Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(396)

Side by Side Diff: sandbox/linux/bpf_dsl/policy_compiler.cc

Issue 761903003: Update from https://crrev.com/306655 (Closed) Base URL: git@github.com:domokit/mojo.git@master
Patch Set: Created 6 years ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « sandbox/linux/bpf_dsl/policy_compiler.h ('k') | sandbox/linux/sandbox_linux.gypi » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. 1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be 2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file. 3 // found in the LICENSE file.
4 4
5 #include "sandbox/linux/bpf_dsl/policy_compiler.h" 5 #include "sandbox/linux/bpf_dsl/policy_compiler.h"
6 6
7 #include <errno.h> 7 #include <errno.h>
8 #include <linux/filter.h> 8 #include <linux/filter.h>
9 #include <sys/syscall.h> 9 #include <sys/syscall.h>
10 10
(...skipping 36 matching lines...) Expand 10 before | Expand all | Expand 10 after
47 #if defined(__NR_sigreturn) 47 #if defined(__NR_sigreturn)
48 __NR_sigreturn, 48 __NR_sigreturn,
49 #endif 49 #endif
50 }; 50 };
51 51
52 bool HasExactlyOneBit(uint64_t x) { 52 bool HasExactlyOneBit(uint64_t x) {
53 // Common trick; e.g., see http://stackoverflow.com/a/108329. 53 // Common trick; e.g., see http://stackoverflow.com/a/108329.
54 return x != 0 && (x & (x - 1)) == 0; 54 return x != 0 && (x & (x - 1)) == 0;
55 } 55 }
56 56
57 bool IsDenied(const ErrorCode& code) {
58 return (code.err() & SECCOMP_RET_ACTION) == SECCOMP_RET_TRAP ||
59 (code.err() >= (SECCOMP_RET_ERRNO + ErrorCode::ERR_MIN_ERRNO) &&
60 code.err() <= (SECCOMP_RET_ERRNO + ErrorCode::ERR_MAX_ERRNO));
61 }
62
63 // A Trap() handler that returns an "errno" value. The value is encoded 57 // A Trap() handler that returns an "errno" value. The value is encoded
64 // in the "aux" parameter. 58 // in the "aux" parameter.
65 intptr_t ReturnErrno(const struct arch_seccomp_data&, void* aux) { 59 intptr_t ReturnErrno(const struct arch_seccomp_data&, void* aux) {
66 // TrapFnc functions report error by following the native kernel convention 60 // TrapFnc functions report error by following the native kernel convention
67 // of returning an exit code in the range of -1..-4096. They do not try to 61 // of returning an exit code in the range of -1..-4096. They do not try to
68 // set errno themselves. The glibc wrapper that triggered the SIGSYS will 62 // set errno themselves. The glibc wrapper that triggered the SIGSYS will
69 // ultimately do so for us. 63 // ultimately do so for us.
