OLD | NEW |
(Empty) | |
| 1 /* |
| 2 * AMR narrowband decoder |
| 3 * Copyright (c) 2006-2007 Robert Swain |
| 4 * Copyright (c) 2009 Colin McQuillan |
| 5 * |
| 6 * This file is part of FFmpeg. |
| 7 * |
| 8 * FFmpeg is free software; you can redistribute it and/or |
| 9 * modify it under the terms of the GNU Lesser General Public |
| 10 * License as published by the Free Software Foundation; either |
| 11 * version 2.1 of the License, or (at your option) any later version. |
| 12 * |
| 13 * FFmpeg is distributed in the hope that it will be useful, |
| 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 16 * Lesser General Public License for more details. |
| 17 * |
| 18 * You should have received a copy of the GNU Lesser General Public |
| 19 * License along with FFmpeg; if not, write to the Free Software |
| 20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| 21 */ |
| 22 |
| 23 |
| 24 /** |
| 25 * @file libavcodec/amrnbdec.c |
| 26 * AMR narrowband decoder |
| 27 * |
| 28 * This decoder uses floats for simplicity and so is not bit-exact. One |
| 29 * difference is that differences in phase can accumulate. The test sequences |
| 30 * in 3GPP TS 26.074 can still be useful. |
| 31 * |
| 32 * - Comparing this file's output to the output of the ref decoder gives a |
| 33 * PSNR of 30 to 80. Plotting the output samples shows a difference in |
| 34 * phase in some areas. |
| 35 * |
| 36 * - Comparing both decoders against their input, this decoder gives a similar |
| 37 * PSNR. If the test sequence homing frames are removed (this decoder does |
| 38 * not detect them), the PSNR is at least as good as the reference on 140 |
| 39 * out of 169 tests. |
| 40 */ |
| 41 |
| 42 |
| 43 #include <string.h> |
| 44 #include <math.h> |
| 45 |
| 46 #include "avcodec.h" |
| 47 #include "get_bits.h" |
| 48 #include "libavutil/common.h" |
| 49 #include "celp_math.h" |
| 50 #include "celp_filters.h" |
| 51 #include "acelp_filters.h" |
| 52 #include "acelp_vectors.h" |
| 53 #include "acelp_pitch_delay.h" |
| 54 #include "lsp.h" |
| 55 |
| 56 #include "amrnbdata.h" |
| 57 |
| 58 #define AMR_BLOCK_SIZE 160 ///< samples per frame |
| 59 #define AMR_SAMPLE_BOUND 32768.0 ///< threshold for synthesis overflow |
| 60 |
| 61 /** |
| 62 * Scale from constructed speech to [-1,1] |
| 63 * |
| 64 * AMR is designed to produce 16-bit PCM samples (3GPP TS 26.090 4.2) but |
| 65 * upscales by two (section 6.2.2). |
| 66 * |
| 67 * Fundamentally, this scale is determined by energy_mean through |
| 68 * the fixed vector contribution to the excitation vector. |
| 69 */ |
| 70 #define AMR_SAMPLE_SCALE (2.0 / 32768.0) |
| 71 |
| 72 /** Prediction factor for 12.2kbit/s mode */ |
| 73 #define PRED_FAC_MODE_12k2 0.65 |
| 74 |
| 75 #define LSF_R_FAC (8000.0 / 32768.0) ///< LSF residual tables to Hertz |
| 76 #define MIN_LSF_SPACING (50.0488 / 8000.0) ///< Ensures stability of LPC filt
er |
| 77 #define PITCH_LAG_MIN_MODE_12k2 18 ///< Lower bound on decoded lag se
arch in 12.2kbit/s mode |
| 78 |
| 79 /** Initial energy in dB. Also used for bad frames (unimplemented). */ |
| 80 #define MIN_ENERGY -14.0 |
| 81 |
| 82 /** Maximum sharpening factor |
| 83 * |
| 84 * The specification says 0.8, which should be 13107, but the reference C code |
| 85 * uses 13017 instead. (Amusingly the same applies to SHARP_MAX in g729dec.c.) |
| 86 */ |
| 87 #define SHARP_MAX 0.79449462890625 |
| 88 |
| 89 /** Number of impulse response coefficients used for tilt factor */ |
| 90 #define AMR_TILT_RESPONSE 22 |
| 91 /** Tilt factor = 1st reflection coefficient * gamma_t */ |
| 92 #define AMR_TILT_GAMMA_T 0.8 |
| 93 /** Adaptive gain control factor used in post-filter */ |
| 94 #define AMR_AGC_ALPHA 0.9 |
| 95 |
| 96 typedef struct AMRContext { |
| 97 AMRNBFrame frame; ///< decoded AMR parameters (lsf co
efficients, codebook indexes, etc) |
| 98 uint8_t bad_frame_indicator; ///< bad frame ? 1 : 0 |
| 99 enum Mode cur_frame_mode; |
| 100 |
| 101 int16_t prev_lsf_r[LP_FILTER_ORDER]; ///< residual LSF vector from previ
ous subframe |
| 102 double lsp[4][LP_FILTER_ORDER]; ///< lsp vectors from current frame |
| 103 double prev_lsp_sub4[LP_FILTER_ORDER]; ///< lsp vector for the 4th subfram
e of the previous frame |
| 104 |
| 105 float lsf_q[4][LP_FILTER_ORDER]; ///< Interpolated LSF vector for fi
xed gain smoothing |
| 106 float lsf_avg[LP_FILTER_ORDER]; ///< vector of averaged lsf vector |
| 107 |
| 108 float lpc[4][LP_FILTER_ORDER]; ///< lpc coefficient vectors for 4
subframes |
| 109 |
| 110 uint8_t pitch_lag_int; ///< integer part of pitch lag from
current subframe |
| 111 |
| 112 float excitation_buf[PITCH_DELAY_MAX + LP_FILTER_ORDER + 1 + AMR_SUBFRAME_SI
ZE]; ///< current excitation and all necessary excitation history |
| 113 float *excitation; ///< pointer to the current excitat
ion vector in excitation_buf |
| 114 |
| 115 float pitch_vector[AMR_SUBFRAME_SIZE]; ///< adaptive code book (pitch) vec
tor |
| 116 float fixed_vector[AMR_SUBFRAME_SIZE]; ///< algebraic codebook (fixed) vec
tor (must be kept zero between frames) |
| 117 |
| 118 float prediction_error[4]; ///< quantified prediction errors {
20log10(^gamma_gc)} for previous four subframes |
| 119 float pitch_gain[5]; ///< quantified pitch gains for the
current and previous four subframes |
