OLD | NEW |
| (Empty) |
1 | |
2 function stats(data, config) { | |
3 data.stats = {}; | |
4 if (typeof data.datasets == 'undefined') { // Pie structure; | |
5 PSbasic(data); | |
6 } else { // line structure; | |
7 LSbasic(data); | |
8 Linear_Regression(data); | |
9 } | |
10 replace_stats(data, config); | |
11 return; | |
12 }; | |
13 | |
14 function isStat(val) { | |
15 if (typeof val == "string") { | |
16 if (val.indexOf("#") >= 0) return true; | |
17 } | |
18 return false; | |
19 }; | |
20 | |
21 function Linear_Regression(data) { | |
22 // compute Means - source of algorithm : http://fr.wikipedia.org/wiki/R%
C3%A9gression_lin%C3%A9aire | |
23 data.stats.linear_regression_count_xPos = 0; | |
24 data.stats.linear_regression_sum_xPos = 0; | |
25 data.stats.linear_regression_sum_data = 0; | |
26 for (var i = 0; i < data.datasets.length; i++) { | |
27 if (!(typeof data.datasets[i].xPos == "undefined")) { | |
28 data.datasets[i].stats.linear_regression_sum_xPos = 0; | |
29 data.datasets[i].stats.linear_regression_sum_data = 0; | |
30 data.datasets[i].stats.linear_regression_count_xPos = 0; | |
31 data.datasets[i].stats.count_data = 0; | |
32 for (var j = 0; j < data.datasets[i].data.length; j++) { | |
33 if (!(typeof data.datasets[i].data[j] == "undefi
ned") && !(typeof data.datasets[i].xPos[j] == "undefined")) { | |
34 data.stats.linear_regression_count_xPos+
+; | |
35 data.stats.linear_regression_sum_xPos +=
data.datasets[i].xPos[j]; | |
36 data.stats.linear_regression_sum_data +=
data.datasets[i].data[j]; | |
37 data.datasets[i].stats.linear_regression
_count_xPos++; | |
38 data.datasets[i].stats.linear_regression
_sum_xPos += data.datasets[i].xPos[j]; | |
39 data.datasets[i].stats.linear_regression
_sum_data += data.datasets[i].data[j]; | |
40 } | |
41 } | |
42 if (data.datasets[i].stats.linear_regression_count_xPos
> 0) { | |
43 data.datasets[i].stats.linear_regression_mean_xP
os = data.datasets[i].stats.linear_regression_sum_xPos / data.datasets[i].stats.
linear_regression_count_xPos; | |
44 data.datasets[i].stats.linear_regression_mean_da
ta = data.datasets[i].stats.linear_regression_sum_data / data.datasets[i].stats.
linear_regression_count_xPos; | |
45 } | |
46 } | |
47 } | |
48 // mean; | |
49 if (data.stats.linear_regression_count_xPos > 0) { | |
50 data.stats.linear_regression_mean_xPos = data.stats.linear_regre
ssion_sum_xPos / data.stats.linear_regression_count_xPos; | |
51 data.stats.linear_regression_mean_data = data.stats.linear_regre
ssion_sum_data / data.stats.linear_regression_count_xPos; | |
52 } | |
53 // Covariance - variance; | |
54 data.stats.linear_regression_covariance = 0; | |
55 data.stats.linear_regression_variance = 0; | |
56 for (var i = 0; i < data.datasets.length; i++) { | |
57 if (!(typeof data.datasets[i].xPos == "undefined")) { | |
58 data.datasets[i].stats.linear_regression_covariance = 0; | |
59 data.datasets[i].stats.linear_regression_variance = 0; | |
60 for (var j = 0; j < data.datasets[i].data.length; j++) { | |
61 if (!(typeof data.datasets[i].data[j] == "undefi
ned") && !(typeof data.datasets[i].xPos[j] == "undefined")) { | |
62 data.stats.linear_regression_covariance
+= (data.datasets[i].xPos[j] - data.stats.linear_regression_mean_xPos) * (data.d
atasets[i].data[j] - data.stats.linear_regression_mean_data); | |
63 data.stats.linear_regression_variance +=
(data.datasets[i].xPos[j] - data.stats.linear_regression_mean_xPos) * (data.dat
asets[i].xPos[j] - data.stats.linear_regression_mean_xPos); | |
64 data.datasets[i].stats.linear_regression
_covariance += (data.datasets[i].xPos[j] - data.datasets[i].stats.linear_regress
ion_mean_xPos) * (data.datasets[i].data[j] - data.datasets[i].stats.linear_regre
ssion_mean_data); | |
65 data.datasets[i].stats.linear_regression
_variance += (data.datasets[i].xPos[j] - data.datasets[i].stats.linear_regressio
n_mean_xPos) * (data.datasets[i].xPos[j] - data.datasets[i].stats.linear_regress
ion_mean_xPos); | |
66 } | |
67 } | |
68 if (data.datasets[i].stats.linear_regression_count_xPos
> 0) { | |
69 data.datasets[i].stats.linear_regression_covaria
nce /= data.datasets[i].stats.linear_regression_count_xPos; | |
70 data.datasets[i].stats.linear_regression_varianc
e /= data.datasets[i].stats.linear_regression_count_xPos; | |
71 data.datasets[i].stats.linear_regression_b1 = da
ta.datasets[i].stats.linear_regression_covariance / data.datasets[i].stats.linea
r_regression_variance; | |
72 data.datasets[i].stats.linear_regression_b0 = da
ta.datasets[i].stats.linear_regression_mean_data - data.datasets[i].stats.linear
_regression_b1 * data.datasets[i].stats.linear_regression_mean_xPos; | |
73 } | |
74 } | |
75 } | |
76 // b1 - b0; | |
77 if (data.stats.linear_regression_count_xPos > 0) { | |
78 data.stats.linear_regression_covariance /= data.stats.linear_reg
ression_count_xPos; | |
79 data.stats.linear_regression_variance /= data.stats.linear_regre
ssion_count_xPos; | |
80 data.stats.linear_regression_b1 = data.stats.linear_regression_c
ovariance / data.stats.linear_regression_variance; | |
81 data.stats.linear_regression_b0 = data.stats.linear_regression_m
ean_data - data.stats.linear_regression_b1 * data.stats.linear_regression_mean_x
Pos; | |
82 } | |
83 } | |
84 | |
85 function PSbasic(data) { | |
86 data.stats.sum = 0; | |
87 data.stats.count_all = 0; | |
88 data.stats.count_missing = 0; | |
89 data.stats.count_not_missing = 0; | |
90 data.stats.mean = undefined; | |
91 data.stats.sum_square_diff_mean = 0; | |
92 data.stats.standard_deviation = undefined; | |
93 data.stats.standard_deviation_estimation = undefined; | |
94 data.stats.student_t_test = undefined; | |
95 data.stats.coefficient_variation = undefined; | |
96 data.stats.data_with_stats = false; | |
97 for (var i = 0; i < data["length"]; i++) { | |
98 if (!isStat(data[i].value)) { | |
99 (data.stats.count_all) ++; | |
100 } else data.stats.data_with_stats = true; | |
101 if (typeof data[i].value == "undefined") { | |
102 (data.stats.count_missing) ++; | |
103 } else if (isStat(data[i].value)) {} else { | |
104 (data.stats.count_not_missing) ++; | |
105 (data.stats.sum) += 1 * data[i].value; | |
106 } | |
107 } | |
108 if (data.stats.count_not_missing > 0) { | |
109 data.stats.mean = data.stats.sum / data.stats.count_not_missing; | |
110 } | |
111 // sum of (val-mean)2; | |
112 // sum of (val-mean)3; | |
113 data.stats.sum_square_diff_mean = 0; | |
114 data.stats.sum_pow3_diff_mean = 0; | |
115 data.stats.sum_pow4_diff_mean = 0; | |
116 for (var i = 0; i < data["length"]; i++) { | |
117 if (typeof data[i].value != "undefined" && !isStat(data[i].value
)) { | |
118 data.stats.sum_square_diff_mean += Math.pow(data[i].valu
e - data.stats.mean, 2); | |
119 data.stats.sum_pow3_diff_mean += Math.pow(data[i].value
- data.stats.mean, 3); | |
120 data.stats.sum_pow4_diff_mean += Math.pow(data[i].value
- data.stats.mean, 4); | |
121 } | |
122 } | |
123 // standard deviation; | |
124 if (data.stats.count_not_missing > 0) { | |
125 data.stats.variance = data.stats.sum_square_diff_mean / data.sta
ts.count_not_missing; | |
126 data.stats.standard_deviation = Math.sqrt(data.stats.sum_square_
diff_mean / data.stats.count_not_missing); | |
127 data.stats.standard_error_mean = Math.sqrt(data.stats.sum_square
_diff_mean) / data.stats.count_not_missing; | |
128 } | |
129 // standard deviation estimation; | |
130 if (data.stats.count_not_missing > 1) { | |
131 data.stats.standard_deviation_estimation = Math.sqrt(data.stats.
