| OLD | NEW | 
|---|
| (Empty) |  | 
|  | 1 /* | 
|  | 2  *  Copyright (c) 2011 The WebM project authors. All Rights Reserved. | 
|  | 3  * | 
|  | 4  *  Use of this source code is governed by a BSD-style license | 
|  | 5  *  that can be found in the LICENSE file in the root of the source | 
|  | 6  *  tree. An additional intellectual property rights grant can be found | 
|  | 7  *  in the file PATENTS.  All contributing project authors may | 
|  | 8  *  be found in the AUTHORS file in the root of the source tree. | 
|  | 9  */ | 
|  | 10 | 
|  | 11 #include "error_concealment.h" | 
|  | 12 #include "onyxd_int.h" | 
|  | 13 #include "decodemv.h" | 
|  | 14 #include "vpx_mem/vpx_mem.h" | 
|  | 15 #include "vp8/common/recon.h" | 
|  | 16 #include "vp8/common/findnearmv.h" | 
|  | 17 | 
|  | 18 #include <assert.h> | 
|  | 19 | 
|  | 20 #define MIN(x,y) (((x)<(y))?(x):(y)) | 
|  | 21 #define MAX(x,y) (((x)>(y))?(x):(y)) | 
|  | 22 | 
|  | 23 #define FLOOR(x,q) ((x) & -(1 << (q))) | 
|  | 24 | 
|  | 25 #define NUM_NEIGHBORS 20 | 
|  | 26 | 
|  | 27 typedef struct ec_position | 
|  | 28 { | 
|  | 29     int row; | 
|  | 30     int col; | 
|  | 31 } EC_POS; | 
|  | 32 | 
|  | 33 /* | 
|  | 34  * Regenerate the table in Matlab with: | 
|  | 35  * x = meshgrid((1:4), (1:4)); | 
|  | 36  * y = meshgrid((1:4), (1:4))'; | 
|  | 37  * W = round((1./(sqrt(x.^2 + y.^2))*2^7)); | 
|  | 38  * W(1,1) = 0; | 
|  | 39  */ | 
|  | 40 static const int weights_q7[5][5] = { | 
|  | 41        {  0,   128,    64,    43,    32 }, | 
|  | 42        {128,    91,    57,    40,    31 }, | 
|  | 43        { 64,    57,    45,    36,    29 }, | 
|  | 44        { 43,    40,    36,    30,    26 }, | 
|  | 45        { 32,    31,    29,    26,    23 } | 
|  | 46 }; | 
|  | 47 | 
|  | 48 int vp8_alloc_overlap_lists(VP8D_COMP *pbi) | 
|  | 49 { | 
|  | 50     if (pbi->overlaps != NULL) | 
|  | 51     { | 
|  | 52         vpx_free(pbi->overlaps); | 
|  | 53         pbi->overlaps = NULL; | 
|  | 54     } | 
|  | 55     pbi->overlaps = vpx_calloc(pbi->common.mb_rows * pbi->common.mb_cols, | 
|  | 56                                sizeof(MB_OVERLAP)); | 
|  | 57     if (pbi->overlaps == NULL) | 
|  | 58         return -1; | 
|  | 59     vpx_memset(pbi->overlaps, 0, | 
|  | 60                sizeof(MB_OVERLAP) * pbi->common.mb_rows * pbi->common.mb_cols); | 
|  | 61     return 0; | 
|  | 62 } | 
|  | 63 | 
|  | 64 void vp8_de_alloc_overlap_lists(VP8D_COMP *pbi) | 
|  | 65 { | 
|  | 66     vpx_free(pbi->overlaps); | 
|  | 67     pbi->overlaps = NULL; | 
|  | 68 } | 
|  | 69 | 
|  | 70 /* Inserts a new overlap area value to the list of overlaps of a block */ | 
|  | 71 static void assign_overlap(OVERLAP_NODE* overlaps, | 
|  | 72                            union b_mode_info *bmi, | 
|  | 73                            int overlap) | 
|  | 74 { | 
|  | 75     int i; | 
|  | 76     if (overlap <= 0) | 
|  | 77         return; | 
|  | 78     /* Find and assign to the next empty overlap node in the list of overlaps. | 
|  | 79      * Empty is defined as bmi == NULL */ | 
|  | 80     for (i = 0; i < MAX_OVERLAPS; i++) | 
|  | 81     { | 
|  | 82         if (overlaps[i].bmi == NULL) | 
|  | 83         { | 
|  | 84             overlaps[i].bmi = bmi; | 
|  | 85             overlaps[i].overlap = overlap; | 
|  | 86             break; | 
|  | 87         } | 
|  | 88     } | 
|  | 89 } | 
|  | 90 | 
|  | 91 /* Calculates the overlap area between two 4x4 squares, where the first | 
|  | 92  * square has its upper-left corner at (b1_row, b1_col) and the second | 
|  | 93  * square has its upper-left corner at (b2_row, b2_col). Doesn't | 
