OLD | NEW |
(Empty) | |
| 1 #include "BigIntegerAlgorithms.hh" |
| 2 |
| 3 BigUnsigned gcd(BigUnsigned a, BigUnsigned b) { |
| 4 BigUnsigned trash; |
| 5 // Neat in-place alternating technique. |
| 6 for (;;) { |
| 7 if (b.isZero()) |
| 8 return a; |
| 9 a.divideWithRemainder(b, trash); |
| 10 if (a.isZero()) |
| 11 return b; |
| 12 b.divideWithRemainder(a, trash); |
| 13 } |
| 14 } |
| 15 |
| 16 void extendedEuclidean(BigInteger m, BigInteger n, |
| 17 BigInteger &g, BigInteger &r, BigInteger &s) { |
| 18 if (&g == &r || &g == &s || &r == &s) |
| 19 throw "BigInteger extendedEuclidean: Outputs are aliased"; |
| 20 BigInteger r1(1), s1(0), r2(0), s2(1), q; |
| 21 /* Invariants: |
| 22 * r1*m(orig) + s1*n(orig) == m(current) |
| 23 * r2*m(orig) + s2*n(orig) == n(current) */ |
| 24 for (;;) { |
| 25 if (n.isZero()) { |
| 26 r = r1; s = s1; g = m; |
| 27 return; |
| 28 } |
| 29 // Subtract q times the second invariant from the first invarian
t. |
| 30 m.divideWithRemainder(n, q); |
| 31 r1 -= q*r2; s1 -= q*s2; |
| 32 |
| 33 if (m.isZero()) { |
| 34 r = r2; s = s2; g = n; |
| 35 return; |
| 36 } |
| 37 // Subtract q times the first invariant from the second invarian
t. |
| 38 n.divideWithRemainder(m, q); |
| 39 r2 -= q*r1; s2 -= q*s1; |
| 40 } |
| 41 } |
| 42 |
| 43 BigUnsigned modinv(const BigInteger &x, const BigUnsigned &n) { |
| 44 BigInteger g, r, s; |
| 45 extendedEuclidean(x, n, g, r, s); |
| 46 if (g == 1) |
| 47 // r*x + s*n == 1, so r*x === 1 (mod n), so r is the answer. |
| 48 return (r % n).getMagnitude(); // (r % n) will be nonnegative |
| 49 else |
| 50 throw "BigInteger modinv: x and n have a common factor"; |
| 51 } |
| 52 |
| 53 BigUnsigned modexp(const BigInteger &base, const BigUnsigned &exponent, |
| 54 const BigUnsigned &modulus) { |
| 55 BigUnsigned ans = 1, base2 = (base % modulus).getMagnitude(); |
| 56 BigUnsigned::Index i = exponent.bitLength(); |
| 57 // For each bit of the exponent, most to least significant... |
| 58 while (i > 0) { |
| 59 i--; |
| 60 // Square. |
| 61 ans *= ans; |
| 62 ans %= modulus; |
| 63 // And multiply if the bit is a 1. |
| 64 if (exponent.getBit(i)) { |
| 65 ans *= base2; |
| 66 ans %= modulus; |
| 67 } |
| 68 } |
| 69 return ans; |
| 70 } |
OLD | NEW |