| 120 float fixed_gain[5]; ///< quantified fixed gains for the
current and previous four subframes |
| 121 |
| 122 float beta; ///< previous pitch_gain, bounded b
y [0.0,SHARP_MAX] |
| 123 uint8_t diff_count; ///< the number of subframes for wh
ich diff has been above 0.65 |
| 124 uint8_t hang_count; ///< the number of subframes since
a hangover period started |
| 125 |
| 126 float prev_sparse_fixed_gain; ///< previous fixed gain; used by a
nti-sparseness processing to determine "onset" |
| 127 uint8_t prev_ir_filter_nr; ///< previous impulse response filt
er "impNr": 0 - strong, 1 - medium, 2 - none |
| 128 uint8_t ir_filter_onset; ///< flag for impulse response filt
er strength |
| 129 |
| 130 float postfilter_mem[10]; ///< previous intermediate values i
n the formant filter |
| 131 float tilt_mem; ///< previous input to tilt compens
ation filter |
| 132 float postfilter_agc; ///< previous factor used for adapt
ive gain control |
| 133 float high_pass_mem[2]; ///< previous intermediate values i
n the high-pass filter |
| 134 |
| 135 float samples_in[LP_FILTER_ORDER + AMR_SUBFRAME_SIZE]; ///< floating point s
amples |
| 136 |
| 137 } AMRContext; |
| 138 |
| 139 /** Double version of ff_weighted_vector_sumf() */ |
| 140 static void weighted_vector_sumd(double *out, const double *in_a, |
| 141 const double *in_b, double weight_coeff_a, |
| 142 double weight_coeff_b, int length) |
| 143 { |
| 144 int i; |
| 145 |
| 146 for (i = 0; i < length; i++) |
| 147 out[i] = weight_coeff_a * in_a[i] |
| 148 + weight_coeff_b * in_b[i]; |
| 149 } |
| 150 |
| 151 static av_cold int amrnb_decode_init(AVCodecContext *avctx) |
| 152 { |
| 153 AMRContext *p = avctx->priv_data; |
| 154 int i; |
| 155 |
| 156 avctx->sample_fmt = SAMPLE_FMT_FLT; |
| 157 |
| 158 // p->excitation always points to the same position in p->excitation_buf |
| 159 p->excitation = &p->excitation_buf[PITCH_DELAY_MAX + LP_FILTER_ORDER + 1]; |
| 160 |
| 161 for (i = 0; i < LP_FILTER_ORDER; i++) { |
| 162 p->prev_lsp_sub4[i] = lsp_sub4_init[i] * 1000 / (float)(1 << 15); |
| 163 p->lsf_avg[i] = p->lsf_q[3][i] = lsp_avg_init[i] / (float)(1 << 15); |
| 164 } |
| 165 |
| 166 for (i = 0; i < 4; i++) |
| 167 p->prediction_error[i] = MIN_ENERGY; |
| 168 |
| 169 return 0; |
| 170 } |
| 171 |
| 172 |
| 173 /** |
| 174 * Unpack an RFC4867 speech frame into the AMR frame mode and parameters. |
| 175 * |
| 176 * The order of speech bits is specified by 3GPP TS 26.101. |
| 177 * |
| 178 * @param p the context |
| 179 * @param buf pointer to the input buffer |
| 180 * @param buf_size size of the input buffer |
| 181 * |
| 182 * @return the frame mode |
| 183 */ |
| 184 static enum Mode unpack_bitstream(AMRContext *p, const uint8_t *buf, |
| 185 int buf_size) |
| 186 { |
| 187 GetBitContext gb; |
| 188 enum Mode mode; |
| 189 |
| 190 init_get_bits(&gb, buf, buf_size * 8); |
| 191 |
| 192 // Decode the first octet. |
| 193 skip_bits(&gb, 1); // padding bit |
| 194 mode = get_bits(&gb, 4); // frame type |
| 195 p->bad_frame_indicator = !get_bits1(&gb); // quality bit |
| 196 skip_bits(&gb, 2); // two padding bits |
| 197 |
| 198 if (mode <= MODE_DTX) { |
| 199 uint16_t *data = (uint16_t *)&p->frame; |
| 200 const uint8_t *order = amr_unpacking_bitmaps_per_mode[mode]; |
| 201 int field_size; |
| 202 |
| 203 memset(&p->frame, 0, sizeof(AMRNBFrame)); |
| 204 buf++; |
| 205 while ((field_size = *order++)) { |
| 206 int field = 0; |
| 207 int field_offset = *order++; |
| 208 while (field_size--) { |
| 209 int bit = *order++; |
| 210 field <<= 1; |
| 211 field |= buf[bit >> 3] >> (bit & 7) & 1; |
| 212 } |
| 213 data[field_offset] = field; |
| 214 } |
| 215 } |
| 216 |
| 217 return mode; |
| 218 } |
| 219 |
| 220 |
| 221 /// @defgroup amr_lpc_decoding AMR pitch LPC coefficient decoding functions |
| 222 /// @{ |
| 223 |
| 224 /** |
| 225 * Convert an lsf vector into an lsp vector. |
| 226 * |
| 227 * @param lsf input lsf vector |
| 228 * @param lsp output lsp vector |
| 229 */ |
| 230 static void lsf2lsp(const float *lsf, double *lsp) |
| 231 { |
| 232 int i; |
| 233 |
| 234 for (i = 0; i < LP_FILTER_ORDER; i++) |
| 235 lsp[i] = cos(2.0 * M_PI * lsf[i]); |
| 236 } |
| 237 |
| 238 /** |
| 239 * Interpolate the LSF vector (used for fixed gain smoothing). |
| 240 * The interpolation is done over all four subframes even in MODE_12k2. |
| 241 * |
| 242 * @param[in,out] lsf_q LSFs in [0,1] for each subframe |
| 243 * @param[in] lsf_new New LSFs in [0,1] for subframe 4 |
| 244 */ |
| 245 static void interpolate_lsf(float lsf_q[4][LP_FILTER_ORDER], float *lsf_new) |
| 246 { |
| 247 int i; |
| 248 |
| 249 for (i = 0; i < 4; i++) |
| 250 ff_weighted_vector_sumf(lsf_q[i], lsf_q[3], lsf_new, |
| 251 0.25 * (3 - i), 0.25 * (i + 1), |
| 252 LP_FILTER_ORDER); |
| 253 } |
| 254 |
| 255 /** |
| 256 * Decode a set of 5 split-matrix quantized lsf indexes into an lsp vector. |
| 257 * |
| 258 * @param p the context |
| 259 * @param lsp output LSP vector |
| 260 * @param lsf_no_r LSF vector without the residual vector added |
| 261 * @param lsf_quantizer pointers to LSF dictionary tables |
| 262 * @param quantizer_offset offset in tables |
| 263 * @param sign for the 3 dictionary table |
| 264 * @param update store data for computing the next frame's LSFs |
| 265 */ |