|  | 94  * properly handle squares which do not overlap. | 
|  | 95  */ | 
|  | 96 static int block_overlap(int b1_row, int b1_col, int b2_row, int b2_col) | 
|  | 97 { | 
|  | 98     const int int_top = MAX(b1_row, b2_row); // top | 
|  | 99     const int int_left = MAX(b1_col, b2_col); // left | 
|  | 100     /* Since each block is 4x4 pixels, adding 4 (Q3) to the left/top edge | 
|  | 101      * gives us the right/bottom edge. | 
|  | 102      */ | 
|  | 103     const int int_right = MIN(b1_col + (4<<3), b2_col + (4<<3)); // right | 
|  | 104     const int int_bottom = MIN(b1_row + (4<<3), b2_row + (4<<3)); // bottom | 
|  | 105     return (int_bottom - int_top) * (int_right - int_left); | 
|  | 106 } | 
|  | 107 | 
|  | 108 /* Calculates the overlap area for all blocks in a macroblock at position | 
|  | 109  * (mb_row, mb_col) in macroblocks, which are being overlapped by a given | 
|  | 110  * overlapping block at position (new_row, new_col) (in pixels, Q3). The | 
|  | 111  * first block being overlapped in the macroblock has position (first_blk_row, | 
|  | 112  * first_blk_col) in blocks relative the upper-left corner of the image. | 
|  | 113  */ | 
|  | 114 static void calculate_overlaps_mb(B_OVERLAP *b_overlaps, union b_mode_info *bmi, | 
|  | 115                                   int new_row, int new_col, | 
|  | 116                                   int mb_row, int mb_col, | 
|  | 117                                   int first_blk_row, int first_blk_col) | 
|  | 118 { | 
|  | 119     /* Find the blocks within this MB (defined by mb_row, mb_col) which are | 
|  | 120      * overlapped by bmi and calculate and assign overlap for each of those | 
|  | 121      * blocks. */ | 
|  | 122 | 
|  | 123     /* Block coordinates relative the upper-left block */ | 
|  | 124     const int rel_ol_blk_row = first_blk_row - mb_row * 4; | 
|  | 125     const int rel_ol_blk_col = first_blk_col - mb_col * 4; | 
|  | 126     /* If the block partly overlaps any previous MB, these coordinates | 
|  | 127      * can be < 0. We don't want to access blocks in previous MBs. | 
|  | 128      */ | 
|  | 129     const int blk_idx = MAX(rel_ol_blk_row,0) * 4 + MAX(rel_ol_blk_col,0); | 
|  | 130     /* Upper left overlapping block */ | 
|  | 131     B_OVERLAP *b_ol_ul = &(b_overlaps[blk_idx]); | 
|  | 132 | 
|  | 133     /* Calculate and assign overlaps for all blocks in this MB | 
|  | 134      * which the motion compensated block overlaps | 
|  | 135      */ | 
|  | 136     /* Avoid calculating overlaps for blocks in later MBs */ | 
|  | 137     int end_row = MIN(4 + mb_row * 4 - first_blk_row, 2); | 
|  | 138     int end_col = MIN(4 + mb_col * 4 - first_blk_col, 2); | 
|  | 139     int row, col; | 
|  | 140 | 
|  | 141     /* Check if new_row and new_col are evenly divisible by 4 (Q3), | 
|  | 142      * and if so we shouldn't check neighboring blocks | 
|  | 143      */ | 
|  | 144     if (new_row >= 0 && (new_row & 0x1F) == 0) | 
|  | 145         end_row = 1; | 
|  | 146     if (new_col >= 0 && (new_col & 0x1F) == 0) | 
|  | 147         end_col = 1; | 
|  | 148 | 
|  | 149     /* Check if the overlapping block partly overlaps a previous MB | 
|  | 150      * and if so, we're overlapping fewer blocks in this MB. | 
|  | 151      */ | 
|  | 152     if (new_row < (mb_row*16)<<3) | 
|  | 153         end_row = 1; | 
|  | 154     if (new_col < (mb_col*16)<<3) | 
|  | 155         end_col = 1; | 
|  | 156 | 
|  | 157     for (row = 0; row < end_row; ++row) | 
|  | 158     { | 
|  | 159         for (col = 0; col < end_col; ++col) | 
|  | 160         { | 