sum_square_diff_mean / (data.stats.count_not_missing - 1)); | |
132 if (data.stats.mean > 0) data.stats.coefficient_variation = 100
* data.stats.standard_deviation_estimation / data.stats.mean; | |
133 if (data.stats.standard_deviation_estimation > 0) data.stats.stu
dent_t_test = data.stats.mean / (data.stats.standard_deviation_estimation / Math
.sqrt(data.stats.count_not_missing)); | |
134 console.log(data.stats.mean); | |
135 console.log(data.stats.standard_deviation_estimation); | |
136 console.log(data.stats.count_not_missing); | |
137 } | |
138 // skewness; | |
139 if (data.stats.count_not_missing > 2) { | |
140 data.stats.skewness = (data.stats.count_not_missing * data.stats
.sum_pow3_diff_mean) / (Math.pow(data.stats.standard_deviation_estimation, 3) *
(data.stats.count_not_missing - 1) * (data.stats.count_not_missing - 2)); | |
141 } else { | |
142 data.stats.skewness = undefined; | |
143 } | |
144 // kutosis; | |
145 if (data.stats.count_not_missing > 3) { | |
146 data.stats.kurtosis = (data.stats.count_not_missing * (data.stat
s.count_not_missing + 1) * data.stats.sum_pow4_diff_mean) / (Math.pow(data.stats
.standard_deviation_estimation, 4) * (data.stats.count_not_missing - 1) * (data.
stats.count_not_missing - 2) * (data.stats.count_not_missing - 3)) - 3 * (data.s
tats.count_not_missing - 1) * (data.stats.count_not_missing - 1) / ((data.stats.
count_not_missing - 2) * (data.stats.count_not_missing - 3)); | |
147 } else { | |
148 data.stats.kurtosis = undefined; | |
149 } | |
150 // ordering stats; | |
151 var orderStat = new Array(); | |
152 cnt = 0; | |
153 for (i = 0; i < data.length; i++) { | |
154 if (typeof data[i].value != "undefined" && !isStat(data[i].value
)) { | |
155 orderStat[cnt] = { | |
156 val: 1 * data[i].value, | |
157 one: 1 | |
158 }; | |
159 cnt++; | |
160 } | |
161 } | |
162 var setStat = new Array(); | |
163 setStat = Pstats(orderStat, "one"); | |
164 for (i = 0; i < setStat.length; i++) { | |
165 data.stats.minimum = setStat[i].res.minimum; | |
166 data.stats.maximum = setStat[i].res.maximum; | |
167 data.stats.Q0 = setStat[i].res.Q0; | |
168 data.stats.Q1 = setStat[i].res.Q1; | |
169 data.stats.Q5 = setStat[i].res.Q5; | |
170 data.stats.Q10 = setStat[i].res.Q10; | |
171 data.stats.Q25 = setStat[i].res.Q25; | |
172 data.stats.Q50 = setStat[i].res.Q50; | |
173 data.stats.Q75 = setStat[i].res.Q75; | |
174 data.stats.Q90 = setStat[i].res.Q90; | |
175 data.stats.Q95 = setStat[i].res.Q95; | |
176 data.stats.Q99 = setStat[i].res.Q99; | |
177 data.stats.Q100 = setStat[i].res.Q100; | |
178 data.stats.median = setStat[i].res.median; | |
179 data.stats.interquartile_range = data.stats.Q75 - data.stats.Q25
; | |
180 } | |
181 }; | |
182 | |
183 function LSbasic(data) { | |
184 data.stats.sum = 0; | |
185 data.stats.count_all = 0; | |
186 data.stats.count_missing = 0; | |
187 data.stats.count_not_missing = 0; | |
188 data.stats.mean = undefined; | |
189 data.stats.sum_square_diff_mean = 0; | |
190 data.stats.sum_pow3_diff_mean = 0; | |
191 data.stats.sum_pow4_diff_mean = 0; | |
192 data.stats.standard_deviation = undefined; | |
193 data.stats.standard_deviation_estimation = undefined; | |
194 data.stats.student_t_test = undefined; | |
195 data.stats.coefficient_variation = undefined; | |
196 data.stats.data_with_stats = false; | |
197 data.stats.data_minimum = {}; | |
198 data.stats.data_maximum = {}; | |
199 data.stats.data_Q0 = {}; | |
200 data.stats.data_Q1 = {}; | |
201 data.stats.data_Q5 = {}; | |
202 data.stats.data_Q10 = {}; | |
203 data.stats.data_Q25 = {}; | |
204 data.stats.data_Q50 = {}; | |
205 data.stats.data_Q75 = {}; | |
206 data.stats.data_Q90 = {}; | |
207 data.stats.data_Q95 = {}; | |
208 data.stats.data_Q99 = {}; | |
209 data.stats.data_Q100 = {}; | |
210 data.stats.data_median = {}; | |
211 data.stats.data_sum = {}; | |
212 data.stats.data_count_all = {}; | |
213 data.stats.data_count_missing = {}; | |
214 data.stats.data_count_not_missing = {}; | |
215 data.stats.data_mean = {}; | |
216 data.stats.data_sum_square_diff_mean = {}; | |
217 data.stats.data_sum_pow3_diff_mean = {}; | |
218 data.stats.data_sum_pow4_diff_mean = {}; | |
219 data.stats.data_variance = {}; | |
220 data.stats.data_standard_deviation = {}; | |
221 data.stats.data_standard_error_mean = {}; | |
222 data.stats.data_standard_deviation_estimation = {}; | |
223 data.stats.data_student_t_test = {}; | |
224 data.stats.data_coefficient_variation = {}; | |
225 data.stats.data_skewness = {}; | |
226 data.stats.data_kurtosis = {}; | |
227 data.stats.data_interquartile_range = {}; | |
228 data.stats.max_number_data = 0; | |
229 data.stats.min_number_data = Number.MAX_VALUE; | |
230 for (var i = 0; i < data.datasets["length"]; i++) { | |
231 data.datasets[i].stats = {}; | |
232 data.datasets[i].stats.sum = 0; | |
233 data.datasets[i].stats.count_all = 0; | |
234 data.datasets[i].stats.count_missing = 0; | |
235 data.datasets[i].stats.count_not_missing = 0; | |
236 data.datasets[i].stats.mean = undefined; | |
237 data.datasets[i].stats.sum_square_diff_mean = 0; | |
238 data.datasets[i].stats.sum_pow3_diff_mean = 0; | |
239 data.datasets[i].stats.sum_pow4_diff_mean = 0; | |
240 data.datasets[i].stats.standard_deviation = undefined; | |
241 if (data.datasets[i].data["length"] > data.stats.max_number_data
) { | |
242 for (var k = data.stats.max_number_data; k < data.datase
ts[i].data["length"]; k++) { | |
243 data.stats.data_sum[k] = 0; | |
244 data.stats.data_count_all[k] = 0; | |