| 266 static void lsf2lsp_for_mode12k2(AMRContext *p, double lsp[LP_FILTER_ORDER], |
| 267 const float lsf_no_r[LP_FILTER_ORDER], |
| 268 const int16_t *lsf_quantizer[5], |
| 269 const int quantizer_offset, |
| 270 const int sign, const int update) |
| 271 { |
| 272 int16_t lsf_r[LP_FILTER_ORDER]; // residual LSF vector |
| 273 float lsf_q[LP_FILTER_ORDER]; // quantified LSF vector |
| 274 int i; |
| 275 |
| 276 for (i = 0; i < LP_FILTER_ORDER >> 1; i++) |
| 277 memcpy(&lsf_r[i << 1], &lsf_quantizer[i][quantizer_offset], |
| 278 2 * sizeof(*lsf_r)); |
| 279 |
| 280 if (sign) { |
| 281 lsf_r[4] *= -1; |
| 282 lsf_r[5] *= -1; |
| 283 } |
| 284 |
| 285 if (update) |
| 286 memcpy(p->prev_lsf_r, lsf_r, LP_FILTER_ORDER * sizeof(float)); |
| 287 |
| 288 for (i = 0; i < LP_FILTER_ORDER; i++) |
| 289 lsf_q[i] = lsf_r[i] * (LSF_R_FAC / 8000.0) + lsf_no_r[i] * (1.0 / 8000.0
); |
| 290 |
| 291 ff_set_min_dist_lsf(lsf_q, MIN_LSF_SPACING, LP_FILTER_ORDER); |
| 292 |
| 293 if (update) |
| 294 interpolate_lsf(p->lsf_q, lsf_q); |
| 295 |
| 296 lsf2lsp(lsf_q, lsp); |
| 297 } |
| 298 |
| 299 /** |
| 300 * Decode a set of 5 split-matrix quantized lsf indexes into 2 lsp vectors. |
| 301 * |
| 302 * @param p pointer to the AMRContext |
| 303 */ |
| 304 static void lsf2lsp_5(AMRContext *p) |
| 305 { |
| 306 const uint16_t *lsf_param = p->frame.lsf; |
| 307 float lsf_no_r[LP_FILTER_ORDER]; // LSFs without the residual vector |
| 308 const int16_t *lsf_quantizer[5]; |
| 309 int i; |
| 310 |
| 311 lsf_quantizer[0] = lsf_5_1[lsf_param[0]]; |
| 312 lsf_quantizer[1] = lsf_5_2[lsf_param[1]]; |
| 313 lsf_quantizer[2] = lsf_5_3[lsf_param[2] >> 1]; |
| 314 lsf_quantizer[3] = lsf_5_4[lsf_param[3]]; |
| 315 lsf_quantizer[4] = lsf_5_5[lsf_param[4]]; |
| 316 |
| 317 for (i = 0; i < LP_FILTER_ORDER; i++) |
| 318 lsf_no_r[i] = p->prev_lsf_r[i] * LSF_R_FAC * PRED_FAC_MODE_12k2 + lsf_5_
mean[i]; |
| 319 |
| 320 lsf2lsp_for_mode12k2(p, p->lsp[1], lsf_no_r, lsf_quantizer, 0, lsf_param[2]
& 1, 0); |
| 321 lsf2lsp_for_mode12k2(p, p->lsp[3], lsf_no_r, lsf_quantizer, 2, lsf_param[2]
& 1, 1); |
| 322 |
| 323 // interpolate LSP vectors at subframes 1 and 3 |
| 324 weighted_vector_sumd(p->lsp[0], p->prev_lsp_sub4, p->lsp[1], 0.5, 0.5, LP_FI
LTER_ORDER); |
| 325 weighted_vector_sumd(p->lsp[2], p->lsp[1] , p->lsp[3], 0.5, 0.5, LP_FI
LTER_ORDER); |
| 326 } |
| 327 |
| 328 /** |
| 329 * Decode a set of 3 split-matrix quantized lsf indexes into an lsp vector. |
| 330 * |
| 331 * @param p pointer to the AMRContext |
| 332 */ |
| 333 static void lsf2lsp_3(AMRContext *p) |
| 334 { |
| 335 const uint16_t *lsf_param = p->frame.lsf; |
| 336 int16_t lsf_r[LP_FILTER_ORDER]; // residual LSF vector |
| 337 float lsf_q[LP_FILTER_ORDER]; // quantified LSF vector |
| 338 const int16_t *lsf_quantizer; |
| 339 int i, j; |
| 340 |
| 341 lsf_quantizer = (p->cur_frame_mode == MODE_7k95 ? lsf_3_1_MODE_7k95 : lsf_3_
1)[lsf_param[0]]; |
| 342 memcpy(lsf_r, lsf_quantizer, 3 * sizeof(*lsf_r)); |
| 343 |
| 344 lsf_quantizer = lsf_3_2[lsf_param[1] << (p->cur_frame_mode <= MODE_5k15)]; |
| 345 memcpy(lsf_r + 3, lsf_quantizer, 3 * sizeof(*lsf_r)); |
| 346 |
| 347 lsf_quantizer = (p->cur_frame_mode <= MODE_5k15 ? lsf_3_3_MODE_5k15 : lsf_3_
3)[lsf_param[2]]; |
| 348 memcpy(lsf_r + 6, lsf_quantizer, 4 * sizeof(*lsf_r)); |
| 349 |
| 350 // calculate mean-removed LSF vector and add mean |
| 351 for (i = 0; i < LP_FILTER_ORDER; i++) |
| 352 lsf_q[i] = (lsf_r[i] + p->prev_lsf_r[i] * pred_fac[i]) * (LSF_R_FAC / 80
00.0) + lsf_3_mean[i] * (1.0 / 8000.0); |
| 353 |
| 354 ff_set_min_dist_lsf(lsf_q, MIN_LSF_SPACING, LP_FILTER_ORDER); |
| 355 |
| 356 // store data for computing the next frame's LSFs |
| 357 interpolate_lsf(p->lsf_q, lsf_q); |
| 358 memcpy(p->prev_lsf_r, lsf_r, LP_FILTER_ORDER * sizeof(*lsf_r)); |
| 359 |
| 360 lsf2lsp(lsf_q, p->lsp[3]); |
| 361 |
| 362 // interpolate LSP vectors at subframes 1, 2 and 3 |
| 363 for (i = 1; i <= 3; i++) |
| 364 for(j = 0; j < LP_FILTER_ORDER; j++) |
| 365 p->lsp[i-1][j] = p->prev_lsp_sub4[j] + |
| 366 (p->lsp[3][j] - p->prev_lsp_sub4[j]) * 0.25 * i; |
| 367 } |
| 368 |
| 369 /// @} |
| 370 |
| 371 |
| 372 /// @defgroup amr_pitch_vector_decoding AMR pitch vector decoding functions |
| 373 /// @{ |
| 374 |
| 375 /** |
| 376 * Like ff_decode_pitch_lag(), but with 1/6 resolution |
| 377 */ |
| 378 static void decode_pitch_lag_1_6(int *lag_int, int *lag_frac, int pitch_index, |
| 379 const int prev_lag_int, const int subframe) |
| 380 { |
| 381 if (subframe == 0 || subframe == 2) { |
| 382 if (pitch_index < 463) { |
| 383 *lag_int = (pitch_index + 107) * 10923 >> 16; |
| 384 *lag_frac = pitch_index - *lag_int * 6 + 105; |
| 385 } else { |
| 386 *lag_int = pitch_index - 368; |
| 387 *lag_frac = 0; |
| 388 } |
| 389 } else { |
| 390 *lag_int = ((pitch_index + 5) * 10923 >> 16) - 1; |
| 391 *lag_frac = pitch_index - *lag_int * 6 - 3; |
| 392 *lag_int += av_clip(prev_lag_int - 5, PITCH_LAG_MIN_MODE_12k2, |
| 393 PITCH_DELAY_MAX - 9); |
| 394 } |
| 395 } |
| 396 |
| 397 static void decode_pitch_vector(AMRContext *p, |
| 398 const AMRNBSubframe *amr_subframe, |
| 399 const int subframe) |
| 400 { |
| 401 int pitch_lag_int, pitch_lag_frac; |
| 402 enum Mode mode = p->cur_frame_mode; |
| 403 |
| 404 if (p->cur_frame_mode == MODE_12k2) { |
| 405 decode_pitch_lag_1_6(&pitch_lag_int, &pitch_lag_frac, |