70 int err = reinterpret_cast<intptr_t>(aux) & SECCOMP_RET_DATA; 64 int err = reinterpret_cast<intptr_t>(aux) & SECCOMP_RET_DATA;
71 return -err; 65 return -err;
72 } 66 }
73 67
74 intptr_t BPFFailure(const struct arch_seccomp_data&, void* aux) {
75 SANDBOX_DIE(static_cast<char*>(aux));
76 }
77
78 bool HasUnsafeTraps(const Policy* policy) { 68 bool HasUnsafeTraps(const Policy* policy) {
69 DCHECK(policy);
79 for (uint32_t sysnum : SyscallSet::ValidOnly()) { 70 for (uint32_t sysnum : SyscallSet::ValidOnly()) {
80 if (policy->EvaluateSyscall(sysnum)->HasUnsafeTraps()) { 71 if (policy->EvaluateSyscall(sysnum)->HasUnsafeTraps()) {
81 return true; 72 return true;
82 } 73 }
83 } 74 }
84 return policy->InvalidSyscall()->HasUnsafeTraps(); 75 return policy->InvalidSyscall()->HasUnsafeTraps();
85 } 76 }
86 77
87 } // namespace 78 } // namespace
88 79
89 struct PolicyCompiler::Range { 80 struct PolicyCompiler::Range {
90 Range(uint32_t f, const ErrorCode& e) : from(f), err(e) {}
91 uint32_t from; 81 uint32_t from;
92 ErrorCode err; 82 CodeGen::Node node;
93 }; 83 };
94 84
95 PolicyCompiler::PolicyCompiler(const Policy* policy, TrapRegistry* registry) 85 PolicyCompiler::PolicyCompiler(const Policy* policy, TrapRegistry* registry)
96 : policy_(policy), 86 : policy_(policy),
97 registry_(registry), 87 registry_(registry),
98 conds_(), 88 conds_(),
99 gen_(), 89 gen_(),
100 has_unsafe_traps_(HasUnsafeTraps(policy_)) { 90 has_unsafe_traps_(HasUnsafeTraps(policy_)) {
91 DCHECK(policy);
101 } 92 }
102 93
103 PolicyCompiler::~PolicyCompiler() { 94 PolicyCompiler::~PolicyCompiler() {
104 } 95 }
105 96
106 scoped_ptr<CodeGen::Program> PolicyCompiler::Compile() { 97 scoped_ptr<CodeGen::Program> PolicyCompiler::Compile() {
107 if (!IsDenied(policy_->InvalidSyscall()->Compile(this))) { 98 if (!policy_->InvalidSyscall()->IsDeny()) {
108 SANDBOX_DIE("Policies should deny invalid system calls."); 99 SANDBOX_DIE("Policies should deny invalid system calls.");
109 } 100 }
110 101
111 // If our BPF program has unsafe traps, enable support for them. 102 // If our BPF program has unsafe traps, enable support for them.
112 if (has_unsafe_traps_) { 103 if (has_unsafe_traps_) {
113 // As support for unsafe jumps essentially defeats all the security 104 // As support for unsafe jumps essentially defeats all the security
114 // measures that the sandbox provides, we print a big warning message -- 105 // measures that the sandbox provides, we print a big warning message --
115 // and of course, we make sure to only ever enable this feature if it 106 // and of course, we make sure to only ever enable this feature if it
116 // is actually requested by the sandbox policy. 107 // is actually requested by the sandbox policy.
117 if (Syscall::Call(-1) == -1 && errno == ENOSYS) { 108 if (Syscall::Call(-1) == -1 && errno == ENOSYS) {
118 SANDBOX_DIE( 109 SANDBOX_DIE(
119 "Support for UnsafeTrap() has not yet been ported to this " 110 "Support for UnsafeTrap() has not yet been ported to this "
120 "architecture"); 111 "architecture");
121 } 112 }
122 113
123 for (int sysnum : kSyscallsRequiredForUnsafeTraps) { 114 for (int sysnum : kSyscallsRequiredForUnsafeTraps) {
124 if (!policy_->EvaluateSyscall(sysnum)->Compile(this) 115 if (!policy_->EvaluateSyscall(sysnum)->IsAllow()) {
125 .Equals(ErrorCode(ErrorCode::ERR_ALLOWED))) {
126 SANDBOX_DIE( 116 SANDBOX_DIE(
127 "Policies that use UnsafeTrap() must unconditionally allow all " 117 "Policies that use UnsafeTrap() must unconditionally allow all "
128 "required system calls"); 118 "required system calls");
129 } 119 }
130 } 120 }
131 121
132 if (!registry_->EnableUnsafeTraps()) { 122 if (!registry_->EnableUnsafeTraps()) {
133 // We should never be able to get here, as UnsafeTrap() should never 123 // We should never be able to get here, as UnsafeTrap() should never
134 // actually return a valid ErrorCode object unless the user set the 124 // actually return a valid ErrorCode object unless the user set the
135 // CHROME_SANDBOX_DEBUGGING environment variable; and therefore, 125 // CHROME_SANDBOX_DEBUGGING environment variable; and therefore,
(...skipping 16 matching lines...) Expand all
152 // invoked by Syscall::Call, and then allow it unconditionally. 142 // invoked by Syscall::Call, and then allow it unconditionally.
