| Index: patched-ffmpeg-mt/libavcodec/wmavoice.c
|
| ===================================================================
|
| --- patched-ffmpeg-mt/libavcodec/wmavoice.c (revision 0)
|
| +++ patched-ffmpeg-mt/libavcodec/wmavoice.c (revision 0)
|
| @@ -0,0 +1,1568 @@
|
| +/*
|
| + * Windows Media Audio Voice decoder.
|
| + * Copyright (c) 2009 Ronald S. Bultje
|
| + *
|
| + * This file is part of FFmpeg.
|
| + *
|
| + * FFmpeg is free software; you can redistribute it and/or
|
| + * modify it under the terms of the GNU Lesser General Public
|
| + * License as published by the Free Software Foundation; either
|
| + * version 2.1 of the License, or (at your option) any later version.
|
| + *
|
| + * FFmpeg is distributed in the hope that it will be useful,
|
| + * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
| + * Lesser General Public License for more details.
|
| + *
|
| + * You should have received a copy of the GNU Lesser General Public
|
| + * License along with FFmpeg; if not, write to the Free Software
|
| + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
| + */
|
| +
|
| +/**
|
| + * @file libavcodec/wmavoice.c
|
| + * @brief Windows Media Audio Voice compatible decoder
|
| + * @author Ronald S. Bultje <rsbultje@gmail.com>
|
| + */
|
| +
|
| +#include <math.h>
|
| +#include "avcodec.h"
|
| +#include "get_bits.h"
|
| +#include "put_bits.h"
|
| +#include "wmavoice_data.h"
|
| +#include "celp_math.h"
|
| +#include "celp_filters.h"
|
| +#include "acelp_vectors.h"
|
| +#include "acelp_filters.h"
|
| +#include "lsp.h"
|
| +#include "libavutil/lzo.h"
|
| +
|
| +#define MAX_BLOCKS 8 ///< maximum number of blocks per frame
|
| +#define MAX_LSPS 16 ///< maximum filter order
|
| +#define MAX_FRAMES 3 ///< maximum number of frames per superframe
|
| +#define MAX_FRAMESIZE 160 ///< maximum number of samples per frame
|
| +#define MAX_SIGNAL_HISTORY 416 ///< maximum excitation signal history
|
| +#define MAX_SFRAMESIZE (MAX_FRAMESIZE * MAX_FRAMES)
|
| + ///< maximum number of samples per superframe
|
| +#define SFRAME_CACHE_MAXSIZE 256 ///< maximum cache size for frame data that
|
| + ///< was split over two packets
|
| +#define VLC_NBITS 6 ///< number of bits to read per VLC iteration
|
| +
|
| +/**
|
| + * Frame type VLC coding.
|
| + */
|
| +static VLC frame_type_vlc;
|
| +
|
| +/**
|
| + * Adaptive codebook types.
|
| + */
|
| +enum {
|
| + ACB_TYPE_NONE = 0, ///< no adaptive codebook (only hardcoded fixed)
|
| + ACB_TYPE_ASYMMETRIC = 1, ///< adaptive codebook with per-frame pitch, which
|
| + ///< we interpolate to get a per-sample pitch.
|
| + ///< Signal is generated using an asymmetric sinc
|
| + ///< window function
|
| + ///< @note see #wmavoice_ipol1_coeffs
|
| + ACB_TYPE_HAMMING = 2 ///< Per-block pitch with signal generation using
|
| + ///< a Hamming sinc window function
|
| + ///< @note see #wmavoice_ipol2_coeffs
|
| +};
|
| +
|
| +/**
|
| + * Fixed codebook types.
|
| + */
|
| +enum {
|
| + FCB_TYPE_SILENCE = 0, ///< comfort noise during silence
|
| + ///< generated from a hardcoded (fixed) codebook
|
| + ///< with per-frame (low) gain values
|
| + FCB_TYPE_HARDCODED = 1, ///< hardcoded (fixed) codebook with per-block
|
| + ///< gain values
|
| + FCB_TYPE_AW_PULSES = 2, ///< Pitch-adaptive window (AW) pulse signals,
|
| + ///< used in particular for low-bitrate streams
|
| + FCB_TYPE_EXC_PULSES = 3, ///< Innovation (fixed) codebook pulse sets in
|
| + ///< combinations of either single pulses or
|
| + ///< pulse pairs
|
| +};
|
| +
|
| +/**
|
| + * Description of frame types.
|
| + */
|
| +static const struct frame_type_desc {
|
| + uint8_t n_blocks; ///< amount of blocks per frame (each block
|
| + ///< (contains 160/#n_blocks samples)
|
| + uint8_t log_n_blocks; ///< log2(#n_blocks)
|
| + uint8_t acb_type; ///< Adaptive codebook type (ACB_TYPE_*)
|
| + uint8_t fcb_type; ///< Fixed codebook type (FCB_TYPE_*)
|
| + uint8_t dbl_pulses; ///< how many pulse vectors have pulse pairs
|
| + ///< (rather than just one single pulse)
|
| + ///< only if #fcb_type == #FCB_TYPE_EXC_PULSES
|
| + uint16_t frame_size; ///< the amount of bits that make up the block
|
| + ///< data (per frame)
|
| +} frame_descs[17] = {
|
| + { 1, 0, ACB_TYPE_NONE, FCB_TYPE_SILENCE, 0, 0 },
|
| + { 2, 1, ACB_TYPE_NONE, FCB_TYPE_HARDCODED, 0, 28 },
|
| + { 2, 1, ACB_TYPE_ASYMMETRIC, FCB_TYPE_AW_PULSES, 0, 46 },
|
| + { 2, 1, ACB_TYPE_ASYMMETRIC, FCB_TYPE_EXC_PULSES, 2, 80 },
|
| + { 2, 1, ACB_TYPE_ASYMMETRIC, FCB_TYPE_EXC_PULSES, 5, 104 },
|
| + { 4, 2, ACB_TYPE_ASYMMETRIC, FCB_TYPE_EXC_PULSES, 0, 108 },
|
| + { 4, 2, ACB_TYPE_ASYMMETRIC, FCB_TYPE_EXC_PULSES, 2, 132 },
|
| + { 4, 2, ACB_TYPE_ASYMMETRIC, FCB_TYPE_EXC_PULSES, 5, 168 },
|
| + { 2, 1, ACB_TYPE_HAMMING, FCB_TYPE_EXC_PULSES, 0, 64 },
|
| + { 2, 1, ACB_TYPE_HAMMING, FCB_TYPE_EXC_PULSES, 2, 80 },
|
| + { 2, 1, ACB_TYPE_HAMMING, FCB_TYPE_EXC_PULSES, 5, 104 },
|
| + { 4, 2, ACB_TYPE_HAMMING, FCB_TYPE_EXC_PULSES, 0, 108 },
|
| + { 4, 2, ACB_TYPE_HAMMING, FCB_TYPE_EXC_PULSES, 2, 132 },
|
| + { 4, 2, ACB_TYPE_HAMMING, FCB_TYPE_EXC_PULSES, 5, 168 },
|
| + { 8, 3, ACB_TYPE_HAMMING, FCB_TYPE_EXC_PULSES, 0, 176 },
|
| + { 8, 3, ACB_TYPE_HAMMING, FCB_TYPE_EXC_PULSES, 2, 208 },
|
| + { 8, 3, ACB_TYPE_HAMMING, FCB_TYPE_EXC_PULSES, 5, 256 }
|
| +};
|
| +
|
| +/**
|
| + * WMA Voice decoding context.
|
| + */
|
| +typedef struct {
|
| + /**
|
| + * @defgroup struct_global Global values
|
| + * Global values, specified in the stream header / extradata or used
|
| + * all over.
|
| + * @{
|
| + */
|
| + GetBitContext gb; ///< packet bitreader. During decoder init,
|
| + ///< it contains the extradata from the
|
| + ///< demuxer. During decoding, it contains
|
| + ///< packet data.
|
| + int8_t vbm_tree[25]; ///< converts VLC codes to frame type
|
| +
|
| + int spillover_bitsize; ///< number of bits used to specify
|
| + ///< #spillover_nbits in the packet header
|
| + ///< = ceil(log2(ctx->block_align << 3))
|
| + int history_nsamples; ///< number of samples in history for signal
|
| + ///< prediction (through ACB)
|
| +
|
| + int do_apf; ///< whether to apply the averaged
|
| + ///< projection filter (APF)
|
| +
|
| + int lsps; ///< number of LSPs per frame [10 or 16]
|
| + int lsp_q_mode; ///< defines quantizer defaults [0, 1]
|
| + int lsp_def_mode; ///< defines different sets of LSP defaults
|
| + ///< [0, 1]
|
| + int frame_lsp_bitsize; ///< size (in bits) of LSPs, when encoded
|
| + ///< per-frame (independent coding)
|
| + int sframe_lsp_bitsize; ///< size (in bits) of LSPs, when encoded
|
| + ///< per superframe (residual coding)
|
| +
|
| + int min_pitch_val; ///< base value for pitch parsing code
|
| + int max_pitch_val; ///< max value + 1 for pitch parsing
|
| + int pitch_nbits; ///< number of bits used to specify the
|
| + ///< pitch value in the frame header
|
| + int block_pitch_nbits; ///< number of bits used to specify the
|
| + ///< first block's pitch value
|
| + int block_pitch_range; ///< range of the block pitch
|
| + int block_delta_pitch_nbits; ///< number of bits used to specify the
|
| + ///< delta pitch between this and the last
|
| + ///< block's pitch value, used in all but
|
| + ///< first block
|
| + int block_delta_pitch_hrange; ///< 1/2 range of the delta (full range is
|
| + ///< from -this to +this-1)
|
| + uint16_t block_conv_table[4]; ///< boundaries for block pitch unit/scale
|
| + ///< conversion
|
| +
|
| + /**
|
| + * @}
|
| + * @defgroup struct_packet Packet values
|
| + * Packet values, specified in the packet header or related to a packet.
|
| + * A packet is considered to be a single unit of data provided to this
|
| + * decoder by the demuxer.
