Index: libvpx/source/libvpx/vp8/encoder/firstpass.c |
diff --git a/libvpx/source/libvpx/vp8/encoder/firstpass.c b/libvpx/source/libvpx/vp8/encoder/firstpass.c |
index 968e3eeef867148b50a9fad7011098107f26b1d5..6c9433b5f8e6f7ac0c293c00d7c40cd6807399ae 100644 |
--- a/libvpx/source/libvpx/vp8/encoder/firstpass.c |
+++ b/libvpx/source/libvpx/vp8/encoder/firstpass.c |
@@ -16,7 +16,6 @@ |
#include "encodeintra.h" |
#include "vp8/common/setupintrarecon.h" |
#include "mcomp.h" |
-#include "firstpass.h" |
#include "vpx_scale/vpxscale.h" |
#include "encodemb.h" |
#include "vp8/common/extend.h" |
@@ -40,7 +39,7 @@ |
extern void vp8_build_block_offsets(MACROBLOCK *x); |
extern void vp8_setup_block_ptrs(MACROBLOCK *x); |
extern void vp8cx_frame_init_quantizer(VP8_COMP *cpi); |
-extern void vp8_set_mbmode_and_mvs(MACROBLOCK *x, MB_PREDICTION_MODE mb, int_mv *mv); |
+extern void vp8_set_mbmode_and_mvs(MACROBLOCK *x, MB_PREDICTION_MODE mb, MV *mv); |
extern void vp8_alloc_compressor_data(VP8_COMP *cpi); |
//#define GFQ_ADJUSTMENT (40 + ((15*Q)/10)) |
@@ -50,7 +49,7 @@ extern int vp8_kf_boost_qadjustment[QINDEX_RANGE]; |
extern const int vp8_gf_boost_qadjustment[QINDEX_RANGE]; |
-#define IIFACTOR 1.5 |
+#define IIFACTOR 1.4 |
#define IIKFACTOR1 1.40 |
#define IIKFACTOR2 1.5 |
#define RMAX 14.0 |
@@ -64,8 +63,6 @@ extern const int vp8_gf_boost_qadjustment[QINDEX_RANGE]; |
#define POW1 (double)cpi->oxcf.two_pass_vbrbias/100.0 |
#define POW2 (double)cpi->oxcf.two_pass_vbrbias/100.0 |
-#define NEW_BOOST 1 |
- |
static int vscale_lookup[7] = {0, 1, 1, 2, 2, 3, 3}; |
static int hscale_lookup[7] = {0, 0, 1, 1, 2, 2, 3}; |
@@ -84,165 +81,56 @@ static const int cq_level[QINDEX_RANGE] = |
static void find_next_key_frame(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame); |
-// Resets the first pass file to the given position using a relative seek from the current position |
-static void reset_fpf_position(VP8_COMP *cpi, FIRSTPASS_STATS *Position) |
-{ |
- cpi->twopass.stats_in = Position; |
-} |
- |
-static int lookup_next_frame_stats(VP8_COMP *cpi, FIRSTPASS_STATS *next_frame) |
+static int encode_intra(VP8_COMP *cpi, MACROBLOCK *x, int use_dc_pred) |
{ |
- if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end) |
- return EOF; |
- |
- *next_frame = *cpi->twopass.stats_in; |
- return 1; |
-} |
-// Read frame stats at an offset from the current position |
-static int read_frame_stats( VP8_COMP *cpi, |
- FIRSTPASS_STATS *frame_stats, |
- int offset ) |
-{ |
- FIRSTPASS_STATS * fps_ptr = cpi->twopass.stats_in; |
+ int i; |
+ int intra_pred_var = 0; |
+ (void) cpi; |
- // Check legality of offset |
- if ( offset >= 0 ) |
+ if (use_dc_pred) |
{ |
- if ( &fps_ptr[offset] >= cpi->twopass.stats_in_end ) |
- return EOF; |
+ x->e_mbd.mode_info_context->mbmi.mode = DC_PRED; |
+ x->e_mbd.mode_info_context->mbmi.uv_mode = DC_PRED; |
+ x->e_mbd.mode_info_context->mbmi.ref_frame = INTRA_FRAME; |
+ |
+ vp8_encode_intra16x16mby(IF_RTCD(&cpi->rtcd), x); |
} |
- else if ( offset < 0 ) |
+ else |
{ |
- if ( &fps_ptr[offset] < cpi->twopass.stats_in_start ) |
- return EOF; |
+ for (i = 0; i < 16; i++) |
+ { |
+ BLOCKD *b = &x->e_mbd.block[i]; |
+ BLOCK *be = &x->block[i]; |
+ |
+ vp8_encode_intra4x4block(IF_RTCD(&cpi->rtcd), x, be, b, B_DC_PRED); |
+ } |
} |
- *frame_stats = fps_ptr[offset]; |
- return 1; |
-} |
+ intra_pred_var = VARIANCE_INVOKE(&cpi->rtcd.variance, getmbss)(x->src_diff); |
-static int input_stats(VP8_COMP *cpi, FIRSTPASS_STATS *fps) |
-{ |
- if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end) |
- return EOF; |
- |
- *fps = *cpi->twopass.stats_in; |
- cpi->twopass.stats_in = |
- (void*)((char *)cpi->twopass.stats_in + sizeof(FIRSTPASS_STATS)); |
- return 1; |
+ return intra_pred_var; |
} |
-static void output_stats(const VP8_COMP *cpi, |
- struct vpx_codec_pkt_list *pktlist, |
- FIRSTPASS_STATS *stats) |
-{ |
- struct vpx_codec_cx_pkt pkt; |
- pkt.kind = VPX_CODEC_STATS_PKT; |
- pkt.data.twopass_stats.buf = stats; |
- pkt.data.twopass_stats.sz = sizeof(FIRSTPASS_STATS); |
- vpx_codec_pkt_list_add(pktlist, &pkt); |
- |
-// TEMP debug code |
-#if OUTPUT_FPF |
- |
- { |
- FILE *fpfile; |
- fpfile = fopen("firstpass.stt", "a"); |
- |
- fprintf(fpfile, "%12.0f %12.0f %12.0f %12.4f %12.4f %12.4f %12.4f" |
- " %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f" |
- " %12.0f %12.4f\n", |
- stats->frame, |
- stats->intra_error, |
- stats->coded_error, |
- stats->ssim_weighted_pred_err, |
- stats->pcnt_inter, |
- stats->pcnt_motion, |
- stats->pcnt_second_ref, |
- stats->pcnt_neutral, |
- stats->MVr, |
- stats->mvr_abs, |
- stats->MVc, |
- stats->mvc_abs, |
- stats->MVrv, |
- stats->MVcv, |
- stats->mv_in_out_count, |
- stats->count, |
- stats->duration); |
- fclose(fpfile); |
- } |
-#endif |
-} |
- |
-static void zero_stats(FIRSTPASS_STATS *section) |
+// Resets the first pass file to the given position using a relative seek from the current position |
+static void reset_fpf_position(VP8_COMP *cpi, FIRSTPASS_STATS *Position) |
{ |
- section->frame = 0.0; |
- section->intra_error = 0.0; |
- section->coded_error = 0.0; |
- section->ssim_weighted_pred_err = 0.0; |
- section->pcnt_inter = 0.0; |
- section->pcnt_motion = 0.0; |
- section->pcnt_second_ref = 0.0; |
- section->pcnt_neutral = 0.0; |
- section->MVr = 0.0; |
- section->mvr_abs = 0.0; |
- section->MVc = 0.0; |
- section->mvc_abs = 0.0; |
- section->MVrv = 0.0; |
- section->MVcv = 0.0; |
- section->mv_in_out_count = 0.0; |
- section->count = 0.0; |
- section->duration = 1.0; |
+ cpi->stats_in = Position; |
} |
-static void accumulate_stats(FIRSTPASS_STATS *section, FIRSTPASS_STATS *frame) |
-{ |
- section->frame += frame->frame; |
- section->intra_error += frame->intra_error; |
- section->coded_error += frame->coded_error; |
- section->ssim_weighted_pred_err += frame->ssim_weighted_pred_err; |
- section->pcnt_inter += frame->pcnt_inter; |
- section->pcnt_motion += frame->pcnt_motion; |
- section->pcnt_second_ref += frame->pcnt_second_ref; |
- section->pcnt_neutral += frame->pcnt_neutral; |
- section->MVr += frame->MVr; |
- section->mvr_abs += frame->mvr_abs; |
- section->MVc += frame->MVc; |
- section->mvc_abs += frame->mvc_abs; |
- section->MVrv += frame->MVrv; |
- section->MVcv += frame->MVcv; |
- section->mv_in_out_count += frame->mv_in_out_count; |
- section->count += frame->count; |
- section->duration += frame->duration; |
-} |
- |
-static void avg_stats(FIRSTPASS_STATS *section) |
+static int lookup_next_frame_stats(VP8_COMP *cpi, FIRSTPASS_STATS *next_frame) |
{ |
- if (section->count < 1.0) |
- return; |
+ if (cpi->stats_in >= cpi->stats_in_end) |
+ return EOF; |
- section->intra_error /= section->count; |
- section->coded_error /= section->count; |
- section->ssim_weighted_pred_err /= section->count; |
- section->pcnt_inter /= section->count; |
- section->pcnt_second_ref /= section->count; |
- section->pcnt_neutral /= section->count; |
- section->pcnt_motion /= section->count; |
- section->MVr /= section->count; |
- section->mvr_abs /= section->count; |
- section->MVc /= section->count; |
- section->mvc_abs /= section->count; |
- section->MVrv /= section->count; |
- section->MVcv /= section->count; |
- section->mv_in_out_count /= section->count; |
- section->duration /= section->count; |
+ *next_frame = *cpi->stats_in; |
+ return 1; |
} |
// Calculate a modified Error used in distributing bits between easier and harder frames |
static double calculate_modified_err(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) |
{ |
- double av_err = cpi->twopass.total_stats->ssim_weighted_pred_err; |
+ double av_err = cpi->total_stats->ssim_weighted_pred_err; |
double this_err = this_frame->ssim_weighted_pred_err; |
double modified_err; |
@@ -254,7 +142,7 @@ static double calculate_modified_err(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) |
//FIRSTPASS_STATS next_frame; |
//FIRSTPASS_STATS *start_pos; |
- /*start_pos = cpi->twopass.stats_in; |
+ /*start_pos = cpi->stats_in; |
sum_iiratio = 0.0; |
i = 0; |
while ( (i < 1) && input_stats(cpi,&next_frame) != EOF ) |
@@ -267,7 +155,7 @@ static double calculate_modified_err(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) |
} |
if ( i > 0 ) |
{ |
- relative_next_iiratio = sum_iiratio / DOUBLE_DIVIDE_CHECK(cpi->twopass.avg_iiratio * (double)i); |
+ relative_next_iiratio = sum_iiratio / DOUBLE_DIVIDE_CHECK(cpi->avg_iiratio * (double)i); |
} |
else |
{ |
@@ -381,7 +269,7 @@ static int frame_max_bits(VP8_COMP *cpi) |
else |
{ |
// For VBR base this on the bits and frames left plus the two_pass_vbrmax_section rate passed in by the user |
- max_bits = (int)(((double)cpi->twopass.bits_left / (cpi->twopass.total_stats->count - (double)cpi->common.current_video_frame)) * ((double)cpi->oxcf.two_pass_vbrmax_section / 100.0)); |
+ max_bits = (int)(((double)cpi->bits_left / (cpi->total_stats->count - (double)cpi->common.current_video_frame)) * ((double)cpi->oxcf.two_pass_vbrmax_section / 100.0)); |
} |
// Trap case where we are out of bits |
@@ -391,14 +279,129 @@ static int frame_max_bits(VP8_COMP *cpi) |
return max_bits; |
} |
+ |
+static void output_stats(const VP8_COMP *cpi, |
+ struct vpx_codec_pkt_list *pktlist, |
+ FIRSTPASS_STATS *stats) |
+{ |
+ struct vpx_codec_cx_pkt pkt; |
+ pkt.kind = VPX_CODEC_STATS_PKT; |
+ pkt.data.twopass_stats.buf = stats; |
+ pkt.data.twopass_stats.sz = sizeof(FIRSTPASS_STATS); |
+ vpx_codec_pkt_list_add(pktlist, &pkt); |
+ |
+// TEMP debug code |
+#if OUTPUT_FPF |
+ |
+ { |
+ FILE *fpfile; |
+ fpfile = fopen("firstpass.stt", "a"); |
+ |
+ fprintf(fpfile, "%12.0f %12.0f %12.0f %12.4f %12.4f %12.4f %12.4f" |
+ " %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f" |
+ " %12.0f %12.4f\n", |
+ stats->frame, |
+ stats->intra_error, |
+ stats->coded_error, |
+ stats->ssim_weighted_pred_err, |
+ stats->pcnt_inter, |
+ stats->pcnt_motion, |
+ stats->pcnt_second_ref, |
+ stats->pcnt_neutral, |
+ stats->MVr, |
+ stats->mvr_abs, |
+ stats->MVc, |
+ stats->mvc_abs, |
+ stats->MVrv, |
+ stats->MVcv, |
+ stats->mv_in_out_count, |
+ stats->count, |
+ stats->duration); |
+ fclose(fpfile); |
+ } |
+#endif |
+} |
+ |
+static int input_stats(VP8_COMP *cpi, FIRSTPASS_STATS *fps) |
+{ |
+ if (cpi->stats_in >= cpi->stats_in_end) |
+ return EOF; |
+ |
+ *fps = *cpi->stats_in; |
+ cpi->stats_in = (void*)((char *)cpi->stats_in + sizeof(FIRSTPASS_STATS)); |
+ return 1; |
+} |
+ |
+static void zero_stats(FIRSTPASS_STATS *section) |
+{ |
+ section->frame = 0.0; |
+ section->intra_error = 0.0; |
+ section->coded_error = 0.0; |
+ section->ssim_weighted_pred_err = 0.0; |
+ section->pcnt_inter = 0.0; |
+ section->pcnt_motion = 0.0; |
+ section->pcnt_second_ref = 0.0; |
+ section->pcnt_neutral = 0.0; |
+ section->MVr = 0.0; |
+ section->mvr_abs = 0.0; |
+ section->MVc = 0.0; |
+ section->mvc_abs = 0.0; |
+ section->MVrv = 0.0; |
+ section->MVcv = 0.0; |
+ section->mv_in_out_count = 0.0; |
+ section->count = 0.0; |
+ section->duration = 1.0; |
+} |
+static void accumulate_stats(FIRSTPASS_STATS *section, FIRSTPASS_STATS *frame) |
+{ |
+ section->frame += frame->frame; |
+ section->intra_error += frame->intra_error; |
+ section->coded_error += frame->coded_error; |
+ section->ssim_weighted_pred_err += frame->ssim_weighted_pred_err; |
+ section->pcnt_inter += frame->pcnt_inter; |
+ section->pcnt_motion += frame->pcnt_motion; |
+ section->pcnt_second_ref += frame->pcnt_second_ref; |
+ section->pcnt_neutral += frame->pcnt_neutral; |
+ section->MVr += frame->MVr; |
+ section->mvr_abs += frame->mvr_abs; |
+ section->MVc += frame->MVc; |