153 // 3. Check the system call number and jump to the appropriate compiled 143 // 3. Check the system call number and jump to the appropriate compiled
154 // system call policy number. 144 // system call policy number.
155 return CheckArch(MaybeAddEscapeHatch(DispatchSyscall())); 145 return CheckArch(MaybeAddEscapeHatch(DispatchSyscall()));
156 } 146 }
157 147
158 CodeGen::Node PolicyCompiler::CheckArch(CodeGen::Node passed) { 148 CodeGen::Node PolicyCompiler::CheckArch(CodeGen::Node passed) {
159 // If the architecture doesn't match SECCOMP_ARCH, disallow the 149 // If the architecture doesn't match SECCOMP_ARCH, disallow the
160 // system call. 150 // system call.
161 return gen_.MakeInstruction( 151 return gen_.MakeInstruction(
162 BPF_LD + BPF_W + BPF_ABS, 152 BPF_LD + BPF_W + BPF_ABS, SECCOMP_ARCH_IDX,
163 SECCOMP_ARCH_IDX,
164 gen_.MakeInstruction( 153 gen_.MakeInstruction(
165 BPF_JMP + BPF_JEQ + BPF_K, 154 BPF_JMP + BPF_JEQ + BPF_K, SECCOMP_ARCH, passed,
166 SECCOMP_ARCH, 155 CompileResult(Kill("Invalid audit architecture in BPF filter"))));
167 passed,
168 RetExpression(Kill("Invalid audit architecture in BPF filter"))));
169 } 156 }
170 157
171 CodeGen::Node PolicyCompiler::MaybeAddEscapeHatch(CodeGen::Node rest) { 158 CodeGen::Node PolicyCompiler::MaybeAddEscapeHatch(CodeGen::Node rest) {
172 // If no unsafe traps, then simply return |rest|. 159 // If no unsafe traps, then simply return |rest|.
173 if (!has_unsafe_traps_) { 160 if (!has_unsafe_traps_) {
174 return rest; 161 return rest;
175 } 162 }
176 163
177 // Allow system calls, if they originate from our magic return address 164 // Allow system calls, if they originate from our magic return address
178 // (which we can query by calling Syscall::Call(-1)). 165 // (which we can query by calling Syscall::Call(-1)).
179 uint64_t syscall_entry_point = 166 uint64_t syscall_entry_point =
180 static_cast<uint64_t>(static_cast<uintptr_t>(Syscall::Call(-1))); 167 static_cast<uint64_t>(static_cast<uintptr_t>(Syscall::Call(-1)));
181 uint32_t low = static_cast<uint32_t>(syscall_entry_point); 168 uint32_t low = static_cast<uint32_t>(syscall_entry_point);
182 uint32_t hi = static_cast<uint32_t>(syscall_entry_point >> 32); 169 uint32_t hi = static_cast<uint32_t>(syscall_entry_point >> 32);
183 170
184 // BPF cannot do native 64-bit comparisons, so we have to compare 171 // BPF cannot do native 64-bit comparisons, so we have to compare
185 // both 32-bit halves of the instruction pointer. If they match what 172 // both 32-bit halves of the instruction pointer. If they match what
186 // we expect, we return ERR_ALLOWED. If either or both don't match, 173 // we expect, we return ERR_ALLOWED. If either or both don't match,
187 // we continue evalutating the rest of the sandbox policy. 174 // we continue evalutating the rest of the sandbox policy.
