OLD | NEW |
(Empty) | |
| 1 /* |
| 2 * AAC Spectral Band Replication decoding functions |
| 3 * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl ) |
| 4 * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com> |
| 5 * |
| 6 * This file is part of FFmpeg. |
| 7 * |
| 8 * FFmpeg is free software; you can redistribute it and/or |
| 9 * modify it under the terms of the GNU Lesser General Public |
| 10 * License as published by the Free Software Foundation; either |
| 11 * version 2.1 of the License, or (at your option) any later version. |
| 12 * |
| 13 * FFmpeg is distributed in the hope that it will be useful, |
| 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 16 * Lesser General Public License for more details. |
| 17 * |
| 18 * You should have received a copy of the GNU Lesser General Public |
| 19 * License along with FFmpeg; if not, write to the Free Software |
| 20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| 21 */ |
| 22 |
| 23 /** |
| 24 * @file libavcodec/aacsbr.c |
| 25 * AAC Spectral Band Replication decoding functions |
| 26 * @author Robert Swain ( rob opendot cl ) |
| 27 */ |
| 28 |
| 29 #include "aac.h" |
| 30 #include "sbr.h" |
| 31 #include "aacsbr.h" |
| 32 #include "aacsbrdata.h" |
| 33 #include "fft.h" |
| 34 |
| 35 #include <stdint.h> |
| 36 #include <float.h> |
| 37 |
| 38 #define ENVELOPE_ADJUSTMENT_OFFSET 2 |
| 39 #define NOISE_FLOOR_OFFSET 6.0f |
| 40 |
| 41 /** |
| 42 * SBR VLC tables |
| 43 */ |
| 44 enum { |
| 45 T_HUFFMAN_ENV_1_5DB, |
| 46 F_HUFFMAN_ENV_1_5DB, |
| 47 T_HUFFMAN_ENV_BAL_1_5DB, |
| 48 F_HUFFMAN_ENV_BAL_1_5DB, |
| 49 T_HUFFMAN_ENV_3_0DB, |
| 50 F_HUFFMAN_ENV_3_0DB, |
| 51 T_HUFFMAN_ENV_BAL_3_0DB, |
| 52 F_HUFFMAN_ENV_BAL_3_0DB, |
| 53 T_HUFFMAN_NOISE_3_0DB, |
| 54 T_HUFFMAN_NOISE_BAL_3_0DB, |
| 55 }; |
| 56 |
| 57 /** |
| 58 * bs_frame_class - frame class of current SBR frame (14496-3 sp04 p98) |
| 59 */ |
| 60 enum { |
| 61 FIXFIX, |
| 62 FIXVAR, |
| 63 VARFIX, |
| 64 VARVAR, |
| 65 }; |
| 66 |
| 67 enum { |
| 68 EXTENSION_ID_PS = 2, |
| 69 }; |
| 70 |
| 71 static VLC vlc_sbr[10]; |
| 72 static const int8_t vlc_sbr_lav[10] = |
| 73 { 60, 60, 24, 24, 31, 31, 12, 12, 31, 12 }; |
| 74 static DECLARE_ALIGNED(16, float, analysis_cos_pre)[64]; |
| 75 static DECLARE_ALIGNED(16, float, analysis_sin_pre)[64]; |
| 76 static DECLARE_ALIGNED(16, float, analysis_cossin_post)[32][2]; |
| 77 static const DECLARE_ALIGNED(16, float, zero64)[64]; |
| 78 |
| 79 #define SBR_INIT_VLC_STATIC(num, size) \ |
| 80 INIT_VLC_STATIC(&vlc_sbr[num], 9, sbr_tmp[num].table_size / sbr_tmp[num].ele
m_size, \ |
| 81 sbr_tmp[num].sbr_bits , 1,
1, \ |
| 82 sbr_tmp[num].sbr_codes, sbr_tmp[num].elem_size, sbr_tmp[num]
.elem_size, \ |
| 83 size) |
| 84 |
| 85 #define SBR_VLC_ROW(name) \ |
| 86 { name ## _codes, name ## _bits, sizeof(name ## _codes), sizeof(name ## _cod
es[0]) } |
| 87 |
| 88 av_cold void ff_aac_sbr_init(void) |
| 89 { |
| 90 int n, k; |
| 91 static const struct { |
| 92 const void *sbr_codes, *sbr_bits; |
| 93 const unsigned int table_size, elem_size; |
| 94 } sbr_tmp[] = { |
| 95 SBR_VLC_ROW(t_huffman_env_1_5dB), |
| 96 SBR_VLC_ROW(f_huffman_env_1_5dB), |
| 97 SBR_VLC_ROW(t_huffman_env_bal_1_5dB), |
| 98 SBR_VLC_ROW(f_huffman_env_bal_1_5dB), |
| 99 SBR_VLC_ROW(t_huffman_env_3_0dB), |
| 100 SBR_VLC_ROW(f_huffman_env_3_0dB), |
| 101 SBR_VLC_ROW(t_huffman_env_bal_3_0dB), |
| 102 SBR_VLC_ROW(f_huffman_env_bal_3_0dB), |
| 103 SBR_VLC_ROW(t_huffman_noise_3_0dB), |
| 104 SBR_VLC_ROW(t_huffman_noise_bal_3_0dB), |
| 105 }; |
| 106 |
| 107 // SBR VLC table initialization |
| 108 SBR_INIT_VLC_STATIC(0, 1098); |
| 109 SBR_INIT_VLC_STATIC(1, 1092); |
| 110 SBR_INIT_VLC_STATIC(2, 768); |
| 111 SBR_INIT_VLC_STATIC(3, 1026); |
| 112 SBR_INIT_VLC_STATIC(4, 1058); |
| 113 SBR_INIT_VLC_STATIC(5, 1052); |
| 114 SBR_INIT_VLC_STATIC(6, 544); |
| 115 SBR_INIT_VLC_STATIC(7, 544); |
| 116 SBR_INIT_VLC_STATIC(8, 592); |
| 117 SBR_INIT_VLC_STATIC(9, 512); |
| 118 |
| 119 for (n = 0; n < 64; n++) { |
| 120 float pre = M_PI * n / 64; |
| 121 analysis_cos_pre[n] = cosf(pre); |
| 122 analysis_sin_pre[n] = sinf(pre); |
| 123 } |
| 124 for (k = 0; k < 32; k++) { |
| 125 float post = M_PI * (k + 0.5) / 128; |
| 126 analysis_cossin_post[k][0] = 4.0 * cosf(post); |
| 127 analysis_cossin_post[k][1] = -4.0 * sinf(post); |
| 128 } |
| 129 for (n = 1; n < 320; n++) |
| 130 sbr_qmf_window_us[320 + n] = sbr_qmf_window_us[320 - n]; |
| 131 sbr_qmf_window_us[384] = -sbr_qmf_window_us[384]; |
| 132 sbr_qmf_window_us[512] = -sbr_qmf_window_us[512]; |
| 133 |
| 134 for (n = 0; n < 320; n++) |
| 135 sbr_qmf_window_ds[n] = sbr_qmf_window_us[2*n]; |
| 136 } |
| 137 |
| 138 av_cold void ff_aac_sbr_ctx_init(SpectralBandReplication *sbr) |
| 139 { |
| 140 sbr->kx[0] = sbr->kx[1] = 32; //Typo in spec, kx' inits to 32 |
| 141 sbr->data[0].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE -
(1280 - 128); |
| 142 sbr->data[1].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE -
(1280 - 128); |
| 143 ff_mdct_init(&sbr->mdct, 7, 1, 1.0/64); |
| 144 ff_rdft_init(&sbr->rdft, 6, IDFT_R2C); |
| 145 } |
| 146 |
| 147 av_cold void ff_aac_sbr_ctx_close(SpectralBandReplication *sbr) |
| 148 { |
| 149 ff_mdct_end(&sbr->mdct); |
| 150 ff_rdft_end(&sbr->rdft); |
| 151 } |
| 152 |
| 153 static int qsort_comparison_function_int16(const void *a, const void *b) |
| 154 { |
| 155 return *(const int16_t *)a - *(const int16_t *)b; |
| 156 } |
| 157 |
| 158 static inline int in_table_int16(const int16_t *table, int last_el, int16_t need
le) |
| 159 { |
| 160 int i; |
| 161 for (i = 0; i <= last_el; i++) |
| 162 if (table[i] == needle) |
| 163 return 1; |
| 164 return 0; |
| 165 } |
| 166 |
| 167 /// Limiter Frequency Band Table (14496-3 sp04 p198) |
| 168 static void sbr_make_f_tablelim(SpectralBandReplication *sbr) |
| 169 { |
| 170 int k; |
| 171 if (sbr->bs_limiter_bands > 0) { |
| 172 static const float bands_warped[3] = { 1.32715174233856803909f, //2^(0
.49/1.2) |
| 173 1.18509277094158210129f, //2^(0
.49/2) |
| 174 1.11987160404675912501f }; //2^(0
.49/3) |
| 175 const float lim_bands_per_octave_warped = bands_warped[sbr->bs_limiter_b
ands - 1]; |
| 176 int16_t patch_borders[5]; |
| 177 uint16_t *in = sbr->f_tablelim + 1, *out = sbr->f_tablelim; |
| 178 |
| 179 patch_borders[0] = sbr->kx[1]; |
| 180 for (k = 1; k <= sbr->num_patches; k++) |
| 181 patch_borders[k] = patch_borders[k-1] + sbr->patch_num_subbands[k-1]
; |
| 182 |
| 183 memcpy(sbr->f_tablelim, sbr->f_tablelow, |
| 184 (sbr->n[0] + 1) * sizeof(sbr->f_tablelow[0])); |
| 185 if (sbr->num_patches > 1) |
| 186 memcpy(sbr->f_tablelim + sbr->n[0] + 1, patch_borders + 1, |
| 187 (sbr->num_patches - 1) * sizeof(patch_borders[0])); |
| 188 |
| 189 qsort(sbr->f_tablelim, sbr->num_patches + sbr->n[0], |
| 190 sizeof(sbr->f_tablelim[0]), |
| 191 qsort_comparison_function_int16); |
| 192 |
| 193 sbr->n_lim = sbr->n[0] + sbr->num_patches - 1; |
| 194 while (out < sbr->f_tablelim + sbr->n_lim) { |
| 195 if (*in >= *out * lim_bands_per_octave_warped) { |
| 196 *++out = *in++; |
| 197 } else if (*in == *out || |
| 198 !in_table_int16(patch_borders, sbr->num_patches, *in)) { |
| 199 in++; |
| 200 sbr->n_lim--; |
| 201 } else if (!in_table_int16(patch_borders, sbr->num_patches, *out)) { |
| 202 *out = *in++; |
| 203 sbr->n_lim--; |
| 204 } else { |
| 205 *++out = *in++; |
| 206 } |
| 207 } |
| 208 } else { |
| 209 sbr->f_tablelim[0] = sbr->f_tablelow[0]; |
| 210 sbr->f_tablelim[1] = sbr->f_tablelow[sbr->n[0]]; |
| 211 sbr->n_lim = 1; |
| 212 } |
| 213 } |
| 214 |
| 215 static unsigned int read_sbr_header(SpectralBandReplication *sbr, GetBitContext
*gb) |
| 216 { |
| 217 unsigned int cnt = get_bits_count(gb); |
| 218 uint8_t bs_header_extra_1; |
| 219 uint8_t bs_header_extra_2; |
| 220 int old_bs_limiter_bands = sbr->bs_limiter_bands; |
| 221 SpectrumParameters old_spectrum_params; |
| 222 |
| 223 sbr->start = 1; |
| 224 |
| 225 // Save last spectrum parameters variables to compare to new ones |
| 226 memcpy(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameter
s)); |
| 227 |
| 228 sbr->bs_amp_res_header = get_bits1(gb); |
| 229 sbr->spectrum_params.bs_start_freq = get_bits(gb, 4); |
| 230 sbr->spectrum_params.bs_stop_freq = get_bits(gb, 4); |
| 231 sbr->spectrum_params.bs_xover_band = get_bits(gb, 3); |
| 232 skip_bits(gb, 2); // bs_reserved |
| 233 |
| 234 bs_header_extra_1 = get_bits1(gb); |
| 235 bs_header_extra_2 = get_bits1(gb); |
| 236 |
| 237 if (bs_header_extra_1) { |
| 238 sbr->spectrum_params.bs_freq_scale = get_bits(gb, 2); |
| 239 sbr->spectrum_params.bs_alter_scale = get_bits1(gb); |
