Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(259)

Side by Side Diff: cc/resources/texture_compress/arm/etc1_neon.cc

Issue 793693003: Tile Compression (Closed) Base URL: https://chromium.googlesource.com/chromium/src.git@master
Patch Set: Created 6 years ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « cc/resources/texture_compress/arm/etc1_neon.h ('k') | cc/resources/texture_compress/atc_dxt.h » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 // Copyright 2014 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 // See the following specification for details on the ETC1 format:
6 // https://www.khronos.org/registry/gles/extensions/OES/OES_compressed_ETC1_RGB8 _texture.txt
7
8 #ifdef __ARM_NEON__
9
10 #include "cc/resources/texture_compress/arm/etc1_neon.h"
11
12 #include <arm_neon.h>
13 #include <limits>
14
15 #include "base/compiler_specific.h"
16 #include "base/logging.h"
17
18 // GCC 4.6 suffers from a bug, raising an internal error when mixing
19 // interleaved load instructions with linear load instructions. By fiddling
20 // with variable declaration order this problem can be avoided which is done
21 // when the following macro is defined.
22 #if (__GNUC__ == 4) && (__GNUC_MINOR__ == 6)
23 #define GCC46_INTERNAL_ERROR_WORKAROUND
24 #endif
25
26 namespace {
27
28 template <typename T>
29 inline T clamp(T val, T min, T max) {
30 return val < min ? min : (val > max ? max : val);
31 }
32
33 inline uint8_t round_to_5_bits(float val) {
34 return clamp<uint8_t>(val * 31.0f / 255.0f + 0.5f, 0, 31);
35 }
36
37 inline uint8_t round_to_4_bits(float val) {
38 return clamp<uint8_t>(val * 15.0f / 255.0f + 0.5f, 0, 15);
39 }
40
41 } // namespace
42
43 namespace etc1_neon {
44
45 union Color {
46 struct {
47 uint8_t b;
48 uint8_t g;
49 uint8_t r;
50 uint8_t a;
51 };
52 uint8_t components[4];
53 uint32_t bits;
54 };
55
56 /*
57 * Codeword tables.
58 * See: Table 3.17.2
59 */
60 static const int16_t g_codeword_tables[8][4] = {{-8, -2, 2, 8},
61 {-17, -5, 5, 17},
62 {-29, -9, 9, 29},
63 {-42, -13, 13, 42},
64 {-60, -18, 18, 60},
65 {-80, -24, 24, 80},
66 {-106, -33, 33, 106},
67 {-183, -47, 47, 183}};
68
69 /*
70 * NEON optimized codeword tables.
71 *
72 * It allows for a single table entry to be loaded into a 64-bit register
73 * without duplication and with the alpha channel already cleared.
74 *
75 * See: Table 3.17.2
76 */
77 ALIGNAS(8) static const int16_t g_codeword_tables_neon_opt[8][16] = {
78 {-8, -8, -8, 0, -2, -2, -2, 0, 2, 2, 2, 0, 8, 8, 8, 0},
79 {-17, -17, -17, 0, -5, -5, -5, 0, 5, 5, 5, 0, 17, 17, 17, 0},
80 {-29, -29, -29, 0, -9, -9, -9, 0, 9, 9, 9, 0, 29, 29, 29, 0},
81 {-42, -42, -42, 0, -13, -13, -13, 0, 13, 13, 13, 0, 42, 42, 42, 0},
82 {-60, -60, -60, 0, -18, -18, -18, 0, 18, 18, 18, 0, 60, 60, 60, 0},
83 {-80, -80, -80, 0, -24, -24, -24, 0, 24, 24, 24, 0, 80, 80, 80, 0},
84 {-106, -106, -106, 0, -33, -33, -33, 0, 33, 33, 33, 0, 106, 106, 106, 0},
85 {-183, -183, -183, 0, -47, -47, -47, 0, 47, 47, 47, 0, 183, 183, 183, 0}};
86
87 /*
88 * Maps modifier indices to pixel index values.