245 data.stats.data_count_missing[k] = 0; | |
246 data.stats.data_count_not_missing[k] = 0; | |
247 data.stats.data_mean[k] = undefined; | |
248 data.stats.data_sum_square_diff_mean[k] = 0; | |
249 data.stats.data_sum_pow3_diff_mean[k] = 0; | |
250 data.stats.data_sum_pow4_diff_mean[k] = 0; | |
251 data.stats.data_standard_deviation[k] = undefine
d; | |
252 data.stats.data_standard_deviation_estimation[k]
= undefined; | |
253 data.stats.data_student_t_test[k] = undefined; | |
254 data.stats.data_coefficient_variation[k] = undef
ined; | |
255 } | |
256 data.stats.max_number_data = data.datasets[i].data["leng
th"]; | |
257 data.stats.min_number_data = Math.min(data.stats.min_num
ber_data, data.datasets[i].data["length"]); | |
258 } | |
259 for (var j = 0; j < data.datasets[i].data["length"]; j++) { | |
260 if (!isStat(data.datasets[i].data[j])) { | |
261 (data.stats.count_all) ++; | |
262 (data.datasets[i].stats.count_all) ++; | |
263 (data.stats.data_count_all[j]) ++; | |
264 } else { | |
265 data.stats.data_with_stats = true; | |
266 } | |
267 if (typeof data.datasets[i].data[j] == "undefined") { | |
268 (data.stats.count_missing) ++; | |
269 (data.datasets[i].stats.count_missing) ++; | |
270 (data.stats.data_count_missing[j]) ++; | |
271 } else if (isStat(data.datasets[i].data[j])) {} else { | |
272 (data.stats.count_not_missing) ++; | |
273 (data.datasets[i].stats.count_not_missing) ++; | |
274 (data.stats.data_count_not_missing[j]) ++; | |
275 (data.stats.sum) += 1 * data.datasets[i].data[j]
; | |
276 (data.datasets[i].stats.sum) += 1 * data.dataset
s[i].data[j]; | |
277 (data.stats.data_sum[j]) += 1 * data.datasets[i]
.data[j]; | |
278 } | |
279 } | |
280 if (data.datasets[i].stats.count_not_missing == 0) { | |
281 data.datasets[i].stats.minimum = undefined; | |
282 data.datasets[i].stats.maximum = undefined; | |
283 data.datasets[i].stats.sum = undefined; | |
284 data.datasets[i].stats.mean = undefined; | |
285 } else { | |
286 data.datasets[i].stats.mean = data.datasets[i].stats.sum
/ data.datasets[i].stats.count_not_missing; | |
287 } | |
288 } | |
289 if (data.stats.count_not_missing > 0) { | |
290 data.stats.mean = data.stats.sum / data.stats.count_not_missing; | |
291 } | |
292 for (i = 0; i < data.stats.max_number_data; i++) { | |
293 if (data.stats.data_count_not_missing[i] > 0) { | |
294 data.stats.data_mean[i] = data.stats.data_sum[i] / data.
stats.data_count_not_missing[i]; | |
295 } | |
296 } | |
297 // sum of (val-mean)2; | |
298 data.stats.sum_square_diff_mean = 0; | |
299 data.stats.sum_pow3_diff_mean = 0; | |
300 data.stats.sum_pow4_diff_mean = 0; | |
301 for (var i = 0; i < data.datasets["length"]; i++) { | |
302 data.datasets[i].stats.sum_square_diff_mean = 0; | |
303 data.datasets[i].stats.sum_pow3_diff_mean = 0; | |
304 data.datasets[i].stats.sum_pow4_diff_mean = 0; | |
305 for (var j = 0; j < data.datasets[i].data["length"]; j++) { | |
306 if (typeof data.datasets[i].data[j] != "undefined" && !i
sStat(data.datasets[i].data[j].value)) { | |
307 data.stats.sum_square_diff_mean += Math.pow(data
.datasets[i].data[j] - data.stats.mean, 2); | |
308 data.stats.sum_pow3_diff_mean += Math.pow(data.d
atasets[i].data[j] - data.stats.mean, 3); | |
309 data.stats.sum_pow4_diff_mean += Math.pow(data.d
atasets[i].data[j] - data.stats.mean, 4); | |
310 data.stats.data_sum_square_diff_mean[j] += Math.
pow(data.datasets[i].data[j] - data.stats.data_mean[j], 2); | |
311 data.stats.data_sum_pow3_diff_mean[j] += Math.po
w(data.datasets[i].data[j] - data.stats.data_mean[j], 3); | |
312 data.stats.data_sum_pow4_diff_mean[j] += Math.po
w(data.datasets[i].data[j] - data.stats.data_mean[j], 4); | |
313 data.datasets[i].stats.sum_square_diff_mean += M
ath.pow(data.datasets[i].data[j] - data.datasets[i].stats.mean, 2); | |
314 data.datasets[i].stats.sum_pow3_diff_mean += Mat
h.pow(data.datasets[i].data[j] - data.datasets[i].stats.mean, 3); | |
315 data.datasets[i].stats.sum_pow4_diff_mean += Mat
h.pow(data.datasets[i].data[j] - data.datasets[i].stats.mean, 4); | |
316 } | |
317 } | |
318 } | |
319 // standard deviation; | |
320 if (data.stats.count_not_missing > 0) { | |
321 data.stats.variance = data.stats.sum_square_diff_mean / data.sta
ts.count_not_missing; | |
322 data.stats.standard_deviation = Math.sqrt(data.stats.sum_square_
diff_mean / data.stats.count_not_missing); | |
323 data.stats.standard_error_mean = Math.sqrt(data.stats.sum_square
_diff_mean) / data.stats.count_not_missing; | |
324 } | |
325 for (i = 0; i < data.datasets["length"]; i++) { | |
326 if (data.datasets[i].stats.count_not_missing > 0) { | |
327 data.datasets[i].stats.variance = data.datasets[i].stats
.sum_square_diff_mean / data.datasets[i].stats.count_not_missing; | |
328 data.datasets[i].stats.standard_deviation = Math.sqrt(da
ta.datasets[i].stats.sum_square_diff_mean / data.datasets[i].stats.count_not_mis
sing); | |
329 data.datasets[i].stats.standard_error_mean = Math.sqrt(d
ata.datasets[i].stats.sum_square_diff_mean) / data.datasets[i].stats.count_not_m
issing; | |
330 } | |
331 } | |
332 for (j = 0; j < data.stats.max_number_data; j++) { | |
333 if (data.stats.data_count_not_missing[j] > 0) { | |
334 data.stats.data_variance[j] = data.stats.data_sum_square
_diff_mean[j] / data.stats.data_count_not_missing[j]; | |
335 data.stats.data_standard_deviation[j] = Math.sqrt(data.s
tats.data_sum_square_diff_mean[j] / data.stats.data_count_not_missing[j]); | |
336 data.stats.data_standard_error_mean[j] = Math.sqrt(data.
