Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(509)

Unified Diff: src/math.js

Issue 78263005: Reland: Embed trigonometric lookup table. (Closed) Base URL: https://v8.googlecode.com/svn/branches/bleeding_edge
Patch Set: Created 7 years, 1 month ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « src/bootstrapper.cc ('k') | src/runtime.h » ('j') | tools/gyp/v8.gyp » ('J')
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: src/math.js
diff --git a/src/math.js b/src/math.js
index 2df0ec2a5f4a442e998afafcddc2c5e542b0da5b..c163d9a46fd2590e3e9bf71cb8e009b1c732b205 100644
--- a/src/math.js
+++ b/src/math.js
@@ -79,7 +79,8 @@ function MathCeil(x) {
// ECMA 262 - 15.8.2.7
function MathCos(x) {
- return MathCosImpl(x);
+ x = MathAbs(x); // Convert to number and get rid of -0.
+ return TrigonometricInterpolation(x, 1);
}
// ECMA 262 - 15.8.2.8
@@ -179,7 +180,9 @@ function MathRound(x) {
// ECMA 262 - 15.8.2.16
function MathSin(x) {
- return MathSinImpl(x);
+ x = x * 1; // Convert to number and deal with -0.
+ if (%_IsMinusZero(x)) return x;
+ return TrigonometricInterpolation(x, 0);
}
// ECMA 262 - 15.8.2.17
@@ -189,7 +192,7 @@ function MathSqrt(x) {
// ECMA 262 - 15.8.2.18
function MathTan(x) {
- return MathSinImpl(x) / MathCosImpl(x);
+ return MathSin(x) / MathCos(x);
}
// Non-standard extension.
@@ -198,119 +201,73 @@ function MathImul(x, y) {
}
-var MathSinImpl = function(x) {
- InitTrigonometricFunctions();
- return MathSinImpl(x);
-}
-
-
-var MathCosImpl = function(x) {
- InitTrigonometricFunctions();
- return MathCosImpl(x);
-}
-
-
-var InitTrigonometricFunctions;
-
-
-// Define constants and interpolation functions.
-// Also define the initialization function that populates the lookup table
-// and then wires up the function definitions.
-function SetupTrigonometricFunctions() {
- var samples = 1800; // Table size. Do not change arbitrarily.
- var inverse_pi_half = 0.636619772367581343; // 2 / pi
- var inverse_pi_half_s_26 = 9.48637384723993156e-9; // 2 / pi / (2^26)
- var s_26 = 1 << 26;
- var two_step_threshold = 1 << 27;
- var index_convert = 1145.915590261646418; // samples / (pi / 2)
- // pi / 2 rounded up
- var pi_half = 1.570796326794896780; // 0x192d4454fb21f93f
- // We use two parts for pi/2 to emulate a higher precision.
- // pi_half_1 only has 26 significant bits for mantissa.
- // Note that pi_half > pi_half_1 + pi_half_2
- var pi_half_1 = 1.570796325802803040; // 0x00000054fb21f93f
- var pi_half_2 = 9.920935796805404252e-10; // 0x3326a611460b113e
- var table_sin;
- var table_cos_interval;
-
- // This implements sine using the following algorithm.
- // 1) Multiplication takes care of to-number conversion.
- // 2) Reduce x to the first quadrant [0, pi/2].
- // Conveniently enough, in case of +/-Infinity, we get NaN.
- // Note that we try to use only 26 instead of 52 significant bits for
- // mantissa to avoid rounding errors when multiplying. For very large
- // input we therefore have additional steps.
- // 3) Replace x by (pi/2-x) if x was in the 2nd or 4th quadrant.
- // 4) Do a table lookup for the closest samples to the left and right of x.
- // 5) Find the derivatives at those sampling points by table lookup:
- // dsin(x)/dx = cos(x) = sin(pi/2-x) for x in [0, pi/2].
- // 6) Use cubic spline interpolation to approximate sin(x).
- // 7) Negate the result if x was in the 3rd or 4th quadrant.
- // 8) Get rid of -0 by adding 0.
- var Interpolation = function(x, phase) {
- if (x < 0 || x > pi_half) {
- var multiple;
- while (x < -two_step_threshold || x > two_step_threshold) {
- // Let's assume this loop does not terminate.
- // All numbers x in each loop forms a set S.
- // (1) abs(x) > 2^27 for all x in S.
- // (2) abs(multiple) != 0 since (2^27 * inverse_pi_half_s26) > 1
- // (3) multiple is rounded down in 2^26 steps, so the rounding error is
- // at most max(ulp, 2^26).
- // (4) so for x > 2^27, we subtract at most (1+pi/4)x and at least
- // (1-pi/4)x
- // (5) The subtraction results in x' so that abs(x') <= abs(x)*pi/4.
- // Note that this difference cannot be simply rounded off.
- // Set S cannot exist since (5) violates (1). Loop must terminate.
- multiple = MathFloor(x * inverse_pi_half_s_26) * s_26;
- x = x - multiple * pi_half_1 - multiple * pi_half_2;
- }
- multiple = MathFloor(x * inverse_pi_half);
- x = x - multiple * pi_half_1 - multiple * pi_half_2;
- phase += multiple;
+var kInversePiHalf = 0.636619772367581343; // 2 / pi
+var kInversePiHalfS26 = 9.48637384723993156e-9; // 2 / pi / (2^26)
+var kS26 = 1 << 26;
+var kTwoStepThreshold = 1 << 27;
