
626 }
627 }
628
629
630 TEST(LaEdgeMatrix1) {
631 // Test various kinds of extra edges added to a simple loop.
632 for (int i = 0; i < 3; i++) {
633 for (int j = 0; j < 3; j++) {
634 for (int k = 0; k < 3; k++) {
635 LoopFinderTester t;
636
637 Node* p1 = t.jsgraph.Int32Constant(11);
638 Node* p2 = t.jsgraph.Int32Constant(22);
639 Node* p3 = t.jsgraph.Int32Constant(33);
640
641 Node* loop = t.graph.NewNode(t.common.Loop(2), t.start, t.start);
642 Node* phi =
643 t.graph.NewNode(t.common.Phi(kMachInt32, 2), t.one, p1, loop);
644 Node* cond = t.graph.NewNode(&kIntAdd, phi, p2);
645 Node* branch = t.graph.NewNode(t.common.Branch(), cond, loop);
646 Node* if_true = t.graph.NewNode(t.common.IfTrue(), branch);
647 Node* exit = t.graph.NewNode(t.common.IfFalse(), branch);
648 loop->ReplaceInput(1, if_true);
649 Node* ret = t.graph.NewNode(t.common.Return(), p3, t.start, exit);
650 t.graph.SetEnd(ret);
651
652 Node* choices[] = {p1, phi, cond};
653 p1->ReplaceUses(choices[i]);
654 p2->ReplaceUses(choices[j]);
655 p3->ReplaceUses(choices[k]);
656
657 Node* header[] = {loop, phi};
658 Node* body[] = {cond, branch, if_true};
659 t.CheckLoop(header, 2, body, 3);
660 }
661 }
662 }
663 }
664
665
666 void RunEdgeMatrix2(int i) {
667 DCHECK(i >= 0 && i < 5);
668 for (int j = 0; j < 5; j++) {
669 for (int k = 0; k < 5; k++) {
670 LoopFinderTester t;
671
672 Node* p1 = t.jsgraph.Int32Constant(11);
673 Node* p2 = t.jsgraph.Int32Constant(22);
674 Node* p3 = t.jsgraph.Int32Constant(33);
675
676 // outer loop.
677 Node* loop1 = t.graph.NewNode(t.common.Loop(2), t.start, t.start);
678 Node* phi1 =
679 t.graph.NewNode(t.common.Phi(kMachInt32, 2), t.one, p1, loop1);
680 Node* cond1 = t.graph.NewNode(&kIntAdd, phi1, t.one);
681 Node* branch1 = t.graph.NewNode(t.common.Branch(), cond1, loop1);
682 Node* if_true1 = t.graph.NewNode(t.common.IfTrue(), branch1);
683 Node* exit1 = t.graph.NewNode(t.common.IfFalse(), branch1);
684
685 // inner loop.
686 Node* loop2 = t.graph.NewNode(t.common.Loop(2), if_true1, t.start);
687 Node* phi2 =
688 t.graph.NewNode(t.common.Phi(kMachInt32, 2), t.one, p2, loop2);
689 Node* cond2 = t.graph.NewNode(&kIntAdd, phi2, p3);
690 Node* branch2 = t.graph.NewNode(t.common.Branch(), cond2, loop2);
691 Node* if_true2 = t.graph.NewNode(t.common.IfTrue(), branch2);
692 Node* exit2 = t.graph.NewNode(t.common.IfFalse(), branch2);
693 loop2->ReplaceInput(1, if_true2);
694 loop1->ReplaceInput(1, exit2);
695
696 Node* ret = t.graph.NewNode(t.common.Return(), phi1, t.start, exit1);
697 t.graph.SetEnd(ret);
698
699 Node* choices[] = {p1, phi1, cond1, phi2, cond2};
700 p1->ReplaceUses(choices[i]);
701 p2->ReplaceUses(choices[j]);
702 p3->ReplaceUses(choices[k]);
703
704 Node* header1[] = {loop1, phi1};
705 Node* body1[] = {cond1, branch1, if_true1, exit2, loop2,
706 phi2, cond2, branch2, if_true2};
707 t.CheckLoop(header1, 2, body1, 9);
708
709 Node* header2[] = {loop2, phi2};
710 Node* body2[] = {cond2, branch2, if_true2};
711 t.CheckLoop(header2, 2, body2, 3);
712
713 Node* chain[] = {loop1, loop2};
714 t.CheckNestedLoops(chain, 2);
715 }
716 }
717 }
718
719
720 TEST(LaEdgeMatrix2_0) { RunEdgeMatrix2(0); }
721
722
723 TEST(LaEdgeMatrix2_1) { RunEdgeMatrix2(1); }
724
725
726 TEST(LaEdgeMatrix2_2) { RunEdgeMatrix2(2); }
727
728
729 TEST(LaEdgeMatrix2_3) { RunEdgeMatrix2(3); }
730
731
732 TEST(LaEdgeMatrix2_4) { RunEdgeMatrix2(4); }
733
734
735 // Generates a triply-nested loop with extra edges between the phis and
736 // conditions according to the edge choice parameters.