|
| + * @{
|
| + */
|
| + int spillover_nbits; ///< number of bits of the previous packet's
|
| + ///< last superframe preceeding this
|
| + ///< packet's first full superframe (useful
|
| + ///< for re-synchronization also)
|
| + int has_residual_lsps; ///< if set, superframes contain one set of
|
| + ///< LSPs that cover all frames, encoded as
|
| + ///< independent and residual LSPs; if not
|
| + ///< set, each frame contains its own, fully
|
| + ///< independent, LSPs
|
| + int skip_bits_next; ///< number of bits to skip at the next call
|
| + ///< to #wmavoice_decode_packet() (since
|
| + ///< they're part of the previous superframe)
|
| +
|
| + uint8_t sframe_cache[SFRAME_CACHE_MAXSIZE + FF_INPUT_BUFFER_PADDING_SIZE];
|
| + ///< cache for superframe data split over
|
| + ///< multiple packets
|
| + int sframe_cache_size; ///< set to >0 if we have data from an
|
| + ///< (incomplete) superframe from a previous
|
| + ///< packet that spilled over in the current
|
| + ///< packet; specifies the amount of bits in
|
| + ///< #sframe_cache
|
| + PutBitContext pb; ///< bitstream writer for #sframe_cache
|
| +
|
| + /**
|
| + * @}
|
| + * @defgroup struct_frame Frame and superframe values
|
| + * Superframe and frame data - these can change from frame to frame,
|
| + * although some of them do in that case serve as a cache / history for
|
| + * the next frame or superframe.
|
| + * @{
|
| + */
|
| + double prev_lsps[MAX_LSPS]; ///< LSPs of the last frame of the previous
|
| + ///< superframe
|
| + int last_pitch_val; ///< pitch value of the previous frame
|
| + int last_acb_type; ///< frame type [0-2] of the previous frame
|
| + int pitch_diff_sh16; ///< ((cur_pitch_val - #last_pitch_val)
|
| + ///< << 16) / #MAX_FRAMESIZE
|
| + float silence_gain; ///< set for use in blocks if #ACB_TYPE_NONE
|
| +
|
| + int aw_idx_is_ext; ///< whether the AW index was encoded in
|
| + ///< 8 bits (instead of 6)
|
| + int aw_pulse_range; ///< the range over which #aw_pulse_set1()
|
| + ///< can apply the pulse, relative to the
|
| + ///< value in aw_first_pulse_off. The exact
|
| + ///< position of the first AW-pulse is within
|
| + ///< [pulse_off, pulse_off + this], and
|
| + ///< depends on bitstream values; [16 or 24]
|
| + int aw_n_pulses[2]; ///< number of AW-pulses in each block; note
|
| + ///< that this number can be negative (in
|
| + ///< which case it basically means "zero")
|
| + int aw_first_pulse_off[2]; ///< index of first sample to which to
|
| + ///< apply AW-pulses, or -0xff if unset
|
| + int aw_next_pulse_off_cache; ///< the position (relative to start of the
|
| + ///< second block) at which pulses should
|
| + ///< start to be positioned, serves as a
|
| + ///< cache for pitch-adaptive window pulses
|
| + ///< between blocks
|
| +
|
| + int frame_cntr; ///< current frame index [0 - 0xFFFE]; is
|
| + ///< only used for comfort noise in #pRNG()
|
| + float gain_pred_err[6]; ///< cache for gain prediction
|
| + float excitation_history[MAX_SIGNAL_HISTORY];
|
| + ///< cache of the signal of previous
|
| + ///< superframes, used as a history for
|
| + ///< signal generation
|
| + float synth_history[MAX_LSPS]; ///< see #excitation_history
|
| + /**
|
| + * @}
|
| + */
|
| +} WMAVoiceContext;
|
| +
|
| +/**
|
| + * Sets up the variable bit mode (VBM) tree from container extradata.
|
| + * @param gb bit I/O context.
|
| + * The bit context (s->gb) should be loaded with byte 23-46 of the
|
| + * container extradata (i.e. the ones containing the VBM tree).
|
| + * @param vbm_tree pointer to array to which the decoded VBM tree will be
|
| + * written.
|
| + * @return 0 on success, <0 on error.
|
| + */
|
| +static av_cold int decode_vbmtree(GetBitContext *gb, int8_t vbm_tree[25])
|
| +{
|
| + static const uint8_t bits[] = {
|
| + 2, 2, 2, 4, 4, 4,
|
| + 6, 6, 6, 8, 8, 8,
|
| + 10, 10, 10, 12, 12, 12,
|
| + 14, 14, 14, 14
|
| + };
|
| + static const uint16_t codes[] = {
|
| + 0x0000, 0x0001, 0x0002, // 00/01/10
|
| + 0x000c, 0x000d, 0x000e, // 11+00/01/10
|
| + 0x003c, 0x003d, 0x003e, // 1111+00/01/10
|
| + 0x00fc, 0x00fd, 0x00fe, // 111111+00/01/10
|
| + 0x03fc, 0x03fd, 0x03fe, // 11111111+00/01/10
|
| + 0x0ffc, 0x0ffd, 0x0ffe, // 1111111111+00/01/10
|
| + 0x3ffc, 0x3ffd, 0x3ffe, 0x3fff // 111111111111+xx
|
| + };
|
| + int cntr[8], n, res;
|
| +
|
| + memset(vbm_tree, 0xff, sizeof(vbm_tree));
|
| + memset(cntr, 0, sizeof(cntr));
|
| + for (n = 0; n < 17; n++) {
|
| + res = get_bits(gb, 3);
|
| + if (cntr[res] > 3) // should be >= 3 + (res == 7))
|
| + return -1;
|
| + vbm_tree[res * 3 + cntr[res]++] = n;
|
| + }
|
| + INIT_VLC_STATIC(&frame_type_vlc, VLC_NBITS, sizeof(bits),
|
| + bits, 1, 1, codes, 2, 2, 132);
|
| + return 0;
|
| +}
|
| +
|
| +/**
|
| + * Set up decoder with parameters from demuxer (extradata etc.).
|
| + */
|
| +static av_cold int wmavoice_decode_init(AVCodecContext *ctx)
|
| +{
|
| + int n, flags, pitch_range, lsp16_flag;
|
| + WMAVoiceContext *s = ctx->priv_data;
|
| +
|
| + /**
|
| + * Extradata layout:
|
| + * - byte 0-18: WMAPro-in-WMAVoice extradata (see wmaprodec.c),
|
| + * - byte 19-22: flags field (annoyingly in LE; see below for known
|
| + * values),
|
| + * - byte 23-46: variable bitmode tree (really just 17 * 3 bits,
|
| + * rest is 0).
|
| + */
|
| + if (ctx->extradata_size != 46) {
|
| + av_log(ctx, AV_LOG_ERROR,
|
| + "Invalid extradata size %d (should be 46)\n",
|
| + ctx->extradata_size);
|
| + return -1;
|
| + }
|
| + flags = AV_RL32(ctx->extradata + 18);
|
| + s->spillover_bitsize = 3 + av_ceil_log2(ctx->block_align);
|
| + s->do_apf = flags & 0x1;
|
| + s->lsp_q_mode = !!(flags & 0x2000);
|
| + s->lsp_def_mode = !!(flags & 0x4000);
|
| + lsp16_flag = flags & 0x1000;
|
| + if (lsp16_flag) {
|
| + s->lsps = 16;
|
| + s->frame_lsp_bitsize = 34;
|
| + s->sframe_lsp_bitsize = 60;
|
| + } else {
|
| + s->lsps = 10;
|
| + s->frame_lsp_bitsize = 24;
|
| + s->sframe_lsp_bitsize = 48;
|
| + }
|
| + for (n = 0; n < s->lsps; n++)
|
| + s->prev_lsps[n] = M_PI * (n + 1.0) / (s->lsps + 1.0);
|
| +
|
| + init_get_bits(&s->gb, ctx->extradata + 22, (ctx->extradata_size - 22) << 3);
|
| + if (decode_vbmtree(&s->gb, s->vbm_tree) < 0) {
|
| + av_log(ctx, AV_LOG_ERROR, "Invalid VBM tree; broken extradata?\n");
|
| + return -1;
|
| + }
|
| +
|
| + s->min_pitch_val = ((ctx->sample_rate << 8) / 400 + 50) >> 8;
|
| + s->max_pitch_val = ((ctx->sample_rate << 8) * 37 / 2000 + 50) >> 8;
|
| + pitch_range = s->max_pitch_val - s->min_pitch_val;
|
| + s->pitch_nbits = av_ceil_log2(pitch_range);
|
| + s->last_pitch_val = 40;
|
| + s->last_acb_type = ACB_TYPE_NONE;
|
| + s->history_nsamples = s->max_pitch_val + 8;
|
| +
|
| + if (s->min_pitch_val < 1 || s->history_nsamples > MAX_SIGNAL_HISTORY) {
|
| + int min_sr = ((((1 << 8) - 50) * 400) + 0xFF) >> 8,
|
| + max_sr = ((((MAX_SIGNAL_HISTORY - 8) << 8) + 205) * 2000 / 37) >> 8;
|
| +
|
| + av_log(ctx, AV_LOG_ERROR,
|
| + "Unsupported samplerate %d (min=%d, max=%d)\n",
|
| + ctx->sample_rate, min_sr, max_sr); // 322-22097 Hz
|
| +
|
| + return -1;
|
| + }
|
| +
|
| + s->block_conv_table[0] = s->min_pitch_val;
|
| + s->block_conv_table[1] = (pitch_range * 25) >> 6;
|
| + s->block_conv_table[2] = (pitch_range * 44) >> 6;
|
| + s->block_conv_table[3] = s->max_pitch_val - 1;
|
| + s->block_delta_pitch_hrange = (pitch_range >> 3) & ~0xF;
|
| + s->block_delta_pitch_nbits = 1 + av_ceil_log2(s->block_delta_pitch_hrange);
|
| + s->block_pitch_range = s->block_conv_table[2] +
|
| + s->block_conv_table[3] + 1 +
|
| + 2 * (s->block_conv_table[1] - 2 * s->min_pitch_val);
|
| + s->block_pitch_nbits = av_ceil_log2(s->block_pitch_range);
|
| +
|
| + ctx->sample_fmt = SAMPLE_FMT_FLT;
|
| +
|
| + return 0;
|
| +}
|
| +
|
| +/**
|
| + * Dequantize LSPs
|
| + * @param lsps output pointer to the array that will hold the LSPs
|
| + * @param num number of LSPs to be dequantized
|
| + * @param values quantized values, contains n_stages values
|
| + * @param sizes range (i.e. max value) of each quantized value
|
| + * @param n_stages number of dequantization runs
|
| + * @param table dequantization table to be used
|
| + * @param mul_q LSF multiplier
|
| + * @param base_q base (lowest) LSF values
|
| + */
|
| +static void dequant_lsps(double *lsps, int num,
|
| + const uint16_t *values,
|
| + const uint16_t *sizes,
|
| + int n_stages, const uint8_t *table,
|
| + const double *mul_q,
|
| + const double *base_q)
|
| +{
|
| + int n, m;
|
| +
|
| + memset(lsps, 0, num * sizeof(*lsps));
|
| + for (n = 0; n < n_stages; n++) {
|
| + const uint8_t *t_off = &table[values[n] * num];
|
| + double base = base_q[n], mul = mul_q[n];
|
| +
|
| + for (m = 0; m < num; m++)
|
| + lsps[m] += base + mul * t_off[m];
|
| +
|
| + table += sizes[n] * num;
|
| + }
|
| +}
|
| +
|
| +/**
|
| + * @defgroup lsp_dequant LSP dequantization routines
|
| + * LSP dequantization routines, for 10/16LSPs and independent/residual coding.