188 // 175 //
189 // For simplicity, we check the full 64-bit instruction pointer even 176 // For simplicity, we check the full 64-bit instruction pointer even
190 // on 32-bit architectures. 177 // on 32-bit architectures.
191 return gen_.MakeInstruction( 178 return gen_.MakeInstruction(
192 BPF_LD + BPF_W + BPF_ABS, 179 BPF_LD + BPF_W + BPF_ABS, SECCOMP_IP_LSB_IDX,
193 SECCOMP_IP_LSB_IDX,
194 gen_.MakeInstruction( 180 gen_.MakeInstruction(
195 BPF_JMP + BPF_JEQ + BPF_K, 181 BPF_JMP + BPF_JEQ + BPF_K, low,
196 low,
197 gen_.MakeInstruction( 182 gen_.MakeInstruction(
198 BPF_LD + BPF_W + BPF_ABS, 183 BPF_LD + BPF_W + BPF_ABS, SECCOMP_IP_MSB_IDX,
199 SECCOMP_IP_MSB_IDX, 184 gen_.MakeInstruction(BPF_JMP + BPF_JEQ + BPF_K, hi,
200 gen_.MakeInstruction( 185 CompileResult(Allow()), rest)),
201 BPF_JMP + BPF_JEQ + BPF_K,
202 hi,
203 RetExpression(ErrorCode(ErrorCode::ERR_ALLOWED)),
204 rest)),
205 rest)); 186 rest));
206 } 187 }
207 188
208 CodeGen::Node PolicyCompiler::DispatchSyscall() { 189 CodeGen::Node PolicyCompiler::DispatchSyscall() {
209 // Evaluate all possible system calls and group their ErrorCodes into 190 // Evaluate all possible system calls and group their ErrorCodes into
210 // ranges of identical codes. 191 // ranges of identical codes.
211 Ranges ranges; 192 Ranges ranges;
212 FindRanges(&ranges); 193 FindRanges(&ranges);
213 194
214 // Compile the system call ranges to an optimized BPF jumptable 195 // Compile the system call ranges to an optimized BPF jumptable
215 CodeGen::Node jumptable = AssembleJumpTable(ranges.begin(), ranges.end()); 196 CodeGen::Node jumptable = AssembleJumpTable(ranges.begin(), ranges.end());
216 197
217 // Grab the system call number, so that we can check it and then 198 // Grab the system call number, so that we can check it and then
218 // execute the jump table. 199 // execute the jump table.
219 return gen_.MakeInstruction( 200 return gen_.MakeInstruction(
220 BPF_LD + BPF_W + BPF_ABS, SECCOMP_NR_IDX, CheckSyscallNumber(jumptable)); 201 BPF_LD + BPF_W + BPF_ABS, SECCOMP_NR_IDX, CheckSyscallNumber(jumptable));
221 } 202 }
222 203
223 CodeGen::Node PolicyCompiler::CheckSyscallNumber(CodeGen::Node passed) { 204 CodeGen::Node PolicyCompiler::CheckSyscallNumber(CodeGen::Node passed) {
224 if (kIsIntel) { 205 if (kIsIntel) {
225 // On Intel architectures, verify that system call numbers are in the 206 // On Intel architectures, verify that system call numbers are in the
226 // expected number range. 207 // expected number range.
227 CodeGen::Node invalidX32 = 208 CodeGen::Node invalidX32 =
228 RetExpression(Kill("Illegal mixing of system call ABIs")); 209 CompileResult(Kill("Illegal mixing of system call ABIs"));
229 if (kIsX32) { 210 if (kIsX32) {
230 // The newer x32 API always sets bit 30. 211 // The newer x32 API always sets bit 30.
231 return gen_.MakeInstruction( 212 return gen_.MakeInstruction(
232 BPF_JMP + BPF_JSET + BPF_K, 0x40000000, passed, invalidX32); 213 BPF_JMP + BPF_JSET + BPF_K, 0x40000000, passed, invalidX32);
233 } else { 214 } else {
234 // The older i386 and x86-64 APIs clear bit 30 on all system calls. 215 // The older i386 and x86-64 APIs clear bit 30 on all system calls.