89 * See: Table 3.17.3
90 */
91 static const uint8_t g_mod_to_pix[4] = {3, 2, 0, 1};
92
93 /*
94 * The ETC1 specification index texels as follows:
95 *
96 * [a][e][i][m] [ 0][ 4][ 8][12]
97 * [b][f][j][n] <-> [ 1][ 5][ 9][13]
98 * [c][g][k][o] [ 2][ 6][10][14]
99 * [d][h][l][p] [ 3][ 7][11][15]
100 *
101 * However, when extracting sub blocks from BGRA data the natural array
102 * indexing order ends up different:
103 *
104 * vertical0: [a][b][c][d] horizontal0: [a][e][i][m]
105 * [e][f][g][h] [b][f][j][n]
106 * vertical1: [i][j][k][l] horizontal1: [c][g][k][o]
107 * [m][n][o][p] [d][h][l][p]
108 *
109 * In order to translate from the natural array indices in a sub block to the
110 * indices (numbers) used by specification and hardware we use this table.
111 *
112 * NOTE: Since we can efficiently transpose matrixes using NEON we end up with
113 * near perfect indexing for vertical sub blocks.
114 */
115 static const uint8_t g_idx_to_num[4][8] = {
116 {0, 1, 2, 3, 4, 5, 6, 7}, // Vertical block 0.
117 {8, 9, 10, 11, 12, 13, 14, 15}, // Vertical block 1.
118 {0, 4, 8, 12, 1, 5, 9, 13}, // Horizontal block 0.
119 {2, 6, 10, 14, 3, 7, 11, 15} // Horizontal block 1.
120 };
121
122 inline void WriteColors444(uint8_t* block,
123 const Color& color0,
124 const Color& color1) {
125 block[0] = (color0.r & 0xf0) | (color1.r >> 4);
126 block[1] = (color0.g & 0xf0) | (color1.g >> 4);
127 block[2] = (color0.b & 0xf0) | (color1.b >> 4);
128 }
129
130 inline void WriteColors555(uint8_t* block,
131 const Color& color0,
132 const Color& color1) {
133 // Table for conversion to 3-bit two complement format.
134 static const uint8_t two_compl_trans_table[8] = {
135 4, // -4 (100b)
136 5, // -3 (101b)
137 6, // -2 (110b)
138 7, // -1 (111b)
139 0, // 0 (000b)
140 1, // 1 (001b)
141 2, // 2 (010b)
142 3, // 3 (011b)
143 };
144
145 int16_t delta_r = static_cast<int16_t>(color1.r >> 3) - (color0.r >> 3);
146 int16_t delta_g = static_cast<int16_t>(color1.g >> 3) - (color0.g >> 3);
147 int16_t delta_b = static_cast<int16_t>(color1.b >> 3) - (color0.b >> 3);
148 DCHECK(delta_r >= -4 && delta_r <= 3);
149 DCHECK(delta_g >= -4 && delta_g <= 3);
150 DCHECK(delta_b >= -4 && delta_b <= 3);
151
152 block[0] = (color0.r & 0xf8) | two_compl_trans_table[delta_r + 4];
153 block[1] = (color0.g & 0xf8) | two_compl_trans_table[delta_g + 4];
154 block[2] = (color0.b & 0xf8) | two_compl_trans_table[delta_b + 4];
155 }
156
157 inline void WriteCodewordTable(uint8_t* block,
158 uint8_t sub_block_id,
159 uint8_t table) {
160 DCHECK_LT(sub_block_id, 2);
161 DCHECK_LT(table, 8);
162
163 uint8_t shift = (2 + (3 - sub_block_id * 3));
164 block[3] &= ~(0x07 << shift);
165 block[3] |= table << shift;
166 }
167
168 inline void WritePixelData(uint8_t* block, uint32_t pixel_data) {
169 block[4] |= pixel_data >> 24;
170 block[5] |= (pixel_data >> 16) & 0xff;
171 block[6] |= (pixel_data >> 8) & 0xff;
172 block[7] |= pixel_data & 0xff;
173 }
174
175 inline void WriteFlip(uint8_t* block, bool flip) {
176 block[3] &= ~0x01;
177 block[3] |= static_cast<uint8_t>(flip);
178 }
179
180 inline void WriteDiff(uint8_t* block, bool diff) {
181 block[3] &= ~0x02;
182 block[3] |= static_cast<uint8_t>(diff) << 1;
183 }
184
185 /**
186 * Compress and rounds BGR888 into BGR444. The resulting BGR444 color is
187 * expanded to BGR888 as it would be in hardware after decompression. The
188 * actual 444-bit data is available in the four most significant bits of each
189 * channel.