|
| + * @note we assume enough bits are available, caller should check.
|
| + * lsp10i() consumes 24 bits; lsp10r() consumes an additional 24 bits;
|
| + * lsp16i() consumes 34 bits; lsp16r() consumes an additional 26 bits.
|
| + * @{
|
| + */
|
| +/**
|
| + * Parse 10 independently-coded LSPs.
|
| + */
|
| +static void dequant_lsp10i(GetBitContext *gb, double *lsps)
|
| +{
|
| + static const uint16_t vec_sizes[4] = { 256, 64, 32, 32 };
|
| + static const double mul_lsf[4] = {
|
| + 5.2187144800e-3, 1.4626986422e-3,
|
| + 9.6179549166e-4, 1.1325736225e-3
|
| + };
|
| + static const double base_lsf[4] = {
|
| + M_PI * -2.15522e-1, M_PI * -6.1646e-2,
|
| + M_PI * -3.3486e-2, M_PI * -5.7408e-2
|
| + };
|
| + uint16_t v[4];
|
| +
|
| + v[0] = get_bits(gb, 8);
|
| + v[1] = get_bits(gb, 6);
|
| + v[2] = get_bits(gb, 5);
|
| + v[3] = get_bits(gb, 5);
|
| +
|
| + dequant_lsps(lsps, 10, v, vec_sizes, 4, wmavoice_dq_lsp10i,
|
| + mul_lsf, base_lsf);
|
| +}
|
| +
|
| +/**
|
| + * Parse 10 independently-coded LSPs, and then derive the tables to
|
| + * generate LSPs for the other frames from them (residual coding).
|
| + */
|
| +static void dequant_lsp10r(GetBitContext *gb,
|
| + double *i_lsps, const double *old,
|
| + double *a1, double *a2, int q_mode)
|
| +{
|
| + static const uint16_t vec_sizes[3] = { 128, 64, 64 };
|
| + static const double mul_lsf[3] = {
|
| + 2.5807601174e-3, 1.2354460219e-3, 1.1763821673e-3
|
| + };
|
| + static const double base_lsf[3] = {
|
| + M_PI * -1.07448e-1, M_PI * -5.2706e-2, M_PI * -5.1634e-2
|
| + };
|
| + const float (*ipol_tab)[2][10] = q_mode ?
|
| + wmavoice_lsp10_intercoeff_b : wmavoice_lsp10_intercoeff_a;
|
| + uint16_t interpol, v[3];
|
| + int n;
|
| +
|
| + dequant_lsp10i(gb, i_lsps);
|
| +
|
| + interpol = get_bits(gb, 5);
|
| + v[0] = get_bits(gb, 7);
|
| + v[1] = get_bits(gb, 6);
|
| + v[2] = get_bits(gb, 6);
|
| +
|
| + for (n = 0; n < 10; n++) {
|
| + double delta = old[n] - i_lsps[n];
|
| + a1[n] = ipol_tab[interpol][0][n] * delta + i_lsps[n];
|
| + a1[10 + n] = ipol_tab[interpol][1][n] * delta + i_lsps[n];
|
| + }
|
| +
|
| + dequant_lsps(a2, 20, v, vec_sizes, 3, wmavoice_dq_lsp10r,
|
| + mul_lsf, base_lsf);
|
| +}
|
| +
|
| +/**
|
| + * Parse 16 independently-coded LSPs.
|
| + */
|
| +static void dequant_lsp16i(GetBitContext *gb, double *lsps)
|
| +{
|
| + static const uint16_t vec_sizes[5] = { 256, 64, 128, 64, 128 };
|
| + static const double mul_lsf[5] = {
|
| + 3.3439586280e-3, 6.9908173703e-4,
|
| + 3.3216608306e-3, 1.0334960326e-3,
|
| + 3.1899104283e-3
|
| + };
|
| + static const double base_lsf[5] = {
|
| + M_PI * -1.27576e-1, M_PI * -2.4292e-2,
|
| + M_PI * -1.28094e-1, M_PI * -3.2128e-2,
|
| + M_PI * -1.29816e-1
|
| + };
|
| + uint16_t v[5];
|
| +
|
| + v[0] = get_bits(gb, 8);
|
| + v[1] = get_bits(gb, 6);
|
| + v[2] = get_bits(gb, 7);
|
| + v[3] = get_bits(gb, 6);
|
| + v[4] = get_bits(gb, 7);
|
| +
|
| + dequant_lsps( lsps, 5, v, vec_sizes, 2,
|
| + wmavoice_dq_lsp16i1, mul_lsf, base_lsf);
|
| + dequant_lsps(&lsps[5], 5, &v[2], &vec_sizes[2], 2,
|
| + wmavoice_dq_lsp16i2, &mul_lsf[2], &base_lsf[2]);
|
| + dequant_lsps(&lsps[10], 6, &v[4], &vec_sizes[4], 1,
|
| + wmavoice_dq_lsp16i3, &mul_lsf[4], &base_lsf[4]);
|
| +}
|
| +
|
| +/**
|
| + * Parse 16 independently-coded LSPs, and then derive the tables to
|
| + * generate LSPs for the other frames from them (residual coding).
|
| + */
|
| +static void dequant_lsp16r(GetBitContext *gb,
|
| + double *i_lsps, const double *old,
|
| + double *a1, double *a2, int q_mode)
|
| +{
|
| + static const uint16_t vec_sizes[3] = { 128, 128, 128 };
|
| + static const double mul_lsf[3] = {
|
| + 1.2232979501e-3, 1.4062241527e-3, 1.6114744851e-3
|
| + };
|
| + static const double base_lsf[3] = {
|
| + M_PI * -5.5830e-2, M_PI * -5.2908e-2, M_PI * -5.4776e-2
|
| + };
|
| + const float (*ipol_tab)[2][16] = q_mode ?
|
| + wmavoice_lsp16_intercoeff_b : wmavoice_lsp16_intercoeff_a;
|
| + uint16_t interpol, v[3];
|
| + int n;
|
| +
|
| + dequant_lsp16i(gb, i_lsps);
|
| +
|
| + interpol = get_bits(gb, 5);
|
| + v[0] = get_bits(gb, 7);
|
| + v[1] = get_bits(gb, 7);
|
| + v[2] = get_bits(gb, 7);
|
| +
|
| + for (n = 0; n < 16; n++) {
|
| + double delta = old[n] - i_lsps[n];
|
| + a1[n] = ipol_tab[interpol][0][n] * delta + i_lsps[n];
|
| + a1[16 + n] = ipol_tab[interpol][1][n] * delta + i_lsps[n];
|
| + }
|
| +
|
| + dequant_lsps( a2, 10, v, vec_sizes, 1,
|
| + wmavoice_dq_lsp16r1, mul_lsf, base_lsf);
|
| + dequant_lsps(&a2[10], 10, &v[1], &vec_sizes[1], 1,
|
| + wmavoice_dq_lsp16r2, &mul_lsf[1], &base_lsf[1]);
|
| + dequant_lsps(&a2[20], 12, &v[2], &vec_sizes[2], 1,
|
| + wmavoice_dq_lsp16r3, &mul_lsf[2], &base_lsf[2]);
|
| +}
|
| +
|
| +/**
|
| + * @}
|
| + * @defgroup aw Pitch-adaptive window coding functions
|
| + * The next few functions are for pitch-adaptive window coding.
|
| + * @{
|
| + */
|
| +/**
|
| + * Parse the offset of the first pitch-adaptive window pulses, and
|
| + * the distribution of pulses between the two blocks in this frame.