+ section->mvc_abs += frame->mvc_abs; |
+ section->MVrv += frame->MVrv; |
+ section->MVcv += frame->MVcv; |
+ section->mv_in_out_count += frame->mv_in_out_count; |
+ section->count += frame->count; |
+ section->duration += frame->duration; |
+} |
+static void avg_stats(FIRSTPASS_STATS *section) |
+{ |
+ if (section->count < 1.0) |
+ return; |
+ |
+ section->intra_error /= section->count; |
+ section->coded_error /= section->count; |
+ section->ssim_weighted_pred_err /= section->count; |
+ section->pcnt_inter /= section->count; |
+ section->pcnt_second_ref /= section->count; |
+ section->pcnt_neutral /= section->count; |
+ section->pcnt_motion /= section->count; |
+ section->MVr /= section->count; |
+ section->mvr_abs /= section->count; |
+ section->MVc /= section->count; |
+ section->mvc_abs /= section->count; |
+ section->MVrv /= section->count; |
+ section->MVcv /= section->count; |
+ section->mv_in_out_count /= section->count; |
+ section->duration /= section->count; |
+} |
+ |
void vp8_init_first_pass(VP8_COMP *cpi) |
{ |
- zero_stats(cpi->twopass.total_stats); |
+ zero_stats(cpi->total_stats); |
} |
void vp8_end_first_pass(VP8_COMP *cpi) |
{ |
- output_stats(cpi, cpi->output_pkt_list, cpi->twopass.total_stats); |
+ output_stats(cpi, cpi->output_pkt_list, cpi->total_stats); |
} |
static void zz_motion_search( VP8_COMP *cpi, MACROBLOCK * x, YV12_BUFFER_CONFIG * recon_buffer, int * best_motion_err, int recon_yoffset ) |
@@ -420,18 +423,14 @@ static void zz_motion_search( VP8_COMP *cpi, MACROBLOCK * x, YV12_BUFFER_CONFIG |
VARIANCE_INVOKE(IF_RTCD(&cpi->rtcd.variance), mse16x16) ( src_ptr, src_stride, ref_ptr, ref_stride, (unsigned int *)(best_motion_err)); |
} |
-static void first_pass_motion_search(VP8_COMP *cpi, MACROBLOCK *x, |
- int_mv *ref_mv, MV *best_mv, |
- YV12_BUFFER_CONFIG *recon_buffer, |
- int *best_motion_err, int recon_yoffset ) |
+static void first_pass_motion_search(VP8_COMP *cpi, MACROBLOCK *x, MV *ref_mv, MV *best_mv, YV12_BUFFER_CONFIG *recon_buffer, int *best_motion_err, int recon_yoffset ) |
{ |
MACROBLOCKD *const xd = & x->e_mbd; |
BLOCK *b = &x->block[0]; |
BLOCKD *d = &x->e_mbd.block[0]; |
int num00; |
- int_mv tmp_mv; |
- int_mv ref_mv_full; |
+ MV tmp_mv = {0, 0}; |
int tmp_err; |
int step_param = 3; //3; // Dont search over full range for first pass |
@@ -447,20 +446,15 @@ static void first_pass_motion_search(VP8_COMP *cpi, MACROBLOCK *x, |
xd->pre.y_buffer = recon_buffer->y_buffer + recon_yoffset; |
// Initial step/diamond search centred on best mv |
- tmp_mv.as_int = 0; |
- ref_mv_full.as_mv.col = ref_mv->as_mv.col>>3; |
- ref_mv_full.as_mv.row = ref_mv->as_mv.row>>3; |
- tmp_err = cpi->diamond_search_sad(x, b, d, &ref_mv_full, &tmp_mv, step_param, |
- x->sadperbit16, &num00, &v_fn_ptr, |
- x->mvcost, ref_mv); |
+ tmp_err = cpi->diamond_search_sad(x, b, d, ref_mv, &tmp_mv, step_param, x->errorperbit, &num00, &v_fn_ptr, x->mvsadcost, x->mvcost, ref_mv); |
if ( tmp_err < INT_MAX-new_mv_mode_penalty ) |
tmp_err += new_mv_mode_penalty; |
if (tmp_err < *best_motion_err) |
{ |
*best_motion_err = tmp_err; |
- best_mv->row = tmp_mv.as_mv.row; |
- best_mv->col = tmp_mv.as_mv.col; |
+ best_mv->row = tmp_mv.row; |
+ best_mv->col = tmp_mv.col; |
} |
// Further step/diamond searches as necessary |
@@ -475,18 +469,15 @@ static void first_pass_motion_search(VP8_COMP *cpi, MACROBLOCK *x, |
num00--; |
else |
{ |
- tmp_err = cpi->diamond_search_sad(x, b, d, &ref_mv_full, &tmp_mv, |
- step_param + n, x->sadperbit16, |
- &num00, &v_fn_ptr, x->mvcost, |
- ref_mv); |
+ tmp_err = cpi->diamond_search_sad(x, b, d, ref_mv, &tmp_mv, step_param + n, x->errorperbit, &num00, &v_fn_ptr, x->mvsadcost, x->mvcost, ref_mv); |
if ( tmp_err < INT_MAX-new_mv_mode_penalty ) |
tmp_err += new_mv_mode_penalty; |
if (tmp_err < *best_motion_err) |
{ |
*best_motion_err = tmp_err; |
- best_mv->row = tmp_mv.as_mv.row; |
- best_mv->col = tmp_mv.as_mv.col; |
+ best_mv->row = tmp_mv.row; |
+ best_mv->col = tmp_mv.col; |
} |
} |
} |
@@ -499,14 +490,15 @@ void vp8_first_pass(VP8_COMP *cpi) |
VP8_COMMON *const cm = & cpi->common; |
MACROBLOCKD *const xd = & x->e_mbd; |
+ int col_blocks = 4 * cm->mb_cols; |
int recon_yoffset, recon_uvoffset; |
YV12_BUFFER_CONFIG *lst_yv12 = &cm->yv12_fb[cm->lst_fb_idx]; |
YV12_BUFFER_CONFIG *new_yv12 = &cm->yv12_fb[cm->new_fb_idx]; |
YV12_BUFFER_CONFIG *gld_yv12 = &cm->yv12_fb[cm->gld_fb_idx]; |
int recon_y_stride = lst_yv12->y_stride; |
int recon_uv_stride = lst_yv12->uv_stride; |
- int64_t intra_error = 0; |
- int64_t coded_error = 0; |
+ long long intra_error = 0; |
+ long long coded_error = 0; |
int sum_mvr = 0, sum_mvc = 0; |
int sum_mvr_abs = 0, sum_mvc_abs = 0; |
@@ -519,9 +511,7 @@ void vp8_first_pass(VP8_COMP *cpi) |
int sum_in_vectors = 0; |
- int_mv zero_ref_mv; |
- |
- zero_ref_mv.as_int = 0; |
+ MV zero_ref_mv = {0, 0}; |
vp8_clear_system_state(); //__asm emms; |
@@ -550,7 +540,7 @@ void vp8_first_pass(VP8_COMP *cpi) |
int flag[2] = {1, 1}; |
vp8_initialize_rd_consts(cpi, vp8_dc_quant(cm->base_qindex, cm->y1dc_delta_q)); |
vpx_memcpy(cm->fc.mvc, vp8_default_mv_context, sizeof(vp8_default_mv_context)); |
- vp8_build_component_cost_table(cpi->mb.mvcost, (const MV_CONTEXT *) cm->fc.mvc, flag); |
+ vp8_build_component_cost_table(cpi->mb.mvcost, cpi->mb.mvsadcost, (const MV_CONTEXT *) cm->fc.mvc, flag); |
} |
// for each macroblock row in image |
@@ -574,6 +564,7 @@ void vp8_first_pass(VP8_COMP *cpi) |
for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) |
{ |
int this_error; |
+ int zz_to_best_ratio; |
int gf_motion_error = INT_MAX; |
int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row); |
@@ -582,11 +573,8 @@ void vp8_first_pass(VP8_COMP *cpi) |
xd->dst.v_buffer = new_yv12->v_buffer + recon_uvoffset; |
xd->left_available = (mb_col != 0); |
- //Copy current mb to a buffer |
- RECON_INVOKE(&xd->rtcd->recon, copy16x16)(x->src.y_buffer, x->src.y_stride, x->thismb, 16); |
- |
// do intra 16x16 prediction |
- this_error = vp8_encode_intra(cpi, x, use_dc_pred); |
+ this_error = encode_intra(cpi, x, use_dc_pred); |
// "intrapenalty" below deals with situations where the intra and inter error scores are very low (eg a plain black frame) |
// We do not have special cases in first pass for 0,0 and nearest etc so all inter modes carry an overhead cost estimate fot the mv. |
@@ -595,7 +583,7 @@ void vp8_first_pass(VP8_COMP *cpi) |
this_error += intrapenalty; |
// Cumulative intra error total |
- intra_error += (int64_t)this_error; |
+ intra_error += (long long)this_error; |
// Set up limit values for motion vectors to prevent them extending outside the UMV borders |
x->mv_col_min = -((mb_col * 16) + (VP8BORDERINPIXELS - 16)); |
@@ -604,6 +592,7 @@ void vp8_first_pass(VP8_COMP *cpi) |
// Other than for the first frame do a motion search |
if (cm->current_video_frame > 0) |
{ |
+ BLOCK *b = &x->block[0]; |
BLOCKD *d = &x->e_mbd.block[0]; |
MV tmp_mv = {0, 0}; |
int tmp_err; |
@@ -616,7 +605,7 @@ void vp8_first_pass(VP8_COMP *cpi) |
// Test last reference frame using the previous best mv as the |
// starting point (best reference) for the search |
- first_pass_motion_search(cpi, x, &best_ref_mv, |
+ first_pass_motion_search(cpi, x, &best_ref_mv.as_mv, |
&d->bmi.mv.as_mv, lst_yv12, |
&motion_error, recon_yoffset); |
@@ -680,7 +669,7 @@ void vp8_first_pass(VP8_COMP *cpi) |
d->bmi.mv.as_mv.row <<= 3; |
d->bmi.mv.as_mv.col <<= 3; |
this_error = motion_error; |
- vp8_set_mbmode_and_mvs(x, NEWMV, &d->bmi.mv); |
+ vp8_set_mbmode_and_mvs(x, NEWMV, &d->bmi.mv.as_mv); |
vp8_encode_inter16x16y(IF_RTCD(&cpi->rtcd), x); |
sum_mvr += d->bmi.mv.as_mv.row; |
sum_mvr_abs += abs(d->bmi.mv.as_mv.row); |
@@ -732,7 +721,7 @@ void vp8_first_pass(VP8_COMP *cpi) |
} |
} |
- coded_error += (int64_t)this_error; |
+ coded_error += (long long)this_error; |
// adjust to the next column of macroblocks |
x->src.y_buffer += 16; |
@@ -800,21 +789,20 @@ void vp8_first_pass(VP8_COMP *cpi) |
// TODO: handle the case when duration is set to 0, or something less |
// than the full time between subsequent cpi->source_time_stamp s . |
- fps.duration = cpi->source->ts_end |
- - cpi->source->ts_start; |
+ fps.duration = cpi->source_end_time_stamp - cpi->source_time_stamp; |
// don't want to do output stats with a stack variable! |
- memcpy(cpi->twopass.this_frame_stats, |
+ memcpy(cpi->this_frame_stats, |
&fps, |
sizeof(FIRSTPASS_STATS)); |
- output_stats(cpi, cpi->output_pkt_list, cpi->twopass.this_frame_stats); |
- accumulate_stats(cpi->twopass.total_stats, &fps); |
+ output_stats(cpi, cpi->output_pkt_list, cpi->this_frame_stats); |
+ accumulate_stats(cpi->total_stats, &fps); |
} |
// Copy the previous Last Frame into the GF buffer if specific conditions for doing so are met |
if ((cm->current_video_frame > 0) && |
- (cpi->twopass.this_frame_stats->pcnt_inter > 0.20) && |
- ((cpi->twopass.this_frame_stats->intra_error / cpi->twopass.this_frame_stats->coded_error) > 2.0)) |
+ (cpi->this_frame_stats->pcnt_inter > 0.20) && |
+ ((cpi->this_frame_stats->intra_error / cpi->this_frame_stats->coded_error) > 2.0)) |
{ |
vp8_yv12_copy_frame_ptr(lst_yv12, gld_yv12); |
} |
@@ -868,30 +856,29 @@ static int estimate_max_q(VP8_COMP *cpi, double section_err, int section_target_ |
double pow_lowq = 0.40; |
if (section_target_bandwitdh <= 0) |
- return cpi->twopass.maxq_max_limit; // Highest value allowed |
+ return cpi->maxq_max_limit; // Highest value allowed |
target_norm_bits_per_mb = (section_target_bandwitdh < (1 << 20)) ? (512 * section_target_bandwitdh) / num_mbs : 512 * (section_target_bandwitdh / num_mbs); |
// Calculate a corrective factor based on a rolling ratio of bits spent vs target bits |
if ((cpi->rolling_target_bits > 0.0) && (cpi->active_worst_quality < cpi->worst_quality)) |
{ |
+ //double adjustment_rate = 0.985 + (0.00005 * cpi->active_worst_quality); |
+ double adjustment_rate = 0.99; |
+ |
rolling_ratio = (double)cpi->rolling_actual_bits / (double)cpi->rolling_target_bits; |
- //if ( cpi->twopass.est_max_qcorrection_factor > rolling_ratio ) |
+ //if ( cpi->est_max_qcorrection_factor > rolling_ratio ) |
if (rolling_ratio < 0.95) |
- //cpi->twopass.est_max_qcorrection_factor *= adjustment_rate; |
- cpi->twopass.est_max_qcorrection_factor -= 0.005; |
- //else if ( cpi->twopass.est_max_qcorrection_factor < rolling_ratio ) |
+ //cpi->est_max_qcorrection_factor *= adjustment_rate; |
+ cpi->est_max_qcorrection_factor -= 0.005; |
+ //else if ( cpi->est_max_qcorrection_factor < rolling_ratio ) |
else if (rolling_ratio > 1.05) |
- cpi->twopass.est_max_qcorrection_factor += 0.005; |
+ cpi->est_max_qcorrection_factor += 0.005; |
- //cpi->twopass.est_max_qcorrection_factor /= adjustment_rate; |
+ //cpi->est_max_qcorrection_factor /= adjustment_rate; |
- cpi->twopass.est_max_qcorrection_factor = |
- (cpi->twopass.est_max_qcorrection_factor < 0.1) |
- ? 0.1 |
- : (cpi->twopass.est_max_qcorrection_factor > 10.0) |
- ? 10.0 : cpi->twopass.est_max_qcorrection_factor; |
+ cpi->est_max_qcorrection_factor = (cpi->est_max_qcorrection_factor < 0.1) ? 0.1 : (cpi->est_max_qcorrection_factor > 10.0) ? 10.0 : cpi->est_max_qcorrection_factor; |
} |
// Corrections for higher compression speed settings (reduced compression expected) |
@@ -910,7 +897,7 @@ static int estimate_max_q(VP8_COMP *cpi, double section_err, int section_target_ |
// Try and pick a max Q that will be high enough to encode the |
// content at the given rate. |
- for (Q = cpi->twopass.maxq_min_limit; Q < cpi->twopass.maxq_max_limit; Q++) |
+ for (Q = cpi->maxq_min_limit; Q < cpi->maxq_max_limit; Q++) |
