Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(249)

Side by Side Diff: src/math.js

Issue 78813003: Add trigonometric table to the snapshot. (Closed) Base URL: https://v8.googlecode.com/svn/branches/bleeding_edge
Patch Set: Created 7 years, 1 month ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
OLDNEW
1 // Copyright 2012 the V8 project authors. All rights reserved. 1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without 2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are 3 // modification, are permitted provided that the following conditions are
4 // met: 4 // met:
5 // 5 //
6 // * Redistributions of source code must retain the above copyright 6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer. 7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above 8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following 9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided 10 // disclaimer in the documentation and/or other materials provided
(...skipping 60 matching lines...) Expand 10 before | Expand all | Expand 10 after
71 function MathAtan2(y, x) { 71 function MathAtan2(y, x) {
72 return %Math_atan2(TO_NUMBER_INLINE(y), TO_NUMBER_INLINE(x)); 72 return %Math_atan2(TO_NUMBER_INLINE(y), TO_NUMBER_INLINE(x));
73 } 73 }
74 74
75 // ECMA 262 - 15.8.2.6 75 // ECMA 262 - 15.8.2.6
76 function MathCeil(x) { 76 function MathCeil(x) {
77 return %Math_ceil(TO_NUMBER_INLINE(x)); 77 return %Math_ceil(TO_NUMBER_INLINE(x));
78 } 78 }
79 79
80 // ECMA 262 - 15.8.2.7 80 // ECMA 262 - 15.8.2.7
81 function MathCos(x) { 81 var MathCos;
82 return MathCosImpl(x);
83 }
84 82
85 // ECMA 262 - 15.8.2.8 83 // ECMA 262 - 15.8.2.8
86 function MathExp(x) { 84 function MathExp(x) {
87 return %Math_exp(TO_NUMBER_INLINE(x)); 85 return %Math_exp(TO_NUMBER_INLINE(x));
88 } 86 }
89 87
90 // ECMA 262 - 15.8.2.9 88 // ECMA 262 - 15.8.2.9
91 function MathFloor(x) { 89 function MathFloor(x) {
92 x = TO_NUMBER_INLINE(x); 90 x = TO_NUMBER_INLINE(x);
93 // It's more common to call this with a positive number that's out 91 // It's more common to call this with a positive number that's out
(...skipping 77 matching lines...) Expand 10 before | Expand all | Expand 10 after
171 function MathRandom() { 169 function MathRandom() {
172 return %_RandomHeapNumber(); 170 return %_RandomHeapNumber();
173 } 171 }
174 172
175 // ECMA 262 - 15.8.2.15 173 // ECMA 262 - 15.8.2.15
176 function MathRound(x) { 174 function MathRound(x) {
177 return %RoundNumber(TO_NUMBER_INLINE(x)); 175 return %RoundNumber(TO_NUMBER_INLINE(x));
178 } 176 }
179 177
180 // ECMA 262 - 15.8.2.16 178 // ECMA 262 - 15.8.2.16
181 function MathSin(x) { 179 var MathSin;
182 return MathSinImpl(x);
183 }
184 180
185 // ECMA 262 - 15.8.2.17 181 // ECMA 262 - 15.8.2.17
186 function MathSqrt(x) { 182 function MathSqrt(x) {
187 return %_MathSqrt(TO_NUMBER_INLINE(x)); 183 return %_MathSqrt(TO_NUMBER_INLINE(x));
188 } 184 }
189 185
190 // ECMA 262 - 15.8.2.18 186 // ECMA 262 - 15.8.2.18
191 function MathTan(x) { 187 function MathTan(x) {
192 return MathSinImpl(x) / MathCosImpl(x); 188 return MathSin(x) / MathCos(x);
193 } 189 }
194 190
195 // Non-standard extension. 191 // Non-standard extension.
196 function MathImul(x, y) { 192 function MathImul(x, y) {
197 return %NumberImul(TO_NUMBER_INLINE(x), TO_NUMBER_INLINE(y)); 193 return %NumberImul(TO_NUMBER_INLINE(x), TO_NUMBER_INLINE(y));
198 } 194 }
199 195
200 196
201 var MathSinImpl = function(x) {
202 InitTrigonometricFunctions();
203 return MathSinImpl(x);
204 }
205
206
207 var MathCosImpl = function(x) {
208 InitTrigonometricFunctions();
209 return MathCosImpl(x);
210 }
211
212
213 var InitTrigonometricFunctions; 197 var InitTrigonometricFunctions;
214 198
215 199
216 // Define constants and interpolation functions. 200 // Define constants and interpolation functions.
217 // Also define the initialization function that populates the lookup table 201 // Also define the initialization function that populates the lookup table
218 // and then wires up the function definitions. 202 // and then wires up the function definitions.