| 240 sbr->spectrum_params.bs_noise_bands = get_bits(gb, 2); |
| 241 } else { |
| 242 sbr->spectrum_params.bs_freq_scale = 2; |
| 243 sbr->spectrum_params.bs_alter_scale = 1; |
| 244 sbr->spectrum_params.bs_noise_bands = 2; |
| 245 } |
| 246 |
| 247 // Check if spectrum parameters changed |
| 248 if (memcmp(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParam
eters))) |
| 249 sbr->reset = 1; |
| 250 |
| 251 if (bs_header_extra_2) { |
| 252 sbr->bs_limiter_bands = get_bits(gb, 2); |
| 253 sbr->bs_limiter_gains = get_bits(gb, 2); |
| 254 sbr->bs_interpol_freq = get_bits1(gb); |
| 255 sbr->bs_smoothing_mode = get_bits1(gb); |
| 256 } else { |
| 257 sbr->bs_limiter_bands = 2; |
| 258 sbr->bs_limiter_gains = 2; |
| 259 sbr->bs_interpol_freq = 1; |
| 260 sbr->bs_smoothing_mode = 1; |
| 261 } |
| 262 |
| 263 if (sbr->bs_limiter_bands != old_bs_limiter_bands && !sbr->reset) |
| 264 sbr_make_f_tablelim(sbr); |
| 265 |
| 266 return get_bits_count(gb) - cnt; |
| 267 } |
| 268 |
| 269 static int array_min_int16(const int16_t *array, int nel) |
| 270 { |
| 271 int i, min = array[0]; |
| 272 for (i = 1; i < nel; i++) |
| 273 min = FFMIN(array[i], min); |
| 274 return min; |
| 275 } |
| 276 |
| 277 static void make_bands(int16_t* bands, int start, int stop, int num_bands) |
| 278 { |
| 279 int k, previous, present; |
| 280 float base, prod; |
| 281 |
| 282 base = powf((float)stop / start, 1.0f / num_bands); |
| 283 prod = start; |
| 284 previous = start; |
| 285 |
| 286 for (k = 0; k < num_bands-1; k++) { |
| 287 prod *= base; |
| 288 present = lrintf(prod); |
| 289 bands[k] = present - previous; |
| 290 previous = present; |
| 291 } |
| 292 bands[num_bands-1] = stop - previous; |
| 293 } |
| 294 |
| 295 static int check_n_master(AVCodecContext *avccontext, int n_master, int bs_xover
_band) |
| 296 { |
| 297 // Requirements (14496-3 sp04 p205) |
| 298 if (n_master <= 0) { |
| 299 av_log(avccontext, AV_LOG_ERROR, "Invalid n_master: %d\n", n_master); |
| 300 return -1; |
| 301 } |
| 302 if (bs_xover_band >= n_master) { |
| 303 av_log(avccontext, AV_LOG_ERROR, |
| 304 "Invalid bitstream, crossover band index beyond array bounds: %d\
n", |
| 305 bs_xover_band); |
| 306 return -1; |
| 307 } |
| 308 return 0; |
| 309 } |
| 310 |
| 311 /// Master Frequency Band Table (14496-3 sp04 p194) |
| 312 static int sbr_make_f_master(AACContext *ac, SpectralBandReplication *sbr, |
| 313 SpectrumParameters *spectrum) |
| 314 { |
| 315 unsigned int temp, max_qmf_subbands; |
| 316 unsigned int start_min, stop_min; |
| 317 int k; |
| 318 const int8_t *sbr_offset_ptr; |
| 319 int16_t stop_dk[13]; |
| 320 |
| 321 if (sbr->sample_rate < 32000) { |
| 322 temp = 3000; |
| 323 } else if (sbr->sample_rate < 64000) { |
| 324 temp = 4000; |
| 325 } else |
| 326 temp = 5000; |
| 327 |
| 328 start_min = ((temp << 7) + (sbr->sample_rate >> 1)) / sbr->sample_rate; |
| 329 stop_min = ((temp << 8) + (sbr->sample_rate >> 1)) / sbr->sample_rate; |
| 330 |
| 331 switch (sbr->sample_rate) { |
| 332 case 16000: |
| 333 sbr_offset_ptr = sbr_offset[0]; |
| 334 break; |
| 335 case 22050: |
| 336 sbr_offset_ptr = sbr_offset[1]; |
| 337 break; |
| 338 case 24000: |
| 339 sbr_offset_ptr = sbr_offset[2]; |
| 340 break; |
| 341 case 32000: |
| 342 sbr_offset_ptr = sbr_offset[3]; |
| 343 break; |
| 344 case 44100: case 48000: case 64000: |
| 345 sbr_offset_ptr = sbr_offset[4]; |
| 346 break; |
| 347 case 88200: case 96000: case 128000: case 176400: case 192000: |
| 348 sbr_offset_ptr = sbr_offset[5]; |
| 349 break; |
| 350 default: |
| 351 av_log(ac->avccontext, AV_LOG_ERROR, |
| 352 "Unsupported sample rate for SBR: %d\n", sbr->sample_rate); |
| 353 return -1; |
| 354 } |
| 355 |
| 356 sbr->k[0] = start_min + sbr_offset_ptr[spectrum->bs_start_freq]; |
| 357 |
| 358 if (spectrum->bs_stop_freq < 14) { |
| 359 sbr->k[2] = stop_min; |
| 360 make_bands(stop_dk, stop_min, 64, 13); |
| 361 qsort(stop_dk, 13, sizeof(stop_dk[0]), qsort_comparison_function_int16); |
| 362 for (k = 0; k < spectrum->bs_stop_freq; k++) |
| 363 sbr->k[2] += stop_dk[k]; |
| 364 } else if (spectrum->bs_stop_freq == 14) { |
| 365 sbr->k[2] = 2*sbr->k[0]; |
| 366 } else if (spectrum->bs_stop_freq == 15) { |
| 367 sbr->k[2] = 3*sbr->k[0]; |
| 368 } else { |
| 369 av_log(ac->avccontext, AV_LOG_ERROR, |
| 370 "Invalid bs_stop_freq: %d\n", spectrum->bs_stop_freq); |
| 371 return -1; |
| 372 } |
| 373 sbr->k[2] = FFMIN(64, sbr->k[2]); |
| 374 |
| 375 // Requirements (14496-3 sp04 p205) |
| 376 if (sbr->sample_rate <= 32000) { |
| 377 max_qmf_subbands = 48; |
| 378 } else if (sbr->sample_rate == 44100) { |
| 379 max_qmf_subbands = 35; |
| 380 } else if (sbr->sample_rate >= 48000) |
| 381 max_qmf_subbands = 32; |
| 382 |
| 383 if (sbr->k[2] - sbr->k[0] > max_qmf_subbands) { |
| 384 av_log(ac->avccontext, AV_LOG_ERROR, |
| 385 "Invalid bitstream, too many QMF subbands: %d\n", sbr->k[2] - sbr
->k[0]); |
| 386 return -1; |
| 387 } |
| 388 |
| 389 if (!spectrum->bs_freq_scale) { |
| 390 unsigned int dk; |
| 391 int k2diff; |
| 392 |
| 393 dk = spectrum->bs_alter_scale + 1; |
| 394 sbr->n_master = ((sbr->k[2] - sbr->k[0] + (dk&2)) >> dk) << 1; |
| 395 if (check_n_master(ac->avccontext, sbr->n_master, sbr->spectrum_params.b
s_xover_band)) |
| 396 return -1; |
| 397 |
| 398 for (k = 1; k <= sbr->n_master; k++) |
| 399 sbr->f_master[k] = dk; |
| 400 |
| 401 k2diff = sbr->k[2] - sbr->k[0] - sbr->n_master * dk; |
| 402 if (k2diff < 0) { |
| 403 sbr->f_master[1]--; |
| 404 sbr->f_master[2]-= (k2diff < 1); |
| 405 } else if (k2diff) { |
| 406 sbr->f_master[sbr->n_master]++; |
| 407 } |
| 408 |
| 409 sbr->f_master[0] = sbr->k[0]; |
| 410 for (k = 1; k <= sbr->n_master; k++) |
| 411 sbr->f_master[k] += sbr->f_master[k - 1]; |
| 412 |
| 413 } else { |
| 414 int half_bands = 7 - spectrum->bs_freq_scale; // bs_freq_scale = {
1,2,3} |
| 415 int two_regions, num_bands_0; |
| 416 int vdk0_max, vdk1_min; |
| 417 int16_t vk0[49]; |
| 418 |
| 419 if (49 * sbr->k[2] > 110 * sbr->k[0]) { |
| 420 two_regions = 1; |
| 421 sbr->k[1] = 2 * sbr->k[0]; |
| 422 } else { |
| 423 two_regions = 0; |
| 424 sbr->k[1] = sbr->k[2]; |
| 425 } |
| 426 |
| 427 num_bands_0 = lrintf(half_bands * log2f(sbr->k[1] / (float)sbr->k[0])) *
2; |
| 428 |
| 429 if (num_bands_0 <= 0) { // Requirements (14496-3 sp04 p205) |
| 430 av_log(ac->avccontext, AV_LOG_ERROR, "Invalid num_bands_0: %d\n", nu
m_bands_0); |
| 431 return -1; |
| 432 } |
| 433 |
| 434 vk0[0] = 0; |
| 435 |
| 436 make_bands(vk0+1, sbr->k[0], sbr->k[1], num_bands_0); |
| 437 |
| 438 qsort(vk0 + 1, num_bands_0, sizeof(vk0[1]), qsort_comparison_function_in
t16); |
| 439 vdk0_max = vk0[num_bands_0]; |
| 440 |
| 441 vk0[0] = sbr->k[0]; |
| 442 for (k = 1; k <= num_bands_0; k++) { |
| 443 if (vk0[k] <= 0) { // Requirements (14496-3 sp04 p205) |
| 444 av_log(ac->avccontext, AV_LOG_ERROR, "Invalid vDk0[%d]: %d\n", k
, vk0[k]); |
| 445 return -1; |
| 446 } |
| 447 vk0[k] += vk0[k-1]; |
| 448 } |
| 449 |
| 450 if (two_regions) { |
| 451 int16_t vk1[49]; |
| 452 float invwarp = spectrum->bs_alter_scale ? 0.76923076923076923077f |
| 453 : 1.0f; // bs_alter_scale =
{0,1} |
| 454 int num_bands_1 = lrintf(half_bands * invwarp * |
| 455 log2f(sbr->k[2] / (float)sbr->k[1])) * 2; |
| 456 |
| 457 make_bands(vk1+1, sbr->k[1], sbr->k[2], num_bands_1); |
| 458 |
| 459 vdk1_min = array_min_int16(vk1 + 1, num_bands_1); |
| 460 |
| 461 if (vdk1_min < vdk0_max) { |
| 462 int change; |
| 463 qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_fun
ction_int16); |
| 464 change = FFMIN(vdk0_max - vk1[1], (vk1[num_bands_1] - vk1[1]) >>
1); |
| 465 vk1[1] += change; |
| 466 vk1[num_bands_1] -= change; |
| 467 } |
| 468 |
| 469 qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_functio
n_int16); |
| 470 |
| 471 vk1[0] = sbr->k[1]; |
| 472 for (k = 1; k <= num_bands_1; k++) { |
| 473 if (vk1[k] <= 0) { // Requirements (14496-3 sp04 p205) |
| 474 av_log(ac->avccontext, AV_LOG_ERROR, "Invalid vDk1[%d]: %d\n
", k, vk1[k]); |
| 475 return -1; |
| 476 } |
| 477 vk1[k] += vk1[k-1]; |
| 478 } |
| 479 |
| 480 sbr->n_master = num_bands_0 + num_bands_1; |
| 481 if (check_n_master(ac->avccontext, sbr->n_master, sbr->spectrum_para
ms.bs_xover_band)) |
| 482 return -1; |
| 483 memcpy(&sbr->f_master[0], vk0, |
| 484 (num_bands_0 + 1) * sizeof(sbr->f_master[0])); |
| 485 memcpy(&sbr->f_master[num_bands_0 + 1], vk1 + 1, |
| 486 num_bands_1 * sizeof(sbr->f_master[0])); |
| 487 |
| 488 } else { |
| 489 sbr->n_master = num_bands_0; |
| 490 if (check_n_master(ac->avccontext, sbr->n_master, sbr->spectrum_para
ms.bs_xover_band)) |
| 491 return -1; |
| 492 memcpy(sbr->f_master, vk0, (num_bands_0 + 1) * sizeof(sbr->f_master[