190 */
191 inline Color MakeColor444(const float* bgr) {
192 uint8_t b4 = round_to_4_bits(bgr[0]);
193 uint8_t g4 = round_to_4_bits(bgr[1]);
194 uint8_t r4 = round_to_4_bits(bgr[2]);
195 Color bgr444;
196 bgr444.b = (b4 << 4) | b4;
197 bgr444.g = (g4 << 4) | g4;
198 bgr444.r = (r4 << 4) | r4;
199 return bgr444;
200 }
201
202 /**
203 * Compress and rounds BGR888 into BGR555. The resulting BGR555 color is
204 * expanded to BGR888 as it would be in hardware after decompression. The
205 * actual 555-bit data is available in the five most significant bits of each
206 * channel.
207 */
208 inline Color MakeColor555(const float* bgr) {
209 uint8_t b5 = round_to_5_bits(bgr[0]);
210 uint8_t g5 = round_to_5_bits(bgr[1]);
211 uint8_t r5 = round_to_5_bits(bgr[2]);
212 Color bgr555;
213 bgr555.b = (b5 << 3) | (b5 >> 2);
214 bgr555.g = (g5 << 3) | (g5 >> 2);
215 bgr555.r = (r5 << 3) | (r5 >> 2);
216 return bgr555;
217 }
218
219 /**
220 * Calculates the error metric for two colors. A small error signals that the
221 * colors are similar to each other, a large error the signals the opposite.
222 *
223 * IMPORTANT: This function call has been inlined and NEON optimized in the
224 * ComputeLuminance() function. The inlined version should be kept
225 * in sync with this function implementation.
226 */
227 inline uint32_t GetColorError(const Color& u, const Color& v) {
228 int delta_b = static_cast<int>(u.b) - v.b;
229 int delta_g = static_cast<int>(u.g) - v.g;
230 int delta_r = static_cast<int>(u.r) - v.r;
231 return delta_b * delta_b + delta_g * delta_g + delta_r * delta_r;
232 }
233
234 void GetAverageColor(const Color* src, float* avg_color_bgr) {
235 const uint8_t* src_ptr = reinterpret_cast<const uint8_t*>(src);
236 #ifdef GCC46_INTERNAL_ERROR_WORKAROUND
237 uint8x8x4_t src0;
238 src0 = vld4_u8(src_ptr);
239 #else
240 uint8x8x4_t src0 = vld4_u8(src_ptr);
241 #endif
242
243 uint64x1_t sum_b0 = vpaddl_u32(vpaddl_u16(vpaddl_u8(src0.val[0])));
244 uint64x1_t sum_g0 = vpaddl_u32(vpaddl_u16(vpaddl_u8(src0.val[1])));
245 uint64x1_t sum_r0 = vpaddl_u32(vpaddl_u16(vpaddl_u8(src0.val[2])));
246
247 ALIGNAS(8) uint64_t sum_b, sum_g, sum_r;
248 vst1_u64(&sum_b, sum_b0);
249 vst1_u64(&sum_g, sum_g0);
250 vst1_u64(&sum_r, sum_r0);
251
252 const float kInv8 = 1.0f / 8.0f;
253 avg_color_bgr[0] = static_cast<float>(sum_b) * kInv8;
254 avg_color_bgr[1] = static_cast<float>(sum_g) * kInv8;
255 avg_color_bgr[2] = static_cast<float>(sum_r) * kInv8;
256 }
257
258 void ComputeLuminance(uint8_t* block,
259 const Color* src,
260 const Color& base,
261 int sub_block_id,
262 const uint8_t* idx_to_num_tab) {
263 uint32_t best_tbl_err = std::numeric_limits<uint32_t>::max();
264 uint8_t best_tbl_idx = 0;
265 uint8_t best_mod_idxs[8][8]; // [table][texel]
266
267 // Load immutable data that is shared through iteration.