219 function SetupTrigonometricFunctions() { 203 function SetupTrigonometricFunctions() {
Sven Panne 2013/11/21 08:09:27 Hmmm, all this lazy-evaluation-by-hand magic is hi
220 var samples = 1800; // Table size. Do not change arbitrarily. 204 var samples = 1800; // Table size. Do not change arbitrarily.
221 var inverse_pi_half = 0.636619772367581343; // 2 / pi 205 var inverse_pi_half = 0.636619772367581343; // 2 / pi
222 var inverse_pi_half_s_26 = 9.48637384723993156e-9; // 2 / pi / (2^26) 206 var inverse_pi_half_s_26 = 9.48637384723993156e-9; // 2 / pi / (2^26)
223 var s_26 = 1 << 26; 207 var s_26 = 1 << 26;
224 var two_step_threshold = 1 << 27; 208 var two_step_threshold = 1 << 27;
225 var index_convert = 1145.915590261646418; // samples / (pi / 2) 209 var index_convert = 1145.915590261646418; // samples / (pi / 2)
226 // pi / 2 rounded up 210 // pi / 2 rounded up
227 var pi_half = 1.570796326794896780; // 0x192d4454fb21f93f 211 var pi_half = 1.570796326794896780; // 0x192d4454fb21f93f
228 // We use two parts for pi/2 to emulate a higher precision. 212 // We use two parts for pi/2 to emulate a higher precision.
229 // pi_half_1 only has 26 significant bits for mantissa. 213 // pi_half_1 only has 26 significant bits for mantissa.
230 // Note that pi_half > pi_half_1 + pi_half_2 214 // Note that pi_half > pi_half_1 + pi_half_2
231 var pi_half_1 = 1.570796325802803040; // 0x00000054fb21f93f 215 var pi_half_1 = 1.570796325802803040; // 0x00000054fb21f93f
232 var pi_half_2 = 9.920935796805404252e-10; // 0x3326a611460b113e 216 var pi_half_2 = 9.920935796805404252e-10; // 0x3326a611460b113e
233 var table_sin; 217
234 var table_cos_interval; 218 var table_sin = new InternalDoubleArray(samples + 2);
219 var table_cos_interval = new InternalDoubleArray(samples + 2);
220 %PopulateTrigonometricTable(table_sin, table_cos_interval, samples);
221
235 222
236 // This implements sine using the following algorithm. 223 // This implements sine using the following algorithm.
237 // 1) Multiplication takes care of to-number conversion. 224 // 1) Multiplication takes care of to-number conversion.
238 // 2) Reduce x to the first quadrant [0, pi/2]. 225 // 2) Reduce x to the first quadrant [0, pi/2].
239 // Conveniently enough, in case of +/-Infinity, we get NaN. 226 // Conveniently enough, in case of +/-Infinity, we get NaN.
240 // Note that we try to use only 26 instead of 52 significant bits for 227 // Note that we try to use only 26 instead of 52 significant bits for
241 // mantissa to avoid rounding errors when multiplying. For very large 228 // mantissa to avoid rounding errors when multiplying. For very large
242 // input we therefore have additional steps. 229 // input we therefore have additional steps.
243 // 3) Replace x by (pi/2-x) if x was in the 2nd or 4th quadrant. 230 // 3) Replace x by (pi/2-x) if x was in the 2nd or 4th quadrant.
244 // 4) Do a table lookup for the closest samples to the left and right of x. 231 // 4) Do a table lookup for the closest samples to the left and right of x.
245 // 5) Find the derivatives at those sampling points by table lookup: 232 // 5) Find the derivatives at those sampling points by table lookup:
246 // dsin(x)/dx = cos(x) = sin(pi/2-x) for x in [0, pi/2]. 233 // dsin(x)/dx = cos(x) = sin(pi/2-x) for x in [0, pi/2].
247 // 6) Use cubic spline interpolation to approximate sin(x). 234 // 6) Use cubic spline interpolation to approximate sin(x).
248 // 7) Negate the result if x was in the 3rd or 4th quadrant. 235 // 7) Negate the result if x was in the 3rd or 4th quadrant.
249 // 8) Get rid of -0 by adding 0. 236 // 8) Get rid of -0 by adding 0.
250 var Interpolation = function(x, phase) { 237 var Interpolation = function(x, phase) {
251 if (x < 0 || x > pi_half) { 238 if (x < 0 || x > pi_half) {
252 var multiple; 239 var multiple;
253 while (x < -two_step_threshold || x > two_step_threshold) { 240 while (x < -two_step_threshold || x > two_step_threshold) {
254 // Let's assume this loop does not terminate. 241 // Let's assume this loop does not terminate.
Sven Panne 2013/11/21 08:09:27 Hmmm, I am still not convinced that the loop will
255 // All numbers x in each loop forms a set S. 242 // All numbers x in each loop forms a set S.