|
| + * @param s WMA Voice decoding context private data
|
| + * @param gb bit I/O context
|
| + * @param pitch pitch for each block in this frame
|
| + */
|
| +static void aw_parse_coords(WMAVoiceContext *s, GetBitContext *gb,
|
| + const int *pitch)
|
| +{
|
| + static const int16_t start_offset[94] = {
|
| + -11, -9, -7, -5, -3, -1, 1, 3, 5, 7, 9, 11,
|
| + 13, 15, 18, 17, 19, 20, 21, 22, 23, 24, 25, 26,
|
| + 27, 28, 29, 30, 31, 32, 33, 35, 37, 39, 41, 43,
|
| + 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67,
|
| + 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91,
|
| + 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115,
|
| + 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139,
|
| + 141, 143, 145, 147, 149, 151, 153, 155, 157, 159
|
| + };
|
| + int bits, offset;
|
| +
|
| + /* position of pulse */
|
| + s->aw_idx_is_ext = 0;
|
| + if ((bits = get_bits(gb, 6)) >= 54) {
|
| + s->aw_idx_is_ext = 1;
|
| + bits += (bits - 54) * 3 + get_bits(gb, 2);
|
| + }
|
| +
|
| + /* for a repeated pulse at pulse_off with a pitch_lag of pitch[], count
|
| + * the distribution of the pulses in each block contained in this frame. */
|
| + s->aw_pulse_range = FFMIN(pitch[0], pitch[1]) > 32 ? 24 : 16;
|
| + for (offset = start_offset[bits]; offset < 0; offset += pitch[0]) ;
|
| + s->aw_n_pulses[0] = (pitch[0] - 1 + MAX_FRAMESIZE / 2 - offset) / pitch[0];
|
| + s->aw_first_pulse_off[0] = offset - s->aw_pulse_range / 2;
|
| + offset += s->aw_n_pulses[0] * pitch[0];
|
| + s->aw_n_pulses[1] = (pitch[1] - 1 + MAX_FRAMESIZE - offset) / pitch[1];
|
| + s->aw_first_pulse_off[1] = offset - (MAX_FRAMESIZE + s->aw_pulse_range) / 2;
|
| +
|
| + /* if continuing from a position before the block, reset position to
|
| + * start of block (when corrected for the range over which it can be
|
| + * spread in aw_pulse_set1()). */
|
| + if (start_offset[bits] < MAX_FRAMESIZE / 2) {
|
| + while (s->aw_first_pulse_off[1] - pitch[1] + s->aw_pulse_range > 0)
|
| + s->aw_first_pulse_off[1] -= pitch[1];
|
| + if (start_offset[bits] < 0)
|
| + while (s->aw_first_pulse_off[0] - pitch[0] + s->aw_pulse_range > 0)
|
| + s->aw_first_pulse_off[0] -= pitch[0];
|
| + }
|
| +}
|
| +
|
| +/**
|
| + * Apply second set of pitch-adaptive window pulses.
|
| + * @param s WMA Voice decoding context private data
|
| + * @param gb bit I/O context
|
| + * @param block_idx block index in frame [0, 1]
|
| + * @param fcb structure containing fixed codebook vector info
|
| + */
|
| +static void aw_pulse_set2(WMAVoiceContext *s, GetBitContext *gb,
|
| + int block_idx, AMRFixed *fcb)
|
| +{
|
| + uint16_t use_mask[7]; // only 5 are used, rest is padding
|
| + /* in this function, idx is the index in the 80-bit (+ padding) use_mask
|
| + * bit-array. Since use_mask consists of 16-bit values, the lower 4 bits
|
| + * of idx are the position of the bit within a particular item in the
|
| + * array (0 being the most significant bit, and 15 being the least
|
| + * significant bit), and the remainder (>> 4) is the index in the
|
| + * use_mask[]-array. This is faster and uses less memory than using a
|
| + * 80-byte/80-int array. */
|
| + int pulse_off = s->aw_first_pulse_off[block_idx],
|
| + pulse_start, n, idx, range, aidx, start_off = 0;
|
| +
|
| + /* set offset of first pulse to within this block */
|
| + if (s->aw_n_pulses[block_idx] > 0)
|
| + while (pulse_off + s->aw_pulse_range < 1)
|
| + pulse_off += fcb->pitch_lag;
|
| +
|
| + /* find range per pulse */
|
| + if (s->aw_n_pulses[0] > 0) {
|
| + if (block_idx == 0) {
|
| + range = 32;
|
| + } else /* block_idx = 1 */ {
|
| + range = 8;
|
| + if (s->aw_n_pulses[block_idx] > 0)
|
| + pulse_off = s->aw_next_pulse_off_cache;
|
| + }
|
| + } else
|
| + range = 16;
|
| + pulse_start = s->aw_n_pulses[block_idx] > 0 ? pulse_off - range / 2 : 0;
|
| +
|
| + /* aw_pulse_set1() already applies pulses around pulse_off (to be exactly,
|
| + * in the range of [pulse_off, pulse_off + s->aw_pulse_range], and thus
|
| + * we exclude that range from being pulsed again in this function. */
|
| + memset( use_mask, -1, 5 * sizeof(use_mask[0]));
|
| + memset(&use_mask[5], 0, 2 * sizeof(use_mask[0]));
|
| + if (s->aw_n_pulses[block_idx] > 0)
|
| + for (idx = pulse_off; idx < MAX_FRAMESIZE / 2; idx += fcb->pitch_lag) {
|
| + int excl_range = s->aw_pulse_range; // always 16 or 24
|
| + uint16_t *use_mask_ptr = &use_mask[idx >> 4];
|
| + int first_sh = 16 - (idx & 15);
|
| + *use_mask_ptr++ &= 0xFFFF << first_sh;
|
| + excl_range -= first_sh;
|
| + if (excl_range >= 16) {
|
| + *use_mask_ptr++ = 0;
|
| + *use_mask_ptr &= 0xFFFF >> (excl_range - 16);
|
| + } else
|
| + *use_mask_ptr &= 0xFFFF >> excl_range;
|
| + }
|
| +
|
| + /* find the 'aidx'th offset that is not excluded */
|
| + aidx = get_bits(gb, s->aw_n_pulses[0] > 0 ? 5 - 2 * block_idx : 4);
|
| + for (n = 0; n <= aidx; pulse_start++) {
|
| + for (idx = pulse_start; idx < 0; idx += fcb->pitch_lag) ;
|
| + if (idx >= MAX_FRAMESIZE / 2) { // find from zero
|
| + if (use_mask[0]) idx = 0x0F;
|
| + else if (use_mask[1]) idx = 0x1F;
|
| + else if (use_mask[2]) idx = 0x2F;
|
| + else if (use_mask[3]) idx = 0x3F;
|
| + else if (use_mask[4]) idx = 0x4F;
|
| + else return;
|
| + idx -= av_log2_16bit(use_mask[idx >> 4]);
|
| + }
|
| + if (use_mask[idx >> 4] & (0x8000 >> (idx & 15))) {
|
| + use_mask[idx >> 4] &= ~(0x8000 >> (idx & 15));
|
| + n++;
|
| + start_off = idx;
|
| + }
|
| + }
|
| +
|
| + fcb->x[fcb->n] = start_off;
|
| + fcb->y[fcb->n] = get_bits1(gb) ? -1.0 : 1.0;
|
| + fcb->n++;
|
| +
|
| + /* set offset for next block, relative to start of that block */
|
| + n = (MAX_FRAMESIZE / 2 - start_off) % fcb->pitch_lag;
|
| + s->aw_next_pulse_off_cache = n ? fcb->pitch_lag - n : 0;
|
| +}
|
| +
|
| +/**
|
| + * Apply first set of pitch-adaptive window pulses.
|
| + * @param s WMA Voice decoding context private data
|
| + * @param gb bit I/O context
|
| + * @param block_idx block index in frame [0, 1]
|
| + * @param fcb storage location for fixed codebook pulse info
|
| + */
|
| +static void aw_pulse_set1(WMAVoiceContext *s, GetBitContext *gb,
|
| + int block_idx, AMRFixed *fcb)
|
| +{
|
| + int val = get_bits(gb, 12 - 2 * (s->aw_idx_is_ext && !block_idx));
|
| + float v;
|
| +
|
| + if (s->aw_n_pulses[block_idx] > 0) {
|
| + int n, v_mask, i_mask, sh, n_pulses;
|
| +
|
| + if (s->aw_pulse_range == 24) { // 3 pulses, 1:sign + 3:index each
|
| + n_pulses = 3;
|
| + v_mask = 8;
|
| + i_mask = 7;
|
| + sh = 4;
|
| + } else { // 4 pulses, 1:sign + 2:index each
|
| + n_pulses = 4;
|
| + v_mask = 4;
|
| + i_mask = 3;
|
| + sh = 3;
|
| + }
|
| +
|
| + for (n = n_pulses - 1; n >= 0; n--, val >>= sh) {
|
| + fcb->y[fcb->n] = (val & v_mask) ? -1.0 : 1.0;
|
| + fcb->x[fcb->n] = (val & i_mask) * n_pulses + n +
|
| + s->aw_first_pulse_off[block_idx];
|
| + while (fcb->x[fcb->n] < 0)
|
| + fcb->x[fcb->n] += fcb->pitch_lag;
|
| + if (fcb->x[fcb->n] < MAX_FRAMESIZE / 2)
|
| + fcb->n++;
|
| + }
|
| + } else {
|
| + int num2 = (val & 0x1FF) >> 1, delta, idx;
|
| +
|
| + if (num2 < 1 * 79) { delta = 1; idx = num2 + 1; }
|
| + else if (num2 < 2 * 78) { delta = 3; idx = num2 + 1 - 1 * 77; }
|
| + else if (num2 < 3 * 77) { delta = 5; idx = num2 + 1 - 2 * 76; }
|
| + else { delta = 7; idx = num2 + 1 - 3 * 75; }
|
| + v = (val & 0x200) ? -1.0 : 1.0;
|
| +
|
| + fcb->no_repeat_mask |= 3 << fcb->n;
|
| + fcb->x[fcb->n] = idx - delta;
|
| + fcb->y[fcb->n] = v;
|
| + fcb->x[fcb->n + 1] = idx;
|
| + fcb->y[fcb->n + 1] = (val & 1) ? -v : v;
|
| + fcb->n += 2;
|
| + }
|
| +}
|
| +
|
| +/**
|
| + * @}
|
| + *
|
| + * Generate a random number from frame_cntr and block_idx, which will lief
|
| + * in the range [0, 1000 - block_size] (so it can be used as an index in a
|
| + * table of size 1000 of which you want to read block_size entries).
|
| + *
|
| + * @param frame_cntr current frame number
|
| + * @param block_num current block index
|
| + * @param block_size amount of entries we want to read from a table
|
| + * that has 1000 entries
|
| + * @returns a (non-)random number in the [0, 1000 - block_size] range.