235 return gen_.MakeInstruction( 216 return gen_.MakeInstruction(
236 BPF_JMP + BPF_JSET + BPF_K, 0x40000000, invalidX32, passed); 217 BPF_JMP + BPF_JSET + BPF_K, 0x40000000, invalidX32, passed);
237 } 218 }
238 } 219 }
239 220
240 // TODO(mdempsky): Similar validation for other architectures? 221 // TODO(mdempsky): Similar validation for other architectures?
241 return passed; 222 return passed;
242 } 223 }
243 224
244 void PolicyCompiler::FindRanges(Ranges* ranges) { 225 void PolicyCompiler::FindRanges(Ranges* ranges) {
245 // Please note that "struct seccomp_data" defines system calls as a signed 226 // Please note that "struct seccomp_data" defines system calls as a signed
246 // int32_t, but BPF instructions always operate on unsigned quantities. We 227 // int32_t, but BPF instructions always operate on unsigned quantities. We
247 // deal with this disparity by enumerating from MIN_SYSCALL to MAX_SYSCALL, 228 // deal with this disparity by enumerating from MIN_SYSCALL to MAX_SYSCALL,
248 // and then verifying that the rest of the number range (both positive and 229 // and then verifying that the rest of the number range (both positive and
249 // negative) all return the same ErrorCode. 230 // negative) all return the same ErrorCode.
250 const ErrorCode invalid_err = policy_->InvalidSyscall()->Compile(this); 231 const CodeGen::Node invalid_node = CompileResult(policy_->InvalidSyscall());
251 uint32_t old_sysnum = 0; 232 uint32_t old_sysnum = 0;
252 ErrorCode old_err = SyscallSet::IsValid(old_sysnum) 233 CodeGen::Node old_node =
253 ? policy_->EvaluateSyscall(old_sysnum)->Compile(this) 234 SyscallSet::IsValid(old_sysnum)
254 : invalid_err; 235 ? CompileResult(policy_->EvaluateSyscall(old_sysnum))
236 : invalid_node;
255 237
256 for (uint32_t sysnum : SyscallSet::All()) { 238 for (uint32_t sysnum : SyscallSet::All()) {
257 ErrorCode err = 239 CodeGen::Node node =
258 SyscallSet::IsValid(sysnum) 240 SyscallSet::IsValid(sysnum)
259 ? policy_->EvaluateSyscall(static_cast<int>(sysnum))->Compile(this) 241 ? CompileResult(policy_->EvaluateSyscall(static_cast<int>(sysnum)))
260 : invalid_err; 242 : invalid_node;
261 if (!err.Equals(old_err)) { 243 // N.B., here we rely on CodeGen folding (i.e., returning the same
262 ranges->push_back(Range(old_sysnum, old_err)); 244 // node value for) identical code sequences, otherwise our jump
245 // table will blow up in size.
246 if (node != old_node) {
247 ranges->push_back(Range{old_sysnum, old_node});
263 old_sysnum = sysnum; 248 old_sysnum = sysnum;
264 old_err = err; 249 old_node = node;
265 } 250 }
266 } 251 }
267 ranges->push_back(Range(old_sysnum, old_err)); 252 ranges->push_back(Range{old_sysnum, old_node});
268 } 253 }
269 254
270 CodeGen::Node PolicyCompiler::AssembleJumpTable(Ranges::const_iterator start, 255 CodeGen::Node PolicyCompiler::AssembleJumpTable(Ranges::const_iterator start,
271 Ranges::const_iterator stop) { 256 Ranges::const_iterator stop) {
272 // We convert the list of system call ranges into jump table that performs 257 // We convert the list of system call ranges into jump table that performs
273 // a binary search over the ranges. 258 // a binary search over the ranges.