| 406 amr_subframe->p_lag, p->pitch_lag_int, |
| 407 subframe); |
| 408 } else |
| 409 ff_decode_pitch_lag(&pitch_lag_int, &pitch_lag_frac, |
| 410 amr_subframe->p_lag, |
| 411 p->pitch_lag_int, subframe, |
| 412 mode != MODE_4k75 && mode != MODE_5k15, |
| 413 mode <= MODE_6k7 ? 4 : (mode == MODE_7k95 ? 5 : 6)); |
| 414 |
| 415 p->pitch_lag_int = pitch_lag_int; // store previous lag in a uint8_t |
| 416 |
| 417 pitch_lag_frac <<= (p->cur_frame_mode != MODE_12k2); |
| 418 |
| 419 pitch_lag_int += pitch_lag_frac > 0; |
| 420 |
| 421 /* Calculate the pitch vector by interpolating the past excitation at the |
| 422 pitch lag using a b60 hamming windowed sinc function. */ |
| 423 ff_acelp_interpolatef(p->excitation, p->excitation + 1 - pitch_lag_int, |
| 424 ff_b60_sinc, 6, |
| 425 pitch_lag_frac + 6 - 6*(pitch_lag_frac > 0), |
| 426 10, AMR_SUBFRAME_SIZE); |
| 427 |
| 428 memcpy(p->pitch_vector, p->excitation, AMR_SUBFRAME_SIZE * sizeof(float)); |
| 429 } |
| 430 |
| 431 /// @} |
| 432 |
| 433 |
| 434 /// @defgroup amr_algebraic_code_book AMR algebraic code book (fixed) vector dec
oding functions |
| 435 /// @{ |
| 436 |
| 437 /** |
| 438 * Decode a 10-bit algebraic codebook index from a 10.2 kbit/s frame. |
| 439 */ |
| 440 static void decode_10bit_pulse(int code, int pulse_position[8], |
| 441 int i1, int i2, int i3) |
| 442 { |
| 443 // coded using 7+3 bits with the 3 LSBs being, individually, the LSB of 1 of |
| 444 // the 3 pulses and the upper 7 bits being coded in base 5 |
| 445 const uint8_t *positions = base_five_table[code >> 3]; |
| 446 pulse_position[i1] = (positions[2] << 1) + ( code & 1); |
| 447 pulse_position[i2] = (positions[1] << 1) + ((code >> 1) & 1); |
| 448 pulse_position[i3] = (positions[0] << 1) + ((code >> 2) & 1); |
| 449 } |
| 450 |
| 451 /** |
| 452 * Decode the algebraic codebook index to pulse positions and signs and |
| 453 * construct the algebraic codebook vector for MODE_10k2. |
| 454 * |
| 455 * @param fixed_index positions of the eight pulses |
| 456 * @param fixed_sparse pointer to the algebraic codebook vector |
| 457 */ |
| 458 static void decode_8_pulses_31bits(const int16_t *fixed_index, |
| 459 AMRFixed *fixed_sparse) |
| 460 { |
| 461 int pulse_position[8]; |
| 462 int i, temp; |
| 463 |
| 464 decode_10bit_pulse(fixed_index[4], pulse_position, 0, 4, 1); |
| 465 decode_10bit_pulse(fixed_index[5], pulse_position, 2, 6, 5); |
| 466 |
| 467 // coded using 5+2 bits with the 2 LSBs being, individually, the LSB of 1 of |
| 468 // the 2 pulses and the upper 5 bits being coded in base 5 |
| 469 temp = ((fixed_index[6] >> 2) * 25 + 12) >> 5; |
| 470 pulse_position[3] = temp % 5; |
| 471 pulse_position[7] = temp / 5; |
| 472 if (pulse_position[7] & 1) |
| 473 pulse_position[3] = 4 - pulse_position[3]; |
| 474 pulse_position[3] = (pulse_position[3] << 1) + ( fixed_index[6] & 1); |
| 475 pulse_position[7] = (pulse_position[7] << 1) + ((fixed_index[6] >> 1) & 1); |
| 476 |
| 477 fixed_sparse->n = 8; |
| 478 for (i = 0; i < 4; i++) { |
| 479 const int pos1 = (pulse_position[i] << 2) + i; |
| 480 const int pos2 = (pulse_position[i + 4] << 2) + i; |
| 481 const float sign = fixed_index[i] ? -1.0 : 1.0; |
| 482 fixed_sparse->x[i ] = pos1; |
| 483 fixed_sparse->x[i + 4] = pos2; |
| 484 fixed_sparse->y[i ] = sign; |
| 485 fixed_sparse->y[i + 4] = pos2 < pos1 ? -sign : sign; |
| 486 } |
| 487 } |
| 488 |
| 489 /** |
| 490 * Decode the algebraic codebook index to pulse positions and signs, |
| 491 * then construct the algebraic codebook vector. |
| 492 * |
| 493 * nb of pulses | bits encoding pulses |
| 494 * For MODE_4k75 or MODE_5k15, 2 | 1-3, 4-6, 7 |
| 495 * MODE_5k9, 2 | 1, 2-4, 5-6, 7-9 |
| 496 * MODE_6k7, 3 | 1-3, 4, 5-7, 8, 9-11 |
| 497 * MODE_7k4 or MODE_7k95, 4 | 1-3, 4-6, 7-9, 10, 11-13 |
| 498 * |
| 499 * @param fixed_sparse pointer to the algebraic codebook vector |
| 500 * @param pulses algebraic codebook indexes |
| 501 * @param mode mode of the current frame |
| 502 * @param subframe current subframe number |
| 503 */ |
| 504 static void decode_fixed_sparse(AMRFixed *fixed_sparse, const uint16_t *pulses, |
| 505 const enum Mode mode, const int subframe) |
| 506 { |
| 507 assert(MODE_4k75 <= mode && mode <= MODE_12k2); |
| 508 |
| 509 if (mode == MODE_12k2) { |
| 510 ff_decode_10_pulses_35bits(pulses, fixed_sparse, gray_decode, 5, 3); |
| 511 } else if (mode == MODE_10k2) { |
| 512 decode_8_pulses_31bits(pulses, fixed_sparse); |
| 513 } else { |
| 514 int *pulse_position = fixed_sparse->x; |
| 515 int i, pulse_subset; |
| 516 const int fixed_index = pulses[0]; |
| 517 |
| 518 if (mode <= MODE_5k15) { |
| 519 pulse_subset = ((fixed_index >> 3) & 8) + (subframe << 1); |
| 520 pulse_position[0] = ( fixed_index & 7) * 5 + track_position[pu
lse_subset]; |
| 521 pulse_position[1] = ((fixed_index >> 3) & 7) * 5 + track_position[pu
lse_subset + 1]; |
| 522 fixed_sparse->n = 2; |
| 523 } else if (mode == MODE_5k9) { |
| 524 pulse_subset = ((fixed_index & 1) << 1) + 1; |
| 525 pulse_position[0] = ((fixed_index >> 1) & 7) * 5 + pulse_subset; |
| 526 pulse_subset = (fixed_index >> 4) & 3; |
| 527 pulse_position[1] = ((fixed_index >> 6) & 7) * 5 + pulse_subset + (p
ulse_subset == 3 ? 1 : 0); |
| 528 fixed_sparse->n = pulse_position[0] == pulse_position[1] ? 1 : 2; |