|
| + */
|
| +static int pRNG(int frame_cntr, int block_num, int block_size)
|
| +{
|
| + /* array to simplify the calculation of z:
|
| + * y = (x % 9) * 5 + 6;
|
| + * z = (49995 * x) / y;
|
| + * Since y only has 9 values, we can remove the division by using a
|
| + * LUT and using FASTDIV-style divisions. For each of the 9 values
|
| + * of y, we can rewrite z as:
|
| + * z = x * (49995 / y) + x * ((49995 % y) / y)
|
| + * In this table, each col represents one possible value of y, the
|
| + * first number is 49995 / y, and the second is the FASTDIV variant
|
| + * of 49995 % y / y. */
|
| + static const unsigned int div_tbl[9][2] = {
|
| + { 8332, 3 * 715827883U }, // y = 6
|
| + { 4545, 0 * 390451573U }, // y = 11
|
| + { 3124, 11 * 268435456U }, // y = 16
|
| + { 2380, 15 * 204522253U }, // y = 21
|
| + { 1922, 23 * 165191050U }, // y = 26
|
| + { 1612, 23 * 138547333U }, // y = 31
|
| + { 1388, 27 * 119304648U }, // y = 36
|
| + { 1219, 16 * 104755300U }, // y = 41
|
| + { 1086, 39 * 93368855U } // y = 46
|
| + };
|
| + unsigned int z, y, x = MUL16(block_num, 1877) + frame_cntr;
|
| + if (x >= 0xFFFF) x -= 0xFFFF; // max value of x is 8*1877+0xFFFE=0x13AA6,
|
| + // so this is effectively a modulo (%)
|
| + y = x - 9 * MULH(477218589, x); // x % 9
|
| + z = (uint16_t) (x * div_tbl[y][0] + UMULH(x, div_tbl[y][1]));
|
| + // z = x * 49995 / (y * 5 + 6)
|
| + return z % (1000 - block_size);
|
| +}
|
| +
|
| +/**
|
| + * Parse hardcoded signal for a single block.
|
| + * @note see #synth_block().
|
| + */
|
| +static void synth_block_hardcoded(WMAVoiceContext *s, GetBitContext *gb,
|
| + int block_idx, int size,
|
| + const struct frame_type_desc *frame_desc,
|
| + float *excitation)
|
| +{
|
| + float gain;
|
| + int n, r_idx;
|
| +
|
| + assert(size <= MAX_FRAMESIZE);
|
| +
|
| + /* Set the offset from which we start reading wmavoice_std_codebook */
|
| + if (frame_desc->fcb_type == FCB_TYPE_SILENCE) {
|
| + r_idx = pRNG(s->frame_cntr, block_idx, size);
|
| + gain = s->silence_gain;
|
| + } else /* FCB_TYPE_HARDCODED */ {
|
| + r_idx = get_bits(gb, 8);
|
| + gain = wmavoice_gain_universal[get_bits(gb, 6)];
|
| + }
|
| +
|
| + /* Clear gain prediction parameters */
|
| + memset(s->gain_pred_err, 0, sizeof(s->gain_pred_err));
|
| +
|
| + /* Apply gain to hardcoded codebook and use that as excitation signal */
|
| + for (n = 0; n < size; n++)
|
| + excitation[n] = wmavoice_std_codebook[r_idx + n] * gain;
|
| +}
|
| +
|
| +/**
|
| + * Parse FCB/ACB signal for a single block.
|
| + * @note see #synth_block().
|
| + */
|
| +static void synth_block_fcb_acb(WMAVoiceContext *s, GetBitContext *gb,
|
| + int block_idx, int size,
|
| + int block_pitch_sh2,
|
| + const struct frame_type_desc *frame_desc,
|
| + float *excitation)
|
| +{
|
| + static const float gain_coeff[6] = {
|
| + 0.8169, -0.06545, 0.1726, 0.0185, -0.0359, 0.0458
|
| + };
|
| + float pulses[MAX_FRAMESIZE / 2], pred_err, acb_gain, fcb_gain;
|
| + int n, idx, gain_weight;
|
| + AMRFixed fcb;
|
| +
|
| + assert(size <= MAX_FRAMESIZE / 2);
|
| + memset(pulses, 0, sizeof(*pulses) * size);
|
| +
|
| + fcb.pitch_lag = block_pitch_sh2 >> 2;
|
| + fcb.pitch_fac = 1.0;
|
| + fcb.no_repeat_mask = 0;
|
| + fcb.n = 0;
|
| +
|
| + /* For the other frame types, this is where we apply the innovation
|
| + * (fixed) codebook pulses of the speech signal. */
|
| + if (frame_desc->fcb_type == FCB_TYPE_AW_PULSES) {
|
| + aw_pulse_set1(s, gb, block_idx, &fcb);
|
| + aw_pulse_set2(s, gb, block_idx, &fcb);
|
| + } else /* FCB_TYPE_EXC_PULSES */ {
|
| + int offset_nbits = 5 - frame_desc->log_n_blocks;
|
| +
|
| + fcb.no_repeat_mask = -1;
|
| + /* similar to ff_decode_10_pulses_35bits(), but with single pulses
|
| + * (instead of double) for a subset of pulses */
|
| + for (n = 0; n < 5; n++) {
|
| + float sign;
|
| + int pos1, pos2;
|
| +
|
| + sign = get_bits1(gb) ? 1.0 : -1.0;
|
| + pos1 = get_bits(gb, offset_nbits);
|
| + fcb.x[fcb.n] = n + 5 * pos1;
|
| + fcb.y[fcb.n++] = sign;
|
| + if (n < frame_desc->dbl_pulses) {
|
| + pos2 = get_bits(gb, offset_nbits);
|
| + fcb.x[fcb.n] = n + 5 * pos2;
|
| + fcb.y[fcb.n++] = (pos1 < pos2) ? -sign : sign;
|
| + }
|
| + }
|
| + }
|
| + ff_set_fixed_vector(pulses, &fcb, 1.0, size);
|
| +
|
| + /* Calculate gain for adaptive & fixed codebook signal.
|
| + * see ff_amr_set_fixed_gain(). */
|
| + idx = get_bits(gb, 7);
|
| + fcb_gain = expf(ff_dot_productf(s->gain_pred_err, gain_coeff, 6) -
|
| + 5.2409161640 + wmavoice_gain_codebook_fcb[idx]);
|
| + acb_gain = wmavoice_gain_codebook_acb[idx];
|
| + pred_err = av_clipf(wmavoice_gain_codebook_fcb[idx],
|
| + -2.9957322736 /* log(0.05) */,
|
| + 1.6094379124 /* log(5.0) */);
|
| +
|
| + gain_weight = 8 >> frame_desc->log_n_blocks;
|
| + memmove(&s->gain_pred_err[gain_weight], s->gain_pred_err,
|
| + sizeof(*s->gain_pred_err) * (6 - gain_weight));
|
| + for (n = 0; n < gain_weight; n++)
|
| + s->gain_pred_err[n] = pred_err;
|
| +
|
| + /* Calculation of adaptive codebook */
|
| + if (frame_desc->acb_type == ACB_TYPE_ASYMMETRIC) {
|
| + int len;
|
| + for (n = 0; n < size; n += len) {
|
| + int next_idx_sh16;
|
| + int abs_idx = block_idx * size + n;
|
| + int pitch_sh16 = (s->last_pitch_val << 16) +
|
| + s->pitch_diff_sh16 * abs_idx;
|
| + int pitch = (pitch_sh16 + 0x6FFF) >> 16;
|
| + int idx_sh16 = ((pitch << 16) - pitch_sh16) * 8 + 0x58000;
|
| + idx = idx_sh16 >> 16;
|
| + if (s->pitch_diff_sh16) {
|
| + if (s->pitch_diff_sh16 > 0) {
|
| + next_idx_sh16 = (idx_sh16) &~ 0xFFFF;
|
| + } else
|
| + next_idx_sh16 = (idx_sh16 + 0x10000) &~ 0xFFFF;
|
| + len = av_clip((idx_sh16 - next_idx_sh16) / s->pitch_diff_sh16 / 8,
|
| + 1, size - n);
|
| + } else
|
| + len = size;
|
| +
|
| + ff_acelp_interpolatef(&excitation[n], &excitation[n - pitch],
|
| + wmavoice_ipol1_coeffs, 17,
|
| + idx, 9, len);
|
| + }
|
| + } else /* ACB_TYPE_HAMMING */ {
|
| + int block_pitch = block_pitch_sh2 >> 2;
|
| + idx = block_pitch_sh2 & 3;
|
| + if (idx) {
|
| + ff_acelp_interpolatef(excitation, &excitation[-block_pitch],
|
| + wmavoice_ipol2_coeffs, 4,
|
| + idx, 8, size);
|
| + } else
|
| + av_memcpy_backptr(excitation, sizeof(float) * block_pitch,
|
| + sizeof(float) * size);
|
| + }
|
| +
|
| + /* Interpolate ACB/FCB and use as excitation signal */
|
| + ff_weighted_vector_sumf(excitation, excitation, pulses,
|
| + acb_gain, fcb_gain, size);
|
| +}
|
| +
|
| +/**
|
| + * Parse data in a single block.
|
| + * @note we assume enough bits are available, caller should check.
|
| + *
|
| + * @param s WMA Voice decoding context private data
|
| + * @param gb bit I/O context
|
| + * @param block_idx index of the to-be-read block
|
| + * @param size amount of samples to be read in this block
|
| + * @param block_pitch_sh2 pitch for this block << 2
|
| + * @param lsps LSPs for (the end of) this frame
|
| + * @param prev_lsps LSPs for the last frame
|
| + * @param frame_desc frame type descriptor
|
| + * @param excitation target memory for the ACB+FCB interpolated signal
|
| + * @param synth target memory for the speech synthesis filter output
|
| + * @return 0 on success, <0 on error.
