| OLD | NEW |
| (Empty) |
| 1 // Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file | |
| 2 // for details. All rights reserved. Use of this source code is governed by a | |
| 3 // BSD-style license that can be found in the LICENSE file. | |
| 4 | |
| 5 #include "platform/globals.h" | |
| 6 #if defined(TARGET_OS_LINUX) | |
| 7 | |
| 8 #include "vm/thread.h" | |
| 9 | |
| 10 #include <errno.h> // NOLINT | |
| 11 #include <sys/resource.h> // NOLINT | |
| 12 #include <sys/time.h> // NOLINT | |
| 13 | |
| 14 #include "platform/assert.h" | |
| 15 #include "vm/isolate.h" | |
| 16 | |
| 17 namespace dart { | |
| 18 | |
| 19 #define VALIDATE_PTHREAD_RESULT(result) \ | |
| 20 if (result != 0) { \ | |
| 21 const int kBufferSize = 1024; \ | |
| 22 char error_buf[kBufferSize]; \ | |
| 23 FATAL2("pthread error: %d (%s)", result, \ | |
| 24 strerror_r(result, error_buf, kBufferSize)); \ | |
| 25 } | |
| 26 | |
| 27 | |
| 28 #ifdef DEBUG | |
| 29 #define RETURN_ON_PTHREAD_FAILURE(result) \ | |
| 30 if (result != 0) { \ | |
| 31 const int kBufferSize = 1024; \ | |
| 32 char error_buf[kBufferSize]; \ | |
| 33 fprintf(stderr, "%s:%d: pthread error: %d (%s)\n", \ | |
| 34 __FILE__, __LINE__, result, \ | |
| 35 strerror_r(result, error_buf, kBufferSize)); \ | |
| 36 return result; \ | |
| 37 } | |
| 38 #else | |
| 39 #define RETURN_ON_PTHREAD_FAILURE(result) \ | |
| 40 if (result != 0) return result; | |
| 41 #endif | |
| 42 | |
| 43 | |
| 44 static void ComputeTimeSpecMicros(struct timespec* ts, int64_t micros) { | |
| 45 int64_t secs = micros / kMicrosecondsPerSecond; | |
| 46 int64_t nanos = | |
| 47 (micros - (secs * kMicrosecondsPerSecond)) * kNanosecondsPerMicrosecond; | |
| 48 int result = clock_gettime(CLOCK_MONOTONIC, ts); | |
| 49 ASSERT(result == 0); | |
| 50 ts->tv_sec += secs; | |
| 51 ts->tv_nsec += nanos; | |
| 52 if (ts->tv_nsec >= kNanosecondsPerSecond) { | |
| 53 ts->tv_sec += 1; | |
| 54 ts->tv_nsec -= kNanosecondsPerSecond; | |
| 55 } | |
| 56 } | |
| 57 | |
| 58 | |
| 59 class ThreadStartData { | |
| 60 public: | |
| 61 ThreadStartData(Thread::ThreadStartFunction function, | |
| 62 uword parameter) | |
| 63 : function_(function), parameter_(parameter) {} | |
| 64 | |
| 65 Thread::ThreadStartFunction function() const { return function_; } | |
| 66 uword parameter() const { return parameter_; } | |
| 67 | |
| 68 private: | |
| 69 Thread::ThreadStartFunction function_; | |
| 70 uword parameter_; | |
| 71 | |
| 72 DISALLOW_COPY_AND_ASSIGN(ThreadStartData); | |
| 73 }; | |
| 74 | |
| 75 | |
| 76 // Dispatch to the thread start function provided by the caller. This trampoline | |
| 77 // is used to ensure that the thread is properly destroyed if the thread just | |
| 78 // exits. | |
| 79 static void* ThreadStart(void* data_ptr) { | |
| 80 ThreadStartData* data = reinterpret_cast<ThreadStartData*>(data_ptr); | |
| 81 | |
| 82 Thread::ThreadStartFunction function = data->function(); | |
| 83 uword parameter = data->parameter(); | |
| 84 delete data; | |
| 85 | |