|  | 161             /* input in Q3, result in Q6 */ | 
|  | 162             const int overlap = block_overlap(new_row, new_col, | 
|  | 163                                                   (((first_blk_row + row) * | 
|  | 164                                                       4) << 3), | 
|  | 165                                                   (((first_blk_col + col) * | 
|  | 166                                                       4) << 3)); | 
|  | 167             assign_overlap(b_ol_ul[row * 4 + col].overlaps, bmi, overlap); | 
|  | 168         } | 
|  | 169     } | 
|  | 170 } | 
|  | 171 | 
|  | 172 void vp8_calculate_overlaps(MB_OVERLAP *overlap_ul, | 
|  | 173                             int mb_rows, int mb_cols, | 
|  | 174                             union b_mode_info *bmi, | 
|  | 175                             int b_row, int b_col) | 
|  | 176 { | 
|  | 177     MB_OVERLAP *mb_overlap; | 
|  | 178     int row, col, rel_row, rel_col; | 
|  | 179     int new_row, new_col; | 
|  | 180     int end_row, end_col; | 
|  | 181     int overlap_b_row, overlap_b_col; | 
|  | 182     int overlap_mb_row, overlap_mb_col; | 
|  | 183 | 
|  | 184     /* mb subpixel position */ | 
|  | 185     row = (4 * b_row) << 3; /* Q3 */ | 
|  | 186     col = (4 * b_col) << 3; /* Q3 */ | 
|  | 187 | 
|  | 188     /* reverse compensate for motion */ | 
|  | 189     new_row = row - bmi->mv.as_mv.row; | 
|  | 190     new_col = col - bmi->mv.as_mv.col; | 
|  | 191 | 
|  | 192     if (new_row >= ((16*mb_rows) << 3) || new_col >= ((16*mb_cols) << 3)) | 
|  | 193     { | 
|  | 194         /* the new block ended up outside the frame */ | 
|  | 195         return; | 
|  | 196     } | 
|  | 197 | 
|  | 198     if (new_row <= (-4 << 3) || new_col <= (-4 << 3)) | 
|  | 199     { | 
|  | 200         /* outside the frame */ | 
|  | 201         return; | 
|  | 202     } | 
|  | 203     /* overlapping block's position in blocks */ | 
|  | 204     overlap_b_row = FLOOR(new_row / 4, 3) >> 3; | 
|  | 205     overlap_b_col = FLOOR(new_col / 4, 3) >> 3; | 
|  | 206 | 
|  | 207     /* overlapping block's MB position in MBs | 
|  | 208      * operations are done in Q3 | 
|  | 209      */ | 
|  | 210     overlap_mb_row = FLOOR((overlap_b_row << 3) / 4, 3) >> 3; | 
|  | 211     overlap_mb_col = FLOOR((overlap_b_col << 3) / 4, 3) >> 3; | 
|  | 212 | 
|  | 213     end_row = MIN(mb_rows - overlap_mb_row, 2); | 
|  | 214     end_col = MIN(mb_cols - overlap_mb_col, 2); | 
|  | 215 | 
|  | 216     /* Don't calculate overlap for MBs we don't overlap */ | 
|  | 217     /* Check if the new block row starts at the last block row of the MB */ | 
|  | 218     if (abs(new_row - ((16*overlap_mb_row) << 3)) < ((3*4) << 3)) | 
|  | 219         end_row = 1; | 
|  | 220     /* Check if the new block col starts at the last block col of the MB */ | 
|  | 221     if (abs(new_col - ((16*overlap_mb_col) << 3)) < ((3*4) << 3)) | 
|  | 222         end_col = 1; | 
|  | 223 | 
|  | 224     /* find the MB(s) this block is overlapping */ | 
|  | 225     for (rel_row = 0; rel_row < end_row; ++rel_row) | 
|  | 226     { | 
|  | 227         for (rel_col = 0; rel_col < end_col; ++rel_col) | 
|  | 228         { | 
|  | 229             if (overlap_mb_row + rel_row < 0 || | 
|  | 230                 overlap_mb_col + rel_col < 0) | 
|  | 231                 continue; | 
|  | 232             mb_overlap = overlap_ul + (overlap_mb_row + rel_row) * mb_cols + | 
|  | 233                  overlap_mb_col + rel_col; | 
|  | 234 | 
|  | 235             calculate_overlaps_mb(mb_overlap->overlaps, bmi, | 
|  | 236                                   new_row, new_col, | 