{ |
int bits_per_mb_at_this_q; |
@@ -922,10 +909,8 @@ static int estimate_max_q(VP8_COMP *cpi, double section_err, int section_target_ |
else |
correction_factor = corr_high; |
- bits_per_mb_at_this_q = (int)(.5 + correction_factor |
- * speed_correction * cpi->twopass.est_max_qcorrection_factor |
- * cpi->twopass.section_max_qfactor |
- * (double)vp8_bits_per_mb[INTER_FRAME][Q] / 1.0); |
+ bits_per_mb_at_this_q = (int)(.5 + correction_factor * speed_correction * cpi->est_max_qcorrection_factor * cpi->section_max_qfactor * (double)vp8_bits_per_mb[INTER_FRAME][Q] / 1.0); |
+ //bits_per_mb_at_this_q = (int)(.5 + correction_factor * speed_correction * cpi->est_max_qcorrection_factor * (double)vp8_bits_per_mb[INTER_FRAME][Q] / 1.0); |
if (bits_per_mb_at_this_q <= target_norm_bits_per_mb) |
break; |
@@ -944,12 +929,12 @@ static int estimate_max_q(VP8_COMP *cpi, double section_err, int section_target_ |
// averaga q observed in clip for non kf/gf.arf frames |
// Give average a chance to settle though. |
if ( (cpi->ni_frames > |
- ((unsigned int)cpi->twopass.total_stats->count >> 8)) && |
+ ((unsigned int)cpi->total_stats->count >> 8)) && |
(cpi->ni_frames > 150) ) |
{ |
- cpi->twopass.maxq_max_limit = ((cpi->ni_av_qi + 32) < cpi->worst_quality) |
+ cpi->maxq_max_limit = ((cpi->ni_av_qi + 32) < cpi->worst_quality) |
? (cpi->ni_av_qi + 32) : cpi->worst_quality; |
- cpi->twopass.maxq_min_limit = ((cpi->ni_av_qi - 32) > cpi->best_quality) |
+ cpi->maxq_min_limit = ((cpi->ni_av_qi - 32) > cpi->best_quality) |
? (cpi->ni_av_qi - 32) : cpi->best_quality; |
} |
@@ -996,7 +981,7 @@ static int estimate_q(VP8_COMP *cpi, double section_err, int section_target_band |
else |
correction_factor = corr_high; |
- bits_per_mb_at_this_q = (int)(.5 + correction_factor * speed_correction * cpi->twopass.est_max_qcorrection_factor * (double)vp8_bits_per_mb[INTER_FRAME][Q] / 1.0); |
+ bits_per_mb_at_this_q = (int)(.5 + correction_factor * speed_correction * cpi->est_max_qcorrection_factor * (double)vp8_bits_per_mb[INTER_FRAME][Q] / 1.0); |
if (bits_per_mb_at_this_q <= target_norm_bits_per_mb) |
break; |
@@ -1133,8 +1118,8 @@ static int estimate_cq(VP8_COMP *cpi, double section_err, int section_target_ban |
speed_correction = 1.25; |
} |
// II ratio correction factor for clip as a whole |
- clip_iiratio = cpi->twopass.total_stats->intra_error / |
- DOUBLE_DIVIDE_CHECK(cpi->twopass.total_stats->coded_error); |
+ clip_iiratio = cpi->total_stats->intra_error / |
+ DOUBLE_DIVIDE_CHECK(cpi->total_stats->coded_error); |
clip_iifactor = 1.0 - ((clip_iiratio - 10.0) * 0.025); |
if (clip_iifactor < 0.80) |
clip_iifactor = 0.80; |
@@ -1182,48 +1167,48 @@ void vp8_init_second_pass(VP8_COMP *cpi) |
double two_pass_min_rate = (double)(cpi->oxcf.target_bandwidth * cpi->oxcf.two_pass_vbrmin_section / 100); |
- zero_stats(cpi->twopass.total_stats); |
+ zero_stats(cpi->total_stats); |
- if (!cpi->twopass.stats_in_end) |
+ if (!cpi->stats_in_end) |
return; |
- *cpi->twopass.total_stats = *cpi->twopass.stats_in_end; |
+ *cpi->total_stats = *cpi->stats_in_end; |
- cpi->twopass.total_error_left = cpi->twopass.total_stats->ssim_weighted_pred_err; |
- cpi->twopass.total_intra_error_left = cpi->twopass.total_stats->intra_error; |
- cpi->twopass.total_coded_error_left = cpi->twopass.total_stats->coded_error; |
- cpi->twopass.start_tot_err_left = cpi->twopass.total_error_left; |
+ cpi->total_error_left = cpi->total_stats->ssim_weighted_pred_err; |
+ cpi->total_intra_error_left = cpi->total_stats->intra_error; |
+ cpi->total_coded_error_left = cpi->total_stats->coded_error; |
+ cpi->start_tot_err_left = cpi->total_error_left; |
- //cpi->twopass.bits_left = (int64_t)(cpi->twopass.total_stats->count * cpi->oxcf.target_bandwidth / DOUBLE_DIVIDE_CHECK((double)cpi->oxcf.frame_rate)); |
- //cpi->twopass.bits_left -= (int64_t)(cpi->twopass.total_stats->count * two_pass_min_rate / DOUBLE_DIVIDE_CHECK((double)cpi->oxcf.frame_rate)); |
+ //cpi->bits_left = (long long)(cpi->total_stats->count * cpi->oxcf.target_bandwidth / DOUBLE_DIVIDE_CHECK((double)cpi->oxcf.frame_rate)); |
+ //cpi->bits_left -= (long long)(cpi->total_stats->count * two_pass_min_rate / DOUBLE_DIVIDE_CHECK((double)cpi->oxcf.frame_rate)); |
// each frame can have a different duration, as the frame rate in the source |
// isn't guaranteed to be constant. The frame rate prior to the first frame |
// encoded in the second pass is a guess. However the sum duration is not. |
// Its calculated based on the actual durations of all frames from the first |
// pass. |
- vp8_new_frame_rate(cpi, 10000000.0 * cpi->twopass.total_stats->count / cpi->twopass.total_stats->duration); |
+ vp8_new_frame_rate(cpi, 10000000.0 * cpi->total_stats->count / cpi->total_stats->duration); |
cpi->output_frame_rate = cpi->oxcf.frame_rate; |
- cpi->twopass.bits_left = (int64_t)(cpi->twopass.total_stats->duration * cpi->oxcf.target_bandwidth / 10000000.0) ; |
- cpi->twopass.bits_left -= (int64_t)(cpi->twopass.total_stats->duration * two_pass_min_rate / 10000000.0); |
- cpi->twopass.clip_bits_total = cpi->twopass.bits_left; |
+ cpi->bits_left = (long long)(cpi->total_stats->duration * cpi->oxcf.target_bandwidth / 10000000.0) ; |
+ cpi->bits_left -= (long long)(cpi->total_stats->duration * two_pass_min_rate / 10000000.0); |
+ cpi->clip_bits_total = cpi->bits_left; |
// Calculate a minimum intra value to be used in determining the IIratio |
// scores used in the second pass. We have this minimum to make sure |
// that clips that are static but "low complexity" in the intra domain |
// are still boosted appropriately for KF/GF/ARF |
- cpi->twopass.kf_intra_err_min = KF_MB_INTRA_MIN * cpi->common.MBs; |
- cpi->twopass.gf_intra_err_min = GF_MB_INTRA_MIN * cpi->common.MBs; |
+ cpi->kf_intra_err_min = KF_MB_INTRA_MIN * cpi->common.MBs; |
+ cpi->gf_intra_err_min = GF_MB_INTRA_MIN * cpi->common.MBs; |
- avg_stats(cpi->twopass.total_stats); |
+ avg_stats(cpi->total_stats); |
// Scan the first pass file and calculate an average Intra / Inter error score ratio for the sequence |
{ |
double sum_iiratio = 0.0; |
double IIRatio; |
- start_pos = cpi->twopass.stats_in; // Note starting "file" position |
+ start_pos = cpi->stats_in; // Note starting "file" position |
while (input_stats(cpi, &this_frame) != EOF) |
{ |
@@ -1232,7 +1217,7 @@ void vp8_init_second_pass(VP8_COMP *cpi) |
sum_iiratio += IIRatio; |
} |
- cpi->twopass.avg_iiratio = sum_iiratio / DOUBLE_DIVIDE_CHECK((double)cpi->twopass.total_stats->count); |
+ cpi->avg_iiratio = sum_iiratio / DOUBLE_DIVIDE_CHECK((double)cpi->total_stats->count); |
// Reset file position |
reset_fpf_position(cpi, start_pos); |
@@ -1241,20 +1226,26 @@ void vp8_init_second_pass(VP8_COMP *cpi) |
// Scan the first pass file and calculate a modified total error based upon the bias/power function |
// used to allocate bits |
{ |
- start_pos = cpi->twopass.stats_in; // Note starting "file" position |
+ start_pos = cpi->stats_in; // Note starting "file" position |
- cpi->twopass.modified_error_total = 0.0; |
- cpi->twopass.modified_error_used = 0.0; |
+ cpi->modified_error_total = 0.0; |
+ cpi->modified_error_used = 0.0; |
while (input_stats(cpi, &this_frame) != EOF) |
{ |
- cpi->twopass.modified_error_total += calculate_modified_err(cpi, &this_frame); |
+ cpi->modified_error_total += calculate_modified_err(cpi, &this_frame); |
} |
- cpi->twopass.modified_error_left = cpi->twopass.modified_error_total; |
+ cpi->modified_error_left = cpi->modified_error_total; |
reset_fpf_position(cpi, start_pos); // Reset file position |
} |
+ |
+ // Calculate the clip target modified bits per error |
+ // The observed bpe starts as the same number. |
+ cpi->clip_bpe = cpi->bits_left / |
+ DOUBLE_DIVIDE_CHECK(cpi->modified_error_total); |
+ cpi->observed_bpe = cpi->clip_bpe; |
} |
void vp8_end_second_pass(VP8_COMP *cpi) |
@@ -1269,6 +1260,7 @@ static double get_prediction_decay_rate(VP8_COMP *cpi, FIRSTPASS_STATS *next_fra |
double motion_decay; |
double motion_pct = next_frame->pcnt_motion; |
+ |
// Initial basis is the % mbs inter coded |
prediction_decay_rate = next_frame->pcnt_inter; |
@@ -1317,7 +1309,7 @@ static int detect_transition_to_still( |
(decay_accumulator < 0.9) ) |
{ |
int j; |
- FIRSTPASS_STATS * position = cpi->twopass.stats_in; |
+ FIRSTPASS_STATS * position = cpi->stats_in; |
FIRSTPASS_STATS tmp_next_frame; |
double decay_rate; |
@@ -1343,257 +1335,27 @@ static int detect_transition_to_still( |
return trans_to_still; |
} |
-// This function detects a flash through the high relative pcnt_second_ref |
-// score in the frame following a flash frame. The offset passed in should |
-// reflect this |
-static BOOL detect_flash( VP8_COMP *cpi, int offset ) |
-{ |
- FIRSTPASS_STATS next_frame; |
- |
- BOOL flash_detected = FALSE; |
- |
- // Read the frame data. |
- // The return is FALSE (no flash detected) if not a valid frame |
- if ( read_frame_stats(cpi, &next_frame, offset) != EOF ) |
- { |
- // What we are looking for here is a situation where there is a |
- // brief break in prediction (such as a flash) but subsequent frames |
- // are reasonably well predicted by an earlier (pre flash) frame. |
- // The recovery after a flash is indicated by a high pcnt_second_ref |
- // comapred to pcnt_inter. |
- if ( (next_frame.pcnt_second_ref > next_frame.pcnt_inter) && |
- (next_frame.pcnt_second_ref >= 0.5 ) ) |
- { |
- flash_detected = TRUE; |
- |
- /*if (1) |
- { |
- FILE *f = fopen("flash.stt", "a"); |
- fprintf(f, "%8.0f %6.2f %6.2f\n", |
- next_frame.frame, |
- next_frame.pcnt_inter, |
- next_frame.pcnt_second_ref); |
- fclose(f); |
- }*/ |
- } |
- } |
- |
- return flash_detected; |
-} |
- |
-// Update the motion related elements to the GF arf boost calculation |
-static void accumulate_frame_motion_stats( |
- VP8_COMP *cpi, |
- FIRSTPASS_STATS * this_frame, |
- double * this_frame_mv_in_out, |
- double * mv_in_out_accumulator, |
- double * abs_mv_in_out_accumulator, |
- double * mv_ratio_accumulator ) |
-{ |
- //double this_frame_mv_in_out; |
- double this_frame_mvr_ratio; |
- double this_frame_mvc_ratio; |
- double motion_pct; |
- |
- // Accumulate motion stats. |
- motion_pct = this_frame->pcnt_motion; |
- |
- // Accumulate Motion In/Out of frame stats |
- *this_frame_mv_in_out = this_frame->mv_in_out_count * motion_pct; |
- *mv_in_out_accumulator += this_frame->mv_in_out_count * motion_pct; |
- *abs_mv_in_out_accumulator += |
- fabs(this_frame->mv_in_out_count * motion_pct); |
- |
- // Accumulate a measure of how uniform (or conversely how random) |
- // the motion field is. (A ratio of absmv / mv) |
- if (motion_pct > 0.05) |
- { |
- this_frame_mvr_ratio = fabs(this_frame->mvr_abs) / |
- DOUBLE_DIVIDE_CHECK(fabs(this_frame->MVr)); |
- |
- this_frame_mvc_ratio = fabs(this_frame->mvc_abs) / |
- DOUBLE_DIVIDE_CHECK(fabs(this_frame->MVc)); |
- |
- *mv_ratio_accumulator += |
- (this_frame_mvr_ratio < this_frame->mvr_abs) |
- ? (this_frame_mvr_ratio * motion_pct) |
- : this_frame->mvr_abs * motion_pct; |
- |
- *mv_ratio_accumulator += |
- (this_frame_mvc_ratio < this_frame->mvc_abs) |
- ? (this_frame_mvc_ratio * motion_pct) |
- : this_frame->mvc_abs * motion_pct; |
- |
- } |
-} |
- |
-// Calculate a baseline boost number for the current frame. |
-static double calc_frame_boost( |
- VP8_COMP *cpi, |
- FIRSTPASS_STATS * this_frame, |
- double this_frame_mv_in_out ) |
-{ |
- double frame_boost; |
- |
- // Underlying boost factor is based on inter intra error ratio |
- if (this_frame->intra_error > cpi->twopass.gf_intra_err_min) |