| 86 // Call the supplied thread start function handing it its parameters. | |
| 87 function(parameter); | |
| 88 | |
| 89 return NULL; | |
| 90 } | |
| 91 | |
| 92 | |
| 93 int Thread::Start(ThreadStartFunction function, uword parameter) { | |
| 94 pthread_attr_t attr; | |
| 95 int result = pthread_attr_init(&attr); | |
| 96 RETURN_ON_PTHREAD_FAILURE(result); | |
| 97 | |
| 98 result = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); | |
| 99 RETURN_ON_PTHREAD_FAILURE(result); | |
| 100 | |
| 101 result = pthread_attr_setstacksize(&attr, Thread::GetMaxStackSize()); | |
| 102 RETURN_ON_PTHREAD_FAILURE(result); | |
| 103 | |
| 104 ThreadStartData* data = new ThreadStartData(function, parameter); | |
| 105 | |
| 106 pthread_t tid; | |
| 107 result = pthread_create(&tid, &attr, ThreadStart, data); | |
| 108 RETURN_ON_PTHREAD_FAILURE(result); | |
| 109 | |
| 110 result = pthread_attr_destroy(&attr); | |
| 111 RETURN_ON_PTHREAD_FAILURE(result); | |
| 112 | |
| 113 return 0; | |
| 114 } | |
| 115 | |
| 116 | |
| 117 ThreadLocalKey Thread::kUnsetThreadLocalKey = static_cast<pthread_key_t>(-1); | |
| 118 ThreadId Thread::kInvalidThreadId = static_cast<ThreadId>(0); | |
| 119 | |
| 120 ThreadLocalKey Thread::CreateThreadLocal() { | |
| 121 pthread_key_t key = kUnsetThreadLocalKey; | |
| 122 int result = pthread_key_create(&key, NULL); | |
| 123 VALIDATE_PTHREAD_RESULT(result); | |
| 124 ASSERT(key != kUnsetThreadLocalKey); | |
| 125 return key; | |
| 126 } | |
| 127 | |
| 128 | |
| 129 void Thread::DeleteThreadLocal(ThreadLocalKey key) { | |
| 130 ASSERT(key != kUnsetThreadLocalKey); | |
| 131 int result = pthread_key_delete(key); | |
| 132 VALIDATE_PTHREAD_RESULT(result); | |
| 133 } | |
| 134 | |
| 135 | |
| 136 void Thread::SetThreadLocal(ThreadLocalKey key, uword value) { | |
| 137 ASSERT(key != kUnsetThreadLocalKey); | |
| 138 int result = pthread_setspecific(key, reinterpret_cast<void*>(value)); | |
| 139 VALIDATE_PTHREAD_RESULT(result); | |
| 140 } | |
| 141 | |
| 142 | |
| 143 intptr_t Thread::GetMaxStackSize() { | |
| 144 const int kStackSize = (128 * kWordSize * KB); | |
| 145 return kStackSize; | |
| 146 } | |
| 147 | |
| 148 | |
| 149 ThreadId Thread::GetCurrentThreadId() { | |
| 150 return pthread_self(); | |
| 151 } | |
| 152 | |
| 153 | |
| 154 bool Thread::Join(ThreadId id) { | |
| 155 return false; | |
| 156 } | |
| 157 | |
| 158 | |
| 159 intptr_t Thread::ThreadIdToIntPtr(ThreadId id) { | |
| 160 ASSERT(sizeof(id) == sizeof(intptr_t)); | |
| 161 return static_cast<intptr_t>(id); | |
| 162 } | |
| 163 | |
| 164 | |
| 165 bool Thread::Compare(ThreadId a, ThreadId b) { | |
| 166 return pthread_equal(a, b) != 0; | |
| 167 } | |
| 168 | |
| 169 | |
| 170 void Thread::GetThreadCpuUsage(ThreadId thread_id, int64_t* cpu_usage) { | |
| 171 ASSERT(thread_id == GetCurrentThreadId()); | |
| 172 ASSERT(cpu_usage != NULL); | |
| 173 struct timespec ts; | |
| 174 int r = clock_gettime(CLOCK_THREAD_CPUTIME_ID, &ts); | |
| 175 ASSERT(r == 0); | |
| 176 *cpu_usage = (ts.tv_sec * kNanosecondsPerSecond + ts.tv_nsec) / | |