stats.data_sum_square_diff_mean[j]) / data.stats.data_count_not_missing[j]; | |
337 } | |
338 } | |
339 // standard deviation estimation; | |
340 if (data.stats.count_not_missing > 1) { | |
341 data.stats.standard_deviation_estimation = Math.sqrt(data.stats.
sum_square_diff_mean / (data.stats.count_not_missing - 1)); | |
342 if (data.stats.mean > 0) data.stats.coefficient_variation = 100
* data.stats.standard_deviation_estimation / data.stats.mean; | |
343 if (data.stats.standard_deviation_estimation > 0) data.stats.stu
dent_t_test = data.stats.mean / (data.stats.standard_deviation_estimation / Math
.sqrt(data.stats.count_not_missing)); | |
344 } | |
345 for (i = 0; i < data.datasets["length"]; i++) { | |
346 if (data.datasets[i].stats.count_not_missing > 1) { | |
347 data.datasets[i].stats.standard_deviation_estimation = M
ath.sqrt(data.datasets[i].stats.sum_square_diff_mean / (data.datasets[i].stats.c
ount_not_missing - 1)); | |
348 if (data.datasets[i].stats.mean > 0) data.datasets[i].st
ats.coefficient_variation = 100 * data.datasets[i].stats.standard_deviation_esti
mation / data.datasets[i].stats.mean; | |
349 if (data.datasets[i].stats.standard_deviation_estimation
> 0) data.datasets[i].stats.student_t_test = data.datasets[i].stats.mean / (dat
a.datasets[i].stats.standard_deviation_estimation / Math.sqrt(data.datasets[i].s
tats.count_not_missing)); | |
350 } | |
351 } | |
352 for (j = 0; j < data.stats.max_number_data; j++) { | |
353 if (data.stats.data_count_not_missing[j] > 1) { | |
354 data.stats.data_standard_deviation_estimation[j] = Math.
sqrt(data.stats.data_sum_square_diff_mean[j] / (data.stats.data_count_not_missin
g[j] - 1)); | |
355 if (data.stats.data_mean[j] > 0) data.stats.data_coeffic
ient_variation[j] = 100 * data.stats.data_standard_deviation_estimation[j] / dat
a.stats.data_mean[j]; | |
356 if (data.stats.data_standard_deviation_estimation[j] > 0
) data.stats.data_student_t_test[j] = data.stats.data_mean[j] / (data.stats.data
_standard_deviation_estimation[j] / Math.sqrt(data.stats.data_count_not_missing[
j])); | |
357 } | |
358 } | |
359 // skewness; | |
360 if (data.stats.count_not_missing >= 2) { | |
361 data.stats.skewness = (data.stats.count_not_missing * data.stats
.sum_pow3_diff_mean) / (Math.pow(data.stats.standard_deviation_estimation, 3) *
(data.stats.count_not_missing - 1) * (data.stats.count_not_missing - 2)); | |
362 } else { | |
363 data.stats.skewness = undefined; | |
364 } | |
365 // kurtosis; | |
366 if (data.stats.count_not_missing >= 3) { | |
367 data.stats.kurtosis = (data.stats.count_not_missing * (data.stat
s.count_not_missing + 1) * data.stats.sum_pow4_diff_mean) / (Math.pow(data.stats
.standard_deviation_estimation, 4) * (data.stats.count_not_missing - 1) * (data.
stats.count_not_missing - 2) * (data.stats.count_not_missing - 3)) - 3 * (data.s
tats.count_not_missing - 1) * (data.stats.count_not_missing - 1) / ((data.stats.
count_not_missing - 2) * (data.stats.count_not_missing - 3)); | |
368 } else { | |
369 data.stats.kurtosis = undefined; | |
370 } | |
371 for (i = 0; i < data.datasets["length"]; i++) { | |
372 if (data.datasets[i].stats.count_not_missing >= 2) { | |
373 data.datasets[i].stats.skewness = (data.datasets[i].stat
s.count_not_missing * data.datasets[i].stats.sum_pow3_diff_mean) / (Math.pow(dat
a.datasets[i].stats.standard_deviation_estimation, 3) * (data.datasets[i].stats.
count_not_missing - 1) * (data.datasets[i].stats.count_not_missing - 2)); | |
374 } else { | |
375 data.datasets[i].stats.skewness = undefined; | |
376 } | |
377 if (data.datasets[i].stats.count_not_missing >= 3) { | |
378 data.datasets[i].stats.kurtosis = (data.datasets[i].stat
s.count_not_missing * (data.datasets[i].stats.count_not_missing + 1) * data.data
sets[i].stats.sum_pow4_diff_mean) / (Math.pow(data.datasets[i].stats.standard_de
viation_estimation, 4) * (data.datasets[i].stats.count_not_missing - 1) * (data.