737 void RunEdgeMatrix3(int c1a, int c1b, int c1c, // line break
738 int c2a, int c2b, int c2c, // line break
739 int c3a, int c3b, int c3c) { // line break
740 LoopFinderTester t;
741
742 Node* p1a = t.jsgraph.Int32Constant(11);
743 Node* p1b = t.jsgraph.Int32Constant(22);
744 Node* p1c = t.jsgraph.Int32Constant(33);
745 Node* p2a = t.jsgraph.Int32Constant(44);
746 Node* p2b = t.jsgraph.Int32Constant(55);
747 Node* p2c = t.jsgraph.Int32Constant(66);
748 Node* p3a = t.jsgraph.Int32Constant(77);
749 Node* p3b = t.jsgraph.Int32Constant(88);
750 Node* p3c = t.jsgraph.Int32Constant(99);
751
752 // L1 depth = 0
753 Node* loop1 = t.graph.NewNode(t.common.Loop(2), t.start, t.start);
754 Node* phi1 = t.graph.NewNode(t.common.Phi(kMachInt32, 2), p1a, p1c, loop1);
755 Node* cond1 = t.graph.NewNode(&kIntAdd, phi1, p1b);
756 Node* branch1 = t.graph.NewNode(t.common.Branch(), cond1, loop1);
757 Node* if_true1 = t.graph.NewNode(t.common.IfTrue(), branch1);
758 Node* exit1 = t.graph.NewNode(t.common.IfFalse(), branch1);
759
760 // L2 depth = 1
761 Node* loop2 = t.graph.NewNode(t.common.Loop(2), if_true1, t.start);
762 Node* phi2 = t.graph.NewNode(t.common.Phi(kMachInt32, 2), p2a, p2c, loop2);
763 Node* cond2 = t.graph.NewNode(&kIntAdd, phi2, p2b);
764 Node* branch2 = t.graph.NewNode(t.common.Branch(), cond2, loop2);
765 Node* if_true2 = t.graph.NewNode(t.common.IfTrue(), branch2);
766 Node* exit2 = t.graph.NewNode(t.common.IfFalse(), branch2);
767
768 // L3 depth = 2
769 Node* loop3 = t.graph.NewNode(t.common.Loop(2), if_true2, t.start);
770 Node* phi3 = t.graph.NewNode(t.common.Phi(kMachInt32, 2), p3a, p3c, loop3);
771 Node* cond3 = t.graph.NewNode(&kIntAdd, phi3, p3b);
772 Node* branch3 = t.graph.NewNode(t.common.Branch(), cond3, loop3);
773 Node* if_true3 = t.graph.NewNode(t.common.IfTrue(), branch3);
774 Node* exit3 = t.graph.NewNode(t.common.IfFalse(), branch3);
775
776 loop3->ReplaceInput(1, if_true3);
777 loop2->ReplaceInput(1, exit3);
778 loop1->ReplaceInput(1, exit2);
779
780 Node* ret = t.graph.NewNode(t.common.Return(), phi1, t.start, exit1);
781 t.graph.SetEnd(ret);
782
783 // Mutate the graph according to the edge choices.
784
785 Node* o1[] = {t.one};
786 Node* o2[] = {t.one, phi1, cond1};
787 Node* o3[] = {t.one, phi1, cond1, phi2, cond2};
788
789 p1a->ReplaceUses(o1[c1a]);
790 p1b->ReplaceUses(o1[c1b]);
791
792 p2a->ReplaceUses(o2[c2a]);
793 p2b->ReplaceUses(o2[c2b]);
794
795 p3a->ReplaceUses(o3[c3a]);
796 p3b->ReplaceUses(o3[c3b]);
797
798 Node* l2[] = {phi1, cond1, phi2, cond2};
799 Node* l3[] = {phi1, cond1, phi2, cond2, phi3, cond3};
800
801 p1c->ReplaceUses(l2[c1c]);
802 p2c->ReplaceUses(l3[c2c]);
803 p3c->ReplaceUses(l3[c3c]);
804
805 // Run the tests and verify loop structure.
806
807 Node* chain[] = {loop1, loop2, loop3};
808 t.CheckNestedLoops(chain, 3);
809
810 Node* header1[] = {loop1, phi1};
811 Node* body1[] = {cond1, branch1, if_true1, exit2, loop2,
812 phi2, cond2, branch2, if_true2, exit3,
813 loop3, phi3, cond3, branch3, if_true3};
814 t.CheckLoop(header1, 2, body1, 15);
815
816 Node* header2[] = {loop2, phi2};
817 Node* body2[] = {cond2, branch2, if_true2, exit3, loop3,
818 phi3, cond3, branch3, if_true3};
819 t.CheckLoop(header2, 2, body2, 9);
820
821 Node* header3[] = {loop3, phi3};
822 Node* body3[] = {cond3, branch3, if_true3};
823 t.CheckLoop(header3, 2, body3, 3);
824 }
825
826
827 // Runs all combinations with a fixed {i}.
828 void RunEdgeMatrix3_i(int i) {
829 for (int a = 0; a < 1; a++) {
830 for (int b = 0; b < 1; b++) {
831 for (int c = 0; c < 4; c++) {
832 for (int d = 0; d < 3; d++) {
833 for (int e = 0; e < 3; e++) {
834 for (int f = 0; f < 6; f++) {
835 for (int g = 0; g < 5; g++) {
836 for (int h = 0; h < 5; h++) {
837 RunEdgeMatrix3(a, b, c, d, e, f, g, h, i);
838 }
839 }
840 }
841 }
842 }
843 }
844 }
845 }
846 }
847
848
849 // Test all possible legal triply-nested loops with conditions and phis.
850 TEST(LaEdgeMatrix3_0) { RunEdgeMatrix3_i(0); }
851
852
853 TEST(LaEdgeMatrix3_1) { RunEdgeMatrix3_i(1); }
854
855
856 TEST(LaEdgeMatrix3_2) { RunEdgeMatrix3_i(2); }
857
858
859 TEST(LaEdgeMatrix3_3) { RunEdgeMatrix3_i(3); }
860
861
862 TEST(LaEdgeMatrix3_4) { RunEdgeMatrix3_i(4); }
863
864
865 TEST(LaEdgeMatrix3_5) { RunEdgeMatrix3_i(5); }
OLDNEW
« src/zone-containers.h ('K') | « test/cctest/cctest.gyp ('k') | tools/gyp/v8.gyp » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698