0])); |
| 493 } |
| 494 } |
| 495 |
| 496 return 0; |
| 497 } |
| 498 |
| 499 /// High Frequency Generation - Patch Construction (14496-3 sp04 p216 fig. 4.46) |
| 500 static int sbr_hf_calc_npatches(AACContext *ac, SpectralBandReplication *sbr) |
| 501 { |
| 502 int i, k, sb = 0; |
| 503 int msb = sbr->k[0]; |
| 504 int usb = sbr->kx[1]; |
| 505 int goal_sb = ((1000 << 11) + (sbr->sample_rate >> 1)) / sbr->sample_rate; |
| 506 |
| 507 sbr->num_patches = 0; |
| 508 |
| 509 if (goal_sb < sbr->kx[1] + sbr->m[1]) { |
| 510 for (k = 0; sbr->f_master[k] < goal_sb; k++) ; |
| 511 } else |
| 512 k = sbr->n_master; |
| 513 |
| 514 do { |
| 515 int odd = 0; |
| 516 for (i = k; i == k || sb > (sbr->k[0] - 1 + msb - odd); i--) { |
| 517 sb = sbr->f_master[i]; |
| 518 odd = (sb + sbr->k[0]) & 1; |
| 519 } |
| 520 |
| 521 sbr->patch_num_subbands[sbr->num_patches] = FFMAX(sb - usb, 0); |
| 522 sbr->patch_start_subband[sbr->num_patches] = sbr->k[0] - odd - sbr->patc
h_num_subbands[sbr->num_patches]; |
| 523 |
| 524 if (sbr->patch_num_subbands[sbr->num_patches] > 0) { |
| 525 usb = sb; |
| 526 msb = sb; |
| 527 sbr->num_patches++; |
| 528 } else |
| 529 msb = sbr->kx[1]; |
| 530 |
| 531 if (sbr->f_master[k] - sb < 3) |
| 532 k = sbr->n_master; |
| 533 } while (sb != sbr->kx[1] + sbr->m[1]); |
| 534 |
| 535 if (sbr->patch_num_subbands[sbr->num_patches-1] < 3 && sbr->num_patches > 1) |
| 536 sbr->num_patches--; |
| 537 |
| 538 // Requirements (14496-3 sp04 p205) sets the maximum number of patches to 5 |
| 539 // However the Coding Technologies decoder check uses 6 patches |
| 540 if (sbr->num_patches > 6) { |
| 541 av_log(ac->avccontext, AV_LOG_ERROR, "Too many patches: %d\n", sbr->num_
patches); |
| 542 return -1; |
| 543 } |
| 544 |
| 545 return 0; |
| 546 } |
| 547 |
| 548 /// Derived Frequency Band Tables (14496-3 sp04 p197) |
| 549 static int sbr_make_f_derived(AACContext *ac, SpectralBandReplication *sbr) |
| 550 { |
| 551 int k, temp; |
| 552 |
| 553 sbr->n[1] = sbr->n_master - sbr->spectrum_params.bs_xover_band; |
| 554 sbr->n[0] = (sbr->n[1] + 1) >> 1; |
| 555 |
| 556 memcpy(sbr->f_tablehigh, &sbr->f_master[sbr->spectrum_params.bs_xover_band], |
| 557 (sbr->n[1] + 1) * sizeof(sbr->f_master[0])); |
| 558 sbr->m[1] = sbr->f_tablehigh[sbr->n[1]] - sbr->f_tablehigh[0]; |
| 559 sbr->kx[1] = sbr->f_tablehigh[0]; |
| 560 |
| 561 // Requirements (14496-3 sp04 p205) |
| 562 if (sbr->kx[1] + sbr->m[1] > 64) { |
| 563 av_log(ac->avccontext, AV_LOG_ERROR, |
| 564 "Stop frequency border too high: %d\n", sbr->kx[1] + sbr->m[1]); |
| 565 return -1; |
| 566 } |
| 567 if (sbr->kx[1] > 32) { |
| 568 av_log(ac->avccontext, AV_LOG_ERROR, "Start frequency border too high: %
d\n", sbr->kx[1]); |
| 569 return -1; |
| 570 } |
| 571 |
| 572 sbr->f_tablelow[0] = sbr->f_tablehigh[0]; |
| 573 temp = sbr->n[1] & 1; |
| 574 for (k = 1; k <= sbr->n[0]; k++) |
| 575 sbr->f_tablelow[k] = sbr->f_tablehigh[2 * k - temp]; |
| 576 |
| 577 sbr->n_q = FFMAX(1, lrintf(sbr->spectrum_params.bs_noise_bands * |
| 578 log2f(sbr->k[2] / (float)sbr->kx[1]))); // 0 <= b
s_noise_bands <= 3 |
| 579 if (sbr->n_q > 5) { |
| 580 av_log(ac->avccontext, AV_LOG_ERROR, "Too many noise floor scale factors
: %d\n", sbr->n_q); |
| 581 return -1; |
| 582 } |
| 583 |
| 584 sbr->f_tablenoise[0] = sbr->f_tablelow[0]; |
| 585 temp = 0; |
| 586 for (k = 1; k <= sbr->n_q; k++) { |
| 587 temp += (sbr->n[0] - temp) / (sbr->n_q + 1 - k); |
| 588 sbr->f_tablenoise[k] = sbr->f_tablelow[temp]; |
| 589 } |
| 590 |
| 591 if (sbr_hf_calc_npatches(ac, sbr) < 0) |
| 592 return -1; |
| 593 |
| 594 sbr_make_f_tablelim(sbr); |
| 595 |
| 596 sbr->data[0].f_indexnoise = 0; |
| 597 sbr->data[1].f_indexnoise = 0; |
| 598 |
| 599 return 0; |
| 600 } |
| 601 |
| 602 static av_always_inline void get_bits1_vector(GetBitContext *gb, uint8_t *vec, |
| 603 int elements) |
| 604 { |
| 605 int i; |
| 606 for (i = 0; i < elements; i++) { |
| 607 vec[i] = get_bits1(gb); |
| 608 } |
| 609 } |
| 610 |
| 611 /** ceil(log2(index+1)) */ |
| 612 static const int8_t ceil_log2[] = { |
| 613 0, 1, 2, 2, 3, 3, |
| 614 }; |
| 615 |
| 616 static int read_sbr_grid(AACContext *ac, SpectralBandReplication *sbr, |
| 617 GetBitContext *gb, SBRData *ch_data) |
| 618 { |
| 619 int i; |
| 620 |
| 621 ch_data->bs_freq_res[0] = ch_data->bs_freq_res[ch_data->bs_num_env[1]]; |
| 622 ch_data->bs_num_env[0] = ch_data->bs_num_env[1]; |
| 623 ch_data->bs_amp_res = sbr->bs_amp_res_header; |
| 624 |
| 625 switch (ch_data->bs_frame_class = get_bits(gb, 2)) { |
| 626 case FIXFIX: |
| 627 ch_data->bs_num_env[1] = 1 << get_bits(gb, 2); |
| 628 if (ch_data->bs_num_env[1] == 1) |
| 629 ch_data->bs_amp_res = 0; |
| 630 |
| 631 ch_data->bs_freq_res[1] = get_bits1(gb); |
| 632 for (i = 1; i < ch_data->bs_num_env[1]; i++) |
| 633 ch_data->bs_freq_res[i + 1] = ch_data->bs_freq_res[1]; |
| 634 break; |
| 635 case FIXVAR: |
| 636 ch_data->bs_var_bord[1] = get_bits(gb, 2); |
| 637 ch_data->bs_num_rel[1] = get_bits(gb, 2); |
| 638 ch_data->bs_num_env[1] = ch_data->bs_num_rel[1] + 1; |
| 639 |
| 640 for (i = 0; i < ch_data->bs_num_rel[1]; i++) |
| 641 ch_data->bs_rel_bord[1][i] = 2 * get_bits(gb, 2) + 2; |
| 642 |
| 643 ch_data->bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env[1]]); |
| 644 |
| 645 for (i = 0; i < ch_data->bs_num_env[1]; i++) |
| 646 ch_data->bs_freq_res[ch_data->bs_num_env[1] - i] = get_bits1(gb); |
| 647 break; |
| 648 case VARFIX: |
| 649 ch_data->bs_var_bord[0] = get_bits(gb, 2); |
| 650 ch_data->bs_num_rel[0] = get_bits(gb, 2); |
| 651 ch_data->bs_num_env[1] = ch_data->bs_num_rel[0] + 1; |
| 652 |
| 653 for (i = 0; i < ch_data->bs_num_rel[0]; i++) |
| 654 ch_data->bs_rel_bord[0][i] = 2 * get_bits(gb, 2) + 2; |
| 655 |
| 656 ch_data->bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env[1]]); |
| 657 |
| 658 get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env[1]); |
| 659 break; |
| 660 case VARVAR: |
| 661 ch_data->bs_var_bord[0] = get_bits(gb, 2); |
| 662 ch_data->bs_var_bord[1] = get_bits(gb, 2); |
| 663 ch_data->bs_num_rel[0] = get_bits(gb, 2); |
| 664 ch_data->bs_num_rel[1] = get_bits(gb, 2); |
| 665 ch_data->bs_num_env[1] = ch_data->bs_num_rel[0] + ch_data->bs_num_rel[1
] + 1; |
| 666 |
| 667 for (i = 0; i < ch_data->bs_num_rel[0]; i++) |
| 668 ch_data->bs_rel_bord[0][i] = 2 * get_bits(gb, 2) + 2; |
| 669 for (i = 0; i < ch_data->bs_num_rel[1]; i++) |
| 670 ch_data->bs_rel_bord[1][i] = 2 * get_bits(gb, 2) + 2; |
| 671 |
| 672 ch_data->bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env[1]]); |
| 673 |
| 674 get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env[1]); |
| 675 break; |
| 676 } |
| 677 |
| 678 if (ch_data->bs_frame_class == FIXFIX && ch_data->bs_num_env[1] > 4) { |
| 679 av_log(ac->avccontext, AV_LOG_ERROR, |
| 680 "Invalid bitstream, too many SBR envelopes in FIXFIX type SBR fra
me: %d\n", |
| 681 ch_data->bs_num_env[1]); |
| 682 return -1; |
| 683 } |
| 684 if (ch_data->bs_frame_class == VARVAR && ch_data->bs_num_env[1] > 5) { |
| 685 av_log(ac->avccontext, AV_LOG_ERROR, |
| 686 "Invalid bitstream, too many SBR envelopes in VARVAR type SBR fra
me: %d\n", |
| 687 ch_data->bs_num_env[1]); |
| 688 return -1; |
| 689 } |
| 690 |
| 691 ch_data->bs_num_noise = (ch_data->bs_num_env[1] > 1) + 1; |
| 692 |
| 693 return 0; |
| 694 } |
| 695 |
| 696 static void copy_sbr_grid(SBRData *dst, const SBRData *src) { |
| 697 //These variables are saved from the previous frame rather than copied |
| 698 dst->bs_freq_res[0] = dst->bs_freq_res[dst->bs_num_env[1]]; |
| 699 dst->bs_num_env[0] = dst->bs_num_env[1]; |
| 700 |
| 701 //These variables are read from the bitstream and therefore copied |
| 702 memcpy(dst->bs_freq_res+1, src->bs_freq_res+1, sizeof(dst->bs_freq_res)-size
of(*dst->bs_freq_res)); |
| 703 memcpy(dst->bs_num_env+1, src->bs_num_env+1, sizeof(dst->bs_num_env)- size
of(*dst->bs_num_env)); |
| 704 memcpy(dst->bs_var_bord, src->bs_var_bord, sizeof(dst->bs_var_bord)); |
| 705 memcpy(dst->bs_rel_bord, src->bs_rel_bord, sizeof(dst->bs_rel_bord)); |
| 706 memcpy(dst->bs_num_rel, src->bs_num_rel, sizeof(dst->bs_rel_bord)); |
| 707 dst->bs_amp_res = src->bs_amp_res; |
| 708 dst->bs_num_noise = src->bs_num_noise; |
| 709 dst->bs_pointer = src->bs_pointer; |
| 710 dst->bs_frame_class = src->bs_frame_class; |
| 711 } |
| 712 |
| 713 /// Read how the envelope and noise floor data is delta coded |
| 714 static void read_sbr_dtdf(SpectralBandReplication *sbr, GetBitContext *gb, |
| 715 SBRData *ch_data) |
| 716 { |
| 717 get_bits1_vector(gb, ch_data->bs_df_env, ch_data->bs_num_env[1]); |
| 718 get_bits1_vector(gb, ch_data->bs_df_noise, ch_data->bs_num_noise); |