datasets[i].stats.count_not_missing - 2) * (data.datasets[i].stats.count_not_mis
sing - 3)) - 3 * (data.datasets[i].stats.count_not_missing - 1) * (data.datasets
[i].stats.count_not_missing - 1) / ((data.datasets[i].stats.count_not_missing -
2) * (data.datasets[i].stats.count_not_missing - 3)); | |
379 } else { | |
380 data.datasets[i].stats.kurtosis = undefined; | |
381 } | |
382 } | |
383 for (j = 0; j < data.stats.max_number_data; j++) { | |
384 if (data.stats.data_count_not_missing[j] >= 2) { | |
385 data.stats.data_skewness[j] = (data.stats.data_count_not
_missing[j] * data.stats.data_sum_pow3_diff_mean[j]) / (Math.pow(data.stats.data
_standard_deviation_estimation[j], 3) * (data.stats.data_count_not_missing[j] -
1) * (data.stats.data_count_not_missing[j] - 2)); | |
386 } else { | |
387 data.stats.data_skewness[j] = undefined; | |
388 } | |
389 if (data.stats.data_count_not_missing[j] >= 3) { | |
390 data.stats.data_kurtosis[j] = (data.stats.data_count_not
_missing[j] * (data.stats.data_count_not_missing[j] + 1) * data.stats.data_sum_p
ow4_diff_mean[j]) / (Math.pow(data.stats.data_standard_deviation_estimation[j],
4) * (data.stats.data_count_not_missing[j] - 1) * (data.stats.data_count_not_mis
sing[j] - 2) * (data.stats.data_count_not_missing[j] - 3)) - 3 * (data.stats.dat
a_count_not_missing[j] - 1) * (data.stats.data_count_not_missing[j] - 1) / ((dat
a.stats.data_count_not_missing[j] - 2) * (data.stats.data_count_not_missing[j] -
3)); | |
391 } else { | |
392 data.stats.data_kurtosis[j] = undefined; | |
393 } | |
394 } | |
395 // ordering stats; | |
396 var orderStat = new Array(); | |
397 cnt = 0; | |
398 for (i = 0; i < data.datasets["length"]; i++) { | |
399 for (j = 0; j < data.datasets[i].data["length"]; j++) { | |
400 if (typeof data.datasets[i].data[j] != "undefined" && !i
sStat(data.datasets[i].data[j].value)) { | |
401 orderStat[cnt] = { | |
402 val: 1 * data.datasets[i].data[j], | |
403 dataset: i, | |
404 col: j, | |
405 one: 1 | |
406 }; | |
407 cnt++; | |
408 } | |
409 } | |
410 } | |
411 var setStat = new Array(); | |
412 setStat = Pstats(orderStat, "one"); | |
413 for (i = 0; i < setStat.length; i++) { | |
414 data.stats.minimum = setStat[i].res.minimum; | |
415 data.stats.maximum = setStat[i].res.maximum; | |
416 data.stats.Q0 = setStat[i].res.Q0; | |
417 data.stats.Q1 = setStat[i].res.Q1; | |
418 data.stats.Q5 = setStat[i].res.Q5; | |
419 data.stats.Q10 = setStat[i].res.Q10; | |
420 data.stats.Q25 = setStat[i].res.Q25; | |
421 data.stats.Q50 = setStat[i].res.Q50; | |
422 data.stats.Q75 = setStat[i].res.Q75; | |
423 data.stats.Q90 = setStat[i].res.Q90; | |
424 data.stats.Q95 = setStat[i].res.Q95; | |
425 data.stats.Q99 = setStat[i].res.Q99; | |
426 data.stats.Q100 = setStat[i].res.Q100; | |
427 data.stats.median = setStat[i].res.median; | |
428 data.stats.interquartile_range = data.stats.Q75 - data.stats.Q25
; | |
429 } | |
430 setStat = Pstats(orderStat, "dataset"); | |
431 for (i = 0; i < setStat.length; i++) { | |
432 data.datasets[setStat[i].secvalue].stats.minimum = setStat[i].re
s.minimum; | |
433 data.datasets[setStat[i].secvalue].stats.maximum = setStat[i].re
s.maximum; | |
434 data.datasets[setStat[i].secvalue].stats.Q0 = setStat[i].res.Q0; | |
435 data.datasets[setStat[i].secvalue].stats.Q1 = setStat[i].res.Q1; | |
436 data.datasets[setStat[i].secvalue].stats.Q5 = setStat[i].res.Q5; | |
437 data.datasets[setStat[i].secvalue].stats.Q10 = setStat[i].res.Q1
0; | |
438 data.datasets[setStat[i].secvalue].stats.Q25 = setStat[i].res.Q2
5; | |
439 data.datasets[setStat[i].secvalue].stats.Q50 = setStat[i].res.Q5
0; | |
440 data.datasets[setStat[i].secvalue].stats.Q75 = setStat[i].res.Q7
5; | |
441 data.datasets[setStat[i].secvalue].stats.Q90 = setStat[i].res.Q9
0; | |
442 data.datasets[setStat[i].secvalue].stats.Q95 = setStat[i].res.Q9
5; | |
443 data.datasets[setStat[i].secvalue].stats.Q99 = setStat[i].res.Q9
9; | |
444 data.datasets[setStat[i].secvalue].stats.Q100 = setStat[i].res.Q
100; | |
445 data.datasets[setStat[i].secvalue].stats.median = setStat[i].res
.median; | |
446 data.datasets[setStat[i].secvalue].stats.interquartile_range = d
ata.datasets[setStat[i].secvalue].stats.Q75 - data.datasets[setStat[i].secvalue]
.stats.Q25; | |
447 } | |
448 setStat = Pstats(orderStat, "col"); | |
449 for (i = 0; i < setStat.length; i++) { | |
450 data.stats.data_minimum[setStat[i].secvalue] = setStat[i].res.mi
nimum; | |
451 data.stats.data_maximum[setStat[i].secvalue] = setStat[i].res.ma
ximum; | |
452 data.stats.data_Q0[setStat[i].secvalue] = setStat[i].res.Q0; | |
453 data.stats.data_Q1[setStat[i].secvalue] = setStat[i].res.Q1; | |
454 data.stats.data_Q5[setStat[i].secvalue] = setStat[i].res.Q5; | |
455 data.stats.data_Q10[setStat[i].secvalue] = setStat[i].res.Q10; | |
456 data.stats.data_Q25[setStat[i].secvalue] = setStat[i].res.Q25; | |
457 data.stats.data_Q50[setStat[i].secvalue] = setStat[i].res.Q50; | |
458 data.stats.data_Q75[setStat[i].secvalue] = setStat[i].res.Q75; | |
459 data.stats.data_Q90[setStat[i].secvalue] = setStat[i].res.Q90; | |
460 data.stats.data_Q95[setStat[i].secvalue] = setStat[i].res.Q95; | |
461 data.stats.data_Q99[setStat[i].secvalue] = setStat[i].res.Q99; | |
462 data.stats.data_Q100[setStat[i].secvalue] = setStat[i].res.Q100; | |
463 data.stats.data_median[setStat[i].secvalue] = setStat[i].res.med
ian; | |
464 data.stats.data_interquartile_range[setStat[i].secvalue] = data.