268 ALIGNAS(8) const int16_t base_color_ptr[4] = {base.b, base.g, base.r, 0x00};
269 int16x8_t base_color =
270 vcombine_s16(vld1_s16(base_color_ptr), vld1_s16(base_color_ptr));
271
272 ALIGNAS(8) const uint32_t idx_mask_ptr[4] = {0x00, 0x01, 0x02, 0x03};
273 uint32x4_t idx_mask = vld1q_u32(idx_mask_ptr);
274
275 // Preload source color registers.
276 uint8x16_t src_color[8];
277 for (unsigned int i = 0; i < 8; ++i) {
278 DCHECK_EQ(src[i].a, 0x00);
279 const uint32_t* src_ptr = reinterpret_cast<const uint32_t*>(&src[i]);
280 src_color[i] = vreinterpretq_u8_u32(vld1q_dup_u32(src_ptr));
281 }
282
283 // Try all codeword tables to find the one giving the best results for this
284 // block.
285 for (unsigned int tbl_idx = 0; tbl_idx < 8; ++tbl_idx) {
286 uint32_t tbl_err = 0;
287
288 // For the current table, compute the candidate color: base + lum for all
289 // four luminance entries.
290 const int16_t* lum_ptr = g_codeword_tables_neon_opt[tbl_idx];
291 int16x8_t lum01 = vld1q_s16(lum_ptr);
292 int16x8_t lum23 = vld1q_s16(lum_ptr + 8);
293
294 int16x8_t color01 = vaddq_s16(base_color, lum01);
295 int16x8_t color23 = vaddq_s16(base_color, lum23);
296
297 // Clamp the candidate colors to [0, 255].
298 color01 = vminq_s16(color01, vdupq_n_s16(255));
299 color01 = vmaxq_s16(color01, vdupq_n_s16(0));
300 color23 = vminq_s16(color23, vdupq_n_s16(255));
301 color23 = vmaxq_s16(color23, vdupq_n_s16(0));
302
303 uint8x16_t candidate_color =
304 vcombine_u8(vmovn_u16(vreinterpretq_u16_s16(color01)),
305 vmovn_u16(vreinterpretq_u16_s16(color23)));
306
307 for (unsigned int i = 0; i < 8; ++i) {
308 // Compute the squared distance between the source and candidate colors.
309 uint8x16_t diff = vabdq_u8(src_color[i], candidate_color);
310 uint8x8_t diff01 = vget_low_u8(diff);
311 uint8x8_t diff23 = vget_high_u8(diff);
312
313 uint16x8_t square01 = vmull_u8(diff01, diff01);
314 uint16x8_t square23 = vmull_u8(diff23, diff23);
315
316 uint32x4_t psum01 = vpaddlq_u16(square01);
317 uint32x4_t psum23 = vpaddlq_u16(square23);
318 uint32x2_t err01 = vpadd_u32(vget_low_u32(psum01), vget_high_u32(psum01));
319 uint32x2_t err23 = vpadd_u32(vget_low_u32(psum23), vget_high_u32(psum23));
320 uint32x4_t errs = vcombine_u32(err01, err23);
321
322 // Find the minimum error.