| 177 kNanosecondsPerMicrosecond; | |
| 178 } | |
| 179 | |
| 180 | |
| 181 Mutex::Mutex() { | |
| 182 pthread_mutexattr_t attr; | |
| 183 int result = pthread_mutexattr_init(&attr); | |
| 184 VALIDATE_PTHREAD_RESULT(result); | |
| 185 | |
| 186 #if defined(DEBUG) | |
| 187 result = pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK); | |
| 188 VALIDATE_PTHREAD_RESULT(result); | |
| 189 #endif // defined(DEBUG) | |
| 190 | |
| 191 result = pthread_mutex_init(data_.mutex(), &attr); | |
| 192 // Verify that creating a pthread_mutex succeeded. | |
| 193 VALIDATE_PTHREAD_RESULT(result); | |
| 194 | |
| 195 result = pthread_mutexattr_destroy(&attr); | |
| 196 VALIDATE_PTHREAD_RESULT(result); | |
| 197 | |
| 198 // When running with assertions enabled we do track the owner. | |
| 199 #if defined(DEBUG) | |
| 200 owner_ = NULL; | |
| 201 #endif // defined(DEBUG) | |
| 202 } | |
| 203 | |
| 204 | |
| 205 Mutex::~Mutex() { | |
| 206 int result = pthread_mutex_destroy(data_.mutex()); | |
| 207 // Verify that the pthread_mutex was destroyed. | |
| 208 VALIDATE_PTHREAD_RESULT(result); | |
| 209 | |
| 210 // When running with assertions enabled we do track the owner. | |
| 211 #if defined(DEBUG) | |
| 212 ASSERT(owner_ == NULL); | |
| 213 #endif // defined(DEBUG) | |
| 214 } | |
| 215 | |
| 216 | |
| 217 void Mutex::Lock() { | |
| 218 int result = pthread_mutex_lock(data_.mutex()); | |
| 219 // Specifically check for dead lock to help debugging. | |
| 220 ASSERT(result != EDEADLK); | |
| 221 ASSERT(result == 0); // Verify no other errors. | |
| 222 // When running with assertions enabled we do track the owner. | |
| 223 #if defined(DEBUG) | |
| 224 owner_ = Isolate::Current(); | |
| 225 #endif // defined(DEBUG) | |
| 226 } | |
| 227 | |
| 228 | |
| 229 bool Mutex::TryLock() { | |
| 230 int result = pthread_mutex_trylock(data_.mutex()); | |
| 231 // Return false if the lock is busy and locking failed. | |
| 232 if (result == EBUSY) { | |
| 233 return false; | |
| 234 } | |
| 235 ASSERT(result == 0); // Verify no other errors. | |
| 236 // When running with assertions enabled we do track the owner. | |
| 237 #if defined(DEBUG) | |
| 238 owner_ = Isolate::Current(); | |
| 239 #endif // defined(DEBUG) | |
| 240 return true; | |
| 241 } | |
| 242 | |
| 243 | |
| 244 void Mutex::Unlock() { | |
| 245 // When running with assertions enabled we do track the owner. | |
| 246 #if defined(DEBUG) | |
| 247 ASSERT(owner_ == Isolate::Current()); | |
| 248 owner_ = NULL; | |
| 249 #endif // defined(DEBUG) | |
| 250 int result = pthread_mutex_unlock(data_.mutex()); | |
| 251 // Specifically check for wrong thread unlocking to aid debugging. | |
| 252 ASSERT(result != EPERM); | |
| 253 ASSERT(result == 0); // Verify no other errors. | |
| 254 } | |
| 255 | |
| 256 | |
| 257 Monitor::Monitor() { | |
| 258 pthread_mutexattr_t mutex_attr; | |
| 259 int result = pthread_mutexattr_init(&mutex_attr); | |
| 260 VALIDATE_PTHREAD_RESULT(result); | |
| 261 | |
| 262 #if defined(DEBUG) | |
| 263 result = pthread_mutexattr_settype(&mutex_attr, PTHREAD_MUTEX_ERRORCHECK); | |