274 // As a sanity check, we need to have at least one distinct ranges for us 259 // As a sanity check, we need to have at least one distinct ranges for us
275 // to be able to build a jump table. 260 // to be able to build a jump table.
276 if (stop - start <= 0) { 261 if (stop - start <= 0) {
277 SANDBOX_DIE("Invalid set of system call ranges"); 262 SANDBOX_DIE("Invalid set of system call ranges");
278 } else if (stop - start == 1) { 263 } else if (stop - start == 1) {
279 // If we have narrowed things down to a single range object, we can 264 // If we have narrowed things down to a single range object, we can
280 // return from the BPF filter program. 265 // return from the BPF filter program.
281 return RetExpression(start->err); 266 return start->node;
282 } 267 }
283 268
284 // Pick the range object that is located at the mid point of our list. 269 // Pick the range object that is located at the mid point of our list.
285 // We compare our system call number against the lowest valid system call 270 // We compare our system call number against the lowest valid system call
286 // number in this range object. If our number is lower, it is outside of 271 // number in this range object. If our number is lower, it is outside of
287 // this range object. If it is greater or equal, it might be inside. 272 // this range object. If it is greater or equal, it might be inside.
288 Ranges::const_iterator mid = start + (stop - start) / 2; 273 Ranges::const_iterator mid = start + (stop - start) / 2;
289 274
290 // Sub-divide the list of ranges and continue recursively. 275 // Sub-divide the list of ranges and continue recursively.
291 CodeGen::Node jf = AssembleJumpTable(start, mid); 276 CodeGen::Node jf = AssembleJumpTable(start, mid);
292 CodeGen::Node jt = AssembleJumpTable(mid, stop); 277 CodeGen::Node jt = AssembleJumpTable(mid, stop);
293 return gen_.MakeInstruction(BPF_JMP + BPF_JGE + BPF_K, mid->from, jt, jf); 278 return gen_.MakeInstruction(BPF_JMP + BPF_JGE + BPF_K, mid->from, jt, jf);
294 } 279 }
295 280
281 CodeGen::Node PolicyCompiler::CompileResult(const ResultExpr& res) {
282 return RetExpression(res->Compile(this));
283 }
284
296 CodeGen::Node PolicyCompiler::RetExpression(const ErrorCode& err) { 285 CodeGen::Node PolicyCompiler::RetExpression(const ErrorCode& err) {
297 switch (err.error_type()) { 286 switch (err.error_type()) {
298 case ErrorCode::ET_COND: 287 case ErrorCode::ET_COND:
299 return CondExpression(err); 288 return CondExpression(err);
300 case ErrorCode::ET_SIMPLE: 289 case ErrorCode::ET_SIMPLE:
301 case ErrorCode::ET_TRAP: 290 case ErrorCode::ET_TRAP:
302 return gen_.MakeInstruction(BPF_RET + BPF_K, err.err()); 291 return gen_.MakeInstruction(BPF_RET + BPF_K, err.err());
303 default: 292 default:
304 SANDBOX_DIE("ErrorCode is not suitable for returning from a BPF program"); 293 SANDBOX_DIE("ErrorCode is not suitable for returning from a BPF program");
305 } 294 }
(...skipping 141 matching lines...) Expand 10 before | Expand all | Expand 10 after
447 BPF_LD + BPF_W + BPF_ABS, 436 BPF_LD + BPF_W + BPF_ABS,
448 idx, 437 idx,
449 gen_.MakeInstruction( 438 gen_.MakeInstruction(
450 BPF_ALU + BPF_AND + BPF_K, 439 BPF_ALU + BPF_AND + BPF_K,
451 mask, 440 mask,
452 gen_.MakeInstruction( 441 gen_.MakeInstruction(
453 BPF_JMP + BPF_JEQ + BPF_K, value, passed, failed))); 442 BPF_JMP + BPF_JEQ + BPF_K, value, passed, failed)));
454 } 443 }
455 444
456 ErrorCode PolicyCompiler::Unexpected64bitArgument() { 445 ErrorCode PolicyCompiler::Unexpected64bitArgument() {
457 return Kill("Unexpected 64bit argument detected"); 446 return Kill("Unexpected 64bit argument detected")->Compile(this);
458 } 447 }
459 448
460 ErrorCode PolicyCompiler::Error(int err) { 449 ErrorCode PolicyCompiler::Error(int err) {
461 if (has_unsafe_traps_) { 450 if (has_unsafe_traps_) {
462 // When inside an UnsafeTrap() callback, we want to allow all system calls. 451 // When inside an UnsafeTrap() callback, we want to allow all system calls.