stats.data_Q75[setStat[i].secvalue] - data.stats.data_Q25[setStat[i].secvalue]; | |
465 } | |
466 }; | |
467 | |
468 function Pstats(orderStat, secVar) { | |
469 var result = new Array(); | |
470 orderStat.sort(function(a, b) { | |
471 if (a[secVar] < b[secVar]) return -1 | |
472 else if (a[secVar] > b[secVar]) return 1 | |
473 if (a.val < b.val) return -1 | |
474 else if (a.val > b.val) return 1 | |
475 else return 0 | |
476 }); | |
477 var deb = 0, | |
478 fin = 0; | |
479 for (i = 1; i < orderStat.length; i++) { | |
480 if (orderStat[i][secVar] == orderStat[deb][secVar]) fin++; | |
481 else { | |
482 result[result.length] = { | |
483 secvalue: orderStat[deb][secVar], | |
484 res: P2stats(deb, fin, orderStat) | |
485 }; | |
486 fin++; | |
487 deb = fin; | |
488 } | |
489 } | |
490 result[result.length] = { | |
491 secvalue: orderStat[deb][secVar], | |
492 res: P2stats(deb, fin, orderStat) | |
493 }; | |
494 return result; | |
495 }; | |
496 | |
497 function P2stats(deb, fin, orderStat) { | |
498 return { | |
499 minimum: orderStat[deb].val, | |
500 maximum: orderStat[fin].val, | |
501 Q0: orderStat[deb].val, | |
502 Q1: Quantile(1, deb, fin, orderStat), | |
503 Q5: Quantile(5, deb, fin, orderStat), | |
504 Q10: Quantile(10, deb, fin, orderStat), | |
505 Q25: Quantile(25, deb, fin, orderStat), | |
506 Q50: Quantile(50, deb, fin, orderStat), | |
507 Q75: Quantile(75, deb, fin, orderStat), | |
508 Q90: Quantile(90, deb, fin, orderStat), | |
509 Q95: Quantile(95, deb, fin, orderStat), | |
510 Q99: Quantile(99, deb, fin, orderStat), | |
511 Q100: orderStat[fin].val, | |
512 median: Quantile(50, deb, fin, orderStat) | |
513 } | |
514 }; | |
515 | |
516 function Quantile(quant, deb, fin, orderStat) { | |
517 var nbobs = fin - deb + 1; | |
518 if (quant <= 50.01) { | |
519 var v1 = Math.ceil((nbobs * quant / 100) - 0.000001) - 1; | |
520 var v2 = Math.ceil(((nbobs + 1) * quant / 100) - 0.000001) - 1; | |
521 } else { | |
522 var v1 = Math.ceil((nbobs * (100 - quant) / 100) - 0.000001) - 1
; | |
523 v1 = nbobs - v1 - 1; | |
524 var v2 = Math.ceil(((nbobs + 1) * (100 - quant) / 100) - 0.00000
1) - 1; | |
525 v2 = nbobs - v2 - 1; | |
526 } | |
527 // if(deb+v2>fin)v2=fin-deb-1; | |
528 return ((orderStat[deb + v1].val + orderStat[deb + v2].val) / 2); | |
529 }; | |
530 | |
531 function disp_stats(data) { | |
532 document.write("data.stats.count_all=" + data.stats.count_all + "<BR>"); | |
533 document.write("data.stats.count_missing=" + data.stats.count_missing +
"<BR>"); | |
534 document.write("data.stats.count_not_missing=" + data.stats.count_not_mi
ssing + "<BR>"); | |
535 document.write("data.stats.minimum=" + data.stats.minimum + "<BR>"); | |
536 document.write("data.stats.maximum=" + data.stats.maximum + "<BR>"); | |
537 document.write("data.stats.sum=" + data.stats.sum + "<BR>"); | |
538 document.write("data.stats.mean=" + data.stats.mean + "<BR>"); | |
539 document.write("data.stats.sum_square_diff_mean=" + data.stats.sum_squar
e_diff_mean + "<BR>"); | |
540 document.write("data.stats.variance=" + data.stats.variance + "<BR>"); | |
541 document.write("data.stats.standard _deviation=" + data.stats.standard_d
eviation + "<BR>"); | |
542 document.write("data.stats.standard_error_mean=" + data.stats.standard_e
rror_mean + "<BR>"); | |
543 document.write("data.stats.standard_deviation_estimation=" + data.stats.
standard_deviation_estimation + "<BR>"); | |
544 document.write("data.stats.coefficient_variation=" + data.stats.coeffici
ent_variation + "<BR>"); | |
545 document.write("data.stats.skewness=" + data.stats.skewness + "<BR>"); | |
546 document.write("data.stats.kurtosis=" + data.stats.kurtosis + "<BR>"); | |
547 document.write("data.stats.student_t_test=" + data.stats.student_t_test
+ "<BR>"); | |
548 document.write("data.stats.Q0" + data.stats.Q0 + "<BR>"); | |
549 document.write("data.stats.Q1=" + data.stats.Q1 + "<BR>"); | |
550 document.write("data.stats.Q5=" + data.stats.Q5 + "<BR>"); | |
551 document.write("data.stats.Q10=" + data.stats.Q10 + "<BR>"); | |
552 document.write("data.stats.Q25=" + data.stats.Q25 + "<BR>"); | |
553 document.write("data.stats.Q50=" + data.stats.Q50 + "<BR>"); | |
554 document.write("data.stats.Q75=" + data.stats.Q75 + "<BR>"); | |
555 document.write("data.stats.Q90=" + data.stats.Q90 + "<BR>"); | |
556 document.write("data.stats.Q95=" + data.stats.Q95 + "<BR>"); | |
557 document.write("data.stats.Q99=" + data.stats.Q99 + "<BR>"); | |
558 document.write("data.stats.Q100=" + data.stats.Q100 + "<BR>"); | |
559 document.write("data.stats.median=" + data.stats.median + "<BR>"); | |
560 document.write("data.stats.interquartile_range=" + data.stats.interquart
ile_range + "<BR>"); | |
561 document.write("<hr>") | |
562 if (typeof data.datasets != 'undefined') { | |
563 for (i = 0; i < data.datasets.length; i++) { | |
564 document.write("<hr>") | |
565 document.write("DATASET: " + i + "<BR>"); | |
566 document.write("data.datasets[" + i + "].stats.count_all
=" + data.datasets[i].stats.count_all + "<BR>"); | |
567 document.write("data.datasets[" + i + "].stats.count_mis
sing=" + data.datasets[i].stats.count_missing + "<BR>"); | |
568 document.write("data.datasets[" + i + "].stats.count_not
_missing=" + data.datasets[i].stats.count_not_missing + "<BR>"); | |
569 document.write("data.datasets[" + i + "].stats.minimum="
+ data.datasets[i].stats.minimum + "<BR>"); | |
570 document.write("data.datasets[" + i + "].stats.maximum="
+ data.datasets[i].stats.maximum + "<BR>"); | |
571 document.write("data.datasets[" + i + "].stats.sum=" + d