- frame_boost = (IIFACTOR * this_frame->intra_error / |
- DOUBLE_DIVIDE_CHECK(this_frame->coded_error)); |
- else |
- frame_boost = (IIFACTOR * cpi->twopass.gf_intra_err_min / |
- DOUBLE_DIVIDE_CHECK(this_frame->coded_error)); |
- |
- // Increase boost for frames where new data coming into frame |
- // (eg zoom out). Slightly reduce boost if there is a net balance |
- // of motion out of the frame (zoom in). |
- // The range for this_frame_mv_in_out is -1.0 to +1.0 |
- if (this_frame_mv_in_out > 0.0) |
- frame_boost += frame_boost * (this_frame_mv_in_out * 2.0); |
- // In extreme case boost is halved |
- else |
- frame_boost += frame_boost * (this_frame_mv_in_out / 2.0); |
- |
- // Clip to maximum |
- if (frame_boost > GF_RMAX) |
- frame_boost = GF_RMAX; |
- |
- return frame_boost; |
-} |
- |
-#if NEW_BOOST |
-static int calc_arf_boost( |
- VP8_COMP *cpi, |
- int offset, |
- int f_frames, |
- int b_frames, |
- int *f_boost, |
- int *b_boost ) |
-{ |
- FIRSTPASS_STATS this_frame; |
- |
- int i; |
- double boost_score = 0.0; |
- double fwd_boost_score = 0.0; |
- double mv_ratio_accumulator = 0.0; |
- double decay_accumulator = 1.0; |
- double this_frame_mv_in_out = 0.0; |
- double mv_in_out_accumulator = 0.0; |
- double abs_mv_in_out_accumulator = 0.0; |
- double r; |
- BOOL flash_detected = FALSE; |
- |
- // Search forward from the proposed arf/next gf position |
- for ( i = 0; i < f_frames; i++ ) |
- { |
- if ( read_frame_stats(cpi, &this_frame, (i+offset)) == EOF ) |
- break; |
- |
- // Update the motion related elements to the boost calculation |
- accumulate_frame_motion_stats( cpi, &this_frame, |
- &this_frame_mv_in_out, &mv_in_out_accumulator, |
- &abs_mv_in_out_accumulator, &mv_ratio_accumulator ); |
- |
- // Calculate the baseline boost number for this frame |
- r = calc_frame_boost( cpi, &this_frame, this_frame_mv_in_out ); |
- |
- // We want to discount the the flash frame itself and the recovery |
- // frame that follows as both will have poor scores. |
- flash_detected = detect_flash(cpi, (i+offset)) || |
- detect_flash(cpi, (i+offset+1)); |
- |
- // Cumulative effect of prediction quality decay |
- if ( !flash_detected ) |
- { |
- decay_accumulator = |
- decay_accumulator * |
- get_prediction_decay_rate(cpi, &this_frame); |
- decay_accumulator = |
- decay_accumulator < 0.1 ? 0.1 : decay_accumulator; |
- } |
- boost_score += (decay_accumulator * r); |
- |
- // Break out conditions. |
- if ( (!flash_detected) && |
- ((mv_ratio_accumulator > 100.0) || |
- (abs_mv_in_out_accumulator > 3.0) || |
- (mv_in_out_accumulator < -2.0) ) ) |
- { |
- break; |
- } |
- } |
- |
- *f_boost = (int)(boost_score * 100.0) >> 4; |
- |
- // Reset for backward looking loop |
- boost_score = 0.0; |
- mv_ratio_accumulator = 0.0; |
- decay_accumulator = 1.0; |
- this_frame_mv_in_out = 0.0; |
- mv_in_out_accumulator = 0.0; |
- abs_mv_in_out_accumulator = 0.0; |
- |
- // Search forward from the proposed arf/next gf position |
- for ( i = -1; i >= -b_frames; i-- ) |
- { |
- if ( read_frame_stats(cpi, &this_frame, (i+offset)) == EOF ) |
- break; |
- |
- // Update the motion related elements to the boost calculation |
- accumulate_frame_motion_stats( cpi, &this_frame, |
- &this_frame_mv_in_out, &mv_in_out_accumulator, |
- &abs_mv_in_out_accumulator, &mv_ratio_accumulator ); |
- |
- // Calculate the baseline boost number for this frame |
- r = calc_frame_boost( cpi, &this_frame, this_frame_mv_in_out ); |
- |
- // We want to discount the the flash frame itself and the recovery |
- // frame that follows as both will have poor scores. |
- flash_detected = detect_flash(cpi, (i+offset)) || |
- detect_flash(cpi, (i+offset+1)); |
- |
- // Cumulative effect of prediction quality decay |
- if ( !flash_detected ) |
- { |
- decay_accumulator = |
- decay_accumulator * |
- get_prediction_decay_rate(cpi, &this_frame); |
- decay_accumulator = |
- decay_accumulator < 0.1 ? 0.1 : decay_accumulator; |
- } |
- |
- boost_score += (decay_accumulator * r); |
- |
- // Break out conditions. |
- if ( (!flash_detected) && |
- ((mv_ratio_accumulator > 100.0) || |
- (abs_mv_in_out_accumulator > 3.0) || |
- (mv_in_out_accumulator < -2.0) ) ) |
- { |
- break; |
- } |
- } |
- *b_boost = (int)(boost_score * 100.0) >> 4; |
- |
- return (*f_boost + *b_boost); |
-} |
-#endif |
- |
// Analyse and define a gf/arf group . |
static void define_gf_group(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) |
{ |
FIRSTPASS_STATS next_frame; |
FIRSTPASS_STATS *start_pos; |
int i; |
- double r; |
+ int y_width = cpi->common.yv12_fb[cpi->common.lst_fb_idx].y_width; |
+ int y_height = cpi->common.yv12_fb[cpi->common.lst_fb_idx].y_height; |
+ int image_size = y_width * y_height; |
double boost_score = 0.0; |
double old_boost_score = 0.0; |
double gf_group_err = 0.0; |
double gf_first_frame_err = 0.0; |
double mod_frame_err = 0.0; |
+ double mv_accumulator_rabs = 0.0; |
+ double mv_accumulator_cabs = 0.0; |
double mv_ratio_accumulator = 0.0; |
double decay_accumulator = 1.0; |
+ double boost_factor = IIFACTOR; |
double loop_decay_rate = 1.00; // Starting decay rate |
double this_frame_mv_in_out = 0.0; |
@@ -1606,21 +1368,16 @@ static void define_gf_group(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) |
unsigned int allow_alt_ref = |
cpi->oxcf.play_alternate && cpi->oxcf.lag_in_frames; |
- int alt_boost = 0; |
- int f_boost = 0; |
- int b_boost = 0; |
- BOOL flash_detected; |
- |
- cpi->twopass.gf_group_bits = 0; |
- cpi->twopass.gf_decay_rate = 0; |
+ cpi->gf_group_bits = 0; |
+ cpi->gf_decay_rate = 0; |
vp8_clear_system_state(); //__asm emms; |
- start_pos = cpi->twopass.stats_in; |
+ start_pos = cpi->stats_in; |
vpx_memset(&next_frame, 0, sizeof(next_frame)); // assure clean |
- // Load stats for the current frame. |
+ // Preload the stats for the next frame. |
mod_frame_err = calculate_modified_err(cpi, this_frame); |
// Note the error of the frame at the start of the group (this will be |
@@ -1638,10 +1395,17 @@ static void define_gf_group(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) |
// or ARF that will be coded with the group |
i = 0; |
- while (((i < cpi->twopass.static_scene_max_gf_interval) || |
- ((cpi->twopass.frames_to_key - i) < MIN_GF_INTERVAL)) && |
- (i < cpi->twopass.frames_to_key)) |
+ while (((i < cpi->static_scene_max_gf_interval) || |
+ ((cpi->frames_to_key - i) < MIN_GF_INTERVAL)) && |
+ (i < cpi->frames_to_key)) |
{ |
+ double r; |
+ double this_frame_mvr_ratio; |
+ double this_frame_mvc_ratio; |
+ double motion_decay; |
+ //double motion_pct = next_frame.pcnt_motion; |
+ double motion_pct; |
+ |
i++; // Increment the loop counter |
// Accumulate error score of frames in this gf group |
@@ -1655,33 +1419,82 @@ static void define_gf_group(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) |
if (EOF == input_stats(cpi, &next_frame)) |
break; |
- // Test for the case where there is a brief flash but the prediction |
- // quality back to an earlier frame is then restored. |
- flash_detected = detect_flash(cpi, 0); |
+ // Accumulate motion stats. |
+ motion_pct = next_frame.pcnt_motion; |
+ mv_accumulator_rabs += fabs(next_frame.mvr_abs * motion_pct); |
+ mv_accumulator_cabs += fabs(next_frame.mvc_abs * motion_pct); |
- // Update the motion related elements to the boost calculation |
- accumulate_frame_motion_stats( cpi, &next_frame, |
- &this_frame_mv_in_out, &mv_in_out_accumulator, |
- &abs_mv_in_out_accumulator, &mv_ratio_accumulator ); |
+ //Accumulate Motion In/Out of frame stats |
+ this_frame_mv_in_out = |
+ next_frame.mv_in_out_count * motion_pct; |
+ mv_in_out_accumulator += |
+ next_frame.mv_in_out_count * motion_pct; |
+ abs_mv_in_out_accumulator += |
+ fabs(next_frame.mv_in_out_count * motion_pct); |
- // Calculate a baseline boost number for this frame |
- r = calc_frame_boost( cpi, &next_frame, this_frame_mv_in_out ); |
+ // If there is a significant amount of motion |
+ if (motion_pct > 0.05) |
+ { |
+ this_frame_mvr_ratio = fabs(next_frame.mvr_abs) / |
+ DOUBLE_DIVIDE_CHECK(fabs(next_frame.MVr)); |
- // Cumulative effect of prediction quality decay |
- if ( !flash_detected ) |
+ this_frame_mvc_ratio = fabs(next_frame.mvc_abs) / |
+ DOUBLE_DIVIDE_CHECK(fabs(next_frame.MVc)); |
+ |
+ mv_ratio_accumulator += |
+ (this_frame_mvr_ratio < next_frame.mvr_abs) |
+ ? (this_frame_mvr_ratio * motion_pct) |
+ : next_frame.mvr_abs * motion_pct; |
+ |
+ mv_ratio_accumulator += |
+ (this_frame_mvc_ratio < next_frame.mvc_abs) |
+ ? (this_frame_mvc_ratio * motion_pct) |
+ : next_frame.mvc_abs * motion_pct; |
+ } |
+ else |
{ |
- loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame); |
- decay_accumulator = decay_accumulator * loop_decay_rate; |
- decay_accumulator = |
- decay_accumulator < 0.1 ? 0.1 : decay_accumulator; |
+ mv_ratio_accumulator += 0.0; |
+ this_frame_mvr_ratio = 1.0; |
+ this_frame_mvc_ratio = 1.0; |
} |
+ |
+ // Underlying boost factor is based on inter intra error ratio |
+ r = ( boost_factor * |
+ ( next_frame.intra_error / |
+ DOUBLE_DIVIDE_CHECK(next_frame.coded_error))); |
+ |
+ if (next_frame.intra_error > cpi->gf_intra_err_min) |
+ r = (IIKFACTOR2 * next_frame.intra_error / |
+ DOUBLE_DIVIDE_CHECK(next_frame.coded_error)); |
+ else |
+ r = (IIKFACTOR2 * cpi->gf_intra_err_min / |
+ DOUBLE_DIVIDE_CHECK(next_frame.coded_error)); |
+ |
+ // Increase boost for frames where new data coming into frame |
+ // (eg zoom out). Slightly reduce boost if there is a net balance |
+ // of motion out of the frame (zoom in). |
+ // The range for this_frame_mv_in_out is -1.0 to +1.0 |
+ if (this_frame_mv_in_out > 0.0) |
+ r += r * (this_frame_mv_in_out * 2.0); |
+ // In extreme case boost is halved |
+ else |
+ r += r * (this_frame_mv_in_out / 2.0); |
+ |
+ if (r > GF_RMAX) |
+ r = GF_RMAX; |
+ |
+ loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame); |
+ |
+ // Cumulative effect of decay |
+ decay_accumulator = decay_accumulator * loop_decay_rate; |
+ decay_accumulator = decay_accumulator < 0.1 ? 0.1 : decay_accumulator; |
+ |
boost_score += (decay_accumulator * r); |
// Break clause to detect very still sections after motion |
// For example a staic image after a fade or other transition. |
if ( detect_transition_to_still( cpi, i, 5, |
- loop_decay_rate, |
- decay_accumulator ) ) |
+ loop_decay_rate, decay_accumulator ) ) |
{ |
allow_alt_ref = FALSE; |
boost_score = old_boost_score; |
@@ -1689,16 +1502,15 @@ static void define_gf_group(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) |
} |
// Break out conditions. |
- if ( |
+ if ( /* i>4 || */ |
// Break at cpi->max_gf_interval unless almost totally static |
(i >= cpi->max_gf_interval && (decay_accumulator < 0.995)) || |
( |
// Dont break out with a very short interval |
(i > MIN_GF_INTERVAL) && |
// Dont break out very close to a key frame |
- ((cpi->twopass.frames_to_key - i) >= MIN_GF_INTERVAL) && |
+ ((cpi->frames_to_key - i) >= MIN_GF_INTERVAL) && |
((boost_score > 20.0) || (next_frame.pcnt_inter < 0.75)) && |
- (!flash_detected) && |
((mv_ratio_accumulator > 100.0) || |
(abs_mv_in_out_accumulator > 3.0) || |
(mv_in_out_accumulator < -2.0) || |
@@ -1714,7 +1526,7 @@ static void define_gf_group(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) |
old_boost_score = boost_score; |
} |
- cpi->twopass.gf_decay_rate = |
+ cpi->gf_decay_rate = |
(i > 0) ? (int)(100.0 * (1.0 - decay_accumulator)) / i : 0; |
// When using CBR apply additional buffer related upper limits |
@@ -1746,88 +1558,41 @@ static void define_gf_group(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) |