|
| + */
|
| +static void synth_block(WMAVoiceContext *s, GetBitContext *gb,
|
| + int block_idx, int size,
|
| + int block_pitch_sh2,
|
| + const double *lsps, const double *prev_lsps,
|
| + const struct frame_type_desc *frame_desc,
|
| + float *excitation, float *synth)
|
| +{
|
| + double i_lsps[MAX_LSPS];
|
| + float lpcs[MAX_LSPS];
|
| + float fac;
|
| + int n;
|
| +
|
| + if (frame_desc->acb_type == ACB_TYPE_NONE)
|
| + synth_block_hardcoded(s, gb, block_idx, size, frame_desc, excitation);
|
| + else
|
| + synth_block_fcb_acb(s, gb, block_idx, size, block_pitch_sh2,
|
| + frame_desc, excitation);
|
| +
|
| + /* convert interpolated LSPs to LPCs */
|
| + fac = (block_idx + 0.5) / frame_desc->n_blocks;
|
| + for (n = 0; n < s->lsps; n++) // LSF -> LSP
|
| + i_lsps[n] = cos(prev_lsps[n] + fac * (lsps[n] - prev_lsps[n]));
|
| + ff_acelp_lspd2lpc(i_lsps, lpcs, s->lsps >> 1);
|
| +
|
| + /* Speech synthesis */
|
| + ff_celp_lp_synthesis_filterf(synth, lpcs, excitation, size, s->lsps);
|
| +}
|
| +
|
| +/**
|
| + * Synthesize output samples for a single frame.
|
| + * @note we assume enough bits are available, caller should check.
|
| + *
|
| + * @param ctx WMA Voice decoder context
|
| + * @param gb bit I/O context (s->gb or one for cross-packet superframes)
|
| + * @param samples pointer to output sample buffer, has space for at least 160
|
| + * samples
|
| + * @param lsps LSP array
|
| + * @param prev_lsps array of previous frame's LSPs
|
| + * @param excitation target buffer for excitation signal
|
| + * @param synth target buffer for synthesized speech data
|
| + * @return 0 on success, <0 on error.
|
| + */
|
| +static int synth_frame(AVCodecContext *ctx, GetBitContext *gb,
|
| + float *samples,
|
| + const double *lsps, const double *prev_lsps,
|
| + float *excitation, float *synth)
|
| +{
|
| + WMAVoiceContext *s = ctx->priv_data;
|
| + int n, n_blocks_x2, log_n_blocks_x2, cur_pitch_val;
|
| + int pitch[MAX_BLOCKS], last_block_pitch;
|
| +
|
| + /* Parse frame type ("frame header"), see frame_descs */
|
| + int bd_idx = s->vbm_tree[get_vlc2(gb, frame_type_vlc.table, 6, 3)],
|
| + block_nsamples = MAX_FRAMESIZE / frame_descs[bd_idx].n_blocks;
|
| +
|
| + if (bd_idx < 0) {
|
| + av_log(ctx, AV_LOG_ERROR,
|
| + "Invalid frame type VLC code, skipping\n");
|
| + return -1;
|
| + }
|
| +
|
| + /* Pitch calculation for ACB_TYPE_ASYMMETRIC ("pitch-per-frame") */
|
| + if (frame_descs[bd_idx].acb_type == ACB_TYPE_ASYMMETRIC) {
|
| + /* Pitch is provided per frame, which is interpreted as the pitch of
|
| + * the last sample of the last block of this frame. We can interpolate
|
| + * the pitch of other blocks (and even pitch-per-sample) by gradually
|
| + * incrementing/decrementing prev_frame_pitch to cur_pitch_val. */
|
| + n_blocks_x2 = frame_descs[bd_idx].n_blocks << 1;
|
| + log_n_blocks_x2 = frame_descs[bd_idx].log_n_blocks + 1;
|
| + cur_pitch_val = s->min_pitch_val + get_bits(gb, s->pitch_nbits);
|
| + cur_pitch_val = FFMIN(cur_pitch_val, s->max_pitch_val - 1);
|
| + if (s->last_acb_type == ACB_TYPE_NONE ||
|
| + 20 * abs(cur_pitch_val - s->last_pitch_val) >
|
| + (cur_pitch_val + s->last_pitch_val))
|
| + s->last_pitch_val = cur_pitch_val;
|
| +
|
| + /* pitch per block */
|
| + for (n = 0; n < frame_descs[bd_idx].n_blocks; n++) {
|
| + int fac = n * 2 + 1;
|
| +
|
| + pitch[n] = (MUL16(fac, cur_pitch_val) +
|
| + MUL16((n_blocks_x2 - fac), s->last_pitch_val) +
|
| + frame_descs[bd_idx].n_blocks) >> log_n_blocks_x2;
|
| + }
|
| +
|
| + /* "pitch-diff-per-sample" for calculation of pitch per sample */
|
| + s->pitch_diff_sh16 =
|
| + ((cur_pitch_val - s->last_pitch_val) << 16) / MAX_FRAMESIZE;
|
| + }
|
| +
|
| + /* Global gain (if silence) and pitch-adaptive window coordinates */
|
| + switch (frame_descs[bd_idx].fcb_type) {
|
| + case FCB_TYPE_SILENCE:
|
| + s->silence_gain = wmavoice_gain_silence[get_bits(gb, 8)];
|
| + break;
|
| + case FCB_TYPE_AW_PULSES:
|
| + aw_parse_coords(s, gb, pitch);
|
| + break;
|
| + }
|
| +
|
| + for (n = 0; n < frame_descs[bd_idx].n_blocks; n++) {
|
| + int bl_pitch_sh2;
|
| +
|
| + /* Pitch calculation for ACB_TYPE_HAMMING ("pitch-per-block") */
|
| + switch (frame_descs[bd_idx].acb_type) {
|
| + case ACB_TYPE_HAMMING: {
|
| + /* Pitch is given per block. Per-block pitches are encoded as an
|
| + * absolute value for the first block, and then delta values
|
| + * relative to this value) for all subsequent blocks. The scale of
|
| + * this pitch value is semi-logaritmic compared to its use in the
|
| + * decoder, so we convert it to normal scale also. */
|
| + int block_pitch,
|
| + t1 = (s->block_conv_table[1] - s->block_conv_table[0]) << 2,
|
| + t2 = (s->block_conv_table[2] - s->block_conv_table[1]) << 1,
|
| + t3 = s->block_conv_table[3] - s->block_conv_table[2] + 1;
|
| +
|
| + if (n == 0) {
|
| + block_pitch = get_bits(gb, s->block_pitch_nbits);
|
| + } else
|
| + block_pitch = last_block_pitch - s->block_delta_pitch_hrange +
|
| + get_bits(gb, s->block_delta_pitch_nbits);
|
| + /* Convert last_ so that any next delta is within _range */
|
| + last_block_pitch = av_clip(block_pitch,
|
| + s->block_delta_pitch_hrange,
|
| + s->block_pitch_range -
|
| + s->block_delta_pitch_hrange);
|
| +
|
| + /* Convert semi-log-style scale back to normal scale */
|
| + if (block_pitch < t1) {
|
| + bl_pitch_sh2 = (s->block_conv_table[0] << 2) + block_pitch;
|
| + } else {
|
| + block_pitch -= t1;
|
| + if (block_pitch < t2) {
|
| + bl_pitch_sh2 =
|
| + (s->block_conv_table[1] << 2) + (block_pitch << 1);
|
| + } else {
|
| + block_pitch -= t2;
|
| + if (block_pitch < t3) {
|
| + bl_pitch_sh2 =
|
| + (s->block_conv_table[2] + block_pitch) << 2;
|
| + } else
|
| + bl_pitch_sh2 = s->block_conv_table[3] << 2;
|
| + }
|
| + }
|
| + pitch[n] = bl_pitch_sh2 >> 2;
|
| + break;
|
| + }
|
| +
|
| + case ACB_TYPE_ASYMMETRIC: {
|
| + bl_pitch_sh2 = pitch[n] << 2;
|
| + break;
|
| + }
|
| +
|
| + default: // ACB_TYPE_NONE has no pitch
|
| + bl_pitch_sh2 = 0;
|
| + break;
|
| + }
|
| +
|
| + synth_block(s, gb, n, block_nsamples, bl_pitch_sh2,
|
| + lsps, prev_lsps, &frame_descs[bd_idx],
|
| + &excitation[n * block_nsamples],
|
| + &synth[n * block_nsamples]);
|
| + }
|
| +
|
| + /* Averaging projection filter, if applicable. Else, just copy samples
|
| + * from synthesis buffer */
|
| + if (s->do_apf) {
|
| + // FIXME this is where APF would take place, currently not implemented
|
| + av_log_missing_feature(ctx, "APF", 0);
|
| + s->do_apf = 0;
|
| + } //else
|
| + for (n = 0; n < 160; n++)
|
| + samples[n] = av_clipf(synth[n], -1.0, 1.0);
|
| +
|
| + /* Cache values for next frame */
|
| + s->frame_cntr++;
|
| + if (s->frame_cntr >= 0xFFFF) s->frame_cntr -= 0xFFFF; // i.e. modulo (%)
|
| + s->last_acb_type = frame_descs[bd_idx].acb_type;
|
| + switch (frame_descs[bd_idx].acb_type) {
|
| + case ACB_TYPE_NONE:
|
| + s->last_pitch_val = 0;
|
| + break;
|
| + case ACB_TYPE_ASYMMETRIC:
|
| + s->last_pitch_val = cur_pitch_val;
|
| + break;
|
| + case ACB_TYPE_HAMMING:
|
| + s->last_pitch_val = pitch[frame_descs[bd_idx].n_blocks - 1];
|
| + break;
|
| + }
|
| +
|
| + return 0;
|
| +}
|
| +
|
| +/**
|
| + * Ensure minimum value for first item, maximum value for last value,
|
| + * proper spacing between each value and proper ordering.
|
| + *
|
| + * @param lsps array of LSPs
|
| + * @param num size of LSP array
|
| + *
|
| + * @note basically a double version of #ff_acelp_reorder_lsf(), might be
|
| + * useful to put in a generic location later on. Parts are also
|
| + * present in #ff_set_min_dist_lsf() + #ff_sort_nearly_sorted_floats(),
|
| + * which is in float.