|  | 237                                   overlap_mb_row + rel_row, | 
|  | 238                                   overlap_mb_col + rel_col, | 
|  | 239                                   overlap_b_row + rel_row, | 
|  | 240                                   overlap_b_col + rel_col); | 
|  | 241         } | 
|  | 242     } | 
|  | 243 } | 
|  | 244 | 
|  | 245 /* Estimates a motion vector given the overlapping blocks' motion vectors. | 
|  | 246  * Filters out all overlapping blocks which do not refer to the correct | 
|  | 247  * reference frame type. | 
|  | 248  */ | 
|  | 249 static void estimate_mv(const OVERLAP_NODE *overlaps, union b_mode_info *bmi) | 
|  | 250 { | 
|  | 251     int i; | 
|  | 252     int overlap_sum = 0; | 
|  | 253     int row_acc = 0; | 
|  | 254     int col_acc = 0; | 
|  | 255 | 
|  | 256     bmi->mv.as_int = 0; | 
|  | 257     for (i=0; i < MAX_OVERLAPS; ++i) | 
|  | 258     { | 
|  | 259         if (overlaps[i].bmi == NULL) | 
|  | 260             break; | 
|  | 261         col_acc += overlaps[i].overlap * overlaps[i].bmi->mv.as_mv.col; | 
|  | 262         row_acc += overlaps[i].overlap * overlaps[i].bmi->mv.as_mv.row; | 
|  | 263         overlap_sum += overlaps[i].overlap; | 
|  | 264     } | 
|  | 265     if (overlap_sum > 0) | 
|  | 266     { | 
|  | 267         /* Q9 / Q6 = Q3 */ | 
|  | 268         bmi->mv.as_mv.col = col_acc / overlap_sum; | 
|  | 269         bmi->mv.as_mv.row = row_acc / overlap_sum; | 
|  | 270     } | 
|  | 271     else | 
|  | 272     { | 
|  | 273         bmi->mv.as_mv.col = 0; | 
|  | 274         bmi->mv.as_mv.row = 0; | 
|  | 275     } | 
|  | 276 } | 
|  | 277 | 
|  | 278 /* Estimates all motion vectors for a macroblock given the lists of | 
|  | 279  * overlaps for each block. Decides whether or not the MVs must be clamped. | 
|  | 280  */ | 
|  | 281 static void estimate_mb_mvs(const B_OVERLAP *block_overlaps, | 
|  | 282                             MODE_INFO *mi, | 
|  | 283                             int mb_to_left_edge, | 
|  | 284                             int mb_to_right_edge, | 
|  | 285                             int mb_to_top_edge, | 
|  | 286                             int mb_to_bottom_edge) | 
|  | 287 { | 
|  | 288     int i; | 
|  | 289     int non_zero_count = 0; | 
|  | 290     MV * const filtered_mv = &(mi->mbmi.mv.as_mv); | 
|  | 291     union b_mode_info * const bmi = mi->bmi; | 
|  | 292     filtered_mv->col = 0; | 
|  | 293     filtered_mv->row = 0; | 
|  | 294     for (i = 0; i < 16; ++i) | 
|  | 295     { | 
|  | 296         /* Estimate vectors for all blocks which are overlapped by this type */ | 
|  | 297         /* Interpolate/extrapolate the rest of the block's MVs */ | 
|  | 298         estimate_mv(block_overlaps[i].overlaps, &(bmi[i])); | 
|  | 299         mi->mbmi.need_to_clamp_mvs = vp8_check_mv_bounds(&bmi[i].mv, | 
|  | 300                                                          mb_to_left_edge, | 
|  | 301                                                          mb_to_right_edge, | 
|  | 302                                                          mb_to_top_edge, | 
|  | 303                                                          mb_to_bottom_edge); | 
|  | 304         if (bmi[i].mv.as_int != 0) | 
|  | 305         { | 
|  | 306             ++non_zero_count; | 
|  | 307             filtered_mv->col += bmi[i].mv.as_mv.col; | 
|  | 308             filtered_mv->row += bmi[i].mv.as_mv.row; | 
|  | 309         } | 
|  | 310     } | 
|  | 311     if (non_zero_count > 0) | 
|  | 312     { | 
|  | 313         filtered_mv->col /= non_zero_count; | 