boost_score = max_boost; |
} |
- // Dont allow conventional gf too near the next kf |
- if ((cpi->twopass.frames_to_key - i) < MIN_GF_INTERVAL) |
- { |
- while (i < cpi->twopass.frames_to_key) |
- { |
- i++; |
- |
- if (EOF == input_stats(cpi, this_frame)) |
- break; |
- |
- if (i < cpi->twopass.frames_to_key) |
- { |
- mod_frame_err = calculate_modified_err(cpi, this_frame); |
- gf_group_err += mod_frame_err; |
- } |
- } |
- } |
- |
cpi->gfu_boost = (int)(boost_score * 100.0) >> 4; |
-#if NEW_BOOST |
- // Alterrnative boost calculation for alt ref |
- alt_boost = calc_arf_boost( cpi, 0, (i-1), (i-1), &f_boost, &b_boost ); |
-#endif |
- |
// Should we use the alternate refernce frame |
if (allow_alt_ref && |
(i >= MIN_GF_INTERVAL) && |
// dont use ARF very near next kf |
- (i <= (cpi->twopass.frames_to_key - MIN_GF_INTERVAL)) && |
-#if NEW_BOOST |
- ((next_frame.pcnt_inter > 0.75) || |
- (next_frame.pcnt_second_ref > 0.5)) && |
- ((mv_in_out_accumulator / (double)i > -0.2) || |
- (mv_in_out_accumulator > -2.0)) && |
- (b_boost > 100) && |
- (f_boost > 100) ) |
-#else |
- (next_frame.pcnt_inter > 0.75) && |
- ((mv_in_out_accumulator / (double)i > -0.2) || |
- (mv_in_out_accumulator > -2.0)) && |
- (cpi->gfu_boost > 100) && |
- (cpi->twopass.gf_decay_rate <= |
- (ARF_DECAY_THRESH + (cpi->gfu_boost / 200))) ) |
-#endif |
+ (i <= (cpi->frames_to_key - MIN_GF_INTERVAL)) && |
+ (((next_frame.pcnt_inter > 0.75) && |
+ ((mv_in_out_accumulator / (double)i > -0.2) || (mv_in_out_accumulator > -2.0)) && |
+ //(cpi->gfu_boost>150) && |
+ (cpi->gfu_boost > 100) && |
+ //(cpi->gfu_boost>AF_THRESH2) && |
+ //((cpi->gfu_boost/i)>AF_THRESH) && |
+ //(decay_accumulator > 0.5) && |
+ (cpi->gf_decay_rate <= (ARF_DECAY_THRESH + (cpi->gfu_boost / 200))) |
+ ) |
+ ) |
+ ) |
{ |
int Boost; |
int allocation_chunks; |
- int Q = (cpi->oxcf.fixed_q < 0) |
- ? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed_q; |
+ int Q = (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed_q; |
int tmp_q; |
int arf_frame_bits = 0; |
int group_bits; |
-#if NEW_BOOST |
- cpi->gfu_boost = alt_boost; |
-#endif |
- |
// Estimate the bits to be allocated to the group as a whole |
- if ((cpi->twopass.kf_group_bits > 0) && |
- (cpi->twopass.kf_group_error_left > 0)) |
- { |
- group_bits = (int)((double)cpi->twopass.kf_group_bits * |
- (gf_group_err / (double)cpi->twopass.kf_group_error_left)); |
- } |
+ if ((cpi->kf_group_bits > 0) && (cpi->kf_group_error_left > 0)) |
+ group_bits = (int)((double)cpi->kf_group_bits * (gf_group_err / (double)cpi->kf_group_error_left)); |
else |
group_bits = 0; |
// Boost for arf frame |
-#if NEW_BOOST |
- Boost = (alt_boost * GFQ_ADJUSTMENT) / 100; |
-#else |
Boost = (cpi->gfu_boost * 3 * GFQ_ADJUSTMENT) / (2 * 100); |
-#endif |
Boost += (i * 50); |
- |
- // Set max and minimum boost and hence minimum allocation |
- if (Boost > ((cpi->baseline_gf_interval + 1) * 200)) |
- Boost = ((cpi->baseline_gf_interval + 1) * 200); |
- else if (Boost < 125) |
- Boost = 125; |
- |
allocation_chunks = (i * 100) + Boost; |
// Normalize Altboost and allocations chunck down to prevent overflow |
@@ -1837,17 +1602,13 @@ static void define_gf_group(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) |
allocation_chunks /= 2; |
} |
- // Calculate the number of bits to be spent on the arf based on the |
- // boost number |
- arf_frame_bits = (int)((double)Boost * (group_bits / |
- (double)allocation_chunks)); |
+ // Calculate the number of bits to be spent on the arf based on the boost number |
+ arf_frame_bits = (int)((double)Boost * (group_bits / (double)allocation_chunks)); |
- // Estimate if there are enough bits available to make worthwhile use |
- // of an arf. |
+ // Estimate if there are enough bits available to make worthwhile use of an arf. |
tmp_q = estimate_q(cpi, mod_frame_err, (int)arf_frame_bits); |
- // Only use an arf if it is likely we will be able to code |
- // it at a lower Q than the surrounding frames. |
+ // Only use an arf if it is likely we will be able to code it at a lower Q than the surrounding frames. |
if (tmp_q < cpi->worst_quality) |
{ |
int half_gf_int; |
@@ -1857,22 +1618,13 @@ static void define_gf_group(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) |
cpi->source_alt_ref_pending = TRUE; |
- // For alt ref frames the error score for the end frame of the |
- // group (the alt ref frame) should not contribute to the group |
- // total and hence the number of bit allocated to the group. |
- // Rather it forms part of the next group (it is the GF at the |
- // start of the next group) |
- // gf_group_err -= mod_frame_err; |
+ // For alt ref frames the error score for the end frame of the group (the alt ref frame) should not contribute to the group total and hence |
+ // the number of bit allocated to the group. Rather it forms part of the next group (it is the GF at the start of the next group) |
+ gf_group_err -= mod_frame_err; |
- // For alt ref frames alt ref frame is technically part of the |
- // GF frame for the next group but we always base the error |
- // calculation and bit allocation on the current group of frames. |
- |
- // Set the interval till the next gf or arf. |
- // For ARFs this is the number of frames to be coded before the |
- // future frame that is coded as an ARF. |
+ // Set the interval till the next gf or arf. For ARFs this is the number of frames to be coded before the future frame that is coded as an ARF. |
// The future frame itself is part of the next group |
- cpi->baseline_gf_interval = i; |
+ cpi->baseline_gf_interval = i - 1; |
// Define the arnr filter width for this group of frames: |
// We only filter frames that lie within a distance of half |
@@ -1881,8 +1633,7 @@ static void define_gf_group(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) |
// Note: this_frame->frame has been updated in the loop |
// so it now points at the ARF frame. |
half_gf_int = cpi->baseline_gf_interval >> 1; |
- frames_after_arf = cpi->twopass.total_stats->count - |
- this_frame->frame - 1; |
+ frames_after_arf = cpi->total_stats->count - this_frame->frame - 1; |
switch (cpi->oxcf.arnr_type) |
{ |
@@ -1931,62 +1682,63 @@ static void define_gf_group(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) |
cpi->baseline_gf_interval = i; |
} |
- // Now decide how many bits should be allocated to the GF group as a |
- // proportion of those remaining in the kf group. |
- // The final key frame group in the clip is treated as a special case |
- // where cpi->twopass.kf_group_bits is tied to cpi->twopass.bits_left. |
- // This is also important for short clips where there may only be one |
- // key frame. |
- if (cpi->twopass.frames_to_key >= (int)(cpi->twopass.total_stats->count - |
- cpi->common.current_video_frame)) |
+ // Conventional GF |
+ if (!cpi->source_alt_ref_pending) |
{ |
- cpi->twopass.kf_group_bits = |
- (cpi->twopass.bits_left > 0) ? cpi->twopass.bits_left : 0; |
+ // Dont allow conventional gf too near the next kf |
+ if ((cpi->frames_to_key - cpi->baseline_gf_interval) < MIN_GF_INTERVAL) |
+ { |
+ while (cpi->baseline_gf_interval < cpi->frames_to_key) |
+ { |
+ if (EOF == input_stats(cpi, this_frame)) |
+ break; |
+ |
+ cpi->baseline_gf_interval++; |
+ |
+ if (cpi->baseline_gf_interval < cpi->frames_to_key) |
+ gf_group_err += calculate_modified_err(cpi, this_frame); |
+ } |
+ } |
} |
- // Calculate the bits to be allocated to the group as a whole |
- if ((cpi->twopass.kf_group_bits > 0) && |
- (cpi->twopass.kf_group_error_left > 0)) |
+ // Now decide how many bits should be allocated to the GF group as a proportion of those remaining in the kf group. |
+ // The final key frame group in the clip is treated as a special case where cpi->kf_group_bits is tied to cpi->bits_left. |
+ // This is also important for short clips where there may only be one key frame. |
+ if (cpi->frames_to_key >= (int)(cpi->total_stats->count - cpi->common.current_video_frame)) |
{ |
- cpi->twopass.gf_group_bits = |
- (int)((double)cpi->twopass.kf_group_bits * |
- (gf_group_err / (double)cpi->twopass.kf_group_error_left)); |
+ cpi->kf_group_bits = (cpi->bits_left > 0) ? cpi->bits_left : 0; |
} |
+ |
+ // Calculate the bits to be allocated to the group as a whole |
+ if ((cpi->kf_group_bits > 0) && (cpi->kf_group_error_left > 0)) |
+ cpi->gf_group_bits = (int)((double)cpi->kf_group_bits * (gf_group_err / (double)cpi->kf_group_error_left)); |
else |
- cpi->twopass.gf_group_bits = 0; |
+ cpi->gf_group_bits = 0; |
- cpi->twopass.gf_group_bits = |
- (cpi->twopass.gf_group_bits < 0) |
- ? 0 |
- : (cpi->twopass.gf_group_bits > cpi->twopass.kf_group_bits) |
- ? cpi->twopass.kf_group_bits : cpi->twopass.gf_group_bits; |
+ cpi->gf_group_bits = (cpi->gf_group_bits < 0) ? 0 : (cpi->gf_group_bits > cpi->kf_group_bits) ? cpi->kf_group_bits : cpi->gf_group_bits; |
- // Clip cpi->twopass.gf_group_bits based on user supplied data rate |
- // variability limit (cpi->oxcf.two_pass_vbrmax_section) |
- if (cpi->twopass.gf_group_bits > max_bits * cpi->baseline_gf_interval) |
- cpi->twopass.gf_group_bits = max_bits * cpi->baseline_gf_interval; |
+ // Clip cpi->gf_group_bits based on user supplied data rate variability limit (cpi->oxcf.two_pass_vbrmax_section) |
+ if (cpi->gf_group_bits > max_bits * cpi->baseline_gf_interval) |
+ cpi->gf_group_bits = max_bits * cpi->baseline_gf_interval; |
// Reset the file position |
reset_fpf_position(cpi, start_pos); |
// Update the record of error used so far (only done once per gf group) |
- cpi->twopass.modified_error_used += gf_group_err; |
+ cpi->modified_error_used += gf_group_err; |
// Assign bits to the arf or gf. |
- for (i = 0; i <= (cpi->source_alt_ref_pending && cpi->common.frame_type != KEY_FRAME); i++) { |
+ { |
int Boost; |
+ int frames_in_section; |
int allocation_chunks; |
int Q = (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed_q; |
- int gf_bits; |
// For ARF frames |
- if (cpi->source_alt_ref_pending && i == 0) |
+ if (cpi->source_alt_ref_pending) |
{ |
-#if NEW_BOOST |
- Boost = (alt_boost * GFQ_ADJUSTMENT) / 100; |
-#else |
Boost = (cpi->gfu_boost * 3 * GFQ_ADJUSTMENT) / (2 * 100); |
-#endif |
+ //Boost += (cpi->baseline_gf_interval * 25); |
Boost += (cpi->baseline_gf_interval * 50); |
// Set max and minimum boost and hence minimum allocation |
@@ -1995,8 +1747,8 @@ static void define_gf_group(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) |
else if (Boost < 125) |
Boost = 125; |
- allocation_chunks = |
- ((cpi->baseline_gf_interval + 1) * 100) + Boost; |
+ frames_in_section = cpi->baseline_gf_interval + 1; |
+ allocation_chunks = (frames_in_section * 100) + Boost; |
} |
// Else for standard golden frames |
else |
@@ -2010,8 +1762,8 @@ static void define_gf_group(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) |
else if (Boost < 125) |
Boost = 125; |
- allocation_chunks = |
- (cpi->baseline_gf_interval * 100) + (Boost - 100); |
+ frames_in_section = cpi->baseline_gf_interval; |
+ allocation_chunks = (frames_in_section * 100) + (Boost - 100); |
} |
// Normalize Altboost and allocations chunck down to prevent overflow |
@@ -2021,11 +1773,8 @@ static void define_gf_group(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) |
allocation_chunks /= 2; |
} |
- // Calculate the number of bits to be spent on the gf or arf based on |
- // the boost number |
- gf_bits = (int)((double)Boost * |
- (cpi->twopass.gf_group_bits / |
- (double)allocation_chunks)); |
+ // Calculate the number of bits to be spent on the gf or arf based on the boost number |