| 529 } else if (mode == MODE_6k7) { |
| 530 pulse_position[0] = (fixed_index & 7) * 5; |
| 531 pulse_subset = (fixed_index >> 2) & 2; |
| 532 pulse_position[1] = ((fixed_index >> 4) & 7) * 5 + pulse_subset + 1; |
| 533 pulse_subset = (fixed_index >> 6) & 2; |
| 534 pulse_position[2] = ((fixed_index >> 8) & 7) * 5 + pulse_subset + 2; |
| 535 fixed_sparse->n = 3; |
| 536 } else { // mode <= MODE_7k95 |
| 537 pulse_position[0] = gray_decode[ fixed_index & 7]; |
| 538 pulse_position[1] = gray_decode[(fixed_index >> 3) & 7] + 1; |
| 539 pulse_position[2] = gray_decode[(fixed_index >> 6) & 7] + 2; |
| 540 pulse_subset = (fixed_index >> 9) & 1; |
| 541 pulse_position[3] = gray_decode[(fixed_index >> 10) & 7] + pulse_sub
set + 3; |
| 542 fixed_sparse->n = 4; |
| 543 } |
| 544 for (i = 0; i < fixed_sparse->n; i++) |
| 545 fixed_sparse->y[i] = (pulses[1] >> i) & 1 ? 1.0 : -1.0; |
| 546 } |
| 547 } |
| 548 |
| 549 /** |
| 550 * Apply pitch lag to obtain the sharpened fixed vector (section 6.1.2) |
| 551 * |
| 552 * @param p the context |
| 553 * @param subframe unpacked amr subframe |
| 554 * @param mode mode of the current frame |
| 555 * @param fixed_sparse sparse respresentation of the fixed vector |
| 556 */ |
| 557 static void pitch_sharpening(AMRContext *p, int subframe, enum Mode mode, |
| 558 AMRFixed *fixed_sparse) |
| 559 { |
| 560 // The spec suggests the current pitch gain is always used, but in other |
| 561 // modes the pitch and codebook gains are joinly quantized (sec 5.8.2) |
| 562 // so the codebook gain cannot depend on the quantized pitch gain. |
| 563 if (mode == MODE_12k2) |
| 564 p->beta = FFMIN(p->pitch_gain[4], 1.0); |
| 565 |
| 566 fixed_sparse->pitch_lag = p->pitch_lag_int; |
| 567 fixed_sparse->pitch_fac = p->beta; |
| 568 |
| 569 // Save pitch sharpening factor for the next subframe |
| 570 // MODE_4k75 only updates on the 2nd and 4th subframes - this follows from |
| 571 // the fact that the gains for two subframes are jointly quantized. |
| 572 if (mode != MODE_4k75 || subframe & 1) |
| 573 p->beta = av_clipf(p->pitch_gain[4], 0.0, SHARP_MAX); |
| 574 } |
| 575 /// @} |
| 576 |
| 577 |
| 578 /// @defgroup amr_gain_decoding AMR gain decoding functions |
| 579 /// @{ |
| 580 |
| 581 /** |
| 582 * fixed gain smoothing |
| 583 * Note that where the spec specifies the "spectrum in the q domain" |
| 584 * in section 6.1.4, in fact frequencies should be used. |
| 585 * |
| 586 * @param p the context |
| 587 * @param lsf LSFs for the current subframe, in the range [0,1] |
| 588 * @param lsf_avg averaged LSFs |
| 589 * @param mode mode of the current frame |
| 590 * |
| 591 * @return fixed gain smoothed |
| 592 */ |
| 593 static float fixed_gain_smooth(AMRContext *p , const float *lsf, |
| 594 const float *lsf_avg, const enum Mode mode) |
| 595 { |
| 596 float diff = 0.0; |
| 597 int i; |
| 598 |
| 599 for (i = 0; i < LP_FILTER_ORDER; i++) |
| 600 diff += fabs(lsf_avg[i] - lsf[i]) / lsf_avg[i]; |
| 601 |
| 602 // If diff is large for ten subframes, disable smoothing for a 40-subframe |
| 603 // hangover period. |
| 604 p->diff_count++; |
| 605 if (diff <= 0.65) |
| 606 p->diff_count = 0; |
| 607 |
| 608 if (p->diff_count > 10) { |
| 609 p->hang_count = 0; |
| 610 p->diff_count--; // don't let diff_count overflow |
| 611 } |
| 612 |
| 613 if (p->hang_count < 40) { |
| 614 p->hang_count++; |
| 615 } else if (mode < MODE_7k4 || mode == MODE_10k2) { |
| 616 const float smoothing_factor = av_clipf(4.0 * diff - 1.6, 0.0, 1.0); |
| 617 const float fixed_gain_mean = (p->fixed_gain[0] + p->fixed_gain[1] + |
| 618 p->fixed_gain[2] + p->fixed_gain[3] + |
| 619 p->fixed_gain[4]) * 0.2; |
| 620 return smoothing_factor * p->fixed_gain[4] + |
| 621 (1.0 - smoothing_factor) * fixed_gain_mean; |
| 622 } |
| 623 return p->fixed_gain[4]; |
| 624 } |
| 625 |
| 626 /** |
| 627 * Decode pitch gain and fixed gain factor (part of section 6.1.3). |
| 628 * |
| 629 * @param p the context |
| 630 * @param amr_subframe unpacked amr subframe |
| 631 * @param mode mode of the current frame |
| 632 * @param subframe current subframe number |
| 633 * @param fixed_gain_factor decoded gain correction factor |
| 634 */ |
| 635 static void decode_gains(AMRContext *p, const AMRNBSubframe *amr_subframe, |
| 636 const enum Mode mode, const int subframe, |
| 637 float *fixed_gain_factor) |
| 638 { |
| 639 if (mode == MODE_12k2 || mode == MODE_7k95) { |
| 640 p->pitch_gain[4] = qua_gain_pit [amr_subframe->p_gain ] |
| 641 * (1.0 / 16384.0); |
| 642 *fixed_gain_factor = qua_gain_code[amr_subframe->fixed_gain] |
| 643 * (1.0 / 2048.0); |
| 644 } else { |
| 645 const uint16_t *gains; |
| 646 |
| 647 if (mode >= MODE_6k7) { |
| 648 gains = gains_high[amr_subframe->p_gain]; |
| 649 } else if (mode >= MODE_5k15) { |
| 650 gains = gains_low [amr_subframe->p_gain]; |
| 651 } else { |
| 652 // gain index is only coded in subframes 0,2 for MODE_4k75 |
| 653 gains = gains_MODE_4k75[(p->frame.subframe[subframe & 2].p_gain << 1
) + (subframe & 1)]; |
| 654 } |
| 655 |
| 656 p->pitch_gain[4] = gains[0] * (1.0 / 16384.0); |
| 657 *fixed_gain_factor = gains[1] * (1.0 / 4096.0); |
| 658 } |
| 659 } |
| 660 |
| 661 /// @} |
| 662 |
| 663 |
| 664 /// @defgroup amr_pre_processing AMR pre-processing functions |
| 665 /// @{ |
| 666 |
| 667 /** |