323 uint32x2_t min_err = vpmin_u32(err01, err23);
324 min_err = vpmin_u32(min_err, min_err);
325
326 // Find the modifier index which produced the minimum error. This is
327 // essentially the lane number of the lane containing the minimum error.
328 uint32x4_t min_mask = vceqq_u32(vcombine_u32(min_err, min_err), errs);
329 uint32x4_t idxs = vbslq_u32(min_mask, idx_mask, vdupq_n_u32(0xffffffff));
330
331 uint32x2_t min_idx = vpmin_u32(vget_low_u32(idxs), vget_high_u32(idxs));
332 min_idx = vpmin_u32(min_idx, min_idx);
333
334 uint32_t best_mod_err = vget_lane_u32(min_err, 0);
335 uint32_t best_mod_idx = vget_lane_u32(min_idx, 0);
336
337 best_mod_idxs[tbl_idx][i] = best_mod_idx;
338
339 tbl_err += best_mod_err;
340 if (tbl_err > best_tbl_err)
341 break; // We're already doing worse than the best table so skip.
342 }
343
344 if (tbl_err < best_tbl_err) {
345 best_tbl_err = tbl_err;
346 best_tbl_idx = tbl_idx;
347
348 if (tbl_err == 0)
349 break; // We cannot do any better than this.
350 }
351 }
352
353 WriteCodewordTable(block, sub_block_id, best_tbl_idx);
354
355 uint32_t pix_data = 0;
356
357 for (unsigned int i = 0; i < 8; ++i) {
358 uint8_t mod_idx = best_mod_idxs[best_tbl_idx][i];
359 uint8_t pix_idx = g_mod_to_pix[mod_idx];
360
361 uint32_t lsb = pix_idx & 0x1;
362 uint32_t msb = pix_idx >> 1;
363
364 // Obtain the texel number as specified in the standard.
365 int texel_num = idx_to_num_tab[i];
366 pix_data |= msb << (texel_num + 16);
367 pix_data |= lsb << (texel_num);
368 }
369
370 WritePixelData(block, pix_data);
371 }
372
373 /**
374 * Compress a solid, single colored block.
375 */
376 void CompressSolidBlock(uint8_t* dst, const Color& src) {
377 // Clear destination buffer so that we can "or" in the results.
378 memset(dst, 0, 8);
379
380 float src_color_float[3] = {static_cast<float>(src.b),
381 static_cast<float>(src.g),
382 static_cast<float>(src.r)};
383 Color base = MakeColor555(src_color_float);
384
385 WriteDiff(dst, true);
386 WriteFlip(dst, false);
387 WriteColors555(dst, base, base);
388
389 uint32_t best_tbl_err = std::numeric_limits<uint32_t>::max();
390 uint8_t best_tbl_idx = 0;
391 uint8_t best_mod_idx = 0;
392
393 // Load immutable data that is shared through iteration.
394 ALIGNAS(8) const int16_t base_color_ptr[4] = {base.b, base.g, base.r, 0x00};
395 int16x8_t base_color =
396 vcombine_s16(vld1_s16(base_color_ptr), vld1_s16(base_color_ptr));
397
398 ALIGNAS(8) const uint32_t idx_mask_ptr[4] = {0x00, 0x01, 0x02, 0x03};
399 uint32x4_t idx_mask = vld1q_u32(idx_mask_ptr);
400
401 // Preload source color registers.
402 DCHECK_EQ(src.a, 0x00);
403 uint8x16_t src_color = vreinterpretq_u8_u32(
404 vld1q_dup_u32(reinterpret_cast<const uint32_t*>(&src)));
405
406 // Try all codeword tables to find the one giving the best results for this
407 // block.
408 for (unsigned int tbl_idx = 0; tbl_idx < 8; ++tbl_idx) {
409 // For the current table, compute the candidate color: base + lum for all
410 // four luminance entries.