+ cpi->gf_bits = (int)((double)Boost * (cpi->gf_group_bits / (double)allocation_chunks)); |
// If the frame that is to be boosted is simpler than the average for |
// the gf/arf group then use an alternative calculation |
@@ -2036,16 +1785,16 @@ static void define_gf_group(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) |
int alt_gf_bits; |
alt_gf_grp_bits = |
- (double)cpi->twopass.kf_group_bits * |
+ (double)cpi->kf_group_bits * |
(mod_frame_err * (double)cpi->baseline_gf_interval) / |
- DOUBLE_DIVIDE_CHECK((double)cpi->twopass.kf_group_error_left); |
+ DOUBLE_DIVIDE_CHECK((double)cpi->kf_group_error_left); |
alt_gf_bits = (int)((double)Boost * (alt_gf_grp_bits / |
(double)allocation_chunks)); |
- if (gf_bits > alt_gf_bits) |
+ if (cpi->gf_bits > alt_gf_bits) |
{ |
- gf_bits = alt_gf_bits; |
+ cpi->gf_bits = alt_gf_bits; |
} |
} |
// Else if it is harder than other frames in the group make sure it at |
@@ -2054,79 +1803,64 @@ static void define_gf_group(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) |
else |
{ |
int alt_gf_bits = |
- (int)((double)cpi->twopass.kf_group_bits * |
+ (int)((double)cpi->kf_group_bits * |
mod_frame_err / |
- DOUBLE_DIVIDE_CHECK((double)cpi->twopass.kf_group_error_left)); |
+ DOUBLE_DIVIDE_CHECK((double)cpi->kf_group_error_left)); |
- if (alt_gf_bits > gf_bits) |
+ if (alt_gf_bits > cpi->gf_bits) |
{ |
- gf_bits = alt_gf_bits; |
+ cpi->gf_bits = alt_gf_bits; |
} |
} |
// Apply an additional limit for CBR |
if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) |
{ |
- if (cpi->twopass.gf_bits > (cpi->buffer_level >> 1)) |
- cpi->twopass.gf_bits = cpi->buffer_level >> 1; |
+ if (cpi->gf_bits > (cpi->buffer_level >> 1)) |
+ cpi->gf_bits = cpi->buffer_level >> 1; |
} |
// Dont allow a negative value for gf_bits |
- if (gf_bits < 0) |
- gf_bits = 0; |
+ if (cpi->gf_bits < 0) |
+ cpi->gf_bits = 0; |
- gf_bits += cpi->min_frame_bandwidth; // Add in minimum for a frame |
- |
- if (i == 0) |
- { |
- cpi->twopass.gf_bits = gf_bits; |
- } |
- if (i == 1 || (!cpi->source_alt_ref_pending && (cpi->common.frame_type != KEY_FRAME))) |
- { |
- cpi->per_frame_bandwidth = gf_bits; // Per frame bit target for this frame |
- } |
- } |
- |
- { |
// Adjust KF group bits and error remainin |
- cpi->twopass.kf_group_error_left -= gf_group_err; |
- cpi->twopass.kf_group_bits -= cpi->twopass.gf_group_bits; |
+ cpi->kf_group_error_left -= gf_group_err; |
+ cpi->kf_group_bits -= cpi->gf_group_bits; |
- if (cpi->twopass.kf_group_bits < 0) |
- cpi->twopass.kf_group_bits = 0; |
+ if (cpi->kf_group_bits < 0) |
+ cpi->kf_group_bits = 0; |
// Note the error score left in the remaining frames of the group. |
// For normal GFs we want to remove the error score for the first frame of the group (except in Key frame case where this has already happened) |
if (!cpi->source_alt_ref_pending && cpi->common.frame_type != KEY_FRAME) |
- cpi->twopass.gf_group_error_left = gf_group_err - gf_first_frame_err; |
+ cpi->gf_group_error_left = gf_group_err - gf_first_frame_err; |
else |
- cpi->twopass.gf_group_error_left = gf_group_err; |
+ cpi->gf_group_error_left = gf_group_err; |
- cpi->twopass.gf_group_bits -= cpi->twopass.gf_bits - cpi->min_frame_bandwidth; |
+ cpi->gf_group_bits -= cpi->gf_bits; |
- if (cpi->twopass.gf_group_bits < 0) |
- cpi->twopass.gf_group_bits = 0; |
+ if (cpi->gf_group_bits < 0) |
+ cpi->gf_group_bits = 0; |
+ // Set aside some bits for a mid gf sequence boost |
+ if ((cpi->gfu_boost > 150) && (cpi->baseline_gf_interval > 5)) |
{ |
-#if NEW_BOOST |
- int boost = (cpi->source_alt_ref_pending) |
- ? b_boost : cpi->gfu_boost; |
-#else |
- int boost = cpi->gfu_boost; |
-#endif |
- // Set aside some bits for a mid gf sequence boost |
- if ((boost > 150) && (cpi->baseline_gf_interval > 5)) |
- { |
- int pct_extra = (boost - 100) / 50; |
- pct_extra = (pct_extra > 10) ? 10 : pct_extra; |
+ int pct_extra = (cpi->gfu_boost - 100) / 50; |
+ pct_extra = (pct_extra > 10) ? 10 : pct_extra; |
- cpi->twopass.mid_gf_extra_bits = |
- (cpi->twopass.gf_group_bits * pct_extra) / 100; |
- cpi->twopass.gf_group_bits -= cpi->twopass.mid_gf_extra_bits; |
- } |
- else |
- cpi->twopass.mid_gf_extra_bits = 0; |
+ cpi->mid_gf_extra_bits = (cpi->gf_group_bits * pct_extra) / 100; |
+ cpi->gf_group_bits -= cpi->mid_gf_extra_bits; |
} |
+ else |
+ cpi->mid_gf_extra_bits = 0; |
+ |
+ cpi->gf_bits += cpi->min_frame_bandwidth; // Add in minimum for a frame |
+ } |
+ |
+ if (!cpi->source_alt_ref_pending && (cpi->common.frame_type != KEY_FRAME)) // Normal GF and not a KF |
+ { |
+ cpi->per_frame_bandwidth = cpi->gf_bits; // Per frame bit target for this frame |
} |
// Adjustment to estimate_max_q based on a measure of complexity of the section |
@@ -2146,21 +1880,21 @@ static void define_gf_group(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) |
avg_stats(§ionstats); |
- cpi->twopass.section_intra_rating = |
+ cpi->section_intra_rating = |
sectionstats.intra_error / |
DOUBLE_DIVIDE_CHECK(sectionstats.coded_error); |
Ratio = sectionstats.intra_error / DOUBLE_DIVIDE_CHECK(sectionstats.coded_error); |
//if( (Ratio > 11) ) //&& (sectionstats.pcnt_second_ref < .20) ) |
//{ |
- cpi->twopass.section_max_qfactor = 1.0 - ((Ratio - 10.0) * 0.025); |
+ cpi->section_max_qfactor = 1.0 - ((Ratio - 10.0) * 0.025); |
- if (cpi->twopass.section_max_qfactor < 0.80) |
- cpi->twopass.section_max_qfactor = 0.80; |
+ if (cpi->section_max_qfactor < 0.80) |
+ cpi->section_max_qfactor = 0.80; |
//} |
//else |
- // cpi->twopass.section_max_qfactor = 1.0; |
+ // cpi->section_max_qfactor = 1.0; |
reset_fpf_position(cpi, start_pos); |
} |
@@ -2176,17 +1910,23 @@ static void assign_std_frame_bits(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) |
int max_bits = frame_max_bits(cpi); // Max for a single frame |
+ // The final few frames have special treatment |
+ if (cpi->frames_till_gf_update_due >= (int)(cpi->total_stats->count - cpi->common.current_video_frame)) |
+ { |
+ cpi->gf_group_bits = (cpi->bits_left > 0) ? cpi->bits_left : 0;; |
+ } |
+ |
// Calculate modified prediction error used in bit allocation |
modified_err = calculate_modified_err(cpi, this_frame); |
- if (cpi->twopass.gf_group_error_left > 0) |
- err_fraction = modified_err / cpi->twopass.gf_group_error_left; // What portion of the remaining GF group error is used by this frame |
+ if (cpi->gf_group_error_left > 0) |
+ err_fraction = modified_err / cpi->gf_group_error_left; // What portion of the remaining GF group error is used by this frame |
else |
err_fraction = 0.0; |
- target_frame_size = (int)((double)cpi->twopass.gf_group_bits * err_fraction); // How many of those bits available for allocation should we give it? |
+ target_frame_size = (int)((double)cpi->gf_group_bits * err_fraction); // How many of those bits available for allocation should we give it? |
- // Clip to target size to 0 - max_bits (or cpi->twopass.gf_group_bits) at the top end. |
+ // Clip to target size to 0 - max_bits (or cpi->gf_group_bits) at the top end. |
if (target_frame_size < 0) |
target_frame_size = 0; |
else |
@@ -2194,21 +1934,21 @@ static void assign_std_frame_bits(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) |
if (target_frame_size > max_bits) |
target_frame_size = max_bits; |
- if (target_frame_size > cpi->twopass.gf_group_bits) |
- target_frame_size = cpi->twopass.gf_group_bits; |
+ if (target_frame_size > cpi->gf_group_bits) |
+ target_frame_size = cpi->gf_group_bits; |
} |
- cpi->twopass.gf_group_error_left -= modified_err; // Adjust error remaining |
- cpi->twopass.gf_group_bits -= target_frame_size; // Adjust bits remaining |
+ cpi->gf_group_error_left -= modified_err; // Adjust error remaining |
+ cpi->gf_group_bits -= target_frame_size; // Adjust bits remaining |
- if (cpi->twopass.gf_group_bits < 0) |
- cpi->twopass.gf_group_bits = 0; |
+ if (cpi->gf_group_bits < 0) |
+ cpi->gf_group_bits = 0; |
target_frame_size += cpi->min_frame_bandwidth; // Add in the minimum number of bits that is set aside for every frame. |
// Special case for the frame that lies half way between two gfs |
if (cpi->common.frames_since_golden == cpi->baseline_gf_interval / 2) |
- target_frame_size += cpi->twopass.mid_gf_extra_bits; |
+ target_frame_size += cpi->mid_gf_extra_bits; |
cpi->per_frame_bandwidth = target_frame_size; // Per frame bit target for this frame |
} |
@@ -2216,18 +1956,20 @@ static void assign_std_frame_bits(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) |
void vp8_second_pass(VP8_COMP *cpi) |
{ |
int tmp_q; |
- int frames_left = (int)(cpi->twopass.total_stats->count - cpi->common.current_video_frame); |
+ int frames_left = (int)(cpi->total_stats->count - cpi->common.current_video_frame); |
FIRSTPASS_STATS this_frame; |
FIRSTPASS_STATS this_frame_copy; |
+ VP8_COMMON *cm = &cpi->common; |
+ |
double this_frame_error; |
double this_frame_intra_error; |
double this_frame_coded_error; |
FIRSTPASS_STATS *start_pos; |
- if (!cpi->twopass.stats_in) |
+ if (!cpi->stats_in) |
{ |
return ; |
} |
@@ -2241,10 +1983,17 @@ void vp8_second_pass(VP8_COMP *cpi) |
this_frame_intra_error = this_frame.intra_error; |
this_frame_coded_error = this_frame.coded_error; |
- start_pos = cpi->twopass.stats_in; |
+ // Store information regarding level of motion etc for use mode decisions. |
+ cpi->motion_speed = (int)(fabs(this_frame.MVr) + fabs(this_frame.MVc)); |
+ cpi->motion_var = (int)(fabs(this_frame.MVrv) + fabs(this_frame.MVcv)); |
+ cpi->inter_lvl = (int)(this_frame.pcnt_inter * 100); |
+ cpi->intra_lvl = (int)((1.0 - this_frame.pcnt_inter) * 100); |
+ cpi->motion_lvl = (int)(this_frame.pcnt_motion * 100); |
+ |
+ start_pos = cpi->stats_in; |
// keyframe and section processing ! |
- if (cpi->twopass.frames_to_key == 0) |
+ if (cpi->frames_to_key == 0) |
{ |
// Define next KF group and assign bits to it |
vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame)); |
@@ -2255,9 +2004,9 @@ void vp8_second_pass(VP8_COMP *cpi) |
// This is temporary code till we decide what should really happen in this case. |
if (cpi->oxcf.error_resilient_mode) |
{ |
- cpi->twopass.gf_group_bits = cpi->twopass.kf_group_bits; |
- cpi->twopass.gf_group_error_left = cpi->twopass.kf_group_error_left; |
- cpi->baseline_gf_interval = cpi->twopass.frames_to_key; |
+ cpi->gf_group_bits = cpi->kf_group_bits; |
+ cpi->gf_group_error_left = cpi->kf_group_error_left; |
+ cpi->baseline_gf_interval = cpi->frames_to_key; |
cpi->frames_till_gf_update_due = cpi->baseline_gf_interval; |
cpi->source_alt_ref_pending = FALSE; |
} |
@@ -2267,6 +2016,16 @@ void vp8_second_pass(VP8_COMP *cpi) |
// Is this a GF / ARF (Note that a KF is always also a GF) |
if (cpi->frames_till_gf_update_due == 0) |
{ |
+ // Update monitor of the bits per error observed so far. |
+ // Done once per gf group based on what has gone before |
+ // so do nothing if this is the first frame. |
+ if (cpi->common.current_video_frame > 0) |
+ { |
+ cpi->observed_bpe = |
+ (double)(cpi->clip_bits_total - cpi->bits_left) / |
+ cpi->modified_error_used; |
+ } |
+ |
// Define next gf group and assign bits to it |
vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame)); |
define_gf_group(cpi, &this_frame_copy); |
@@ -2277,10 +2036,22 @@ void vp8_second_pass(VP8_COMP *cpi) |
if (cpi->source_alt_ref_pending && (cpi->common.frame_type != KEY_FRAME)) |
{ |
// Assign a standard frames worth of bits from those allocated to the GF group |
- int bak = cpi->per_frame_bandwidth; |
vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame)); |
assign_std_frame_bits(cpi, &this_frame_copy); |