| 719 } |
| 720 |
| 721 /// Read inverse filtering data |
| 722 static void read_sbr_invf(SpectralBandReplication *sbr, GetBitContext *gb, |
| 723 SBRData *ch_data) |
| 724 { |
| 725 int i; |
| 726 |
| 727 memcpy(ch_data->bs_invf_mode[1], ch_data->bs_invf_mode[0], 5 * sizeof(uint8_
t)); |
| 728 for (i = 0; i < sbr->n_q; i++) |
| 729 ch_data->bs_invf_mode[0][i] = get_bits(gb, 2); |
| 730 } |
| 731 |
| 732 static void read_sbr_envelope(SpectralBandReplication *sbr, GetBitContext *gb, |
| 733 SBRData *ch_data, int ch) |
| 734 { |
| 735 int bits; |
| 736 int i, j, k; |
| 737 VLC_TYPE (*t_huff)[2], (*f_huff)[2]; |
| 738 int t_lav, f_lav; |
| 739 const int delta = (ch == 1 && sbr->bs_coupling == 1) + 1; |
| 740 const int odd = sbr->n[1] & 1; |
| 741 |
| 742 if (sbr->bs_coupling && ch) { |
| 743 if (ch_data->bs_amp_res) { |
| 744 bits = 5; |
| 745 t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_3_0DB].table; |
| 746 t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_3_0DB]; |
| 747 f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table; |
| 748 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB]; |
| 749 } else { |
| 750 bits = 6; |
| 751 t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_1_5DB].table; |
| 752 t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_1_5DB]; |
| 753 f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_1_5DB].table; |
| 754 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_1_5DB]; |
| 755 } |
| 756 } else { |
| 757 if (ch_data->bs_amp_res) { |
| 758 bits = 6; |
| 759 t_huff = vlc_sbr[T_HUFFMAN_ENV_3_0DB].table; |
| 760 t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_3_0DB]; |
| 761 f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table; |
| 762 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB]; |
| 763 } else { |
| 764 bits = 7; |
| 765 t_huff = vlc_sbr[T_HUFFMAN_ENV_1_5DB].table; |
| 766 t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_1_5DB]; |
| 767 f_huff = vlc_sbr[F_HUFFMAN_ENV_1_5DB].table; |
| 768 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_1_5DB]; |
| 769 } |
| 770 } |
| 771 |
| 772 for (i = 0; i < ch_data->bs_num_env[1]; i++) { |
| 773 if (ch_data->bs_df_env[i]) { |
| 774 // bs_freq_res[0] == bs_freq_res[bs_num_env[1]] from prev frame |
| 775 if (ch_data->bs_freq_res[i + 1] == ch_data->bs_freq_res[i]) { |
| 776 for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) |
| 777 ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][j] + delt
a * (get_vlc2(gb, t_huff, 9, 3) - t_lav); |
| 778 } else if (ch_data->bs_freq_res[i + 1]) { |
| 779 for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) { |
| 780 k = (j + odd) >> 1; // find k such that f_tablelow[k] <= f_t
ablehigh[j] < f_tablelow[k + 1] |
| 781 ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delt
a * (get_vlc2(gb, t_huff, 9, 3) - t_lav); |
| 782 } |
| 783 } else { |
| 784 for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) { |
| 785 k = j ? 2*j - odd : 0; // find k such that f_tablehigh[k] ==
f_tablelow[j] |
| 786 ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delt
a * (get_vlc2(gb, t_huff, 9, 3) - t_lav); |
| 787 } |
| 788 } |
| 789 } else { |
| 790 ch_data->env_facs[i + 1][0] = delta * get_bits(gb, bits); // bs_env_
start_value_balance |
| 791 for (j = 1; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) |
| 792 ch_data->env_facs[i + 1][j] = ch_data->env_facs[i + 1][j - 1] +
delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav); |
| 793 } |
| 794 } |
| 795 |
| 796 //assign 0th elements of env_facs from last elements |
| 797 memcpy(ch_data->env_facs[0], ch_data->env_facs[ch_data->bs_num_env[1]], |
| 798 sizeof(ch_data->env_facs[0])); |
| 799 } |
| 800 |
| 801 static void read_sbr_noise(SpectralBandReplication *sbr, GetBitContext *gb, |
| 802 SBRData *ch_data, int ch) |
| 803 { |
| 804 int i, j; |
| 805 VLC_TYPE (*t_huff)[2], (*f_huff)[2]; |
| 806 int t_lav, f_lav; |
| 807 int delta = (ch == 1 && sbr->bs_coupling == 1) + 1; |
| 808 |
| 809 if (sbr->bs_coupling && ch) { |
| 810 t_huff = vlc_sbr[T_HUFFMAN_NOISE_BAL_3_0DB].table; |
| 811 t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_BAL_3_0DB]; |
| 812 f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table; |
| 813 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB]; |
| 814 } else { |
| 815 t_huff = vlc_sbr[T_HUFFMAN_NOISE_3_0DB].table; |
| 816 t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_3_0DB]; |
| 817 f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table; |
| 818 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB]; |
| 819 } |
| 820 |
| 821 for (i = 0; i < ch_data->bs_num_noise; i++) { |
| 822 if (ch_data->bs_df_noise[i]) { |
| 823 for (j = 0; j < sbr->n_q; j++) |
| 824 ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i][j] + delt
a * (get_vlc2(gb, t_huff, 9, 2) - t_lav); |
| 825 } else { |
| 826 ch_data->noise_facs[i + 1][0] = delta * get_bits(gb, 5); // bs_noise
_start_value_balance or bs_noise_start_value_level |
| 827 for (j = 1; j < sbr->n_q; j++) |
| 828 ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i + 1][j - 1
] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav); |
| 829 } |
| 830 } |
| 831 |
| 832 //assign 0th elements of noise_facs from last elements |
| 833 memcpy(ch_data->noise_facs[0], ch_data->noise_facs[ch_data->bs_num_noise], |
| 834 sizeof(ch_data->noise_facs[0])); |
| 835 } |
| 836 |
| 837 static void read_sbr_extension(AACContext *ac, SpectralBandReplication *sbr, |
| 838 GetBitContext *gb, |
| 839 int bs_extension_id, int *num_bits_left) |
| 840 { |
| 841 //TODO - implement ps_data for parametric stereo parsing |
| 842 switch (bs_extension_id) { |
| 843 case EXTENSION_ID_PS: |
| 844 #if 0 |
| 845 *num_bits_left -= ff_ps_data(gb, ps); |
| 846 #else |
| 847 av_log_missing_feature(ac->avccontext, "Parametric Stereo is", 0); |
| 848 skip_bits_long(gb, *num_bits_left); // bs_fill_bits |
| 849 *num_bits_left = 0; |
| 850 #endif |
| 851 break; |
| 852 default: |
| 853 av_log_missing_feature(ac->avccontext, "Reserved SBR extensions are", 1)
; |
| 854 skip_bits_long(gb, *num_bits_left); // bs_fill_bits |
| 855 *num_bits_left = 0; |
| 856 break; |
| 857 } |
| 858 } |
| 859 |
| 860 static int read_sbr_single_channel_element(AACContext *ac, |
| 861 SpectralBandReplication *sbr, |
| 862 GetBitContext *gb) |
| 863 { |
| 864 if (get_bits1(gb)) // bs_data_extra |
| 865 skip_bits(gb, 4); // bs_reserved |
| 866 |
| 867 if (read_sbr_grid(ac, sbr, gb, &sbr->data[0])) |
| 868 return -1; |
| 869 read_sbr_dtdf(sbr, gb, &sbr->data[0]); |
| 870 read_sbr_invf(sbr, gb, &sbr->data[0]); |
| 871 read_sbr_envelope(sbr, gb, &sbr->data[0], 0); |
| 872 read_sbr_noise(sbr, gb, &sbr->data[0], 0); |
| 873 |
| 874 if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb))) |
| 875 get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]); |
| 876 |
| 877 return 0; |
| 878 } |
| 879 |
| 880 static int read_sbr_channel_pair_element(AACContext *ac, |
| 881 SpectralBandReplication *sbr, |
| 882 GetBitContext *gb) |
| 883 { |
| 884 if (get_bits1(gb)) // bs_data_extra |
| 885 skip_bits(gb, 8); // bs_reserved |
| 886 |
| 887 if ((sbr->bs_coupling = get_bits1(gb))) { |
| 888 if (read_sbr_grid(ac, sbr, gb, &sbr->data[0])) |
| 889 return -1; |
| 890 copy_sbr_grid(&sbr->data[1], &sbr->data[0]); |
| 891 read_sbr_dtdf(sbr, gb, &sbr->data[0]); |
| 892 read_sbr_dtdf(sbr, gb, &sbr->data[1]); |
| 893 read_sbr_invf(sbr, gb, &sbr->data[0]); |
| 894 memcpy(sbr->data[1].bs_invf_mode[1], sbr->data[1].bs_invf_mode[0], sizeo
f(sbr->data[1].bs_invf_mode[0])); |
| 895 memcpy(sbr->data[1].bs_invf_mode[0], sbr->data[0].bs_invf_mode[0], sizeo
f(sbr->data[1].bs_invf_mode[0])); |
| 896 read_sbr_envelope(sbr, gb, &sbr->data[0], 0); |
| 897 read_sbr_noise(sbr, gb, &sbr->data[0], 0); |
| 898 read_sbr_envelope(sbr, gb, &sbr->data[1], 1); |
| 899 read_sbr_noise(sbr, gb, &sbr->data[1], 1); |
| 900 } else { |
| 901 if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]) || |
| 902 read_sbr_grid(ac, sbr, gb, &sbr->data[1])) |
| 903 return -1; |
| 904 read_sbr_dtdf(sbr, gb, &sbr->data[0]); |
| 905 read_sbr_dtdf(sbr, gb, &sbr->data[1]); |
| 906 read_sbr_invf(sbr, gb, &sbr->data[0]); |
| 907 read_sbr_invf(sbr, gb, &sbr->data[1]); |
| 908 read_sbr_envelope(sbr, gb, &sbr->data[0], 0); |
| 909 read_sbr_envelope(sbr, gb, &sbr->data[1], 1); |
| 910 read_sbr_noise(sbr, gb, &sbr->data[0], 0); |
| 911 read_sbr_noise(sbr, gb, &sbr->data[1], 1); |
| 912 } |
| 913 |
| 914 if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb))) |
| 915 get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]); |