411 const int16_t* lum_ptr = g_codeword_tables_neon_opt[tbl_idx];
412 int16x8_t lum01 = vld1q_s16(lum_ptr);
413 int16x8_t lum23 = vld1q_s16(lum_ptr + 8);
414
415 int16x8_t color01 = vaddq_s16(base_color, lum01);
416 int16x8_t color23 = vaddq_s16(base_color, lum23);
417
418 // Clamp the candidate colors to [0, 255].
419 color01 = vminq_s16(color01, vdupq_n_s16(255));
420 color01 = vmaxq_s16(color01, vdupq_n_s16(0));
421 color23 = vminq_s16(color23, vdupq_n_s16(255));
422 color23 = vmaxq_s16(color23, vdupq_n_s16(0));
423
424 uint8x16_t candidate_color =
425 vcombine_u8(vmovn_u16(vreinterpretq_u16_s16(color01)),
426 vmovn_u16(vreinterpretq_u16_s16(color23)));
427
428 // Compute the squared distance between the source and candidate colors.
429 uint8x16_t diff = vabdq_u8(src_color, candidate_color);
430 uint8x8_t diff01 = vget_low_u8(diff);
431 uint8x8_t diff23 = vget_high_u8(diff);
432
433 uint16x8_t square01 = vmull_u8(diff01, diff01);
434 uint16x8_t square23 = vmull_u8(diff23, diff23);
435
436 uint32x4_t psum01 = vpaddlq_u16(square01);
437 uint32x4_t psum23 = vpaddlq_u16(square23);
438 uint32x2_t err01 = vpadd_u32(vget_low_u32(psum01), vget_high_u32(psum01));
439 uint32x2_t err23 = vpadd_u32(vget_low_u32(psum23), vget_high_u32(psum23));
440 uint32x4_t errs = vcombine_u32(err01, err23);
441
442 // Find the minimum error.
443 uint32x2_t min_err = vpmin_u32(err01, err23);
444 min_err = vpmin_u32(min_err, min_err);
445
446 // Find the modifier index which produced the minimum error. This is
447 // essentially the lane number of the lane containing the minimum error.
448 uint32x4_t min_mask = vceqq_u32(vcombine_u32(min_err, min_err), errs);
449 uint32x4_t idxs = vbslq_u32(min_mask, idx_mask, vdupq_n_u32(0xffffffff));
450
451 uint32x2_t min_idx = vpmin_u32(vget_low_u32(idxs), vget_high_u32(idxs));
452 min_idx = vpmin_u32(min_idx, min_idx);
453
454 uint32_t cur_best_mod_err = vget_lane_u32(min_err, 0);
455 uint32_t cur_best_mod_idx = vget_lane_u32(min_idx, 0);
456
457 uint32_t tbl_err = cur_best_mod_err;
458 if (tbl_err < best_tbl_err) {
459 best_tbl_err = tbl_err;
460 best_tbl_idx = tbl_idx;
461 best_mod_idx = cur_best_mod_idx;
462
463 if (tbl_err == 0)
464 break; // We cannot do any better than this.
465 }
466 }
467
468 WriteCodewordTable(dst, 0, best_tbl_idx);
469 WriteCodewordTable(dst, 1, best_tbl_idx);
470
471 uint8_t pix_idx = g_mod_to_pix[best_mod_idx];
472 uint32_t lsb = pix_idx & 0x1;
473 uint32_t msb = pix_idx >> 1;
474
475 uint32_t pix_data = 0;
476 for (unsigned int i = 0; i < 2; ++i) {
477 for (unsigned int j = 0; j < 8; ++j) {
478 // Obtain the texel number as specified in the standard.