- cpi->per_frame_bandwidth = bak; |
+ |
+ // If appropriate (we are switching into ARF active but it was not previously active) apply a boost for the gf at the start of the group. |
+ //if ( !cpi->source_alt_ref_active && (cpi->gfu_boost > 150) ) |
+ if (FALSE) |
+ { |
+ int extra_bits; |
+ int pct_extra = (cpi->gfu_boost - 100) / 50; |
+ |
+ pct_extra = (pct_extra > 20) ? 20 : pct_extra; |
+ |
+ extra_bits = (cpi->gf_group_bits * pct_extra) / 100; |
+ cpi->gf_group_bits -= extra_bits; |
+ cpi->per_frame_bandwidth += extra_bits; |
+ } |
} |
} |
@@ -2292,7 +2063,7 @@ void vp8_second_pass(VP8_COMP *cpi) |
// This is temporary code till we decide what should really happen in this case. |
if (cpi->oxcf.error_resilient_mode) |
{ |
- cpi->frames_till_gf_update_due = cpi->twopass.frames_to_key; |
+ cpi->frames_till_gf_update_due = cpi->frames_to_key; |
if (cpi->common.frame_type != KEY_FRAME) |
{ |
@@ -2310,13 +2081,13 @@ void vp8_second_pass(VP8_COMP *cpi) |
} |
// Keep a globally available copy of this and the next frame's iiratio. |
- cpi->twopass.this_iiratio = this_frame_intra_error / |
+ cpi->this_iiratio = this_frame_intra_error / |
DOUBLE_DIVIDE_CHECK(this_frame_coded_error); |
{ |
FIRSTPASS_STATS next_frame; |
if ( lookup_next_frame_stats(cpi, &next_frame) != EOF ) |
{ |
- cpi->twopass.next_iiratio = next_frame.intra_error / |
+ cpi->next_iiratio = next_frame.intra_error / |
DOUBLE_DIVIDE_CHECK(next_frame.coded_error); |
} |
} |
@@ -2328,7 +2099,7 @@ void vp8_second_pass(VP8_COMP *cpi) |
if (cpi->common.current_video_frame == 0) |
{ |
- cpi->twopass.est_max_qcorrection_factor = 1.0; |
+ cpi->est_max_qcorrection_factor = 1.0; |
// Experimental code to try and set a cq_level in constrained |
// quality mode. |
@@ -2338,8 +2109,8 @@ void vp8_second_pass(VP8_COMP *cpi) |
est_cq = |
estimate_cq( cpi, |
- (cpi->twopass.total_coded_error_left / frames_left), |
- (int)(cpi->twopass.bits_left / frames_left)); |
+ (cpi->total_coded_error_left / frames_left), |
+ (int)(cpi->bits_left / frames_left)); |
cpi->cq_target_quality = cpi->oxcf.cq_level; |
if ( est_cq > cpi->cq_target_quality ) |
@@ -2347,20 +2118,20 @@ void vp8_second_pass(VP8_COMP *cpi) |
} |
// guess at maxq needed in 2nd pass |
- cpi->twopass.maxq_max_limit = cpi->worst_quality; |
- cpi->twopass.maxq_min_limit = cpi->best_quality; |
+ cpi->maxq_max_limit = cpi->worst_quality; |
+ cpi->maxq_min_limit = cpi->best_quality; |
tmp_q = estimate_max_q( cpi, |
- (cpi->twopass.total_coded_error_left / frames_left), |
- (int)(cpi->twopass.bits_left / frames_left)); |
+ (cpi->total_coded_error_left / frames_left), |
+ (int)(cpi->bits_left / frames_left)); |
// Limit the maxq value returned subsequently. |
// This increases the risk of overspend or underspend if the initial |
// estimate for the clip is bad, but helps prevent excessive |
// variation in Q, especially near the end of a clip |
// where for example a small overspend may cause Q to crash |
- cpi->twopass.maxq_max_limit = ((tmp_q + 32) < cpi->worst_quality) |
+ cpi->maxq_max_limit = ((tmp_q + 32) < cpi->worst_quality) |
? (tmp_q + 32) : cpi->worst_quality; |
- cpi->twopass.maxq_min_limit = ((tmp_q - 32) > cpi->best_quality) |
+ cpi->maxq_min_limit = ((tmp_q - 32) > cpi->best_quality) |
? (tmp_q - 32) : cpi->best_quality; |
cpi->active_worst_quality = tmp_q; |
@@ -2372,14 +2143,14 @@ void vp8_second_pass(VP8_COMP *cpi) |
// radical adjustments to the allowed quantizer range just to use up a |
// few surplus bits or get beneath the target rate. |
else if ( (cpi->common.current_video_frame < |
- (((unsigned int)cpi->twopass.total_stats->count * 255)>>8)) && |
+ (((unsigned int)cpi->total_stats->count * 255)>>8)) && |
((cpi->common.current_video_frame + cpi->baseline_gf_interval) < |
- (unsigned int)cpi->twopass.total_stats->count) ) |
+ (unsigned int)cpi->total_stats->count) ) |
{ |
if (frames_left < 1) |
frames_left = 1; |
- tmp_q = estimate_max_q(cpi, (cpi->twopass.total_coded_error_left / frames_left), (int)(cpi->twopass.bits_left / frames_left)); |
+ tmp_q = estimate_max_q(cpi, (cpi->total_coded_error_left / frames_left), (int)(cpi->bits_left / frames_left)); |
// Move active_worst_quality but in a damped way |
if (tmp_q > cpi->active_worst_quality) |
@@ -2390,10 +2161,10 @@ void vp8_second_pass(VP8_COMP *cpi) |
cpi->active_worst_quality = ((cpi->active_worst_quality * 3) + tmp_q + 2) / 4; |
} |
- cpi->twopass.frames_to_key --; |
- cpi->twopass.total_error_left -= this_frame_error; |
- cpi->twopass.total_intra_error_left -= this_frame_intra_error; |
- cpi->twopass.total_coded_error_left -= this_frame_coded_error; |
+ cpi->frames_to_key --; |
+ cpi->total_error_left -= this_frame_error; |
+ cpi->total_intra_error_left -= this_frame_intra_error; |
+ cpi->total_coded_error_left -= this_frame_coded_error; |
} |
@@ -2430,7 +2201,7 @@ static BOOL test_candidate_kf(VP8_COMP *cpi, FIRSTPASS_STATS *last_frame, FIRST |
vpx_memcpy(&local_next_frame, next_frame, sizeof(*next_frame)); |
// Note the starting file position so we can reset to it |
- start_pos = cpi->twopass.stats_in; |
+ start_pos = cpi->stats_in; |
// Examine how well the key frame predicts subsequent frames |
for (i = 0 ; i < 16; i++) |
@@ -2502,12 +2273,13 @@ static void find_next_key_frame(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) |
double kf_group_err = 0.0; |
double kf_group_intra_err = 0.0; |
double kf_group_coded_err = 0.0; |
+ double two_pass_min_rate = (double)(cpi->oxcf.target_bandwidth * cpi->oxcf.two_pass_vbrmin_section / 100); |
double recent_loop_decay[8] = {1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0}; |
vpx_memset(&next_frame, 0, sizeof(next_frame)); // assure clean |
vp8_clear_system_state(); //__asm emms; |
- start_position = cpi->twopass.stats_in; |
+ start_position = cpi->stats_in; |
cpi->common.frame_type = KEY_FRAME; |
@@ -2520,19 +2292,19 @@ static void find_next_key_frame(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) |
// Kf is always a gf so clear frames till next gf counter |
cpi->frames_till_gf_update_due = 0; |
- cpi->twopass.frames_to_key = 1; |
+ cpi->frames_to_key = 1; |
// Take a copy of the initial frame details |
vpx_memcpy(&first_frame, this_frame, sizeof(*this_frame)); |
- cpi->twopass.kf_group_bits = 0; // Total bits avaialable to kf group |
- cpi->twopass.kf_group_error_left = 0; // Group modified error score. |
+ cpi->kf_group_bits = 0; // Total bits avaialable to kf group |
+ cpi->kf_group_error_left = 0; // Group modified error score. |
kf_mod_err = calculate_modified_err(cpi, this_frame); |
// find the next keyframe |
i = 0; |
- while (cpi->twopass.stats_in < cpi->twopass.stats_in_end) |
+ while (cpi->stats_in < cpi->stats_in_end) |
{ |
// Accumulate kf group error |
kf_group_err += calculate_modified_err(cpi, this_frame); |
@@ -2579,14 +2351,14 @@ static void find_next_key_frame(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) |
// Step on to the next frame |
- cpi->twopass.frames_to_key ++; |
+ cpi->frames_to_key ++; |
// If we don't have a real key frame within the next two |
// forcekeyframeevery intervals then break out of the loop. |
- if (cpi->twopass.frames_to_key >= 2 *(int)cpi->key_frame_frequency) |
+ if (cpi->frames_to_key >= 2 *(int)cpi->key_frame_frequency) |
break; |
} else |
- cpi->twopass.frames_to_key ++; |
+ cpi->frames_to_key ++; |
i++; |
} |
@@ -2596,12 +2368,12 @@ static void find_next_key_frame(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) |
// This code centers the extra kf if the actual natural |
// interval is between 1x and 2x |
if (cpi->oxcf.auto_key |
- && cpi->twopass.frames_to_key > (int)cpi->key_frame_frequency ) |
+ && cpi->frames_to_key > (int)cpi->key_frame_frequency ) |
{ |
- FIRSTPASS_STATS *current_pos = cpi->twopass.stats_in; |
+ FIRSTPASS_STATS *current_pos = cpi->stats_in; |
FIRSTPASS_STATS tmp_frame; |
- cpi->twopass.frames_to_key /= 2; |
+ cpi->frames_to_key /= 2; |
// Copy first frame details |
vpx_memcpy(&tmp_frame, &first_frame, sizeof(first_frame)); |
@@ -2614,7 +2386,7 @@ static void find_next_key_frame(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) |
kf_group_coded_err = 0; |
// Rescan to get the correct error data for the forced kf group |
- for( i = 0; i < cpi->twopass.frames_to_key; i++ ) |
+ for( i = 0; i < cpi->frames_to_key; i++ ) |
{ |
// Accumulate kf group errors |
kf_group_err += calculate_modified_err(cpi, &tmp_frame); |
@@ -2634,7 +2406,7 @@ static void find_next_key_frame(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) |
cpi->next_key_frame_forced = FALSE; |
// Special case for the last frame of the file |
- if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end) |
+ if (cpi->stats_in >= cpi->stats_in_end) |
{ |
// Accumulate kf group error |
kf_group_err += calculate_modified_err(cpi, this_frame); |
@@ -2646,24 +2418,24 @@ static void find_next_key_frame(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) |
} |
// Calculate the number of bits that should be assigned to the kf group. |
- if ((cpi->twopass.bits_left > 0) && (cpi->twopass.modified_error_left > 0.0)) |
+ if ((cpi->bits_left > 0) && (cpi->modified_error_left > 0.0)) |
{ |
// Max for a single normal frame (not key frame) |
int max_bits = frame_max_bits(cpi); |
// Maximum bits for the kf group |
- int64_t max_grp_bits; |
+ long long max_grp_bits; |
// Default allocation based on bits left and relative |
// complexity of the section |
- cpi->twopass.kf_group_bits = (int64_t)( cpi->twopass.bits_left * |
+ cpi->kf_group_bits = (long long)( cpi->bits_left * |
( kf_group_err / |
- cpi->twopass.modified_error_left )); |
+ cpi->modified_error_left )); |
// Clip based on maximum per frame rate defined by the user. |
- max_grp_bits = (int64_t)max_bits * (int64_t)cpi->twopass.frames_to_key; |
- if (cpi->twopass.kf_group_bits > max_grp_bits) |
- cpi->twopass.kf_group_bits = max_grp_bits; |
+ max_grp_bits = (long long)max_bits * (long long)cpi->frames_to_key; |
+ if (cpi->kf_group_bits > max_grp_bits) |
+ cpi->kf_group_bits = max_grp_bits; |
// Additional special case for CBR if buffer is getting full. |
if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) |
@@ -2678,32 +2450,32 @@ static void find_next_key_frame(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) |
int high_water_mark = (opt_buffer_lvl + |
cpi->oxcf.maximum_buffer_size) >> 1; |
- int64_t av_group_bits; |
+ long long av_group_bits; |
// Av bits per frame * number of frames |
- av_group_bits = (int64_t)cpi->av_per_frame_bandwidth * |
- (int64_t)cpi->twopass.frames_to_key; |
+ av_group_bits = (long long)cpi->av_per_frame_bandwidth * |
+ (long long)cpi->frames_to_key; |
// We are at or above the maximum. |
if (cpi->buffer_level >= high_water_mark) |
{ |
- int64_t min_group_bits; |
+ long long min_group_bits; |
min_group_bits = av_group_bits + |
- (int64_t)(buffer_lvl - |
+ (long long)(buffer_lvl - |
high_water_mark); |
- if (cpi->twopass.kf_group_bits < min_group_bits) |
- cpi->twopass.kf_group_bits = min_group_bits; |
+ if (cpi->kf_group_bits < min_group_bits) |
+ cpi->kf_group_bits = min_group_bits; |
} |
// We are above optimal but below the maximum |
- else if (cpi->twopass.kf_group_bits < av_group_bits) |
+ else if (cpi->kf_group_bits < av_group_bits) |
{ |
- int64_t bits_below_av = av_group_bits - |
- cpi->twopass.kf_group_bits; |
+ long long bits_below_av = av_group_bits - |
+ cpi->kf_group_bits; |
- cpi->twopass.kf_group_bits += |
- (int64_t)((double)bits_below_av * |
+ cpi->kf_group_bits += |
+ (long long)((double)bits_below_av * |