256 // (1) abs(x) > 2^27 for all x in S. 243 // (1) abs(x) > 2^27 for all x in S.
257 // (2) abs(multiple) != 0 since (2^27 * inverse_pi_half_s26) > 1 244 // (2) abs(multiple) != 0 since (2^27 * inverse_pi_half_s26) > 1
258 // (3) multiple is rounded down in 2^26 steps, so the rounding error is 245 // (3) multiple is rounded down in 2^26 steps, so the rounding error is
259 // at most max(ulp, 2^26). 246 // at most max(ulp, 2^26).
260 // (4) so for x > 2^27, we subtract at most (1+pi/4)x and at least 247 // (4) so for x > 2^27, we subtract at most (1+pi/4)x and at least
261 // (1-pi/4)x 248 // (1-pi/4)x
262 // (5) The subtraction results in x' so that abs(x') <= abs(x)*pi/4. 249 // (5) The subtraction results in x' so that abs(x') <= abs(x)*pi/4.
263 // Note that this difference cannot be simply rounded off. 250 // Note that this difference cannot be simply rounded off.
264 // Set S cannot exist since (5) violates (1). Loop must terminate. 251 // Set S cannot exist since (5) violates (1). Loop must terminate.
(...skipping 11 matching lines...) Expand all
276 var t2 = 1 - t1; 263 var t2 = 1 - t1;
277 var y1 = table_sin[index]; 264 var y1 = table_sin[index];
278 var y2 = table_sin[index + 1]; 265 var y2 = table_sin[index + 1];
279 var dy = y2 - y1; 266 var dy = y2 - y1;
280 return (t2 * y1 + t1 * y2 + 267 return (t2 * y1 + t1 * y2 +
281 t1 * t2 * ((table_cos_interval[index] - dy) * t2 + 268 t1 * t2 * ((table_cos_interval[index] - dy) * t2 +
282 (dy - table_cos_interval[index + 1]) * t1)) 269 (dy - table_cos_interval[index + 1]) * t1))
283 * (1 - (phase & 2)) + 0; 270 * (1 - (phase & 2)) + 0;
284 } 271 }
285 272
286 var MathSinInterpolation = function(x) { 273 MathSin = function(x) {
287 x = x * 1; // Convert to number and deal with -0. 274 x = x * 1; // Convert to number and deal with -0.
288 if (%_IsMinusZero(x)) return x; 275 if (%_IsMinusZero(x)) return x;
289 return Interpolation(x, 0); 276 return Interpolation(x, 0);
290 } 277 }
291 278
292 // Cosine is sine with a phase offset. 279 // Cosine is sine with a phase offset.
293 var MathCosInterpolation = function(x) { 280 MathCos = function(x) {
294 x = MathAbs(x); // Convert to number and get rid of -0. 281 x = MathAbs(x); // Convert to number and get rid of -0.
295 return Interpolation(x, 1); 282 return Interpolation(x, 1);
296 }; 283 };
297 284
298 %SetInlineBuiltinFlag(Interpolation); 285 %SetInlineBuiltinFlag(Interpolation);
299 %SetInlineBuiltinFlag(MathSinInterpolation);
300 %SetInlineBuiltinFlag(MathCosInterpolation);
301
302 InitTrigonometricFunctions = function() {
303 table_sin = new global.Float64Array(samples + 2);
304 table_cos_interval = new global.Float64Array(samples + 2);
305 %PopulateTrigonometricTable(table_sin, table_cos_interval, samples);
306 MathSinImpl = MathSinInterpolation;
307 MathCosImpl = MathCosInterpolation;
308 }
309 } 286 }
310 287
311 SetupTrigonometricFunctions(); 288 SetupTrigonometricFunctions();
312 289
313 290
314 // ------------------------------------------------------------------- 291 // -------------------------------------------------------------------
315 292
316 function SetUpMath() { 293 function SetUpMath() {
317 %CheckIsBootstrapping(); 294 %CheckIsBootstrapping();
318 295
(...skipping 64 matching lines...) Expand 10 before | Expand all | Expand 10 after
383 "min", MathMin, 360 "min", MathMin,
384 "imul", MathImul 361 "imul", MathImul
385 )); 362 ));
386 363
387 %SetInlineBuiltinFlag(MathSin); 364 %SetInlineBuiltinFlag(MathSin);
388 %SetInlineBuiltinFlag(MathCos); 365 %SetInlineBuiltinFlag(MathCos);
389 %SetInlineBuiltinFlag(MathTan); 366 %SetInlineBuiltinFlag(MathTan);
390 } 367 }
391 368
392 SetUpMath(); 369 SetUpMath();
OLDNEW
« src/code-stubs.cc ('K') | « src/ia32/code-stubs-ia32.cc ('k') | src/runtime.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698