479 int texel_num = g_idx_to_num[i][j];
480 pix_data |= msb << (texel_num + 16);
481 pix_data |= lsb << (texel_num);
482 }
483 }
484
485 WritePixelData(dst, pix_data);
486 }
487
488 void CompressBlock(uint8_t* dst, const Color* ver_src, const Color* hor_src) {
489 ALIGNAS(8) const Color* sub_block_src[4] = {
490 ver_src, ver_src + 8, hor_src, hor_src + 8};
491
492 Color sub_block_avg[4];
493 bool use_differential[2] = {true, true};
494
495 // Compute the average color for each sub block and determine if differential
496 // coding can be used.
497 for (unsigned int i = 0, j = 1; i < 4; i += 2, j += 2) {
498 float avg_color_0[3];
499 GetAverageColor(sub_block_src[i], avg_color_0);
500 Color avg_color_555_0 = MakeColor555(avg_color_0);
501
502 float avg_color_1[3];
503 GetAverageColor(sub_block_src[j], avg_color_1);
504 Color avg_color_555_1 = MakeColor555(avg_color_1);
505
506 for (unsigned int light_idx = 0; light_idx < 3; ++light_idx) {
507 int u = avg_color_555_0.components[light_idx] >> 3;
508 int v = avg_color_555_1.components[light_idx] >> 3;
509
510 int component_diff = v - u;
511 if (component_diff < -4 || component_diff > 3) {
512 use_differential[i / 2] = false;
513 sub_block_avg[i] = MakeColor444(avg_color_0);
514 sub_block_avg[j] = MakeColor444(avg_color_1);
515 } else {
516 sub_block_avg[i] = avg_color_555_0;
517 sub_block_avg[j] = avg_color_555_1;
518 }
519 }
520 }
521
522 // Compute the error of each sub block before adjusting for luminance. These
523 // error values are later used for determining if we should flip the sub
524 // block or not.
525 uint32_t sub_block_err[4] = {0};
526 for (unsigned int i = 0; i < 4; ++i) {
527 for (unsigned int j = 0; j < 8; ++j) {
528 sub_block_err[i] += GetColorError(sub_block_avg[i], sub_block_src[i][j]);
529 }
530 }
531
532 bool flip =
533 sub_block_err[2] + sub_block_err[3] < sub_block_err[0] + sub_block_err[1];
534
535 // Clear destination buffer so that we can "or" in the results.
536 memset(dst, 0, 8);
537
538 WriteDiff(dst, use_differential[!!flip]);
539 WriteFlip(dst, flip);
540
541 uint8_t sub_block_off_0 = flip ? 2 : 0;
542 uint8_t sub_block_off_1 = sub_block_off_0 + 1;
543
544 if (use_differential[!!flip]) {
545 WriteColors555(dst, sub_block_avg[sub_block_off_0],
546 sub_block_avg[sub_block_off_1]);
547 } else {
548 WriteColors444(dst, sub_block_avg[sub_block_off_0],
549 sub_block_avg[sub_block_off_1]);
550 }
551
552 // Compute luminance for the first sub block.
553 ComputeLuminance(dst, sub_block_src[sub_block_off_0],
554 sub_block_avg[sub_block_off_0], 0,
555 g_idx_to_num[sub_block_off_0]);
556 // Compute luminance for the second sub block.
557 ComputeLuminance(dst, sub_block_src[sub_block_off_1],
558 sub_block_avg[sub_block_off_1], 1,
559 g_idx_to_num[sub_block_off_1]);
560 }
561
562 void CompressTexture(const uint8_t* src, uint8_t* dst, int width, int height) {
563 DCHECK(width >= 4 && (width & 3) == 0);
564 DCHECK(height >= 4 && (height & 3) == 0);
565
566 ALIGNAS(8) uint32_t ver_blocks[16];
567 ALIGNAS(8) uint32_t hor_blocks[16];
568
569 // Mask for clearing the alpha channel.