+// pi / 2 rounded up
+var kPiHalf = 1.570796326794896780; // 0x192d4454fb21f93f
+// We use two parts for pi/2 to emulate a higher precision.
+// pi_half_1 only has 26 significant bits for mantissa.
+// Note that pi_half > pi_half_1 + pi_half_2
+var kPiHalf1 = 1.570796325802803040; // 0x00000054fb21f93f
+var kPiHalf2 = 9.920935796805404252e-10; // 0x3326a611460b113e
+
+var kSamples; // Initialized to a number during genesis.
+var kIndexConvert; // Initialized to kSamples / (pi/2) during genesis.
+var kSinTable; // Initialized to a Float64Array during genesis.
+var kCosXIntervalTable; // Initialized to a Float64Array during genesis.
+
+// This implements sine using the following algorithm.
+// 1) Multiplication takes care of to-number conversion.
+// 2) Reduce x to the first quadrant [0, pi/2].
+// Conveniently enough, in case of +/-Infinity, we get NaN.
+// Note that we try to use only 26 instead of 52 significant bits for
+// mantissa to avoid rounding errors when multiplying. For very large
+// input we therefore have additional steps.
+// 3) Replace x by (pi/2-x) if x was in the 2nd or 4th quadrant.
+// 4) Do a table lookup for the closest samples to the left and right of x.
+// 5) Find the derivatives at those sampling points by table lookup:
+// dsin(x)/dx = cos(x) = sin(pi/2-x) for x in [0, pi/2].
+// 6) Use cubic spline interpolation to approximate sin(x).
+// 7) Negate the result if x was in the 3rd or 4th quadrant.
+// 8) Get rid of -0 by adding 0.
+function TrigonometricInterpolation(x, phase) {
+ if (x < 0 || x > kPiHalf) {
+ var multiple;
+ while (x < -kTwoStepThreshold || x > kTwoStepThreshold) {
+ // Let's assume this loop does not terminate.
+ // All numbers x in each loop forms a set S.
+ // (1) abs(x) > 2^27 for all x in S.
+ // (2) abs(multiple) != 0 since (2^27 * inverse_pi_half_s26) > 1
+ // (3) multiple is rounded down in 2^26 steps, so the rounding error is
+ // at most max(ulp, 2^26).
+ // (4) so for x > 2^27, we subtract at most (1+pi/4)x and at least
+ // (1-pi/4)x
+ // (5) The subtraction results in x' so that abs(x') <= abs(x)*pi/4.
+ // Note that this difference cannot be simply rounded off.
+ // Set S cannot exist since (5) violates (1). Loop must terminate.
+ multiple = MathFloor(x * kInversePiHalfS26) * kS26;
+ x = x - multiple * kPiHalf1 - multiple * kPiHalf2;
}
- var double_index = x * index_convert;
- if (phase & 1) double_index = samples - double_index;
- var index = double_index | 0;
- var t1 = double_index - index;
- var t2 = 1 - t1;
- var y1 = table_sin[index];
- var y2 = table_sin[index + 1];
- var dy = y2 - y1;
- return (t2 * y1 + t1 * y2 +
- t1 * t2 * ((table_cos_interval[index] - dy) * t2 +
- (dy - table_cos_interval[index + 1]) * t1))
- * (1 - (phase & 2)) + 0;
- }
-
- var MathSinInterpolation = function(x) {
- x = x * 1; // Convert to number and deal with -0.
- if (%_IsMinusZero(x)) return x;
- return Interpolation(x, 0);
- }
-
- // Cosine is sine with a phase offset.
- var MathCosInterpolation = function(x) {
- x = MathAbs(x); // Convert to number and get rid of -0.
- return Interpolation(x, 1);
- };
-
- %SetInlineBuiltinFlag(Interpolation);
- %SetInlineBuiltinFlag(MathSinInterpolation);
- %SetInlineBuiltinFlag(MathCosInterpolation);
-
- InitTrigonometricFunctions = function() {
- table_sin = new global.Float64Array(samples + 2);
- table_cos_interval = new global.Float64Array(samples + 2);
- %PopulateTrigonometricTable(table_sin, table_cos_interval, samples);
- MathSinImpl = MathSinInterpolation;
- MathCosImpl = MathCosInterpolation;
+ multiple = MathFloor(x * kInversePiHalf);
+ x = x - multiple * kPiHalf1 - multiple * kPiHalf2;
+ phase += multiple;
}
+ var double_index = x * kIndexConvert;
+ if (phase & 1) double_index = kSamples - double_index;
+ var index = double_index | 0;
+ var t1 = double_index - index;
+ var t2 = 1 - t1;
+ var y1 = kSinTable[index];
+ var y2 = kSinTable[index + 1];
+ var dy = y2 - y1;
+ return (t2 * y1 + t1 * y2 +
+ t1 * t2 * ((kCosXIntervalTable[index] - dy) * t2 +
+ (dy - kCosXIntervalTable[index + 1]) * t1))
+ * (1 - (phase & 2)) + 0;
}
-SetupTrigonometricFunctions();
-
-
// -------------------------------------------------------------------
function SetUpMath() {
@@ -387,6 +344,7 @@ function SetUpMath() {
%SetInlineBuiltinFlag(MathSin);
%SetInlineBuiltinFlag(MathCos);
%SetInlineBuiltinFlag(MathTan);
+ %SetInlineBuiltinFlag(TrigonometricInterpolation);
}
SetUpMath();
« no previous file with comments | « src/bootstrapper.cc ('k') | src/runtime.h » ('j') | tools/gyp/v8.gyp » ('J')

Powered by Google App Engine
This is Rietveld 408576698