| 916 if ((sbr->data[1].bs_add_harmonic_flag = get_bits1(gb))) |
| 917 get_bits1_vector(gb, sbr->data[1].bs_add_harmonic, sbr->n[1]); |
| 918 |
| 919 return 0; |
| 920 } |
| 921 |
| 922 static unsigned int read_sbr_data(AACContext *ac, SpectralBandReplication *sbr, |
| 923 GetBitContext *gb, int id_aac) |
| 924 { |
| 925 unsigned int cnt = get_bits_count(gb); |
| 926 |
| 927 if (id_aac == TYPE_SCE || id_aac == TYPE_CCE) { |
| 928 if (read_sbr_single_channel_element(ac, sbr, gb)) { |
| 929 sbr->start = 0; |
| 930 return get_bits_count(gb) - cnt; |
| 931 } |
| 932 } else if (id_aac == TYPE_CPE) { |
| 933 if (read_sbr_channel_pair_element(ac, sbr, gb)) { |
| 934 sbr->start = 0; |
| 935 return get_bits_count(gb) - cnt; |
| 936 } |
| 937 } else { |
| 938 av_log(ac->avccontext, AV_LOG_ERROR, |
| 939 "Invalid bitstream - cannot apply SBR to element type %d\n", id_aac)
; |
| 940 sbr->start = 0; |
| 941 return get_bits_count(gb) - cnt; |
| 942 } |
| 943 if (get_bits1(gb)) { // bs_extended_data |
| 944 int num_bits_left = get_bits(gb, 4); // bs_extension_size |
| 945 if (num_bits_left == 15) |
| 946 num_bits_left += get_bits(gb, 8); // bs_esc_count |
| 947 |
| 948 num_bits_left <<= 3; |
| 949 while (num_bits_left > 7) { |
| 950 num_bits_left -= 2; |
| 951 read_sbr_extension(ac, sbr, gb, get_bits(gb, 2), &num_bits_left); //
bs_extension_id |
| 952 } |
| 953 } |
| 954 |
| 955 return get_bits_count(gb) - cnt; |
| 956 } |
| 957 |
| 958 static void sbr_reset(AACContext *ac, SpectralBandReplication *sbr) |
| 959 { |
| 960 int err; |
| 961 err = sbr_make_f_master(ac, sbr, &sbr->spectrum_params); |
| 962 if (err >= 0) |
| 963 err = sbr_make_f_derived(ac, sbr); |
| 964 if (err < 0) { |
| 965 av_log(ac->avccontext, AV_LOG_ERROR, |
| 966 "SBR reset failed. Switching SBR to pure upsampling mode.\n"); |
| 967 sbr->start = 0; |
| 968 } |
| 969 } |
| 970 |
| 971 /** |
| 972 * Decode Spectral Band Replication extension data; reference: table 4.55. |
| 973 * |
| 974 * @param crc flag indicating the presence of CRC checksum |
| 975 * @param cnt length of TYPE_FIL syntactic element in bytes |
| 976 * |
| 977 * @return Returns number of bytes consumed from the TYPE_FIL element. |
| 978 */ |
| 979 int ff_decode_sbr_extension(AACContext *ac, SpectralBandReplication *sbr, |
| 980 GetBitContext *gb_host, int crc, int cnt, int id_aac
) |
| 981 { |
| 982 unsigned int num_sbr_bits = 0, num_align_bits; |
| 983 unsigned bytes_read; |
| 984 GetBitContext gbc = *gb_host, *gb = &gbc; |
| 985 skip_bits_long(gb_host, cnt*8 - 4); |
| 986 |
| 987 sbr->reset = 0; |
| 988 |
| 989 if (!sbr->sample_rate) |
| 990 sbr->sample_rate = 2 * ac->m4ac.sample_rate; //TODO use the nominal samp
le rate for arbitrary sample rate support |
| 991 if (!ac->m4ac.ext_sample_rate) |
| 992 ac->m4ac.ext_sample_rate = 2 * ac->m4ac.sample_rate; |
| 993 |
| 994 if (crc) { |
| 995 skip_bits(gb, 10); // bs_sbr_crc_bits; TODO - implement CRC check |
| 996 num_sbr_bits += 10; |
| 997 } |
| 998 |
| 999 //Save some state from the previous frame. |
| 1000 sbr->kx[0] = sbr->kx[1]; |
| 1001 sbr->m[0] = sbr->m[1]; |
| 1002 |
| 1003 num_sbr_bits++; |
| 1004 if (get_bits1(gb)) // bs_header_flag |
| 1005 num_sbr_bits += read_sbr_header(sbr, gb); |
| 1006 |
| 1007 if (sbr->reset) |
| 1008 sbr_reset(ac, sbr); |
| 1009 |
| 1010 if (sbr->start) |
| 1011 num_sbr_bits += read_sbr_data(ac, sbr, gb, id_aac); |
| 1012 |
| 1013 num_align_bits = ((cnt << 3) - 4 - num_sbr_bits) & 7; |
| 1014 bytes_read = ((num_sbr_bits + num_align_bits + 4) >> 3); |
| 1015 |
| 1016 if (bytes_read > cnt) { |
| 1017 av_log(ac->avccontext, AV_LOG_ERROR, |
| 1018 "Expected to read %d SBR bytes actually read %d.\n", cnt, bytes_r
ead); |
| 1019 } |
| 1020 return cnt; |
| 1021 } |
| 1022 |
| 1023 /// Time/frequency Grid (14496-3 sp04 p200) |
| 1024 static int sbr_time_freq_grid(AACContext *ac, SpectralBandReplication *sbr, |
| 1025 SBRData *ch_data, int ch) |
| 1026 { |
| 1027 int abs_bord_lead = ch_data->bs_frame_class >= 2 ? ch_data->bs_var_bord[0]
: 0; |
| 1028 // frameLengthFlag ? 15 : 16; 960 sample length frames unsupported; this val
ue is numTimeSlots |
| 1029 int abs_bord_trail = (ch_data->bs_frame_class & 1 ? ch_data->bs_var_bord[1]
: 0) + 16; |
| 1030 int n_rel_lead; |
| 1031 int i; |
| 1032 |
| 1033 if (ch_data->bs_frame_class == FIXFIX) { |
| 1034 n_rel_lead = ch_data->bs_num_env[1] - 1; |
| 1035 } else if (ch_data->bs_frame_class == FIXVAR) { |
| 1036 n_rel_lead = 0; |
| 1037 } else if (ch_data->bs_frame_class < 4) { // VARFIX or VARVAR |
| 1038 n_rel_lead = ch_data->bs_num_rel[0]; |
| 1039 } else { |
| 1040 av_log(ac->avccontext, AV_LOG_ERROR, |
| 1041 "Invalid bs_frame_class for SBR: %d\n", ch_data->bs_frame_class); |
| 1042 return -1; |
| 1043 } |
| 1044 |
| 1045 ch_data->t_env_num_env_old = ch_data->t_env[ch_data->bs_num_env[0]]; |
| 1046 ch_data->t_env[0] = abs_bord_lead; |
| 1047 ch_data->t_env[ch_data->bs_num_env[1]] = abs_bord_trail; |
| 1048 |
| 1049 if (ch_data->bs_frame_class == FIXFIX) { |
| 1050 int temp = (abs_bord_trail + (ch_data->bs_num_env[1] >> 1)) / |
| 1051 ch_data->bs_num_env[1]; |
| 1052 for (i = 0; i < n_rel_lead; i++) |
| 1053 ch_data->t_env[i + 1] = ch_data->t_env[i] + temp; |
| 1054 } else if (ch_data->bs_frame_class > 1) { // VARFIX or VARVAR |
| 1055 for (i = 0; i < n_rel_lead; i++) |
| 1056 ch_data->t_env[i + 1] = ch_data->t_env[i] + ch_data->bs_rel_bord[0][
i]; |
| 1057 } else { // FIXVAR |
| 1058 for (i = 0; i < n_rel_lead; i++) |
| 1059 ch_data->t_env[i + 1] = abs_bord_lead; |
| 1060 } |
| 1061 |
| 1062 if (ch_data->bs_frame_class & 1) { // FIXVAR or VARVAR |
| 1063 for (i = ch_data->bs_num_env[1] - 1; i > n_rel_lead; i--) |
| 1064 ch_data->t_env[i] = ch_data->t_env[i + 1] - |
| 1065 ch_data->bs_rel_bord[1][ch_data->bs_num_env[1] -
1 - i]; |
| 1066 } else { // FIXFIX or VARFIX |
| 1067 for (i = n_rel_lead; i < ch_data->bs_num_env[1]; i++) |
| 1068 ch_data->t_env[i + 1] = abs_bord_trail; |
| 1069 } |
| 1070 |
| 1071 ch_data->t_q[0] = ch_data->t_env[0]; |
| 1072 if (ch_data->bs_num_noise > 1) { // typo in spec bases this on bs_num_env... |
| 1073 unsigned int idx; |
| 1074 if (ch_data->bs_frame_class == FIXFIX) { |
| 1075 idx = ch_data->bs_num_env[1] >> 1; |
| 1076 } else if (ch_data->bs_frame_class & 1) { // FIXVAR or VARVAR |
| 1077 idx = ch_data->bs_num_env[1] - FFMAX(ch_data->bs_pointer - 1, 1); |
| 1078 } else { // VARFIX |
| 1079 if (!ch_data->bs_pointer) |
| 1080 idx = 1; |
| 1081 else if (ch_data->bs_pointer == 1) |
| 1082 idx = ch_data->bs_num_env[1] - 1; |
| 1083 else // bs_pointer > 1 |
| 1084 idx = ch_data->bs_pointer - 1; |
| 1085 } |
| 1086 ch_data->t_q[1] = ch_data->t_env[idx]; |
| 1087 ch_data->t_q[2] = ch_data->t_env[ch_data->bs_num_env[1]]; |
| 1088 } else |
| 1089 ch_data->t_q[1] = ch_data->t_env[ch_data->bs_num_env[1]]; |
| 1090 |
| 1091 return 0; |
| 1092 } |
| 1093 |
| 1094 /// Dequantization and stereo decoding (14496-3 sp04 p203) |
| 1095 static void sbr_dequant(SpectralBandReplication *sbr, int id_aac) |
| 1096 { |
| 1097 int k, e; |
| 1098 int ch; |
| 1099 |
| 1100 if (id_aac == TYPE_CPE && sbr->bs_coupling) { |
| 1101 float alpha = sbr->data[0].bs_amp_res ? 1.0f : 0.5f; |
| 1102 float pan_offset = sbr->data[0].bs_amp_res ? 12.0f : 24.0f; |
| 1103 for (e = 1; e <= sbr->data[0].bs_num_env[1]; e++) { |
| 1104 for (k = 0; k < sbr->n[sbr->data[0].bs_freq_res[e]]; k++) { |
| 1105 float temp1 = exp2f(sbr->data[0].env_facs[e][k] * alpha + 7.0f); |
| 1106 float temp2 = exp2f((pan_offset - sbr->data[1].env_facs[e][k]) *
alpha); |
| 1107 float fac = temp1 / (1.0f + temp2); |
| 1108 sbr->data[0].env_facs[e][k] = fac; |
| 1109 sbr->data[1].env_facs[e][k] = fac * temp2; |
| 1110 } |
| 1111 } |
| 1112 for (e = 1; e <= sbr->data[0].bs_num_noise; e++) { |
| 1113 for (k = 0; k < sbr->n_q; k++) { |
| 1114 float temp1 = exp2f(NOISE_FLOOR_OFFSET - sbr->data[0].noise_facs
[e][k] + 1); |
| 1115 float temp2 = exp2f(12 - sbr->data[1].noise_facs[e][k]); |
| 1116 float fac = temp1 / (1.0f + temp2); |
| 1117 sbr->data[0].noise_facs[e][k] = fac; |
| 1118 sbr->data[1].noise_facs[e][k] = fac * temp2; |
| 1119 } |
| 1120 } |
| 1121 } else { // SCE or one non-coupled CPE |
| 1122 for (ch = 0; ch < (id_aac == TYPE_CPE) + 1; ch++) { |
| 1123 float alpha = sbr->data[ch].bs_amp_res ? 1.0f : 0.5f; |
| 1124 for (e = 1; e <= sbr->data[ch].bs_num_env[1]; e++) |
| 1125 for (k = 0; k < sbr->n[sbr->data[ch].bs_freq_res[e]]; k++) |
| 1126 sbr->data[ch].env_facs[e][k] = |
| 1127 exp2f(alpha * sbr->data[ch].env_facs[e][k] + 6.0f); |
| 1128 for (e = 1; e <= sbr->data[ch].bs_num_noise; e++) |
| 1129 for (k = 0; k < sbr->n_q; k++) |
| 1130 sbr->data[ch].noise_facs[e][k] = |