(double)(buffer_lvl - opt_buffer_lvl) / |
(double)(high_water_mark - opt_buffer_lvl)); |
} |
@@ -2711,7 +2483,7 @@ static void find_next_key_frame(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) |
} |
} |
else |
- cpi->twopass.kf_group_bits = 0; |
+ cpi->kf_group_bits = 0; |
// Reset the first pass file position |
reset_fpf_position(cpi, start_position); |
@@ -2721,18 +2493,20 @@ static void find_next_key_frame(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) |
boost_score = 0.0; |
loop_decay_rate = 1.00; // Starting decay rate |
- for (i = 0 ; i < cpi->twopass.frames_to_key ; i++) |
+ for (i = 0 ; i < cpi->frames_to_key ; i++) |
{ |
double r; |
+ double motion_decay; |
+ double motion_pct; |
if (EOF == input_stats(cpi, &next_frame)) |
break; |
- if (next_frame.intra_error > cpi->twopass.kf_intra_err_min) |
+ if (next_frame.intra_error > cpi->kf_intra_err_min) |
r = (IIKFACTOR2 * next_frame.intra_error / |
DOUBLE_DIVIDE_CHECK(next_frame.coded_error)); |
else |
- r = (IIKFACTOR2 * cpi->twopass.kf_intra_err_min / |
+ r = (IIKFACTOR2 * cpi->kf_intra_err_min / |
DOUBLE_DIVIDE_CHECK(next_frame.coded_error)); |
if (r > RMAX) |
@@ -2763,7 +2537,7 @@ static void find_next_key_frame(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) |
zero_stats(§ionstats); |
reset_fpf_position(cpi, start_position); |
- for (i = 0 ; i < cpi->twopass.frames_to_key ; i++) |
+ for (i = 0 ; i < cpi->frames_to_key ; i++) |
{ |
input_stats(cpi, &next_frame); |
accumulate_stats(§ionstats, &next_frame); |
@@ -2771,21 +2545,19 @@ static void find_next_key_frame(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) |
avg_stats(§ionstats); |
- cpi->twopass.section_intra_rating = |
- sectionstats.intra_error |
- / DOUBLE_DIVIDE_CHECK(sectionstats.coded_error); |
+ cpi->section_intra_rating = sectionstats.intra_error / DOUBLE_DIVIDE_CHECK(sectionstats.coded_error); |
Ratio = sectionstats.intra_error / DOUBLE_DIVIDE_CHECK(sectionstats.coded_error); |
// if( (Ratio > 11) ) //&& (sectionstats.pcnt_second_ref < .20) ) |
//{ |
- cpi->twopass.section_max_qfactor = 1.0 - ((Ratio - 10.0) * 0.025); |
+ cpi->section_max_qfactor = 1.0 - ((Ratio - 10.0) * 0.025); |
- if (cpi->twopass.section_max_qfactor < 0.80) |
- cpi->twopass.section_max_qfactor = 0.80; |
+ if (cpi->section_max_qfactor < 0.80) |
+ cpi->section_max_qfactor = 0.80; |
//} |
//else |
- // cpi->twopass.section_max_qfactor = 1.0; |
+ // cpi->section_max_qfactor = 1.0; |
} |
// When using CBR apply additional buffer fullness related upper limits |
@@ -2823,7 +2595,7 @@ static void find_next_key_frame(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) |
{ |
int kf_boost = boost_score; |
int allocation_chunks; |
- int Counter = cpi->twopass.frames_to_key; |
+ int Counter = cpi->frames_to_key; |
int alt_kf_bits; |
YV12_BUFFER_CONFIG *lst_yv12 = &cpi->common.yv12_fb[cpi->common.lst_fb_idx]; |
// Min boost based on kf interval |
@@ -2863,7 +2635,7 @@ static void find_next_key_frame(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) |
// The second (optionaly) on the key frames own error if this is smaller than the average for the group. |
// The final one insures that the frame receives at least the allocation it would have received based on its own error score vs the error score remaining |
- allocation_chunks = ((cpi->twopass.frames_to_key - 1) * 100) + kf_boost; // cpi->twopass.frames_to_key-1 because key frame itself is taken care of by kf_boost |
+ allocation_chunks = ((cpi->frames_to_key - 1) * 100) + kf_boost; // cpi->frames_to_key-1 because key frame itself is taken care of by kf_boost |
// Normalize Altboost and allocations chunck down to prevent overflow |
while (kf_boost > 1000) |
@@ -2872,35 +2644,35 @@ static void find_next_key_frame(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) |
allocation_chunks /= 2; |
} |
- cpi->twopass.kf_group_bits = (cpi->twopass.kf_group_bits < 0) ? 0 : cpi->twopass.kf_group_bits; |
+ cpi->kf_group_bits = (cpi->kf_group_bits < 0) ? 0 : cpi->kf_group_bits; |
// Calculate the number of bits to be spent on the key frame |
- cpi->twopass.kf_bits = (int)((double)kf_boost * ((double)cpi->twopass.kf_group_bits / (double)allocation_chunks)); |
+ cpi->kf_bits = (int)((double)kf_boost * ((double)cpi->kf_group_bits / (double)allocation_chunks)); |
// Apply an additional limit for CBR |
if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) |
{ |
- if (cpi->twopass.kf_bits > ((3 * cpi->buffer_level) >> 2)) |
- cpi->twopass.kf_bits = (3 * cpi->buffer_level) >> 2; |
+ if (cpi->kf_bits > ((3 * cpi->buffer_level) >> 2)) |
+ cpi->kf_bits = (3 * cpi->buffer_level) >> 2; |
} |
// If the key frame is actually easier than the average for the |
// kf group (which does sometimes happen... eg a blank intro frame) |
// Then use an alternate calculation based on the kf error score |
// which should give a smaller key frame. |
- if (kf_mod_err < kf_group_err / cpi->twopass.frames_to_key) |
+ if (kf_mod_err < kf_group_err / cpi->frames_to_key) |
{ |
double alt_kf_grp_bits = |
- ((double)cpi->twopass.bits_left * |
- (kf_mod_err * (double)cpi->twopass.frames_to_key) / |
- DOUBLE_DIVIDE_CHECK(cpi->twopass.modified_error_left)); |
+ ((double)cpi->bits_left * |
+ (kf_mod_err * (double)cpi->frames_to_key) / |
+ DOUBLE_DIVIDE_CHECK(cpi->modified_error_left)); |
alt_kf_bits = (int)((double)kf_boost * |
(alt_kf_grp_bits / (double)allocation_chunks)); |
- if (cpi->twopass.kf_bits > alt_kf_bits) |
+ if (cpi->kf_bits > alt_kf_bits) |
{ |
- cpi->twopass.kf_bits = alt_kf_bits; |
+ cpi->kf_bits = alt_kf_bits; |
} |
} |
// Else if it is much harder than other frames in the group make sure |
@@ -2909,29 +2681,29 @@ static void find_next_key_frame(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) |
else |
{ |
alt_kf_bits = |
- (int)((double)cpi->twopass.bits_left * |
+ (int)((double)cpi->bits_left * |
(kf_mod_err / |
- DOUBLE_DIVIDE_CHECK(cpi->twopass.modified_error_left))); |
+ DOUBLE_DIVIDE_CHECK(cpi->modified_error_left))); |
- if (alt_kf_bits > cpi->twopass.kf_bits) |
+ if (alt_kf_bits > cpi->kf_bits) |
{ |
- cpi->twopass.kf_bits = alt_kf_bits; |
+ cpi->kf_bits = alt_kf_bits; |
} |
} |
- cpi->twopass.kf_group_bits -= cpi->twopass.kf_bits; |
- cpi->twopass.kf_bits += cpi->min_frame_bandwidth; // Add in the minimum frame allowance |
+ cpi->kf_group_bits -= cpi->kf_bits; |
+ cpi->kf_bits += cpi->min_frame_bandwidth; // Add in the minimum frame allowance |
- cpi->per_frame_bandwidth = cpi->twopass.kf_bits; // Peer frame bit target for this frame |
- cpi->target_bandwidth = cpi->twopass.kf_bits * cpi->output_frame_rate; // Convert to a per second bitrate |
+ cpi->per_frame_bandwidth = cpi->kf_bits; // Peer frame bit target for this frame |
+ cpi->target_bandwidth = cpi->kf_bits * cpi->output_frame_rate; // Convert to a per second bitrate |
} |
// Note the total error score of the kf group minus the key frame itself |
- cpi->twopass.kf_group_error_left = (int)(kf_group_err - kf_mod_err); |
+ cpi->kf_group_error_left = (int)(kf_group_err - kf_mod_err); |
// Adjust the count of total modified error left. |
// The count of bits left is adjusted elsewhere based on real coded frame sizes |
- cpi->twopass.modified_error_left -= kf_group_err; |
+ cpi->modified_error_left -= kf_group_err; |
if (cpi->oxcf.allow_spatial_resampling) |
{ |
@@ -2948,7 +2720,7 @@ static void find_next_key_frame(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) |
double projected_bits_perframe; |
double group_iiratio = (kf_group_intra_err - first_frame.intra_error) / (kf_group_coded_err - first_frame.coded_error); |
- double err_per_frame = kf_group_err / cpi->twopass.frames_to_key; |
+ double err_per_frame = kf_group_err / cpi->frames_to_key; |
double bits_per_frame; |
double av_bits_per_frame; |
double effective_size_ratio; |
@@ -2961,7 +2733,7 @@ static void find_next_key_frame(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) |
cpi->common.vert_scale = NORMAL; |
// Calculate Average bits per frame. |
- //av_bits_per_frame = cpi->twopass.bits_left/(double)(cpi->twopass.total_stats->count - cpi->common.current_video_frame); |
+ //av_bits_per_frame = cpi->bits_left/(double)(cpi->total_stats->count - cpi->common.current_video_frame); |
av_bits_per_frame = cpi->oxcf.target_bandwidth / DOUBLE_DIVIDE_CHECK((double)cpi->oxcf.frame_rate); |
//if ( av_bits_per_frame < 0.0 ) |
// av_bits_per_frame = 0.0 |
@@ -2976,7 +2748,7 @@ static void find_next_key_frame(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) |
// So use the larger of target bitrate for this sectoion or average bitrate for sequence |
else |
{ |
- bits_per_frame = cpi->twopass.kf_group_bits / cpi->twopass.frames_to_key; // This accounts for how hard the section is... |
+ bits_per_frame = cpi->kf_group_bits / cpi->frames_to_key; // This accounts for how hard the section is... |
if (bits_per_frame < av_bits_per_frame) // Dont turn to resampling in easy sections just because they have been assigned a small number of bits |
bits_per_frame = av_bits_per_frame; |
@@ -3000,12 +2772,12 @@ static void find_next_key_frame(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) |
} |
// Guess at buffer level at the end of the section |
- projected_buffer_level = cpi->buffer_level - (int)((projected_bits_perframe - av_bits_per_frame) * cpi->twopass.frames_to_key); |
+ projected_buffer_level = cpi->buffer_level - (int)((projected_bits_perframe - av_bits_per_frame) * cpi->frames_to_key); |
if (0) |
{ |
FILE *f = fopen("Subsamle.stt", "a"); |
- fprintf(f, " %8d %8d %8d %8d %12.0f %8d %8d %8d\n", cpi->common.current_video_frame, kf_q, cpi->common.horiz_scale, cpi->common.vert_scale, kf_group_err / cpi->twopass.frames_to_key, (int)(cpi->twopass.kf_group_bits / cpi->twopass.frames_to_key), new_height, new_width); |
+ fprintf(f, " %8d %8d %8d %8d %12.0f %8d %8d %8d\n", cpi->common.current_video_frame, kf_q, cpi->common.horiz_scale, cpi->common.vert_scale, kf_group_err / cpi->frames_to_key, (int)(cpi->kf_group_bits / cpi->frames_to_key), new_height, new_width); |
fclose(f); |
} |
@@ -3024,8 +2796,9 @@ static void find_next_key_frame(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) |
} |
else |
{ |
- int64_t clip_bits = (int64_t)(cpi->twopass.total_stats->count * cpi->oxcf.target_bandwidth / DOUBLE_DIVIDE_CHECK((double)cpi->oxcf.frame_rate)); |
- int64_t over_spend = cpi->oxcf.starting_buffer_level - cpi->buffer_level; |
+ long long clip_bits = (long long)(cpi->total_stats->count * cpi->oxcf.target_bandwidth / DOUBLE_DIVIDE_CHECK((double)cpi->oxcf.frame_rate)); |
+ long long over_spend = cpi->oxcf.starting_buffer_level - cpi->buffer_level; |
+ long long over_spend2 = cpi->oxcf.starting_buffer_level - projected_buffer_level; |
if ((last_kf_resampled && (kf_q > cpi->worst_quality)) || // If triggered last time the threshold for triggering again is reduced |
((kf_q > cpi->worst_quality) && // Projected Q higher than allowed and ... |
@@ -3062,7 +2835,7 @@ static void find_next_key_frame(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) |
if (0) |
{ |
FILE *f = fopen("Subsamle.stt", "a"); |
- fprintf(f, "******** %8d %8d %8d %12.0f %8d %8d %8d\n", kf_q, cpi->common.horiz_scale, cpi->common.vert_scale, kf_group_err / cpi->twopass.frames_to_key, (int)(cpi->twopass.kf_group_bits / cpi->twopass.frames_to_key), new_height, new_width); |
+ fprintf(f, "******** %8d %8d %8d %12.0f %8d %8d %8d\n", kf_q, cpi->common.horiz_scale, cpi->common.vert_scale, kf_group_err / cpi->frames_to_key, (int)(cpi->kf_group_bits / cpi->frames_to_key), new_height, new_width); |
fclose(f); |
} |
} |