| 264 VALIDATE_PTHREAD_RESULT(result); | |
| 265 #endif // defined(DEBUG) | |
| 266 | |
| 267 result = pthread_mutex_init(data_.mutex(), &mutex_attr); | |
| 268 VALIDATE_PTHREAD_RESULT(result); | |
| 269 | |
| 270 result = pthread_mutexattr_destroy(&mutex_attr); | |
| 271 VALIDATE_PTHREAD_RESULT(result); | |
| 272 | |
| 273 pthread_condattr_t cond_attr; | |
| 274 result = pthread_condattr_init(&cond_attr); | |
| 275 VALIDATE_PTHREAD_RESULT(result); | |
| 276 | |
| 277 result = pthread_condattr_setclock(&cond_attr, CLOCK_MONOTONIC); | |
| 278 VALIDATE_PTHREAD_RESULT(result); | |
| 279 | |
| 280 result = pthread_cond_init(data_.cond(), &cond_attr); | |
| 281 VALIDATE_PTHREAD_RESULT(result); | |
| 282 | |
| 283 result = pthread_condattr_destroy(&cond_attr); | |
| 284 VALIDATE_PTHREAD_RESULT(result); | |
| 285 } | |
| 286 | |
| 287 | |
| 288 Monitor::~Monitor() { | |
| 289 int result = pthread_mutex_destroy(data_.mutex()); | |
| 290 VALIDATE_PTHREAD_RESULT(result); | |
| 291 | |
| 292 result = pthread_cond_destroy(data_.cond()); | |
| 293 VALIDATE_PTHREAD_RESULT(result); | |
| 294 } | |
| 295 | |
| 296 | |
| 297 void Monitor::Enter() { | |
| 298 int result = pthread_mutex_lock(data_.mutex()); | |
| 299 VALIDATE_PTHREAD_RESULT(result); | |
| 300 // TODO(iposva): Do we need to track lock owners? | |
| 301 } | |
| 302 | |
| 303 | |
| 304 void Monitor::Exit() { | |
| 305 // TODO(iposva): Do we need to track lock owners? | |
| 306 int result = pthread_mutex_unlock(data_.mutex()); | |
| 307 VALIDATE_PTHREAD_RESULT(result); | |
| 308 } | |
| 309 | |
| 310 | |
| 311 Monitor::WaitResult Monitor::Wait(int64_t millis) { | |
| 312 return WaitMicros(millis * kMicrosecondsPerMillisecond); | |
| 313 } | |
| 314 | |
| 315 | |
| 316 Monitor::WaitResult Monitor::WaitMicros(int64_t micros) { | |
| 317 // TODO(iposva): Do we need to track lock owners? | |
| 318 Monitor::WaitResult retval = kNotified; | |
| 319 if (micros == kNoTimeout) { | |
| 320 // Wait forever. | |
| 321 int result = pthread_cond_wait(data_.cond(), data_.mutex()); | |
| 322 VALIDATE_PTHREAD_RESULT(result); | |
| 323 } else { | |
| 324 struct timespec ts; | |
| 325 ComputeTimeSpecMicros(&ts, micros); | |
| 326 int result = pthread_cond_timedwait(data_.cond(), data_.mutex(), &ts); | |
| 327 ASSERT((result == 0) || (result == ETIMEDOUT)); | |
| 328 if (result == ETIMEDOUT) { | |
| 329 retval = kTimedOut; | |
| 330 } | |
| 331 } | |
| 332 return retval; | |
| 333 } | |
| 334 | |
| 335 | |
| 336 void Monitor::Notify() { | |
| 337 // TODO(iposva): Do we need to track lock owners? | |
| 338 int result = pthread_cond_signal(data_.cond()); | |
| 339 VALIDATE_PTHREAD_RESULT(result); | |
| 340 } | |
| 341 | |
| 342 | |
| 343 void Monitor::NotifyAll() { | |
| 344 // TODO(iposva): Do we need to track lock owners? | |
| 345 int result = pthread_cond_broadcast(data_.cond()); | |
| 346 VALIDATE_PTHREAD_RESULT(result); | |
| 347 } | |
| 348 | |
| 349 } // namespace dart | |
| 350 | |
| 351 #endif // defined(TARGET_OS_LINUX) | |
| OLD | NEW |