|  | 314         filtered_mv->row /= non_zero_count; | 
|  | 315     } | 
|  | 316 } | 
|  | 317 | 
|  | 318 static void calc_prev_mb_overlaps(MB_OVERLAP *overlaps, MODE_INFO *prev_mi, | 
|  | 319                                     int mb_row, int mb_col, | 
|  | 320                                     int mb_rows, int mb_cols) | 
|  | 321 { | 
|  | 322     int sub_row; | 
|  | 323     int sub_col; | 
|  | 324     for (sub_row = 0; sub_row < 4; ++sub_row) | 
|  | 325     { | 
|  | 326         for (sub_col = 0; sub_col < 4; ++sub_col) | 
|  | 327         { | 
|  | 328             vp8_calculate_overlaps( | 
|  | 329                                 overlaps, mb_rows, mb_cols, | 
|  | 330                                 &(prev_mi->bmi[sub_row * 4 + sub_col]), | 
|  | 331                                 4 * mb_row + sub_row, | 
|  | 332                                 4 * mb_col + sub_col); | 
|  | 333         } | 
|  | 334     } | 
|  | 335 } | 
|  | 336 | 
|  | 337 /* Estimate all missing motion vectors. This function does the same as the one | 
|  | 338  * above, but has different input arguments. */ | 
|  | 339 static void estimate_missing_mvs(MB_OVERLAP *overlaps, | 
|  | 340                                  MODE_INFO *mi, MODE_INFO *prev_mi, | 
|  | 341                                  int mb_rows, int mb_cols, | 
|  | 342                                  unsigned int first_corrupt) | 
|  | 343 { | 
|  | 344     int mb_row, mb_col; | 
|  | 345     vpx_memset(overlaps, 0, sizeof(MB_OVERLAP) * mb_rows * mb_cols); | 
|  | 346     /* First calculate the overlaps for all blocks */ | 
|  | 347     for (mb_row = 0; mb_row < mb_rows; ++mb_row) | 
|  | 348     { | 
|  | 349         for (mb_col = 0; mb_col < mb_cols; ++mb_col) | 
|  | 350         { | 
|  | 351             /* We're only able to use blocks referring to the last frame | 
|  | 352              * when extrapolating new vectors. | 
|  | 353              */ | 
|  | 354             if (prev_mi->mbmi.ref_frame == LAST_FRAME) | 
|  | 355             { | 
|  | 356                 calc_prev_mb_overlaps(overlaps, prev_mi, | 
|  | 357                                       mb_row, mb_col, | 
|  | 358                                       mb_rows, mb_cols); | 
|  | 359             } | 
|  | 360             ++prev_mi; | 
|  | 361         } | 
|  | 362         ++prev_mi; | 
|  | 363     } | 
|  | 364 | 
|  | 365     mb_row = first_corrupt / mb_cols; | 
|  | 366     mb_col = first_corrupt - mb_row * mb_cols; | 
|  | 367     mi += mb_row*(mb_cols + 1) + mb_col; | 
|  | 368     /* Go through all macroblocks in the current image with missing MVs | 
|  | 369      * and calculate new MVs using the overlaps. | 
|  | 370      */ | 
|  | 371     for (; mb_row < mb_rows; ++mb_row) | 
|  | 372     { | 
|  | 373         int mb_to_top_edge = -((mb_row * 16)) << 3; | 
|  | 374         int mb_to_bottom_edge = ((mb_rows - 1 - mb_row) * 16) << 3; | 
|  | 375         for (; mb_col < mb_cols; ++mb_col) | 
|  | 376         { | 
|  | 377             int mb_to_left_edge = -((mb_col * 16) << 3); | 
|  | 378             int mb_to_right_edge = ((mb_cols - 1 - mb_col) * 16) << 3; | 
|  | 379             const B_OVERLAP *block_overlaps = | 
|  | 380                     overlaps[mb_row*mb_cols + mb_col].overlaps; | 
|  | 381             mi->mbmi.ref_frame = LAST_FRAME; | 
|  | 382             mi->mbmi.mode = SPLITMV; | 
|  | 383             mi->mbmi.uv_mode = DC_PRED; | 
|  | 384             mi->mbmi.partitioning = 3; | 
|  | 385             mi->mbmi.segment_id = 0; | 
|  | 386             estimate_mb_mvs(block_overlaps, | 