|
| + */
|
| +static void stabilize_lsps(double *lsps, int num)
|
| +{
|
| + int n, m, l;
|
| +
|
| + /* set minimum value for first, maximum value for last and minimum
|
| + * spacing between LSF values.
|
| + * Very similar to ff_set_min_dist_lsf(), but in double. */
|
| + lsps[0] = FFMAX(lsps[0], 0.0015 * M_PI);
|
| + for (n = 1; n < num; n++)
|
| + lsps[n] = FFMAX(lsps[n], lsps[n - 1] + 0.0125 * M_PI);
|
| + lsps[num - 1] = FFMIN(lsps[num - 1], 0.9985 * M_PI);
|
| +
|
| + /* reorder (looks like one-time / non-recursed bubblesort).
|
| + * Very similar to ff_sort_nearly_sorted_floats(), but in double. */
|
| + for (n = 1; n < num; n++) {
|
| + if (lsps[n] < lsps[n - 1]) {
|
| + for (m = 1; m < num; m++) {
|
| + double tmp = lsps[m];
|
| + for (l = m - 1; l >= 0; l--) {
|
| + if (lsps[l] <= tmp) break;
|
| + lsps[l + 1] = lsps[l];
|
| + }
|
| + lsps[l + 1] = tmp;
|
| + }
|
| + break;
|
| + }
|
| + }
|
| +}
|
| +
|
| +/**
|
| + * Test if there's enough bits to read 1 superframe.
|
| + *
|
| + * @param orig_gb bit I/O context used for reading. This function
|
| + * does not modify the state of the bitreader; it
|
| + * only uses it to copy the current stream position
|
| + * @param s WMA Voice decoding context private data
|
| + * @returns -1 if unsupported, 1 on not enough bits or 0 if OK.
|
| + */
|
| +static int check_bits_for_superframe(GetBitContext *orig_gb,
|
| + WMAVoiceContext *s)
|
| +{
|
| + GetBitContext s_gb, *gb = &s_gb;
|
| + int n, need_bits, bd_idx;
|
| + const struct frame_type_desc *frame_desc;
|
| +
|
| + /* initialize a copy */
|
| + init_get_bits(gb, orig_gb->buffer, orig_gb->size_in_bits);
|
| + skip_bits_long(gb, get_bits_count(orig_gb));
|
| + assert(get_bits_left(gb) == get_bits_left(orig_gb));
|
| +
|
| + /* superframe header */
|
| + if (get_bits_left(gb) < 14)
|
| + return 1;
|
| + if (!get_bits1(gb))
|
| + return -1; // WMAPro-in-WMAVoice superframe
|
| + if (get_bits1(gb)) skip_bits(gb, 12); // number of samples in superframe
|
| + if (s->has_residual_lsps) { // residual LSPs (for all frames)
|
| + if (get_bits_left(gb) < s->sframe_lsp_bitsize)
|
| + return 1;
|
| + skip_bits_long(gb, s->sframe_lsp_bitsize);
|
| + }
|
| +
|
| + /* frames */
|
| + for (n = 0; n < MAX_FRAMES; n++) {
|
| + int aw_idx_is_ext = 0;
|
| +
|
| + if (!s->has_residual_lsps) { // independent LSPs (per-frame)
|
| + if (get_bits_left(gb) < s->frame_lsp_bitsize) return 1;
|
| + skip_bits_long(gb, s->frame_lsp_bitsize);
|
| + }
|
| + bd_idx = s->vbm_tree[get_vlc2(gb, frame_type_vlc.table, 6, 3)];
|
| + if (bd_idx < 0)
|
| + return -1; // invalid frame type VLC code
|
| + frame_desc = &frame_descs[bd_idx];
|
| + if (frame_desc->acb_type == ACB_TYPE_ASYMMETRIC) {
|
| + if (get_bits_left(gb) < s->pitch_nbits)
|
| + return 1;
|
| + skip_bits_long(gb, s->pitch_nbits);
|
| + }
|
| + if (frame_desc->fcb_type == FCB_TYPE_SILENCE) {
|
| + skip_bits(gb, 8);
|
| + } else if (frame_desc->fcb_type == FCB_TYPE_AW_PULSES) {
|
| + int tmp = get_bits(gb, 6);
|
| + if (tmp >= 0x36) {
|
| + skip_bits(gb, 2);
|
| + aw_idx_is_ext = 1;
|
| + }
|
| + }
|
| +
|
| + /* blocks */
|
| + if (frame_desc->acb_type == ACB_TYPE_HAMMING) {
|
| + need_bits = s->block_pitch_nbits +
|
| + (frame_desc->n_blocks - 1) * s->block_delta_pitch_nbits;
|
| + } else if (frame_desc->fcb_type == FCB_TYPE_AW_PULSES) {
|
| + need_bits = 2 * !aw_idx_is_ext;
|
| + } else
|
| + need_bits = 0;
|
| + need_bits += frame_desc->frame_size;
|
| + if (get_bits_left(gb) < need_bits)
|
| + return 1;
|
| + skip_bits_long(gb, need_bits);
|
| + }
|
| +
|
| + return 0;
|
| +}
|
| +
|
| +/**
|
| + * Synthesize output samples for a single superframe. If we have any data
|
| + * cached in s->sframe_cache, that will be used instead of whatever is loaded
|
| + * in s->gb.
|
| + *
|
| + * WMA Voice superframes contain 3 frames, each containing 160 audio samples,
|
| + * to give a total of 480 samples per frame. See #synth_frame() for frame
|
| + * parsing. In addition to 3 frames, superframes can also contain the LSPs
|
| + * (if these are globally specified for all frames (residually); they can
|
| + * also be specified individually per-frame. See the s->has_residual_lsps
|
| + * option), and can specify the number of samples encoded in this superframe
|
| + * (if less than 480), usually used to prevent blanks at track boundaries.
|
| + *
|
| + * @param ctx WMA Voice decoder context
|
| + * @param samples pointer to output buffer for voice samples
|
| + * @param data_size pointer containing the size of #samples on input, and the
|
| + * amount of #samples filled on output
|
| + * @return 0 on success, <0 on error or 1 if there was not enough data to
|
| + * fully parse the superframe
|
| + */
|
| +static int synth_superframe(AVCodecContext *ctx,
|
| + float *samples, int *data_size)
|
| +{
|
| + WMAVoiceContext *s = ctx->priv_data;
|
| + GetBitContext *gb = &s->gb, s_gb;
|
| + int n, res, n_samples = 480;
|
| + double lsps[MAX_FRAMES][MAX_LSPS];
|
| + const double *mean_lsf = s->lsps == 16 ?
|
| + wmavoice_mean_lsf16[s->lsp_def_mode] : wmavoice_mean_lsf10[s->lsp_def_mode];
|
| + float excitation[MAX_SIGNAL_HISTORY + MAX_SFRAMESIZE + 12];
|
| + float synth[MAX_LSPS + MAX_SFRAMESIZE];
|
| +
|
| + memcpy(synth, s->synth_history,
|
| + s->lsps * sizeof(*synth));
|
| + memcpy(excitation, s->excitation_history,
|
| + s->history_nsamples * sizeof(*excitation));
|
| +
|
| + if (s->sframe_cache_size > 0) {
|
| + gb = &s_gb;
|
| + init_get_bits(gb, s->sframe_cache, s->sframe_cache_size);
|
| + s->sframe_cache_size = 0;
|
| + }
|
| +
|
| + if ((res = check_bits_for_superframe(gb, s)) == 1) return 1;
|
| +
|
| + /* First bit is speech/music bit, it differentiates between WMAVoice
|
| + * speech samples (the actual codec) and WMAVoice music samples, which
|
| + * are really WMAPro-in-WMAVoice-superframes. I've never seen those in
|
| + * the wild yet. */
|
| + if (!get_bits1(gb)) {
|
| + av_log_missing_feature(ctx, "WMAPro-in-WMAVoice support", 1);
|
| + return -1;
|
| + }
|
| +
|
| + /* (optional) nr. of samples in superframe; always <= 480 and >= 0 */
|
| + if (get_bits1(gb)) {
|
| + if ((n_samples = get_bits(gb, 12)) > 480) {
|
| + av_log(ctx, AV_LOG_ERROR,
|
| + "Superframe encodes >480 samples (%d), not allowed\n",
|
| + n_samples);
|
| + return -1;
|
| + }
|
| + }
|
| + /* Parse LSPs, if global for the superframe (can also be per-frame). */
|
| + if (s->has_residual_lsps) {
|
| + double prev_lsps[MAX_LSPS], a1[MAX_LSPS * 2], a2[MAX_LSPS * 2];
|
| +
|
| + for (n = 0; n < s->lsps; n++)
|
| + prev_lsps[n] = s->prev_lsps[n] - mean_lsf[n];
|
| +
|
| + if (s->lsps == 10) {
|
| + dequant_lsp10r(gb, lsps[2], prev_lsps, a1, a2, s->lsp_q_mode);
|
| + } else /* s->lsps == 16 */
|
| + dequant_lsp16r(gb, lsps[2], prev_lsps, a1, a2, s->lsp_q_mode);
|
| +
|
| + for (n = 0; n < s->lsps; n++) {
|
| + lsps[0][n] = mean_lsf[n] + (a1[n] - a2[n * 2]);
|
| + lsps[1][n] = mean_lsf[n] + (a1[s->lsps + n] - a2[n * 2 + 1]);
|
| + lsps[2][n] += mean_lsf[n];
|
| + }
|
| + for (n = 0; n < 3; n++)
|
| + stabilize_lsps(lsps[n], s->lsps);
|
| + }
|
| +
|
| + /* Parse frames, optionally preceeded by per-frame (independent) LSPs. */
|
| + for (n = 0; n < 3; n++) {
|
| + if (!s->has_residual_lsps) {
|
| + int m;
|
| +
|
| + if (s->lsps == 10) {
|
| + dequant_lsp10i(gb, lsps[n]);
|
| + } else /* s->lsps == 16 */
|
| + dequant_lsp16i(gb, lsps[n]);
|
| +
|
| + for (m = 0; m < s->lsps; m++)
|
| + lsps[n][m] += mean_lsf[m];
|
| + stabilize_lsps(lsps[n], s->lsps);
|
| + }
|
| +
|
| + if ((res = synth_frame(ctx, gb,
|
| + &samples[n * MAX_FRAMESIZE],
|
| + lsps[n], n == 0 ? s->prev_lsps : lsps[n - 1],
|
| + &excitation[s->history_nsamples + n * MAX_FRAMESIZE],
|
| + &synth[s->lsps + n * MAX_FRAMESIZE])))
|
| + return res;
|
| + }
|
| +
|
| + /* Statistics? FIXME - we don't check for length, a slight overrun
|
| + * will be caught by internal buffer padding, and anything else
|
| + * will be skipped, not read. */
|
| + if (get_bits1(gb)) {
|
| + res = get_bits(gb, 4);
|
| + skip_bits(gb, 10 * (res + 1));
|
| + }
|
| +
|
| + /* Specify nr. of output samples */
|
| + *data_size = n_samples * sizeof(float);
|
| +
|
| + /* Update history */
|
| + memcpy(s->prev_lsps, lsps[2],
|
| + s->lsps * sizeof(*s->prev_lsps));
|
| + memcpy(s->synth_history, &synth[MAX_SFRAMESIZE],
|
| + s->lsps * sizeof(*synth));
|
| + memcpy(s->excitation_history, &excitation[MAX_SFRAMESIZE],
|
| + s->history_nsamples * sizeof(*excitation));
|
| +
|
| + return 0;
|
| +}
|
| +
|
| +/**
|
| + * Parse the packet header at the start of each packet (input data to this
|
| + * decoder).