| 1131 exp2f(NOISE_FLOOR_OFFSET - sbr->data[ch].noise_facs[e][k
]); |
| 1132 } |
| 1133 } |
| 1134 } |
| 1135 |
| 1136 /** |
| 1137 * Analysis QMF Bank (14496-3 sp04 p206) |
| 1138 * |
| 1139 * @param x pointer to the beginning of the first sample window |
| 1140 * @param W array of complex-valued samples split into subbands |
| 1141 */ |
| 1142 static void sbr_qmf_analysis(DSPContext *dsp, RDFTContext *rdft, const float *in
, float *x, |
| 1143 float z[320], float W[2][32][32][2], |
| 1144 float bias, float scale) |
| 1145 { |
| 1146 int i, k; |
| 1147 memcpy(W[0], W[1], sizeof(W[0])); |
| 1148 memcpy(x , x+1024, (320-32)*sizeof(x[0])); |
| 1149 if (scale != 1.0f || bias != 0.0f) |
| 1150 for (i = 0; i < 1024; i++) |
| 1151 x[288 + i] = (in[i] - bias) * scale; |
| 1152 else |
| 1153 memcpy(x+288, in, 1024*sizeof(*x)); |
| 1154 for (i = 0; i < 32; i++) { // numTimeSlots*RATE = 16*2 as 960 sample frames |
| 1155 // are not supported |
| 1156 float re, im; |
| 1157 dsp->vector_fmul_reverse(z, sbr_qmf_window_ds, x, 320); |
| 1158 for (k = 0; k < 64; k++) { |
| 1159 float f = z[k] + z[k + 64] + z[k + 128] + z[k + 192] + z[k + 256]; |
| 1160 z[k] = f * analysis_cos_pre[k]; |
| 1161 z[k+64] = f; |
| 1162 } |
| 1163 ff_rdft_calc(rdft, z); |
| 1164 re = z[0] * 0.5f; |
| 1165 im = 0.5f * dsp->scalarproduct_float(z+64, analysis_sin_pre, 64); |
| 1166 W[1][i][0][0] = re * analysis_cossin_post[0][0] - im * analysis_cossin_p
ost[0][1]; |
| 1167 W[1][i][0][1] = re * analysis_cossin_post[0][1] + im * analysis_cossin_p
ost[0][0]; |
| 1168 for (k = 1; k < 32; k++) { |
| 1169 re = z[2*k ] - re; |
| 1170 im = z[2*k+1] - im; |
| 1171 W[1][i][k][0] = re * analysis_cossin_post[k][0] - im * analysis_coss
in_post[k][1]; |
| 1172 W[1][i][k][1] = re * analysis_cossin_post[k][1] + im * analysis_coss
in_post[k][0]; |
| 1173 } |
| 1174 x += 32; |
| 1175 } |
| 1176 } |
| 1177 |
| 1178 /** |
| 1179 * Synthesis QMF Bank (14496-3 sp04 p206) and Downsampled Synthesis QMF Bank |
| 1180 * (14496-3 sp04 p206) |
| 1181 */ |
| 1182 static void sbr_qmf_synthesis(DSPContext *dsp, FFTContext *mdct, |
| 1183 float *out, float X[2][32][64], |
| 1184 float mdct_buf[2][64], |
| 1185 float *v0, int *v_off, const unsigned int div, |
| 1186 float bias, float scale) |
| 1187 { |
| 1188 int i, n; |
| 1189 const float *sbr_qmf_window = div ? sbr_qmf_window_ds : sbr_qmf_window_us; |
| 1190 int scale_and_bias = scale != 1.0f || bias != 0.0f; |
| 1191 float *v; |
| 1192 for (i = 0; i < 32; i++) { |
| 1193 if (*v_off == 0) { |
| 1194 int saved_samples = (1280 - 128) >> div; |
| 1195 memcpy(&v0[SBR_SYNTHESIS_BUF_SIZE - saved_samples], v0, saved_sample
s * sizeof(float)); |
| 1196 *v_off = SBR_SYNTHESIS_BUF_SIZE - saved_samples - (128 >> div); |
| 1197 } else { |
| 1198 *v_off -= 128 >> div; |
| 1199 } |
| 1200 v = v0 + *v_off; |
| 1201 for (n = 1; n < 64 >> div; n+=2) { |
| 1202 X[1][i][n] = -X[1][i][n]; |
| 1203 } |
| 1204 if (div) { |
| 1205 memset(X[0][i]+32, 0, 32*sizeof(float)); |
| 1206 memset(X[1][i]+32, 0, 32*sizeof(float)); |
| 1207 } |
| 1208 ff_imdct_half(mdct, mdct_buf[0], X[0][i]); |
| 1209 ff_imdct_half(mdct, mdct_buf[1], X[1][i]); |
| 1210 if (div) { |
| 1211 for (n = 0; n < 32; n++) { |
| 1212 v[ n] = -mdct_buf[0][63 - 2*n] + mdct_buf[1][2*n ]; |
| 1213 v[ 63 - n] = mdct_buf[0][62 - 2*n] + mdct_buf[1][2*n + 1]; |
| 1214 } |
| 1215 } else { |
| 1216 for (n = 0; n < 64; n++) { |
| 1217 v[ n] = -mdct_buf[0][63 - n] + mdct_buf[1][ n ]; |
| 1218 v[127 - n] = mdct_buf[0][63 - n] + mdct_buf[1][ n ]; |
| 1219 } |
| 1220 } |
| 1221 dsp->vector_fmul_add(out, v , sbr_qmf_window
, zero64, 64 >> div); |
| 1222 dsp->vector_fmul_add(out, v + ( 192 >> div), sbr_qmf_window + ( 64 >> di
v), out , 64 >> div); |
| 1223 dsp->vector_fmul_add(out, v + ( 256 >> div), sbr_qmf_window + (128 >> di
v), out , 64 >> div); |
| 1224 dsp->vector_fmul_add(out, v + ( 448 >> div), sbr_qmf_window + (192 >> di
v), out , 64 >> div); |
| 1225 dsp->vector_fmul_add(out, v + ( 512 >> div), sbr_qmf_window + (256 >> di
v), out , 64 >> div); |
| 1226 dsp->vector_fmul_add(out, v + ( 704 >> div), sbr_qmf_window + (320 >> di
v), out , 64 >> div); |
| 1227 dsp->vector_fmul_add(out, v + ( 768 >> div), sbr_qmf_window + (384 >> di
v), out , 64 >> div); |
| 1228 dsp->vector_fmul_add(out, v + ( 960 >> div), sbr_qmf_window + (448 >> di
v), out , 64 >> div); |
| 1229 dsp->vector_fmul_add(out, v + (1024 >> div), sbr_qmf_window + (512 >> di
v), out , 64 >> div); |
| 1230 dsp->vector_fmul_add(out, v + (1216 >> div), sbr_qmf_window + (576 >> di
v), out , 64 >> div); |
| 1231 if (scale_and_bias) |
| 1232 for (n = 0; n < 64 >> div; n++) |
| 1233 out[n] = out[n] * scale + bias; |
| 1234 out += 64 >> div; |
| 1235 } |
| 1236 } |
| 1237 |
| 1238 static void autocorrelate(const float x[40][2], float phi[3][2][2], int lag) |
| 1239 { |
| 1240 int i; |
| 1241 float real_sum = 0.0f; |
| 1242 float imag_sum = 0.0f; |
| 1243 if (lag) { |
| 1244 for (i = 1; i < 38; i++) { |
| 1245 real_sum += x[i][0] * x[i+lag][0] + x[i][1] * x[i+lag][1]; |
| 1246 imag_sum += x[i][0] * x[i+lag][1] - x[i][1] * x[i+lag][0]; |
| 1247 } |
| 1248 phi[2-lag][1][0] = real_sum + x[ 0][0] * x[lag][0] + x[ 0][1] * x[lag][1
]; |
| 1249 phi[2-lag][1][1] = imag_sum + x[ 0][0] * x[lag][1] - x[ 0][1] * x[lag][0
]; |
| 1250 if (lag == 1) { |
| 1251 phi[0][0][0] = real_sum + x[38][0] * x[39][0] + x[38][1] * x[39][1]; |
| 1252 phi[0][0][1] = imag_sum + x[38][0] * x[39][1] - x[38][1] * x[39][0]; |
| 1253 } |
| 1254 } else { |
| 1255 for (i = 1; i < 38; i++) { |
| 1256 real_sum += x[i][0] * x[i][0] + x[i][1] * x[i][1]; |
| 1257 } |
| 1258 phi[2][1][0] = real_sum + x[ 0][0] * x[ 0][0] + x[ 0][1] * x[ 0][1]; |
| 1259 phi[1][0][0] = real_sum + x[38][0] * x[38][0] + x[38][1] * x[38][1]; |
| 1260 } |
| 1261 } |
| 1262 |
| 1263 /** High Frequency Generation (14496-3 sp04 p214+) and Inverse Filtering |
| 1264 * (14496-3 sp04 p214) |
| 1265 * Warning: This routine does not seem numerically stable. |
| 1266 */ |
| 1267 static void sbr_hf_inverse_filter(float (*alpha0)[2], float (*alpha1)[2], |
| 1268 const float X_low[32][40][2], int k0) |
| 1269 { |
| 1270 int k; |
| 1271 for (k = 0; k < k0; k++) { |
| 1272 float phi[3][2][2], dk; |
| 1273 |
| 1274 autocorrelate(X_low[k], phi, 0); |
| 1275 autocorrelate(X_low[k], phi, 1); |
| 1276 autocorrelate(X_low[k], phi, 2); |
| 1277 |
| 1278 dk = phi[2][1][0] * phi[1][0][0] - |
| 1279 (phi[1][1][0] * phi[1][1][0] + phi[1][1][1] * phi[1][1][1]) / 1.000
001f; |
| 1280 |
| 1281 if (!dk) { |
| 1282 alpha1[k][0] = 0; |
| 1283 alpha1[k][1] = 0; |
| 1284 } else { |
| 1285 float temp_real, temp_im; |
| 1286 temp_real = phi[0][0][0] * phi[1][1][0] - |
| 1287 phi[0][0][1] * phi[1][1][1] - |
| 1288 phi[0][1][0] * phi[1][0][0]; |
| 1289 temp_im = phi[0][0][0] * phi[1][1][1] + |
| 1290 phi[0][0][1] * phi[1][1][0] - |
| 1291 phi[0][1][1] * phi[1][0][0]; |
| 1292 |
| 1293 alpha1[k][0] = temp_real / dk; |
| 1294 alpha1[k][1] = temp_im / dk; |
| 1295 } |
| 1296 |
| 1297 if (!phi[1][0][0]) { |
| 1298 alpha0[k][0] = 0; |
| 1299 alpha0[k][1] = 0; |
| 1300 } else { |
| 1301 float temp_real, temp_im; |
| 1302 temp_real = phi[0][0][0] + alpha1[k][0] * phi[1][1][0] + |
| 1303 alpha1[k][1] * phi[1][1][1]; |
| 1304 temp_im = phi[0][0][1] + alpha1[k][1] * phi[1][1][0] - |
| 1305 alpha1[k][0] * phi[1][1][1]; |
| 1306 |
| 1307 alpha0[k][0] = -temp_real / phi[1][0][0]; |
| 1308 alpha0[k][1] = -temp_im / phi[1][0][0]; |
| 1309 } |
| 1310 |
| 1311 if (alpha1[k][0] * alpha1[k][0] + alpha1[k][1] * alpha1[k][1] >= 16.0f |
| |
| 1312 alpha0[k][0] * alpha0[k][0] + alpha0[k][1] * alpha0[k][1] >= 16.0f) { |
| 1313 alpha1[k][0] = 0; |
| 1314 alpha1[k][1] = 0; |
| 1315 alpha0[k][0] = 0; |
| 1316 alpha0[k][1] = 0; |
| 1317 } |
| 1318 } |
| 1319 } |
| 1320 |
| 1321 /// Chirp Factors (14496-3 sp04 p214) |
| 1322 static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data) |
| 1323 { |
| 1324 int i; |
| 1325 float new_bw; |
| 1326 static const float bw_tab[] = { 0.0f, 0.75f, 0.9f, 0.98f }; |
| 1327 |
| 1328 for (i = 0; i < sbr->n_q; i++) { |
| 1329 if (ch_data->bs_invf_mode[0][i] + ch_data->bs_invf_mode[1][i] == 1) { |
| 1330 new_bw = 0.6f; |
| 1331 } else |
| 1332 new_bw = bw_tab[ch_data->bs_invf_mode[0][i]]; |
| 1333 |
| 1334 if (new_bw < ch_data->bw_array[i]) { |
| 1335 new_bw = 0.75f * new_bw + 0.25f * ch_data->bw_array[i]; |
| 1336 } else |
| 1337 new_bw = 0.90625f * new_bw + 0.09375f * ch_data->bw_array[i]; |
| 1338 ch_data->bw_array[i] = new_bw < 0.015625f ? 0.0f : new_bw; |
| 1339 } |
| 1340 } |
| 1341 |
| 1342 /// Generate the subband filtered lowband |
| 1343 static int sbr_lf_gen(AACContext *ac, SpectralBandReplication *sbr, |