|  | 387                                 mi, | 
|  | 388                                 mb_to_left_edge, | 
|  | 389                                 mb_to_right_edge, | 
|  | 390                                 mb_to_top_edge, | 
|  | 391                                 mb_to_bottom_edge); | 
|  | 392             ++mi; | 
|  | 393         } | 
|  | 394         mb_col = 0; | 
|  | 395         ++mi; | 
|  | 396     } | 
|  | 397 } | 
|  | 398 | 
|  | 399 void vp8_estimate_missing_mvs(VP8D_COMP *pbi) | 
|  | 400 { | 
|  | 401     VP8_COMMON * const pc = &pbi->common; | 
|  | 402     estimate_missing_mvs(pbi->overlaps, | 
|  | 403                          pc->mi, pc->prev_mi, | 
|  | 404                          pc->mb_rows, pc->mb_cols, | 
|  | 405                          pbi->mvs_corrupt_from_mb); | 
|  | 406 } | 
|  | 407 | 
|  | 408 static void assign_neighbor(EC_BLOCK *neighbor, MODE_INFO *mi, int block_idx) | 
|  | 409 { | 
|  | 410     assert(mi->mbmi.ref_frame < MAX_REF_FRAMES); | 
|  | 411     neighbor->ref_frame = mi->mbmi.ref_frame; | 
|  | 412     neighbor->mv = mi->bmi[block_idx].mv.as_mv; | 
|  | 413 } | 
|  | 414 | 
|  | 415 /* Finds the neighboring blocks of a macroblocks. In the general case | 
|  | 416  * 20 blocks are found. If a fewer number of blocks are found due to | 
|  | 417  * image boundaries, those positions in the EC_BLOCK array are left "empty". | 
|  | 418  * The neighbors are enumerated with the upper-left neighbor as the first | 
|  | 419  * element, the second element refers to the neighbor to right of the previous | 
|  | 420  * neighbor, and so on. The last element refers to the neighbor below the first | 
|  | 421  * neighbor. | 
|  | 422  */ | 
|  | 423 static void find_neighboring_blocks(MODE_INFO *mi, | 
|  | 424                                     EC_BLOCK *neighbors, | 
|  | 425                                     int mb_row, int mb_col, | 
|  | 426                                     int mb_rows, int mb_cols, | 
|  | 427                                     int mi_stride) | 
|  | 428 { | 
|  | 429     int i = 0; | 
|  | 430     int j; | 
|  | 431     if (mb_row > 0) | 
|  | 432     { | 
|  | 433         /* upper left */ | 
|  | 434         if (mb_col > 0) | 
|  | 435             assign_neighbor(&neighbors[i], mi - mi_stride - 1, 15); | 
|  | 436         ++i; | 
|  | 437         /* above */ | 
|  | 438         for (j = 12; j < 16; ++j, ++i) | 
|  | 439             assign_neighbor(&neighbors[i], mi - mi_stride, j); | 
|  | 440     } | 
|  | 441     else | 
|  | 442         i += 5; | 
|  | 443     if (mb_col < mb_cols - 1) | 
|  | 444     { | 
|  | 445         /* upper right */ | 
|  | 446         if (mb_row > 0) | 
|  | 447             assign_neighbor(&neighbors[i], mi - mi_stride + 1, 12); | 
|  | 448         ++i; | 
|  | 449         /* right */ | 
|  | 450         for (j = 0; j <= 12; j += 4, ++i) | 
|  | 451             assign_neighbor(&neighbors[i], mi + 1, j); | 
|  | 452     } | 
|  | 453     else | 
|  | 454         i += 5; | 
|  | 455     if (mb_row < mb_rows - 1) | 
|  | 456     { | 
|  | 457         /* lower right */ | 
|  | 458         if (mb_col < mb_cols - 1) | 
|  | 459             assign_neighbor(&neighbors[i], mi + mi_stride + 1, 0); | 
|  | 460         ++i; | 
|  | 461         /* below */ | 
|  | 462         for (j = 0; j < 4; ++j, ++i) | 
|  | 463             assign_neighbor(&neighbors[i], mi + mi_stride, j); | 
|  | 464     } | 
|  | 465     else | 
|  | 466         i += 5; | 
|  | 467     if (mb_col > 0) | 
|  | 468     { | 
|  | 469         /* lower left */ | 
|  | 470         if (mb_row < mb_rows - 1) | 