| 668 * Circularly convolve a sparse fixed vector with a phase dispersion impulse |
| 669 * response filter (D.6.2 of G.729 and 6.1.5 of AMR). |
| 670 * |
| 671 * @param out vector with filter applied |
| 672 * @param in source vector |
| 673 * @param filter phase filter coefficients |
| 674 * |
| 675 * out[n] = sum(i,0,len-1){ in[i] * filter[(len + n - i)%len] } |
| 676 */ |
| 677 static void apply_ir_filter(float *out, const AMRFixed *in, |
| 678 const float *filter) |
| 679 { |
| 680 float filter1[AMR_SUBFRAME_SIZE], //!< filters at pitch lag*1 and *2 |
| 681 filter2[AMR_SUBFRAME_SIZE]; |
| 682 int lag = in->pitch_lag; |
| 683 float fac = in->pitch_fac; |
| 684 int i; |
| 685 |
| 686 if (lag < AMR_SUBFRAME_SIZE) { |
| 687 ff_celp_circ_addf(filter1, filter, filter, lag, fac, |
| 688 AMR_SUBFRAME_SIZE); |
| 689 |
| 690 if (lag < AMR_SUBFRAME_SIZE >> 1) |
| 691 ff_celp_circ_addf(filter2, filter, filter1, lag, fac, |
| 692 AMR_SUBFRAME_SIZE); |
| 693 } |
| 694 |
| 695 memset(out, 0, sizeof(float) * AMR_SUBFRAME_SIZE); |
| 696 for (i = 0; i < in->n; i++) { |
| 697 int x = in->x[i]; |
| 698 float y = in->y[i]; |
| 699 const float *filterp; |
| 700 |
| 701 if (x >= AMR_SUBFRAME_SIZE - lag) { |
| 702 filterp = filter; |
| 703 } else if (x >= AMR_SUBFRAME_SIZE - (lag << 1)) { |
| 704 filterp = filter1; |
| 705 } else |
| 706 filterp = filter2; |
| 707 |
| 708 ff_celp_circ_addf(out, out, filterp, x, y, AMR_SUBFRAME_SIZE); |
| 709 } |
| 710 } |
| 711 |
| 712 /** |
| 713 * Reduce fixed vector sparseness by smoothing with one of three IR filters. |
| 714 * Also know as "adaptive phase dispersion". |
| 715 * |
| 716 * This implements 3GPP TS 26.090 section 6.1(5). |
| 717 * |
| 718 * @param p the context |
| 719 * @param fixed_sparse algebraic codebook vector |
| 720 * @param fixed_vector unfiltered fixed vector |
| 721 * @param fixed_gain smoothed gain |
| 722 * @param out space for modified vector if necessary |
| 723 */ |
| 724 static const float *anti_sparseness(AMRContext *p, AMRFixed *fixed_sparse, |
| 725 const float *fixed_vector, |
| 726 float fixed_gain, float *out) |
| 727 { |
| 728 int ir_filter_nr; |
| 729 |
| 730 if (p->pitch_gain[4] < 0.6) { |
| 731 ir_filter_nr = 0; // strong filtering |
| 732 } else if (p->pitch_gain[4] < 0.9) { |
| 733 ir_filter_nr = 1; // medium filtering |
| 734 } else |
| 735 ir_filter_nr = 2; // no filtering |
| 736 |
| 737 // detect 'onset' |
| 738 if (fixed_gain > 2.0 * p->prev_sparse_fixed_gain) { |
| 739 p->ir_filter_onset = 2; |
| 740 } else if (p->ir_filter_onset) |
| 741 p->ir_filter_onset--; |
| 742 |
| 743 if (!p->ir_filter_onset) { |
| 744 int i, count = 0; |
| 745 |
| 746 for (i = 0; i < 5; i++) |
| 747 if (p->pitch_gain[i] < 0.6) |
| 748 count++; |
| 749 if (count > 2) |
| 750 ir_filter_nr = 0; |
| 751 |
| 752 if (ir_filter_nr > p->prev_ir_filter_nr + 1) |
| 753 ir_filter_nr--; |
| 754 } else if (ir_filter_nr < 2) |
| 755 ir_filter_nr++; |
| 756 |
| 757 // Disable filtering for very low level of fixed_gain. |
| 758 // Note this step is not specified in the technical description but is in |
| 759 // the reference source in the function Ph_disp. |
| 760 if (fixed_gain < 5.0) |
| 761 ir_filter_nr = 2; |
| 762 |
| 763 if (p->cur_frame_mode != MODE_7k4 && p->cur_frame_mode < MODE_10k2 |
| 764 && ir_filter_nr < 2) { |
| 765 apply_ir_filter(out, fixed_sparse, |
| 766 (p->cur_frame_mode == MODE_7k95 ? |
| 767 ir_filters_lookup_MODE_7k95 : |
| 768 ir_filters_lookup)[ir_filter_nr]); |
| 769 fixed_vector = out; |
| 770 } |
| 771 |
| 772 // update ir filter strength history |
| 773 p->prev_ir_filter_nr = ir_filter_nr; |
| 774 p->prev_sparse_fixed_gain = fixed_gain; |
| 775 |
| 776 return fixed_vector; |
| 777 } |
| 778 |
| 779 /// @} |
| 780 |
| 781 |
| 782 /// @defgroup amr_synthesis AMR synthesis functions |
| 783 /// @{ |
| 784 |
| 785 /** |
| 786 * Conduct 10th order linear predictive coding synthesis. |
| 787 * |
| 788 * @param p pointer to the AMRContext |
| 789 * @param lpc pointer to the LPC coefficients |
| 790 * @param fixed_gain fixed codebook gain for synthesis |
| 791 * @param fixed_vector algebraic codebook vector |
| 792 * @param samples pointer to the output speech samples |
| 793 * @param overflow 16-bit overflow flag |
| 794 */ |
| 795 static int synthesis(AMRContext *p, float *lpc, |
| 796 float fixed_gain, const float *fixed_vector, |
| 797 float *samples, uint8_t overflow) |
| 798 { |
| 799 int i, overflow_temp = 0; |
| 800 float excitation[AMR_SUBFRAME_SIZE]; |
| 801 |
| 802 // if an overflow has been detected, the pitch vector is scaled down by a |
| 803 // factor of 4 |
| 804 if (overflow) |
| 805 for (i = 0; i < AMR_SUBFRAME_SIZE; i++) |
| 806 p->pitch_vector[i] *= 0.25; |
| 807 |
| 808 ff_weighted_vector_sumf(excitation, p->pitch_vector, fixed_vector, |
| 809 p->pitch_gain[4], fixed_gain, AMR_SUBFRAME_SIZE); |
| 810 |
| 811 // emphasize pitch vector contribution |
| 812 if (p->pitch_gain[4] > 0.5 && !overflow) { |
| 813 float energy = ff_dot_productf(excitation, excitation, |
| 814 AMR_SUBFRAME_SIZE); |
| 815 float pitch_factor = |
| 816 p->pitch_gain[4] * |
| 817 (p->cur_frame_mode == MODE_12k2 ? |
| 818 0.25 * FFMIN(p->pitch_gain[4], 1.0) : |
| 819 0.5 * FFMIN(p->pitch_gain[4], SHARP_MAX)); |
| 820 |
| 821 for (i = 0; i < AMR_SUBFRAME_SIZE; i++) |