|
| + *
|
| + * @param s WMA Voice decoding context private data
|
| + * @returns 1 if not enough bits were available, or 0 on success.
|
| + */
|
| +static int parse_packet_header(WMAVoiceContext *s)
|
| +{
|
| + GetBitContext *gb = &s->gb;
|
| + unsigned int res;
|
| +
|
| + if (get_bits_left(gb) < 11)
|
| + return 1;
|
| + skip_bits(gb, 4); // packet sequence number
|
| + s->has_residual_lsps = get_bits1(gb);
|
| + do {
|
| + res = get_bits(gb, 6); // number of superframes per packet
|
| + // (minus first one if there is spillover)
|
| + if (get_bits_left(gb) < 6 * (res == 0x3F) + s->spillover_bitsize)
|
| + return 1;
|
| + } while (res == 0x3F);
|
| + s->spillover_nbits = get_bits(gb, s->spillover_bitsize);
|
| +
|
| + return 0;
|
| +}
|
| +
|
| +/**
|
| + * Copy (unaligned) bits from gb/data/size to pb.
|
| + *
|
| + * @param pb target buffer to copy bits into
|
| + * @param data source buffer to copy bits from
|
| + * @param size size of the source data, in bytes
|
| + * @param gb bit I/O context specifying the current position in the source.
|
| + * data. This function might use this to align the bit position to
|
| + * a whole-byte boundary before calling #ff_copy_bits() on aligned
|
| + * source data
|
| + * @param nbits the amount of bits to copy from source to target
|
| + *
|
| + * @note after calling this function, the current position in the input bit
|
| + * I/O context is undefined.
|
| + */
|
| +static void copy_bits(PutBitContext *pb,
|
| + const uint8_t *data, int size,
|
| + GetBitContext *gb, int nbits)
|
| +{
|
| + int rmn_bytes, rmn_bits;
|
| +
|
| + rmn_bits = rmn_bytes = get_bits_left(gb);
|
| + if (rmn_bits < nbits)
|
| + return;
|
| + rmn_bits &= 7; rmn_bytes >>= 3;
|
| + if ((rmn_bits = FFMIN(rmn_bits, nbits)) > 0)
|
| + put_bits(pb, rmn_bits, get_bits(gb, rmn_bits));
|
| + ff_copy_bits(pb, data + size - rmn_bytes,
|
| + FFMIN(nbits - rmn_bits, rmn_bytes << 3));
|
| +}
|
| +
|
| +/**
|
| + * Packet decoding: a packet is anything that the (ASF) demuxer contains,
|
| + * and we expect that the demuxer / application provides it to us as such
|
| + * (else you'll probably get garbage as output). Every packet has a size of
|
| + * ctx->block_align bytes, starts with a packet header (see
|
| + * #parse_packet_header()), and then a series of superframes. Superframe
|
| + * boundaries may exceed packets, i.e. superframes can split data over
|
| + * multiple (two) packets.
|
| + *
|
| + * For more information about frames, see #synth_superframe().
|
| + */
|
| +static int wmavoice_decode_packet(AVCodecContext *ctx, void *data,
|
| + int *data_size, AVPacket *avpkt)
|
| +{
|
| + WMAVoiceContext *s = ctx->priv_data;
|
| + GetBitContext *gb = &s->gb;
|
| + int size, res, pos;
|
| +
|
| + if (*data_size < 480 * sizeof(float)) {
|
| + av_log(ctx, AV_LOG_ERROR,
|
| + "Output buffer too small (%d given - %lu needed)\n",
|
| + *data_size, 480 * sizeof(float));
|
| + return -1;
|
| + }
|
| + *data_size = 0;
|
| +
|
| + /* Packets are sometimes a multiple of ctx->block_align, with a packet
|
| + * header at each ctx->block_align bytes. However, FFmpeg's ASF demuxer
|
| + * feeds us ASF packets, which may concatenate multiple "codec" packets
|
| + * in a single "muxer" packet, so we artificially emulate that by
|
| + * capping the packet size at ctx->block_align. */
|
| + for (size = avpkt->size; size > ctx->block_align; size -= ctx->block_align);
|
| + if (!size)
|
| + return 0;
|
| + init_get_bits(&s->gb, avpkt->data, size << 3);
|
| +
|
| + /* size == ctx->block_align is used to indicate whether we are dealing with
|
| + * a new packet or a packet of which we already read the packet header
|
| + * previously. */
|
| + if (size == ctx->block_align) { // new packet header
|
| + if ((res = parse_packet_header(s)) < 0)
|
| + return res;
|
| +
|
| + /* If the packet header specifies a s->spillover_nbits, then we want
|
| + * to push out all data of the previous packet (+ spillover) before
|
| + * continuing to parse new superframes in the current packet. */
|
| + if (s->spillover_nbits > 0) {
|
| + if (s->sframe_cache_size > 0) {
|
| + int cnt = get_bits_count(gb);
|
| + copy_bits(&s->pb, avpkt->data, size, gb, s->spillover_nbits);
|
| + flush_put_bits(&s->pb);
|
| + s->sframe_cache_size += s->spillover_nbits;
|
| + if ((res = synth_superframe(ctx, data, data_size)) == 0 &&
|
| + *data_size > 0) {
|
| + cnt += s->spillover_nbits;
|
| + s->skip_bits_next = cnt & 7;
|
| + return cnt >> 3;
|
| + } else
|
| + skip_bits_long (gb, s->spillover_nbits - cnt +
|
| + get_bits_count(gb)); // resync
|
| + } else
|
| + skip_bits_long(gb, s->spillover_nbits); // resync
|
| + }
|
| + } else if (s->skip_bits_next)
|
| + skip_bits(gb, s->skip_bits_next);
|
| +
|
| + /* Try parsing superframes in current packet */
|
| + s->sframe_cache_size = 0;
|
| + s->skip_bits_next = 0;
|
| + pos = get_bits_left(gb);
|
| + if ((res = synth_superframe(ctx, data, data_size)) < 0) {
|
| + return res;
|
| + } else if (*data_size > 0) {
|
| + int cnt = get_bits_count(gb);
|
| + s->skip_bits_next = cnt & 7;
|
| + return cnt >> 3;
|
| + } else if ((s->sframe_cache_size = pos) > 0) {
|
| + /* rewind bit reader to start of last (incomplete) superframe... */
|
| + init_get_bits(gb, avpkt->data, size << 3);
|
| + skip_bits_long(gb, (size << 3) - pos);
|
| + assert(get_bits_left(gb) == pos);
|
| +
|
| + /* ...and cache it for spillover in next packet */
|
| + init_put_bits(&s->pb, s->sframe_cache, SFRAME_CACHE_MAXSIZE);
|
| + copy_bits(&s->pb, avpkt->data, size, gb, s->sframe_cache_size);
|
| + // FIXME bad - just copy bytes as whole and add use the
|
| + // skip_bits_next field
|
| + }
|
| +
|
| + return size;
|
| +}
|
| +
|
| +static av_cold void wmavoice_flush(AVCodecContext *ctx)
|
| +{
|
| + WMAVoiceContext *s = ctx->priv_data;
|
| + int n;
|
| +
|
| + s->sframe_cache_size = 0;
|
| + s->skip_bits_next = 0;
|
| + for (n = 0; n < s->lsps; n++)
|
| + s->prev_lsps[n] = M_PI * (n + 1.0) / (s->lsps + 1.0);
|
| + memset(s->excitation_history, 0,
|
| + sizeof(*s->excitation_history) * MAX_SIGNAL_HISTORY);
|
| + memset(s->synth_history, 0,
|
| + sizeof(*s->synth_history) * MAX_LSPS);
|
| + memset(s->gain_pred_err, 0,
|
| + sizeof(s->gain_pred_err));
|
| +}
|
| +
|
| +AVCodec wmavoice_decoder = {
|
| + "wmavoice",
|
| + CODEC_TYPE_AUDIO,
|
| + CODEC_ID_WMAVOICE,
|
| + sizeof(WMAVoiceContext),
|
| + wmavoice_decode_init,
|
| + NULL,
|
| + NULL,
|
| + wmavoice_decode_packet,
|
| + CODEC_CAP_SUBFRAMES,
|
| + .flush = wmavoice_flush,
|
| + .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio Voice"),
|
| +};
|
|
|