|  | 471             assign_neighbor(&neighbors[i], mi + mi_stride - 1, 4); | 
|  | 472         ++i; | 
|  | 473         /* left */ | 
|  | 474         for (j = 3; j < 16; j += 4, ++i) | 
|  | 475         { | 
|  | 476             assign_neighbor(&neighbors[i], mi - 1, j); | 
|  | 477         } | 
|  | 478     } | 
|  | 479     else | 
|  | 480         i += 5; | 
|  | 481     assert(i == 20); | 
|  | 482 } | 
|  | 483 | 
|  | 484 /* Calculates which reference frame type is dominating among the neighbors */ | 
|  | 485 static MV_REFERENCE_FRAME dominant_ref_frame(EC_BLOCK *neighbors) | 
|  | 486 { | 
|  | 487     /* Default to referring to "skip" */ | 
|  | 488     MV_REFERENCE_FRAME dom_ref_frame = LAST_FRAME; | 
|  | 489     int max_ref_frame_cnt = 0; | 
|  | 490     int ref_frame_cnt[MAX_REF_FRAMES] = {0}; | 
|  | 491     int i; | 
|  | 492     /* Count neighboring reference frames */ | 
|  | 493     for (i = 0; i < NUM_NEIGHBORS; ++i) | 
|  | 494     { | 
|  | 495         if (neighbors[i].ref_frame < MAX_REF_FRAMES && | 
|  | 496             neighbors[i].ref_frame != INTRA_FRAME) | 
|  | 497             ++ref_frame_cnt[neighbors[i].ref_frame]; | 
|  | 498     } | 
|  | 499     /* Find maximum */ | 
|  | 500     for (i = 0; i < MAX_REF_FRAMES; ++i) | 
|  | 501     { | 
|  | 502         if (ref_frame_cnt[i] > max_ref_frame_cnt) | 
|  | 503         { | 
|  | 504             dom_ref_frame = i; | 
|  | 505             max_ref_frame_cnt = ref_frame_cnt[i]; | 
|  | 506         } | 
|  | 507     } | 
|  | 508     return dom_ref_frame; | 
|  | 509 } | 
|  | 510 | 
|  | 511 /* Interpolates all motion vectors for a macroblock from the neighboring blocks' | 
|  | 512  * motion vectors. | 
|  | 513  */ | 
|  | 514 static void interpolate_mvs(MACROBLOCKD *mb, | 
|  | 515                          EC_BLOCK *neighbors, | 
|  | 516                          MV_REFERENCE_FRAME dom_ref_frame) | 
|  | 517 { | 
|  | 518     int row, col, i; | 
|  | 519     MODE_INFO * const mi = mb->mode_info_context; | 
|  | 520     /* Table with the position of the neighboring blocks relative the position | 
|  | 521      * of the upper left block of the current MB. Starting with the upper left | 
|  | 522      * neighbor and going to the right. | 
|  | 523      */ | 
|  | 524     const EC_POS neigh_pos[NUM_NEIGHBORS] = { | 
|  | 525                                         {-1,-1}, {-1,0}, {-1,1}, {-1,2}, {-1,3}, | 
|  | 526                                         {-1,4}, {0,4}, {1,4}, {2,4}, {3,4}, | 
|  | 527                                         {4,4}, {4,3}, {4,2}, {4,1}, {4,0}, | 
|  | 528                                         {4,-1}, {3,-1}, {2,-1}, {1,-1}, {0,-1} | 
|  | 529                                       }; | 
|  | 530     for (row = 0; row < 4; ++row) | 
|  | 531     { | 
|  | 532         for (col = 0; col < 4; ++col) | 
|  | 533         { | 
|  | 534             int w_sum = 0; | 
|  | 535             int mv_row_sum = 0; | 
|  | 536             int mv_col_sum = 0; | 
|  | 537             int_mv * const mv = &(mi->bmi[row*4 + col].mv); | 
|  | 538             for (i = 0; i < NUM_NEIGHBORS; ++i) | 
|  | 539             { | 
|  | 540                 /* Calculate the weighted sum of neighboring MVs referring | 
|  | 541                  * to the dominant frame type. | 
|  | 542                  */ | 
|  | 543                 const int w = weights_q7[abs(row - neigh_pos[i].row)] | 
|  | 544                                         [abs(col - neigh_pos[i].col)]; | 
|  | 545                 if (neighbors[i].ref_frame != dom_ref_frame) | 
|  | 546                     continue; | 