570 ALIGNAS(8) const uint32_t clear_mask_ptr[4] = {
571 0xff000000, 0xff000000, 0xff000000, 0xff000000};
572 uint32x4_t clear_mask = vld1q_u32(clear_mask_ptr);
573
574 for (int y = 0; y < height; y += 4, src += width * 4 * 4) {
575 for (int x = 0; x < width; x += 4, dst += 8) {
576 const uint32_t* row0 = reinterpret_cast<const uint32_t*>(src + x * 4);
577 const uint32_t* row1 = row0 + width;
578 const uint32_t* row2 = row1 + width;
579 const uint32_t* row3 = row2 + width;
580
581 #ifdef GCC46_INTERNAL_ERROR_WORKAROUND
582 uint32x4x4_t block_transposed;
583 #endif
584 ALIGNAS(8) uint32x4_t block[4];
585 block[0] = vld1q_u32(row0);
586 block[1] = vld1q_u32(row1);
587 block[2] = vld1q_u32(row2);
588 block[3] = vld1q_u32(row3);
589
590 // Clear alpha channel.
591 for (unsigned int i = 0; i < 4; ++i) {
592 block[i] = vbicq_u32(block[i], clear_mask);
593 }
594
595 // Check if the block is solid.
596 uint32x4_t solid = vbicq_u32(vdupq_n_u32(*row0), clear_mask);
597
598 uint16x4_t eq0 = vmovn_u32(vceqq_u32(block[0], solid));
599 uint16x4_t eq1 = vmovn_u32(vceqq_u32(block[1], solid));
600 uint16x4_t eq2 = vmovn_u32(vceqq_u32(block[2], solid));
601 uint16x4_t eq3 = vmovn_u32(vceqq_u32(block[3], solid));
602 uint16x4_t tst = vand_u16(vand_u16(eq0, eq1), vand_u16(eq2, eq3));
603
604 ALIGNAS(8) uint64_t solid_block_tst_bits;
605 vst1_u64(&solid_block_tst_bits, vreinterpret_u64_u16(tst));
606
607 if (solid_block_tst_bits == 0xffffffffffffffff) {
608 CompressSolidBlock(dst, *reinterpret_cast<const Color*>(row0));
609 continue;
610 }
611
612 vst1q_u32(hor_blocks, block[0]);
613 vst1q_u32(hor_blocks + 4, block[1]);
614 vst1q_u32(hor_blocks + 8, block[2]);
615 vst1q_u32(hor_blocks + 12, block[3]);
616
617 // Texel ordering according to specification:
618 // [ 0][ 4][ 8][12]
619 // [ 1][ 5][ 9][13]
620 // [ 2][ 6][10][14]
621 // [ 3][ 7][11][15]
622 //
623 // To access the vertical blocks using C-style indexing we
624 // transpose the block:
625 // [ 0][ 1][ 2][ 3]
626 // [ 4][ 5][ 6][ 7]
627 // [ 8][ 9][10][11]
628 // [12][13][14][15]
629 #ifdef GCC46_INTERNAL_ERROR_WORKAROUND
630 block_transposed = vld4q_u32(hor_blocks);
631 #else
632 uint32x4x4_t block_transposed = vld4q_u32(hor_blocks);
633 #endif
634
635 vst1q_u32(ver_blocks, block_transposed.val[0]);
636 vst1q_u32(ver_blocks + 4, block_transposed.val[1]);
637 vst1q_u32(ver_blocks + 8, block_transposed.val[2]);
638 vst1q_u32(ver_blocks + 12, block_transposed.val[3]);
639
640 CompressBlock(dst, reinterpret_cast<const Color*>(ver_blocks),
641 reinterpret_cast<const Color*>(hor_blocks));
642 }
643 }
644 }
645
646 } // namespace etc1_neon
647
648 #endif // __ARM_NEON__
OLDNEW
« no previous file with comments | « cc/resources/texture_compress/arm/etc1_neon.h ('k') | cc/resources/texture_compress/atc_dxt.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698