| 1344 float X_low[32][40][2], const float W[2][32][32][2]) |
| 1345 { |
| 1346 int i, k; |
| 1347 const int t_HFGen = 8; |
| 1348 const int i_f = 32; |
| 1349 memset(X_low, 0, 32*sizeof(*X_low)); |
| 1350 for (k = 0; k < sbr->kx[1]; k++) { |
| 1351 for (i = t_HFGen; i < i_f + t_HFGen; i++) { |
| 1352 X_low[k][i][0] = W[1][i - t_HFGen][k][0]; |
| 1353 X_low[k][i][1] = W[1][i - t_HFGen][k][1]; |
| 1354 } |
| 1355 } |
| 1356 for (k = 0; k < sbr->kx[0]; k++) { |
| 1357 for (i = 0; i < t_HFGen; i++) { |
| 1358 X_low[k][i][0] = W[0][i + i_f - t_HFGen][k][0]; |
| 1359 X_low[k][i][1] = W[0][i + i_f - t_HFGen][k][1]; |
| 1360 } |
| 1361 } |
| 1362 return 0; |
| 1363 } |
| 1364 |
| 1365 /// High Frequency Generator (14496-3 sp04 p215) |
| 1366 static int sbr_hf_gen(AACContext *ac, SpectralBandReplication *sbr, |
| 1367 float X_high[64][40][2], const float X_low[32][40][2], |
| 1368 const float (*alpha0)[2], const float (*alpha1)[2], |
| 1369 const float bw_array[5], const uint8_t *t_env, |
| 1370 int bs_num_env) |
| 1371 { |
| 1372 int i, j, x; |
| 1373 int g = 0; |
| 1374 int k = sbr->kx[1]; |
| 1375 for (j = 0; j < sbr->num_patches; j++) { |
| 1376 for (x = 0; x < sbr->patch_num_subbands[j]; x++, k++) { |
| 1377 float alpha[4]; |
| 1378 const int p = sbr->patch_start_subband[j] + x; |
| 1379 while (g <= sbr->n_q && k >= sbr->f_tablenoise[g]) |
| 1380 g++; |
| 1381 g--; |
| 1382 |
| 1383 if (g < 0) { |
| 1384 av_log(ac->avccontext, AV_LOG_ERROR, |
| 1385 "ERROR : no subband found for frequency %d\n", k); |
| 1386 return -1; |
| 1387 } |
| 1388 |
| 1389 alpha[0] = alpha1[p][0] * bw_array[g] * bw_array[g]; |
| 1390 alpha[1] = alpha1[p][1] * bw_array[g] * bw_array[g]; |
| 1391 alpha[2] = alpha0[p][0] * bw_array[g]; |
| 1392 alpha[3] = alpha0[p][1] * bw_array[g]; |
| 1393 |
| 1394 for (i = 2 * t_env[0]; i < 2 * t_env[bs_num_env]; i++) { |
| 1395 const int idx = i + ENVELOPE_ADJUSTMENT_OFFSET; |
| 1396 X_high[k][idx][0] = |
| 1397 X_low[p][idx - 2][0] * alpha[0] - |
| 1398 X_low[p][idx - 2][1] * alpha[1] + |
| 1399 X_low[p][idx - 1][0] * alpha[2] - |
| 1400 X_low[p][idx - 1][1] * alpha[3] + |
| 1401 X_low[p][idx][0]; |
| 1402 X_high[k][idx][1] = |
| 1403 X_low[p][idx - 2][1] * alpha[0] + |
| 1404 X_low[p][idx - 2][0] * alpha[1] + |
| 1405 X_low[p][idx - 1][1] * alpha[2] + |
| 1406 X_low[p][idx - 1][0] * alpha[3] + |
| 1407 X_low[p][idx][1]; |
| 1408 } |
| 1409 } |
| 1410 } |
| 1411 if (k < sbr->m[1] + sbr->kx[1]) |
| 1412 memset(X_high + k, 0, (sbr->m[1] + sbr->kx[1] - k) * sizeof(*X_high)); |
| 1413 |
| 1414 return 0; |
| 1415 } |
| 1416 |
| 1417 /// Generate the subband filtered lowband |
| 1418 static int sbr_x_gen(SpectralBandReplication *sbr, float X[2][32][64], |
| 1419 const float X_low[32][40][2], const float Y[2][38][64][2], |
| 1420 int ch) |
| 1421 { |
| 1422 int k, i; |
| 1423 const int i_f = 32; |
| 1424 const int i_Temp = FFMAX(2*sbr->data[ch].t_env_num_env_old - i_f, 0); |
| 1425 memset(X, 0, 2*sizeof(*X)); |
| 1426 for (k = 0; k < sbr->kx[0]; k++) { |
| 1427 for (i = 0; i < i_Temp; i++) { |
| 1428 X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0]; |
| 1429 X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1]; |
| 1430 } |
| 1431 } |
| 1432 for (; k < sbr->kx[0] + sbr->m[0]; k++) { |
| 1433 for (i = 0; i < i_Temp; i++) { |
| 1434 X[0][i][k] = Y[0][i + i_f][k][0]; |
| 1435 X[1][i][k] = Y[0][i + i_f][k][1]; |
| 1436 } |
| 1437 } |
| 1438 |
| 1439 for (k = 0; k < sbr->kx[1]; k++) { |
| 1440 for (i = i_Temp; i < i_f; i++) { |
| 1441 X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0]; |
| 1442 X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1]; |
| 1443 } |
| 1444 } |
| 1445 for (; k < sbr->kx[1] + sbr->m[1]; k++) { |
| 1446 for (i = i_Temp; i < i_f; i++) { |
| 1447 X[0][i][k] = Y[1][i][k][0]; |
| 1448 X[1][i][k] = Y[1][i][k][1]; |
| 1449 } |
| 1450 } |
| 1451 return 0; |
| 1452 } |
| 1453 |
| 1454 /** High Frequency Adjustment (14496-3 sp04 p217) and Mapping |
| 1455 * (14496-3 sp04 p217) |
| 1456 */ |
| 1457 static void sbr_mapping(AACContext *ac, SpectralBandReplication *sbr, |
| 1458 SBRData *ch_data, int e_a[2]) |
| 1459 { |
| 1460 int e, i, m; |
| 1461 |
| 1462 e_a[0] = -(e_a[1] != ch_data->bs_num_env[0]); // l_APrev |
| 1463 e_a[1] = -1; |
| 1464 if ((ch_data->bs_frame_class & 1) && ch_data->bs_pointer) { // FIXVAR or VAR
VAR and bs_pointer != 0 |
| 1465 e_a[1] = ch_data->bs_num_env[1] + 1 - ch_data->bs_pointer; |
| 1466 } else if ((ch_data->bs_frame_class == 2) && (ch_data->bs_pointer > 1)) // V
ARFIX and bs_pointer > 1 |
| 1467 e_a[1] = ch_data->bs_pointer - 1; |
| 1468 |
| 1469 memset(ch_data->s_indexmapped[1], 0, 7*sizeof(ch_data->s_indexmapped[1])); |
| 1470 for (e = 0; e < ch_data->bs_num_env[1]; e++) { |
| 1471 const unsigned int ilim = sbr->n[ch_data->bs_freq_res[e + 1]]; |
| 1472 uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->
f_tablelow; |
| 1473 int k; |
| 1474 |
| 1475 for (i = 0; i < ilim; i++) |
| 1476 for (m = table[i]; m < table[i + 1]; m++) |
| 1477 sbr->e_origmapped[e][m - sbr->kx[1]] = ch_data->env_facs[e+1][i]
; |
| 1478 |
| 1479 // ch_data->bs_num_noise > 1 => 2 noise floors |
| 1480 k = (ch_data->bs_num_noise > 1) && (ch_data->t_env[e] >= ch_data->t_q[1]
); |
| 1481 for (i = 0; i < sbr->n_q; i++) |
| 1482 for (m = sbr->f_tablenoise[i]; m < sbr->f_tablenoise[i + 1]; m++) |
| 1483 sbr->q_mapped[e][m - sbr->kx[1]] = ch_data->noise_facs[k+1][i]; |
| 1484 |
| 1485 for (i = 0; i < sbr->n[1]; i++) { |
| 1486 if (ch_data->bs_add_harmonic_flag) { |
| 1487 const unsigned int m_midpoint = |
| 1488 (sbr->f_tablehigh[i] + sbr->f_tablehigh[i + 1]) >> 1; |
| 1489 |
| 1490 ch_data->s_indexmapped[e + 1][m_midpoint - sbr->kx[1]] = ch_data
->bs_add_harmonic[i] * |
| 1491 (e >= e_a[1] || (ch_data->s_indexmapped[0][m_midpoint - sbr-
>kx[1]] == 1)); |
| 1492 } |
| 1493 } |
| 1494 |
| 1495 for (i = 0; i < ilim; i++) { |
| 1496 int additional_sinusoid_present = 0; |
| 1497 for (m = table[i]; m < table[i + 1]; m++) { |
| 1498 if (ch_data->s_indexmapped[e + 1][m - sbr->kx[1]]) { |
| 1499 additional_sinusoid_present = 1; |
| 1500 break; |
| 1501 } |
| 1502 } |
| 1503 memset(&sbr->s_mapped[e][table[i] - sbr->kx[1]], additional_sinusoid
_present, |
| 1504 (table[i + 1] - table[i]) * sizeof(sbr->s_mapped[e][0])); |
| 1505 } |
| 1506 } |
| 1507 |
| 1508 memcpy(ch_data->s_indexmapped[0], ch_data->s_indexmapped[ch_data->bs_num_env
[1]], sizeof(ch_data->s_indexmapped[0])); |
| 1509 } |
| 1510 |
| 1511 /// Estimation of current envelope (14496-3 sp04 p218) |
| 1512 static void sbr_env_estimate(float (*e_curr)[48], float X_high[64][40][2], |
| 1513 SpectralBandReplication *sbr, SBRData *ch_data) |
| 1514 { |
| 1515 int e, i, m; |
| 1516 |
| 1517 if (sbr->bs_interpol_freq) { |
| 1518 for (e = 0; e < ch_data->bs_num_env[1]; e++) { |
| 1519 const float recip_env_size = 0.5f / (ch_data->t_env[e + 1] - ch_data
->t_env[e]); |
| 1520 int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET; |
| 1521 int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET; |
| 1522 |
| 1523 for (m = 0; m < sbr->m[1]; m++) { |
| 1524 float sum = 0.0f; |
| 1525 |
| 1526 for (i = ilb; i < iub; i++) { |
| 1527 sum += X_high[m + sbr->kx[1]][i][0] * X_high[m + sbr->kx[1]]
[i][0] + |
| 1528 X_high[m + sbr->kx[1]][i][1] * X_high[m + sbr->kx[1]]
[i][1]; |
| 1529 } |
| 1530 e_curr[e][m] = sum * recip_env_size; |
| 1531 } |
| 1532 } |
| 1533 } else { |
| 1534 int k, p; |
| 1535 |
| 1536 for (e = 0; e < ch_data->bs_num_env[1]; e++) { |
| 1537 const int env_size = 2 * (ch_data->t_env[e + 1] - ch_data->t_env[e])
; |
| 1538 int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET; |
| 1539 int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET; |
| 1540 const uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehi
gh : sbr->f_tablelow; |
| 1541 |
| 1542 for (p = 0; p < sbr->n[ch_data->bs_freq_res[e + 1]]; p++) { |
| 1543 float sum = 0.0f; |
| 1544 const int den = env_size * (table[p + 1] - table[p]); |
| 1545 |
| 1546 for (k = table[p]; k < table[p + 1]; k++) { |
| 1547 for (i = ilb; i < iub; i++) { |
| 1548 sum += X_high[k][i][0] * X_high[k][i][0] + |
| 1549 X_high[k][i][1] * X_high[k][i][1]; |
| 1550 } |
| 1551 } |
| 1552 sum /= den; |
| 1553 for (k = table[p]; k < table[p + 1]; k++) { |
| 1554 e_curr[e][k - sbr->kx[1]] = sum; |
| 1555 } |
| 1556 } |
| 1557 } |
| 1558 } |
| 1559 } |
| 1560 |
| 1561 /** |
| 1562 * Calculation of levels of additional HF signal components (14496-3 sp04 p219) |
| 1563 * and Calculation of gain (14496-3 sp04 p219) |
| 1564 */ |
| 1565 static void sbr_gain_calc(AACContext *ac, SpectralBandReplication *sbr, |