ata.datasets[i].stats.sum + "<BR>"); | |
572 document.write("data.datasets[" + i + "].stats.mean=" +
data.datasets[i].stats.mean + "<BR>"); | |
573 document.write("data.datasets[" + i + "].stats.sum_squar
e_diff_mean=" + data.datasets[i].stats.sum_square_diff_mean + "<BR>"); | |
574 document.write("data.datasets[" + i + "].stats.variance=
" + data.datasets[i].stats.variance + "<BR>"); | |
575 document.write("data.datasets[" + i + "].stats.standard_
deviation=" + data.datasets[i].stats.standard_deviation + "<BR>"); | |
576 document.write("data.datasets[" + i + "].stats.standard_
error_mean=" + data.datasets[i].stats.standard_error_mean + "<BR>"); | |
577 document.write("data.datasets[" + i + "].stats.standard_
deviation_estimation=" + data.datasets[i].stats.standard_deviation_estimation +
"<BR>"); | |
578 document.write("data.datasets[" + i + "].stats.student_t
_test=" + data.datasets[i].stats.student_t_test + "<BR>"); | |
579 document.write("data.datasets[" + i + "].stats.coefficie
nt_variation=" + data.datasets[i].stats.coefficient_variation + "<BR>"); | |
580 document.write("data.datasets[" + i + "]stats.skewness="
+ data.datasets[i].stats.skewness + "<BR>"); | |
581 document.write("data.datasets[" + i + "]stats.kurtosis="
+ data.datasets[i].stats.kurtosis + "<BR>"); | |
582 document.write("data.datasets[" + i + "].stats.Q0=" + da
ta.datasets[i].stats.Q0 + "<BR>"); | |
583 document.write("data.datasets[" + i + "].stats.Q1=" + da
ta.datasets[i].stats.Q1 + "<BR>"); | |
584 document.write("data.datasets[" + i + "].stats.Q5=" + da
ta.datasets[i].stats.Q5 + "<BR>"); | |
585 document.write("data.datasets[" + i + "].stats.Q10=" + d
ata.datasets[i].stats.Q10 + "<BR>"); | |
586 document.write("data.datasets[" + i + "].stats.Q25=" + d
ata.datasets[i].stats.Q25 + "<BR>"); | |
587 document.write("data.datasets[" + i + "].stats.Q50=" + d
ata.datasets[i].stats.Q50 + "<BR>"); | |
588 document.write("data.datasets[" + i + "].stats.Q75=" + d
ata.datasets[i].stats.Q75 + "<BR>"); | |
589 document.write("data.datasets[" + i + "].stats.Q90=" + d
ata.datasets[i].stats.Q90 + "<BR>"); | |
590 document.write("data.datasets[" + i + "].stats.Q95=" + d
ata.datasets[i].stats.Q95 + "<BR>"); | |
591 document.write("data.datasets[" + i + "].stats.Q99=" + d
ata.datasets[i].stats.Q99 + "<BR>"); | |
592 document.write("data.datasets[" + i + "].stats.Q100=" +
data.datasets[i].stats.Q100 + "<BR>"); | |
593 document.write("data.datasets[" + i + "].stats.median="
+ data.datasets[i].stats.median + "<BR>"); | |
594 document.write("data.datasets[" + i + "].stats.interquar
tile_range=" + data.datasets[i].stats.interquartile_range + "<BR>"); | |
595 } | |
596 document.write("<hr>") | |
597 for (i = 0; i < data.stats.max_number_data; i++) { | |
598 document.write("<hr>") | |
599 document.write("Data: " + i + "<BR>"); | |
600 document.write("data.stats.data_count_all[" + i + "]=" +
data.stats.data_count_all[i] + "<BR>"); | |
601 document.write("data.stats.data_count_missing[" + i + "]
=" + data.stats.data_count_missing[i] + "<BR>"); | |
602 document.write("data.stats.data_count_not_missing[" + i
+ "]=" + data.stats.data_count_not_missing[i] + "<BR>"); | |
603 document.write("data.stats.data_minimum[" + i + "]=" + d
ata.stats.data_minimum[i] + "<BR>"); | |
604 document.write("data.stats.data_maximum[" + i + "]=" + d
ata.stats.data_maximum[i] + "<BR>"); | |
605 document.write("data.stats.data_sum[" + i + "]=" + data.
stats.data_sum[i] + "<BR>"); | |
606 document.write("data.stats.data_mean[" + i + "]=" + data
.stats.data_mean[i] + "<BR>"); | |
607 document.write("data.stats.data_sum_square_diff_mean[" +
i + "]=" + data.stats.data_sum_square_diff_mean[i] + "<BR>"); | |
608 document.write("data.stats.data_variance[" + i + "]=" +
data.stats.data_variance[i] + "<BR>"); | |
609 document.write("data.stats.data_standard_deviation[" + i
+ "]=" + data.stats.data_standard_deviation[i] + "<BR>"); | |
610 document.write("data.stats.data_standard_error_mean[" +
i + "]=" + data.stats.data_standard_error_mean[i] + "<BR>"); | |
611 document.write("data.stats.data_standard_deviation_estim
ation[" + i + "]=" + data.stats.data_standard_deviation_estimation[i] + "<BR>"); | |
612 document.write("data.stats.data_student_t_test[" + i + "
]=" + data.stats.data_student_t_test[i] + "<BR>"); | |
613 document.write("data.stats.data_coefficient_variation["
+ i + "]=" + data.stats.data_coefficient_variation[i] + "<BR>"); | |
614 document.write("data.stats.data_skewness[" + i + "]=" +
data.stats.data_skewness[i] + "<BR>"); | |
615 document.write("data.stats.data_kurtosis[" + i + "]=" +
data.stats.data_kurtosis[i] + "<BR>"); | |
616 document.write("data.stats.data_Q0[" + i + "]=" + data.s
tats.data_Q0[i] + "<BR>"); | |
617 document.write("data.stats.data_Q1[" + i + "]=" + data.s
tats.data_Q1[i] + "<BR>"); | |
618 document.write("data.stats.data_Q5[" + i + "]=" + data.s
tats.data_Q5[i] + "<BR>"); | |
619 document.write("data.stats.data_Q10[" + i + "]=" + data.
stats.data_Q10[i] + "<BR>"); | |
620 document.write("data.stats.data_Q25[" + i + "]=" + data.
stats.data_Q25[i] + "<BR>"); | |
621 document.write("data.stats.data_Q50[" + i + "]=" + data.
stats.data_Q50[i] + "<BR>"); | |
622 document.write("data.stats.data_Q75[" + i + "]=" + data.
stats.data_Q75[i] + "<BR>"); | |
623 document.write("data.stats.data_Q90[" + i + "]=" + data.
stats.data_Q90[i] + "<BR>"); | |
624 document.write("data.stats.data_Q95[" + i + "]=" + data.
stats.data_Q95[i] + "<BR>"); | |
625 document.write("data.stats.data_Q99[" + i + "]=" + data.