|  | 547                 w_sum += w; | 
|  | 548                 /* Q7 * Q3 = Q10 */ | 
|  | 549                 mv_row_sum += w*neighbors[i].mv.row; | 
|  | 550                 mv_col_sum += w*neighbors[i].mv.col; | 
|  | 551             } | 
|  | 552             if (w_sum > 0) | 
|  | 553             { | 
|  | 554                 /* Avoid division by zero. | 
|  | 555                  * Normalize with the sum of the coefficients | 
|  | 556                  * Q3 = Q10 / Q7 | 
|  | 557                  */ | 
|  | 558                 mv->as_mv.row = mv_row_sum / w_sum; | 
|  | 559                 mv->as_mv.col = mv_col_sum / w_sum; | 
|  | 560 | 
|  | 561                 mi->mbmi.need_to_clamp_mvs = vp8_check_mv_bounds(mv, | 
|  | 562                                                        mb->mb_to_left_edge, | 
|  | 563                                                        mb->mb_to_right_edge, | 
|  | 564                                                        mb->mb_to_top_edge, | 
|  | 565                                                        mb->mb_to_bottom_edge); | 
|  | 566             } | 
|  | 567             else | 
|  | 568             { | 
|  | 569                 mv->as_int = 0; | 
|  | 570                 mi->mbmi.need_to_clamp_mvs = 0; | 
|  | 571             } | 
|  | 572         } | 
|  | 573     } | 
|  | 574 } | 
|  | 575 | 
|  | 576 void vp8_interpolate_motion(MACROBLOCKD *mb, | 
|  | 577                         int mb_row, int mb_col, | 
|  | 578                         int mb_rows, int mb_cols, | 
|  | 579                         int mi_stride) | 
|  | 580 { | 
|  | 581     /* Find relevant neighboring blocks */ | 
|  | 582     EC_BLOCK neighbors[NUM_NEIGHBORS]; | 
|  | 583     MV_REFERENCE_FRAME dom_ref_frame; | 
|  | 584     int i; | 
|  | 585     /* Initialize the array. MAX_REF_FRAMES is interpreted as "doesn't exist" */ | 
|  | 586     for (i = 0; i < NUM_NEIGHBORS; ++i) | 
|  | 587     { | 
|  | 588         neighbors[i].ref_frame = MAX_REF_FRAMES; | 
|  | 589         neighbors[i].mv.row = neighbors[i].mv.col = 0; | 
|  | 590     } | 
|  | 591     find_neighboring_blocks(mb->mode_info_context, | 
|  | 592                                 neighbors, | 
|  | 593                                 mb_row, mb_col, | 
|  | 594                                 mb_rows, mb_cols, | 
|  | 595                                 mb->mode_info_stride); | 
|  | 596     /* Determine the dominant block type */ | 
|  | 597     dom_ref_frame = dominant_ref_frame(neighbors); | 
|  | 598     /* Interpolate MVs for the missing blocks | 
|  | 599      * from the dominating MVs */ | 
|  | 600     interpolate_mvs(mb, neighbors, dom_ref_frame); | 
|  | 601 | 
|  | 602     mb->mode_info_context->mbmi.ref_frame = dom_ref_frame; | 
|  | 603     mb->mode_info_context->mbmi.mode = SPLITMV; | 
|  | 604     mb->mode_info_context->mbmi.uv_mode = DC_PRED; | 
|  | 605     mb->mode_info_context->mbmi.partitioning = 3; | 
|  | 606     mb->mode_info_context->mbmi.segment_id = 0; | 
|  | 607 } | 
|  | 608 | 
|  | 609 void vp8_conceal_corrupt_mb(MACROBLOCKD *xd) | 
|  | 610 { | 
|  | 611     /* This macroblock has corrupt residual, use the motion compensated | 
|  | 612        image (predictor) for concealment */ | 
|  | 613     vp8_recon_copy16x16(xd->predictor, 16, xd->dst.y_buffer, xd->dst.y_stride); | 
|  | 614     vp8_recon_copy8x8(xd->predictor + 256, 8, | 
|  | 615                       xd->dst.u_buffer, xd->dst.uv_stride); | 
|  | 616     vp8_recon_copy8x8(xd->predictor + 320, 8, | 
|  | 617                       xd->dst.v_buffer, xd->dst.uv_stride); | 
|  | 618 } | 
| OLD | NEW | 
|---|