| 1566 SBRData *ch_data, const int e_a[2]) |
| 1567 { |
| 1568 int e, k, m; |
| 1569 // max gain limits : -3dB, 0dB, 3dB, inf dB (limiter off) |
| 1570 static const float limgain[4] = { 0.70795, 1.0, 1.41254, 10000000000 }; |
| 1571 |
| 1572 for (e = 0; e < ch_data->bs_num_env[1]; e++) { |
| 1573 int delta = !((e == e_a[1]) || (e == e_a[0])); |
| 1574 for (k = 0; k < sbr->n_lim; k++) { |
| 1575 float gain_boost, gain_max; |
| 1576 float sum[2] = { 0.0f, 0.0f }; |
| 1577 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1]
- sbr->kx[1]; m++) { |
| 1578 const float temp = sbr->e_origmapped[e][m] / (1.0f + sbr->q_mapp
ed[e][m]); |
| 1579 sbr->q_m[e][m] = sqrtf(temp * sbr->q_mapped[e][m]); |
| 1580 sbr->s_m[e][m] = sqrtf(temp * ch_data->s_indexmapped[e + 1][m]); |
| 1581 if (!sbr->s_mapped[e][m]) { |
| 1582 sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] / |
| 1583 ((1.0f + sbr->e_curr[e][m]) * |
| 1584 (1.0f + sbr->q_mapped[e][m] * delta
))); |
| 1585 } else { |
| 1586 sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] * sbr->q_map
ped[e][m] / |
| 1587 ((1.0f + sbr->e_curr[e][m]) * |
| 1588 (1.0f + sbr->q_mapped[e][m]))); |
| 1589 } |
| 1590 } |
| 1591 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1]
- sbr->kx[1]; m++) { |
| 1592 sum[0] += sbr->e_origmapped[e][m]; |
| 1593 sum[1] += sbr->e_curr[e][m]; |
| 1594 } |
| 1595 gain_max = limgain[sbr->bs_limiter_gains] * sqrtf((FLT_EPSILON + sum
[0]) / (FLT_EPSILON + sum[1])); |
| 1596 gain_max = FFMIN(100000, gain_max); |
| 1597 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1]
- sbr->kx[1]; m++) { |
| 1598 float q_m_max = sbr->q_m[e][m] * gain_max / sbr->gain[e][m]; |
| 1599 sbr->q_m[e][m] = FFMIN(sbr->q_m[e][m], q_m_max); |
| 1600 sbr->gain[e][m] = FFMIN(sbr->gain[e][m], gain_max); |
| 1601 } |
| 1602 sum[0] = sum[1] = 0.0f; |
| 1603 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1]
- sbr->kx[1]; m++) { |
| 1604 sum[0] += sbr->e_origmapped[e][m]; |
| 1605 sum[1] += sbr->e_curr[e][m] * sbr->gain[e][m] * sbr->gain[e][m] |
| 1606 + sbr->s_m[e][m] * sbr->s_m[e][m] |
| 1607 + (delta && !sbr->s_m[e][m]) * sbr->q_m[e][m] * sbr->q
_m[e][m]; |
| 1608 } |
| 1609 gain_boost = sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1])); |
| 1610 gain_boost = FFMIN(1.584893192, gain_boost); |
| 1611 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1]
- sbr->kx[1]; m++) { |
| 1612 sbr->gain[e][m] *= gain_boost; |
| 1613 sbr->q_m[e][m] *= gain_boost; |
| 1614 sbr->s_m[e][m] *= gain_boost; |
| 1615 } |
| 1616 } |
| 1617 } |
| 1618 } |
| 1619 |
| 1620 /// Assembling HF Signals (14496-3 sp04 p220) |
| 1621 static void sbr_hf_assemble(float Y[2][38][64][2], const float X_high[64][40][2]
, |
| 1622 SpectralBandReplication *sbr, SBRData *ch_data, |
| 1623 const int e_a[2]) |
| 1624 { |
| 1625 int e, i, j, m; |
| 1626 const int h_SL = 4 * !sbr->bs_smoothing_mode; |
| 1627 const int kx = sbr->kx[1]; |
| 1628 const int m_max = sbr->m[1]; |
| 1629 static const float h_smooth[5] = { |
| 1630 0.33333333333333, |
| 1631 0.30150283239582, |
| 1632 0.21816949906249, |
| 1633 0.11516383427084, |
| 1634 0.03183050093751, |
| 1635 }; |
| 1636 static const int8_t phi[2][4] = { |
| 1637 { 1, 0, -1, 0}, // real |
| 1638 { 0, 1, 0, -1}, // imaginary |
| 1639 }; |
| 1640 float (*g_temp)[48] = ch_data->g_temp, (*q_temp)[48] = ch_data->q_temp; |
| 1641 int indexnoise = ch_data->f_indexnoise; |
| 1642 int indexsine = ch_data->f_indexsine; |
| 1643 memcpy(Y[0], Y[1], sizeof(Y[0])); |
| 1644 |
| 1645 if (sbr->reset) { |
| 1646 for (i = 0; i < h_SL; i++) { |
| 1647 memcpy(g_temp[i + 2*ch_data->t_env[0]], sbr->gain[0], m_max * sizeof
(sbr->gain[0][0])); |
| 1648 memcpy(q_temp[i + 2*ch_data->t_env[0]], sbr->q_m[0], m_max * sizeof
(sbr->q_m[0][0])); |
| 1649 } |
| 1650 } else if (h_SL) { |
| 1651 memcpy(g_temp[2*ch_data->t_env[0]], g_temp[2*ch_data->t_env_num_env_old]
, 4*sizeof(g_temp[0])); |
| 1652 memcpy(q_temp[2*ch_data->t_env[0]], q_temp[2*ch_data->t_env_num_env_old]
, 4*sizeof(q_temp[0])); |
| 1653 } |
| 1654 |
| 1655 for (e = 0; e < ch_data->bs_num_env[1]; e++) { |
| 1656 for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) { |
| 1657 memcpy(g_temp[h_SL + i], sbr->gain[e], m_max * sizeof(sbr->gain[0][0
])); |
| 1658 memcpy(q_temp[h_SL + i], sbr->q_m[e], m_max * sizeof(sbr->q_m[0][0]
)); |
| 1659 } |
| 1660 } |
| 1661 |
| 1662 for (e = 0; e < ch_data->bs_num_env[1]; e++) { |
| 1663 for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) { |
| 1664 int phi_sign = (1 - 2*(kx & 1)); |
| 1665 |
| 1666 if (h_SL && e != e_a[0] && e != e_a[1]) { |
| 1667 for (m = 0; m < m_max; m++) { |
| 1668 const int idx1 = i + h_SL; |
| 1669 float g_filt = 0.0f; |
| 1670 for (j = 0; j <= h_SL; j++) |
| 1671 g_filt += g_temp[idx1 - j][m] * h_smooth[j]; |
| 1672 Y[1][i][m + kx][0] = |
| 1673 X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][0] * g_fi
lt; |
| 1674 Y[1][i][m + kx][1] = |
| 1675 X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][1] * g_fi
lt; |
| 1676 } |
| 1677 } else { |
| 1678 for (m = 0; m < m_max; m++) { |
| 1679 const float g_filt = g_temp[i + h_SL][m]; |
| 1680 Y[1][i][m + kx][0] = |
| 1681 X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][0] * g_fi
lt; |
| 1682 Y[1][i][m + kx][1] = |
| 1683 X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][1] * g_fi
lt; |
| 1684 } |
| 1685 } |
| 1686 |
| 1687 if (e != e_a[0] && e != e_a[1]) { |
| 1688 for (m = 0; m < m_max; m++) { |
| 1689 indexnoise = (indexnoise + 1) & 0x1ff; |
| 1690 if (sbr->s_m[e][m]) { |
| 1691 Y[1][i][m + kx][0] += |
| 1692 sbr->s_m[e][m] * phi[0][indexsine]; |
| 1693 Y[1][i][m + kx][1] += |
| 1694 sbr->s_m[e][m] * (phi[1][indexsine] * phi_sign); |
| 1695 } else { |
| 1696 float q_filt; |
| 1697 if (h_SL) { |
| 1698 const int idx1 = i + h_SL; |
| 1699 q_filt = 0.0f; |
| 1700 for (j = 0; j <= h_SL; j++) |
| 1701 q_filt += q_temp[idx1 - j][m] * h_smooth[j]; |
| 1702 } else { |
| 1703 q_filt = q_temp[i][m]; |
| 1704 } |
| 1705 Y[1][i][m + kx][0] += |
| 1706 q_filt * sbr_noise_table[indexnoise][0]; |
| 1707 Y[1][i][m + kx][1] += |
| 1708 q_filt * sbr_noise_table[indexnoise][1]; |
| 1709 } |
| 1710 phi_sign = -phi_sign; |
| 1711 } |
| 1712 } else { |
| 1713 indexnoise = (indexnoise + m_max) & 0x1ff; |
| 1714 for (m = 0; m < m_max; m++) { |
| 1715 Y[1][i][m + kx][0] += |
| 1716 sbr->s_m[e][m] * phi[0][indexsine]; |
| 1717 Y[1][i][m + kx][1] += |
| 1718 sbr->s_m[e][m] * (phi[1][indexsine] * phi_sign); |
| 1719 phi_sign = -phi_sign; |
| 1720 } |
| 1721 } |
| 1722 indexsine = (indexsine + 1) & 3; |
| 1723 } |
| 1724 } |
| 1725 ch_data->f_indexnoise = indexnoise; |
| 1726 ch_data->f_indexsine = indexsine; |
| 1727 } |
| 1728 |
| 1729 void ff_sbr_dequant(AACContext *ac, SpectralBandReplication *sbr, int id_aac) |
| 1730 { |
| 1731 int ch; |
| 1732 |
| 1733 if (sbr->start) { |
| 1734 for (ch = 0; ch < (id_aac == TYPE_CPE) + 1; ch++) { |
| 1735 sbr_time_freq_grid(ac, sbr, &sbr->data[ch], ch); |
| 1736 } |
| 1737 sbr_dequant(sbr, id_aac); |
| 1738 } |
| 1739 } |
| 1740 |
| 1741 void ff_sbr_apply(AACContext *ac, SpectralBandReplication *sbr, int ch, |
| 1742 const float* in, float* out) |
| 1743 { |
| 1744 int downsampled = ac->m4ac.ext_sample_rate < sbr->sample_rate; |
| 1745 |
| 1746 /* decode channel */ |
| 1747 sbr_qmf_analysis(&ac->dsp, &sbr->rdft, in, sbr->data[ch].analysis_filterbank
_samples, |
| 1748 (float*)sbr->qmf_filter_scratch, |
| 1749 sbr->data[ch].W, ac->add_bias, 1/(-1024 * ac->sf_scale)); |
| 1750 sbr_lf_gen(ac, sbr, sbr->X_low, sbr->data[ch].W); |
| 1751 if (sbr->start) { |
| 1752 sbr_hf_inverse_filter(sbr->alpha0, sbr->alpha1, sbr->X_low, sbr->k[0]); |
| 1753 sbr_chirp(sbr, &sbr->data[ch]); |
| 1754 sbr_hf_gen(ac, sbr, sbr->X_high, sbr->X_low, sbr->alpha0, sbr->alpha1, |
| 1755 sbr->data[ch].bw_array, sbr->data[ch].t_env, |
| 1756 sbr->data[ch].bs_num_env[1]); |
| 1757 |
| 1758 // hf_adj |
| 1759 sbr_mapping(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a); |
| 1760 sbr_env_estimate(sbr->e_curr, sbr->X_high, sbr, &sbr->data[ch]); |
| 1761 sbr_gain_calc(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a); |
| 1762 sbr_hf_assemble(sbr->data[ch].Y, sbr->X_high, sbr, &sbr->data[ch], |
| 1763 sbr->data[ch].e_a); |
| 1764 } |
| 1765 |
| 1766 /* synthesis */ |
| 1767 sbr_x_gen(sbr, sbr->X, sbr->X_low, sbr->data[ch].Y, ch); |
| 1768 sbr_qmf_synthesis(&ac->dsp, &sbr->mdct, out, sbr->X, sbr->qmf_filter_scratch
, |
| 1769 sbr->data[ch].synthesis_filterbank_samples, |
| 1770 &sbr->data[ch].synthesis_filterbank_samples_offset, |
| 1771 downsampled, |
| 1772 ac->add_bias, -1024 * ac->sf_scale); |
| 1773 } |
OLD | NEW |