| 822 excitation[i] += pitch_factor * p->pitch_vector[i]; |
| 823 |
| 824 ff_scale_vector_to_given_sum_of_squares(excitation, excitation, energy, |
| 825 AMR_SUBFRAME_SIZE); |
| 826 } |
| 827 |
| 828 ff_celp_lp_synthesis_filterf(samples, lpc, excitation, AMR_SUBFRAME_SIZE, |
| 829 LP_FILTER_ORDER); |
| 830 |
| 831 // detect overflow |
| 832 for (i = 0; i < AMR_SUBFRAME_SIZE; i++) |
| 833 if (fabsf(samples[i]) > AMR_SAMPLE_BOUND) { |
| 834 overflow_temp = 1; |
| 835 samples[i] = av_clipf(samples[i], -AMR_SAMPLE_BOUND, |
| 836 AMR_SAMPLE_BOUND); |
| 837 } |
| 838 |
| 839 return overflow_temp; |
| 840 } |
| 841 |
| 842 /// @} |
| 843 |
| 844 |
| 845 /// @defgroup amr_update AMR update functions |
| 846 /// @{ |
| 847 |
| 848 /** |
| 849 * Update buffers and history at the end of decoding a subframe. |
| 850 * |
| 851 * @param p pointer to the AMRContext |
| 852 */ |
| 853 static void update_state(AMRContext *p) |
| 854 { |
| 855 memcpy(p->prev_lsp_sub4, p->lsp[3], LP_FILTER_ORDER * sizeof(p->lsp[3][0])); |
| 856 |
| 857 memmove(&p->excitation_buf[0], &p->excitation_buf[AMR_SUBFRAME_SIZE], |
| 858 (PITCH_DELAY_MAX + LP_FILTER_ORDER + 1) * sizeof(float)); |
| 859 |
| 860 memmove(&p->pitch_gain[0], &p->pitch_gain[1], 4 * sizeof(float)); |
| 861 memmove(&p->fixed_gain[0], &p->fixed_gain[1], 4 * sizeof(float)); |
| 862 |
| 863 memmove(&p->samples_in[0], &p->samples_in[AMR_SUBFRAME_SIZE], |
| 864 LP_FILTER_ORDER * sizeof(float)); |
| 865 } |
| 866 |
| 867 /// @} |
| 868 |
| 869 |
| 870 /// @defgroup amr_postproc AMR Post processing functions |
| 871 /// @{ |
| 872 |
| 873 /** |
| 874 * Get the tilt factor of a formant filter from its transfer function |
| 875 * |
| 876 * @param lpc_n LP_FILTER_ORDER coefficients of the numerator |
| 877 * @param lpc_d LP_FILTER_ORDER coefficients of the denominator |
| 878 */ |
| 879 static float tilt_factor(float *lpc_n, float *lpc_d) |
| 880 { |
| 881 float rh0, rh1; // autocorrelation at lag 0 and 1 |
| 882 |
| 883 // LP_FILTER_ORDER prior zeros are needed for ff_celp_lp_synthesis_filterf |
| 884 float impulse_buffer[LP_FILTER_ORDER + AMR_TILT_RESPONSE] = { 0 }; |
| 885 float *hf = impulse_buffer + LP_FILTER_ORDER; // start of impulse response |
| 886 |
| 887 hf[0] = 1.0; |
| 888 memcpy(hf + 1, lpc_n, sizeof(float) * LP_FILTER_ORDER); |
| 889 ff_celp_lp_synthesis_filterf(hf, lpc_d, hf, AMR_TILT_RESPONSE, |
| 890 LP_FILTER_ORDER); |
| 891 |
| 892 rh0 = ff_dot_productf(hf, hf, AMR_TILT_RESPONSE); |
| 893 rh1 = ff_dot_productf(hf, hf + 1, AMR_TILT_RESPONSE - 1); |
| 894 |
| 895 // The spec only specifies this check for 12.2 and 10.2 kbit/s |
| 896 // modes. But in the ref source the tilt is always non-negative. |
| 897 return rh1 >= 0.0 ? rh1 / rh0 * AMR_TILT_GAMMA_T : 0.0; |
| 898 } |
| 899 |
| 900 /** |
| 901 * Perform adaptive post-filtering to enhance the quality of the speech. |
| 902 * See section 6.2.1. |
| 903 * |
| 904 * @param p pointer to the AMRContext |
| 905 * @param lpc interpolated LP coefficients for this subframe |
| 906 * @param buf_out output of the filter |
| 907 */ |
| 908 static void postfilter(AMRContext *p, float *lpc, float *buf_out) |
| 909 { |
| 910 int i; |
| 911 float *samples = p->samples_in + LP_FILTER_ORDER; // Start of input |
| 912 |
| 913 float speech_gain = ff_dot_productf(samples, samples, |
| 914 AMR_SUBFRAME_SIZE); |
| 915 |
| 916 float pole_out[AMR_SUBFRAME_SIZE + LP_FILTER_ORDER]; // Output of pole filt
er |
| 917 const float *gamma_n, *gamma_d; // Formant filter fact
or table |
| 918 float lpc_n[LP_FILTER_ORDER], lpc_d[LP_FILTER_ORDER]; // Transfer function c
oefficients |
| 919 |
| 920 if (p->cur_frame_mode == MODE_12k2 || p->cur_frame_mode == MODE_10k2) { |
| 921 gamma_n = ff_pow_0_7; |
| 922 gamma_d = ff_pow_0_75; |
| 923 } else { |
| 924 gamma_n = ff_pow_0_55; |
| 925 gamma_d = ff_pow_0_7; |
| 926 } |
| 927 |
| 928 for (i = 0; i < LP_FILTER_ORDER; i++) { |
| 929 lpc_n[i] = lpc[i] * gamma_n[i]; |
| 930 lpc_d[i] = lpc[i] * gamma_d[i]; |
| 931 } |
| 932 |
| 933 memcpy(pole_out, p->postfilter_mem, sizeof(float) * LP_FILTER_ORDER); |
| 934 ff_celp_lp_synthesis_filterf(pole_out + LP_FILTER_ORDER, lpc_d, samples, |
| 935 AMR_SUBFRAME_SIZE, LP_FILTER_ORDER); |
| 936 memcpy(p->postfilter_mem, pole_out + AMR_SUBFRAME_SIZE, |
| 937 sizeof(float) * LP_FILTER_ORDER); |
| 938 |
| 939 ff_celp_lp_zero_synthesis_filterf(buf_out, lpc_n, |
| 940 pole_out + LP_FILTER_ORDER, |
| 941 AMR_SUBFRAME_SIZE, LP_FILTER_ORDER); |
| 942 |
| 943 ff_tilt_compensation(&p->tilt_mem, tilt_factor(lpc_n, lpc_d), buf_out, |
| 944 AMR_SUBFRAME_SIZE); |
| 945 |
| 946 ff_adaptative_gain_control(buf_out, speech_gain, AMR_SUBFRAME_SIZE, |
| 947 AMR_AGC_ALPHA, &p->postfilter_agc); |
| 948 } |
| 949 |
| 950 /// @} |
| 951 |
| 952 static int amrnb_decode_frame(AVCodecContext *avctx, void *data, int *data_size, |
| 953 AVPacket *avpkt) |
| 954 { |
| 955 |
| 956 AMRContext *p = avctx->priv_data; // pointer to private data |
| 957 const uint8_t *buf = avpkt->data; |
| 958 int buf_size = avpkt->size; |
| 959 float *buf_out = data; // pointer to the output data buffe
r |
| 960 int i, subframe; |
| 961 float fixed_gain_factor; |
| 962 AMRFixed fixed_sparse = {0}; // fixed vector up to anti-sparsene
ss processing |
| 963 float spare_vector[AMR_SUBFRAME_SIZE]; // extra stack space to hold result
