Index: src/third_party/fdlibm/fdlibm.js |
diff --git a/src/third_party/fdlibm/fdlibm.js b/src/third_party/fdlibm/fdlibm.js |
index 93a15483c27b09f35411d92e458ae9d10073cb8d..ceeacc59bbf313b850035dcd35c1feb5f97e0362 100644 |
--- a/src/third_party/fdlibm/fdlibm.js |
+++ b/src/third_party/fdlibm/fdlibm.js |
@@ -20,6 +20,9 @@ |
// and exposed through kMath as typed array. We assume the compiler to convert |
// from decimal to binary accurately enough to produce the intended values. |
// kMath is initialized to a Float64Array during genesis and not writable. |
+ |
+"use strict"; |
+ |
var kMath; |
const INVPIO2 = kMath[0]; |
@@ -424,11 +427,12 @@ function MathTan(x) { |
// |
const LN2_HI = kMath[34]; |
const LN2_LO = kMath[35]; |
-const TWO54 = kMath[36]; |
-const TWO_THIRD = kMath[37]; |
+const TWO_THIRD = kMath[36]; |
macro KLOG1P(x) |
-(kMath[38+x]) |
+(kMath[37+x]) |
endmacro |
+// 2^54 |
+const TWO54 = 18014398509481984; |
function MathLog1p(x) { |
x = x * 1; // Convert to number. |
@@ -607,10 +611,10 @@ function MathLog1p(x) { |
// For IEEE double |
// if x > 7.09782712893383973096e+02 then expm1(x) overflow |
// |
-const KEXPM1_OVERFLOW = kMath[45]; |
-const INVLN2 = kMath[46]; |
+const KEXPM1_OVERFLOW = kMath[44]; |
Raymond Toy
2014/12/10 17:15:53
I think it would be nice to have KEXPM1_TABLE_OFFS
|
+const INVLN2 = kMath[45]; |
macro KEXPM1(x) |
-(kMath[47+x]) |
+(kMath[46+x]) |
endmacro |
function MathExpm1(x) { |
@@ -730,7 +734,7 @@ function MathExpm1(x) { |
// sinh(x) is |x| if x is +Infinity, -Infinity, or NaN. |
// only sinh(0)=0 is exact for finite x. |
// |
-const KSINH_OVERFLOW = kMath[52]; |
+const KSINH_OVERFLOW = kMath[51]; |
const TWO_M28 = 3.725290298461914e-9; // 2^-28, empty lower half |
const LOG_MAXD = 709.7822265625; // 0x40862e42 00000000, empty lower half |
@@ -782,7 +786,7 @@ function MathSinh(x) { |
// cosh(x) is |x| if x is +INF, -INF, or NaN. |
// only cosh(0)=1 is exact for finite x. |
// |
-const KCOSH_OVERFLOW = kMath[52]; |
+const KCOSH_OVERFLOW = kMath[51]; |
function MathCosh(x) { |
x = x * 1; // Convert to number. |
@@ -840,9 +844,9 @@ function MathCosh(x) { |
// log10(10**N) = N for N=0,1,...,22. |
// |
-const IVLN10 = kMath[53]; |
-const LOG10_2HI = kMath[54]; |
-const LOG10_2LO = kMath[55]; |
+const IVLN10 = kMath[52]; |
+const LOG10_2HI = kMath[53]; |
+const LOG10_2LO = kMath[54]; |
function MathLog10(x) { |
x = x * 1; // Convert to number. |
@@ -875,3 +879,118 @@ function MathLog10(x) { |
z = y * LOG10_2LO + IVLN10 * MathLog(x); |
return z + y * LOG10_2HI; |
} |
+ |
+ |
+// ES6 draft 09-27-13, section 20.2.2.22. |
+// Return the base 2 logarithm of x |
+// |
+// fdlibm does not have an explicit log2 function, but fdlibm's pow |
+// function does implement an accurate log2 function as part of the |
+// pow implementation. This extracts the core parts of that as a |