stats.data_Q99[i] + "<BR>"); | |
626 document.write("data.stats.data_Q100[" + i + "]=" + data
.stats.data_Q100[i] + "<BR>"); | |
627 document.write("data.stats.data_median[" + i + "]=" + da
ta.stats.data_median[i] + "<BR>"); | |
628 document.write("data.stats.data_interquartile_range[" +
i + "]=" + data.stats.data_interquartile_range[i] + "<BR>"); | |
629 } | |
630 } | |
631 }; | |
632 | |
633 function replace_stats(data, config) { | |
634 // replace in the data | |
635 if (data.stats.data_with_stats) { | |
636 if (typeof data.datasets == 'undefined') { // Pie structure; | |
637 for (i = 0; i < data.length; i++) { | |
638 if (isStat(data[i].value)) data[i].value = repla
ce_Stats_In(data[i].value, data, -1, -1); | |
639 // templates ? | |
640 if (isTemplate(data[i].value)) { | |
641 data[i].value = tmplStat(data[i].value,
{ | |
642 V1: 1 | |
643 }); | |
644 } | |
645 } | |
646 } else { // line structure; | |
647 for (var i = 0; i < data.datasets["length"]; i++) { | |
648 for (var j = 0; j < data.datasets[i].data["lengt
h"]; j++) { | |
649 if (isStat(data.datasets[i].data[j])) { | |
650 data.datasets[i].data[j] = repla
ce_Stats_In(data.datasets[i].data[j], data, i, j); | |
651 } | |
652 // templates ? | |
653 if (isTemplate(data.datasets[i].data[j])
) { | |
654 data.datasets[i].data[j] = tmplS
tat(data.datasets[i].data[j], { | |
655 V1: 1 | |
656 }); | |
657 } | |
658 } | |
659 } | |
660 } | |
661 } | |
662 // replace in other part of the data (titles) | |
663 if (typeof data.datasets == 'undefined') { // Pie structure; | |
664 for (i = 0; i < data.length; i++) { | |
665 if (isStat(data[i].title)) data[i].title = replace_Stats
_In(data[i].title, data, -1, -1); | |
666 // templates ? | |
667 if (isTemplate(data[i].title)) { | |
668 data[i].title = tmplStat(data[i].title, { | |
669 V1: 1 | |
670 }); | |
671 } | |
672 } | |
673 } else { // line structure; | |
674 for (var i = 0; i < data.datasets["length"]; i++) { | |
675 if (isStat(data.datasets[i].title)) { | |
676 data.datasets[i].title = replace_Stats_In(data.d
atasets[i].title, data, i, -1); | |
677 } | |
678 // templates ? | |
679 if (isTemplate(data.datasets[i].title)) { | |
680 data.datasets[i].title = tmplStat(data.datasets[
i].title, { | |
681 V1: 1 | |
682 }); | |
683 } | |
684 } | |
685 } | |
686 // replace in options | |
687 replace_in_object(config, data); | |
688 }; | |
689 | |
690 function replace_in_object(obj, data) { | |
691 for (var attrname in obj) { | |
692 if (typeof obj[attrname] == "object") { | |
693 replace_in_object(obj[attrname], data); | |
694 } else if (isStat(obj[attrname])) { | |
695 obj[attrname] = replace_Stats_In(obj[attrname], data, -1
, -1); | |
696 // templates if not a template option.... | |
697 if (!(attrname == "annotateLabel" || attrname == "inGrap
hDataTmpl" || attrname == "scaleLabel")) { | |
698 if (isTemplate(obj[attrname])) { | |
699 obj[attrname] = tmplStat(obj[attrname],
{ | |
700 V1: 1 | |
701 }); | |
702 } | |
703 } | |
704 } | |
705 } | |
706 }; | |
707 | |
708 function tmplStat(str, data) { | |
709 // Figure out if we're getting a template, or if we need to | |
710 // load the template - and be sure to cache the result. | |
711 var fn = !/\W/.test(str) ? | |
712 cachebis[str] = cachebis[str] || | |
713 tmplbis(document.getElementById(str).innerHTML) : | |
714 // Generate a reusable function that will serve as a template | |
715 // generator (and which will be cached). | |
716 new Function("obj", | |
717 "var p=[],print=function(){p.push.apply(p,arguments);};"
+ | |
718 // Introduce the data as local variables using with(){} | |
719 "with(obj){p.push('" + | |
720 // Convert the template into pure JavaScript | |
721 str | |
722 .replace(/[\r\t\n]/g, " ") | |
723 .split("<%").join("\t") | |
724 .replace(/((^|%>)[^\t]*)'/g, "$1\r") | |
725 .replace(/\t=(.*?)%>/g, "',$1,'") | |
726 .split("\t").join("');") | |
727 .split("%>").join("p.push('") | |
728 .split("\r").join("\\'") + "');}return p.join('');"); | |
729 // Provide some basic currying to the user | |
730 return data ? fn(data) : fn; | |
731 }; | |
732 | |
733 function isTemplate(strvar) { | |
734 if (typeof strvar == "string") { | |
735 if (strvar.indexOf("<%") >= 0) { | |
736 if (strvar.indexOf(">", strvar.indexOf("%>")) > 0) { | |
737 return true; | |
738 } | |
739 } | |
740 } | |
741 return false; | |
742 }; | |
743 | |
744 function replace_Stats_In(strval, data, dataset, coldata) { | |
745 var resval = ""; | |
746 var start = 0; | |
747 var prevstat = true; | |
748 while (strval.indexOf("#", start) >= 0) { | |
749 // strval.substring(start,) ; | |
750 if (!prevstat) { | |
751 var statOf = convertStat(strval.substring(start, strval.
indexOf("#", start)), data, dataset, coldata); | |
752 if (statOf.found) { | |
753 resval = resval + statOf.resval; | |
754 start = strval.indexOf("#", start) + 1; | |
755 prevstat = true; | |
756 } else { | |
757 resval = resval + "#" + statOf.resval; | |
758 start = strval.indexOf("#", start) + 1; | |
759 } | |
760 } else { | |
761 if (start > 0) resval = resval; | |
762 resval = resval + strval.substring(start, strval.indexOf
("#", start)); | |
763 start = strval.indexOf("#", start) + 1; | |
764 prevstat = false; | |
765 } | |
766 } | |
767 if (!prevstat) resval = resval + "#"; | |
768 resval = resval + strval.substring(start, strval.length); | |
769 return resval; | |
770 }; | |
771 | |
772 function convertStat(statval, data, dataset, coldata) { | |
773 var resval = statval; | |
774 var found = false; | |
775 if (typeof data.stats[statval.toLowerCase()] != "undefined" && typeof da
ta.stats[statval.toLowerCase()] != "object") { | |
776 resval = data.stats[statval.toLowerCase()]; | |
777 found = true; | |
778 } else if (statval.toLowerCase().substring(0, 3) == "ds_") { | |
779 stat = statval.toLowerCase().substring(3); | |
780 if (stat.indexOf("(") > 0) { | |
781 var vdataset = stat.substring(stat.indexOf("(") + 1); | |
782 vdataset = 1 * vdataset.substring(0, vdataset.indexOf(")
")); | |
783 var stat = stat.substring(0, stat.indexOf("(")); | |
784 } else { | |
785 vdataset = Math.max(1 * dataset, 0); | |
786 } | |
787 if (typeof data.datasets == "object") { | |
788 if (typeof data.datasets[vdataset] == "object") { | |
789 if (typeof data.datasets[vdataset].stats == "obj
ect") { | |
790 if (typeof data.datasets[vdataset].stats
[stat] == "number") { | |
791 resval = data.datasets[vdataset]
.stats[stat]; | |
792 found = true; | |
793 } | |
794 } | |
795 } | |
796 } | |
797 } else if (statval.toLowerCase().substring(0, 5) == "data_") { | |
798 stat = statval.toLowerCase().substring(5); | |
799 if (stat.indexOf("(") > 0) { | |
800 vdataset = stat.substring(stat.indexOf("(") + 1); | |
801 vdataset = 1 * vdataset.substring(0, vdataset.indexOf(")
")); | |
802 stat = stat.substring(0, stat.indexOf("(")); | |
803 } else { | |
804 vdataset = Math.max(1 * coldata, 0); | |
805 } | |
806 if (typeof data.datasets == "object") { | |
807 if (typeof data.stats["data_" + stat] == "object") { | |
808 if (typeof data.stats["data_" + stat][vdataset]
== "number") { | |
809 resval = data.stats["data_" + stat][vdat
aset]; | |
810 found = true; | |
811 } | |
812 } | |
813 } | |
814 } | |
815 return { | |
816 found: found, | |
817 resval: resval | |
818 }; | |
819 }; | |
OLD | NEW |