from anti-sparseness processing |
| 964 float synth_fixed_gain; // the fixed gain that synthesis sh
ould use |
| 965 const float *synth_fixed_vector; // pointer to the fixed vector that
synthesis should use |
| 966 |
| 967 p->cur_frame_mode = unpack_bitstream(p, buf, buf_size); |
| 968 if (p->cur_frame_mode == MODE_DTX) { |
| 969 av_log_missing_feature(avctx, "dtx mode", 1); |
| 970 return -1; |
| 971 } |
| 972 |
| 973 if (p->cur_frame_mode == MODE_12k2) { |
| 974 lsf2lsp_5(p); |
| 975 } else |
| 976 lsf2lsp_3(p); |
| 977 |
| 978 for (i = 0; i < 4; i++) |
| 979 ff_acelp_lspd2lpc(p->lsp[i], p->lpc[i], 5); |
| 980 |
| 981 for (subframe = 0; subframe < 4; subframe++) { |
| 982 const AMRNBSubframe *amr_subframe = &p->frame.subframe[subframe]; |
| 983 |
| 984 decode_pitch_vector(p, amr_subframe, subframe); |
| 985 |
| 986 decode_fixed_sparse(&fixed_sparse, amr_subframe->pulses, |
| 987 p->cur_frame_mode, subframe); |
| 988 |
| 989 // The fixed gain (section 6.1.3) depends on the fixed vector |
| 990 // (section 6.1.2), but the fixed vector calculation uses |
| 991 // pitch sharpening based on the on the pitch gain (section 6.1.3). |
| 992 // So the correct order is: pitch gain, pitch sharpening, fixed gain. |
| 993 decode_gains(p, amr_subframe, p->cur_frame_mode, subframe, |
| 994 &fixed_gain_factor); |
| 995 |
| 996 pitch_sharpening(p, subframe, p->cur_frame_mode, &fixed_sparse); |
| 997 |
| 998 ff_set_fixed_vector(p->fixed_vector, &fixed_sparse, 1.0, |
| 999 AMR_SUBFRAME_SIZE); |
| 1000 |
| 1001 p->fixed_gain[4] = |
| 1002 ff_amr_set_fixed_gain(fixed_gain_factor, |
| 1003 ff_dot_productf(p->fixed_vector, p->fixed_vector, |
| 1004 AMR_SUBFRAME_SIZE)/AMR_SUBFRAME_SIZE, |
| 1005 p->prediction_error, |
| 1006 energy_mean[p->cur_frame_mode], energy_pred_fac); |
| 1007 |
| 1008 // The excitation feedback is calculated without any processing such |
| 1009 // as fixed gain smoothing. This isn't mentioned in the specification. |
| 1010 for (i = 0; i < AMR_SUBFRAME_SIZE; i++) |
| 1011 p->excitation[i] *= p->pitch_gain[4]; |
| 1012 ff_set_fixed_vector(p->excitation, &fixed_sparse, p->fixed_gain[4], |
| 1013 AMR_SUBFRAME_SIZE); |
| 1014 |
| 1015 // In the ref decoder, excitation is stored with no fractional bits. |
| 1016 // This step prevents buzz in silent periods. The ref encoder can |
| 1017 // emit long sequences with pitch factor greater than one. This |
| 1018 // creates unwanted feedback if the excitation vector is nonzero. |
| 1019 // (e.g. test sequence T19_795.COD in 3GPP TS 26.074) |
| 1020 for (i = 0; i < AMR_SUBFRAME_SIZE; i++) |
| 1021 p->excitation[i] = truncf(p->excitation[i]); |
| 1022 |
| 1023 // Smooth fixed gain. |
| 1024 // The specification is ambiguous, but in the reference source, the |
| 1025 // smoothed value is NOT fed back into later fixed gain smoothing. |
| 1026 synth_fixed_gain = fixed_gain_smooth(p, p->lsf_q[subframe], |
| 1027 p->lsf_avg, p->cur_frame_mode); |
| 1028 |
| 1029 synth_fixed_vector = anti_sparseness(p, &fixed_sparse, p->fixed_vector, |
| 1030 synth_fixed_gain, spare_vector); |
| 1031 |
| 1032 if (synthesis(p, p->lpc[subframe], synth_fixed_gain, |
| 1033 synth_fixed_vector, &p->samples_in[LP_FILTER_ORDER], 0)) |
| 1034 // overflow detected -> rerun synthesis scaling pitch vector down |
| 1035 // by a factor of 4, skipping pitch vector contribution emphasis |
| 1036 // and adaptive gain control |
| 1037 synthesis(p, p->lpc[subframe], synth_fixed_gain, |
| 1038 synth_fixed_vector, &p->samples_in[LP_FILTER_ORDER], 1); |
| 1039 |
| 1040 postfilter(p, p->lpc[subframe], buf_out + subframe * AMR_SUBFRAME_SIZE); |
| 1041 |
| 1042 // update buffers and history |
| 1043 ff_clear_fixed_vector(p->fixed_vector, &fixed_sparse, AMR_SUBFRAME_SIZE)
; |
| 1044 update_state(p); |
| 1045 } |
| 1046 |
| 1047 ff_acelp_apply_order_2_transfer_function(buf_out, highpass_zeros, |
| 1048 highpass_poles, highpass_gain, |
| 1049 p->high_pass_mem, AMR_BLOCK_SIZE); |
| 1050 |
| 1051 for (i = 0; i < AMR_BLOCK_SIZE; i++) |
| 1052 buf_out[i] = av_clipf(buf_out[i] * AMR_SAMPLE_SCALE, |
| 1053 -1.0, 32767.0 / 32768.0); |
| 1054 |
| 1055 /* Update averaged lsf vector (used for fixed gain smoothing). |
| 1056 * |
| 1057 * Note that lsf_avg should not incorporate the current frame's LSFs |
| 1058 * for fixed_gain_smooth. |
| 1059 * The specification has an incorrect formula: the reference decoder uses |
| 1060 * qbar(n-1) rather than qbar(n) in section 6.1(4) equation 71. */ |
| 1061 ff_weighted_vector_sumf(p->lsf_avg, p->lsf_avg, p->lsf_q[3], |
| 1062 0.84, 0.16, LP_FILTER_ORDER); |
| 1063 |
| 1064 /* report how many samples we got */ |
| 1065 *data_size = AMR_BLOCK_SIZE * sizeof(float); |
| 1066 |
| 1067 /* return the amount of bytes consumed if everything was OK */ |
| 1068 return frame_sizes_nb[p->cur_frame_mode] + 1; // +7 for rounding and +8 for
TOC |
| 1069 } |
| 1070 |
| 1071 |
| 1072 AVCodec amrnb_decoder = { |
| 1073 .name = "amrnb", |
| 1074 .type = CODEC_TYPE_AUDIO, |
| 1075 .id = CODEC_ID_AMR_NB, |
| 1076 .priv_data_size = sizeof(AMRContext), |
| 1077 .init = amrnb_decode_init, |
| 1078 .decode = amrnb_decode_frame, |
| 1079 .long_name = NULL_IF_CONFIG_SMALL("Adaptive Multi-Rate NarrowBand"), |
| 1080 .sample_fmts = (enum SampleFormat[]){SAMPLE_FMT_FLT,SAMPLE_FMT_NONE}, |
| 1081 }; |
OLD | NEW |