+// separate log2 function. |
+ |
+// Method: |
+// Compute log2(x) in two pieces: |
+// log2(x) = w1 + w2 |
+// where w1 has 53-24 = 29 bits of trailing zeroes. |
+ |
+const DP_H = kMath[64]; |
+const DP_L = kMath[65]; |
+ |
+// Polynomial coefficients for (3/2)*(log2(x) - 2*s - 2/3*s^3) |
+macro KLOG2(x) |
+(kMath[55+x]) |
+endmacro |
+ |
+// cp = 2/(3*ln(2)). Note that cp_h + cp_l is cp, but with more accuracy. |
+const CP = kMath[61]; |
+const CP_H = kMath[62]; |
+const CP_L = kMath[63]; |
+// 2^53 |
+const TWO53 = 9007199254740992; |
+ |
+function MathLog2(x) { |
+ x = x * 1; // Convert to number. |
+ var ax = MathAbs(x); |
+ var hx = %_DoubleHi(x); |
+ var lx = %_DoubleLo(x); |
+ var ix = hx & 0x7fffffff; |
+ |
+ // Handle special cases. |
+ // log2(+/- 0) = -Infinity |
+ if ((ix | lx) == 0) return -INFINITY; |
+ |
+ // log(x) = NaN, if x < 0 |
+ if (hx < 0) return NAN; |
+ |
+ // log2(Infinity) = Infinity, log2(NaN) = NaN |
+ if (ix >= 0x7ff00000) return x; |
+ |
+ var n = 0; |
+ |
+ // Take care of subnormal number. |
+ if (ix < 0x00100000) { |
+ ax *= TWO53; |
+ n -= 53; |
+ ix = %_DoubleHi(ax); |
+ } |
+ |
+ n += (ix >> 20) - 0x3ff; |
+ var j = ix & 0x000fffff; |
+ |
+ // Determine interval. |
+ ix = j | 0x3ff00000; // normalize ix. |
+ |
+ var bp = 1; |
+ var dp_h = 0; |
+ var dp_l = 0; |
+ if (j > 0x3988e) { // |x| > sqrt(3/2) |
+ if (j < 0xbb67a) { // |x| < sqrt(3) |
+ bp = 1.5; |
+ dp_h = DP_H; |
+ dp_l = DP_L; |
+ } else { |
+ n += 1; |
+ ix -= 0x00100000; |
+ } |
+ } |
+ |
+ ax = %_ConstructDouble(ix, %_DoubleLo(ax)); |
+ |
+ // Compute ss = s_h + s_l = (x - 1)/(x+1) or (x - 1.5)/(x + 1.5) |
+ var u = ax - bp; |
+ var v = 1 / (ax + bp); |
+ var ss = u * v; |
+ var s_h = %_ConstructDouble(%_DoubleHi(ss), 0); |
+ |
+ // t_h = ax + bp[k] High |
+ var t_h = %_ConstructDouble(%_DoubleHi(ax + bp), 0) |
+ var t_l = ax - (t_h - bp); |
+ var s_l = v * ((u - s_h * t_h) - s_h * t_l); |
+ |
+ // Compute log2(ax) |
+ var s2 = ss * ss; |
+ var r = s2 * s2 * (KLOG2(0) + s2 * (KLOG2(1) + s2 * (KLOG2(2) + s2 * ( |
+ KLOG2(3) + s2 * (KLOG2(4) + s2 * KLOG2(5)))))); |
+ r += s_l * (s_h + ss); |
+ s2 = s_h * s_h; |
+ t_h = %_ConstructDouble(%_DoubleHi(3.0 + s2 + r), 0); |
+ t_l = r - ((t_h - 3.0) - s2); |
+ // u + v = ss * (1 + ...) |
+ u = s_h * t_h; |
+ v = s_l * t_h + t_l * ss; |
+ |
+ // 2 / (3 * log(2)) * (ss + ...) |
+ p_h = %_ConstructDouble(%_DoubleHi(u + v), 0); |
+ p_l = v - (p_h - u); |
+ z_h = CP_H * p_h; |
+ z_l = CP_L * p_h + p_l * CP + dp_l; |
+ |
+ // log2(ax) = (ss + ...) * 2 / (3 * log(2)) = n + dp_h + z_h + z_l |
+ var t = n; |
+ var t1 = %_ConstructDouble(%_DoubleHi(((z_h + z_l) + dp_h) + t), 0); |
+ var t2 = z_l - (((t1 - t) - dp_h) - z_h); |
+ |
+ // t1 + t2 = log2(ax), sum up because we do not care about extra precision. |
+ return t1 + t2; |
+} |