463 // This means, we must conditionally disable the sandbox -- and that's not 452 // This means, we must conditionally disable the sandbox -- and that's not
464 // something that kernel-side BPF filters can do, as they cannot inspect 453 // something that kernel-side BPF filters can do, as they cannot inspect
465 // any state other than the syscall arguments. 454 // any state other than the syscall arguments.
466 // But if we redirect all error handlers to user-space, then we can easily 455 // But if we redirect all error handlers to user-space, then we can easily
467 // make this decision. 456 // make this decision.
468 // The performance penalty for this extra round-trip to user-space is not 457 // The performance penalty for this extra round-trip to user-space is not
469 // actually that bad, as we only ever pay it for denied system calls; and a 458 // actually that bad, as we only ever pay it for denied system calls; and a
470 // typical program has very few of these. 459 // typical program has very few of these.
471 return Trap(ReturnErrno, reinterpret_cast<void*>(err)); 460 return Trap(ReturnErrno, reinterpret_cast<void*>(err), true);
472 } 461 }
473 462
474 return ErrorCode(err); 463 return ErrorCode(err);
475 } 464 }
476 465
477 ErrorCode PolicyCompiler::MakeTrap(TrapRegistry::TrapFnc fnc, 466 ErrorCode PolicyCompiler::Trap(TrapRegistry::TrapFnc fnc,
478 const void* aux, 467 const void* aux,
479 bool safe) { 468 bool safe) {
480 uint16_t trap_id = registry_->Add(fnc, aux, safe); 469 uint16_t trap_id = registry_->Add(fnc, aux, safe);
481 return ErrorCode(trap_id, fnc, aux, safe); 470 return ErrorCode(trap_id, fnc, aux, safe);
482 } 471 }
483 472
484 ErrorCode PolicyCompiler::Trap(TrapRegistry::TrapFnc fnc, const void* aux) {
485 return MakeTrap(fnc, aux, true /* Safe Trap */);
486 }
487
488 ErrorCode PolicyCompiler::UnsafeTrap(TrapRegistry::TrapFnc fnc,
489 const void* aux) {
490 return MakeTrap(fnc, aux, false /* Unsafe Trap */);
491 }
492
493 bool PolicyCompiler::IsRequiredForUnsafeTrap(int sysno) { 473 bool PolicyCompiler::IsRequiredForUnsafeTrap(int sysno) {
494 for (size_t i = 0; i < arraysize(kSyscallsRequiredForUnsafeTraps); ++i) { 474 for (size_t i = 0; i < arraysize(kSyscallsRequiredForUnsafeTraps); ++i) {
495 if (sysno == kSyscallsRequiredForUnsafeTraps[i]) { 475 if (sysno == kSyscallsRequiredForUnsafeTraps[i]) {
496 return true; 476 return true;
497 } 477 }
498 } 478 }
499 return false; 479 return false;
500 } 480 }
501 481
502 ErrorCode PolicyCompiler::CondMaskedEqual(int argno, 482 ErrorCode PolicyCompiler::CondMaskedEqual(int argno,
503 ErrorCode::ArgType width, 483 ErrorCode::ArgType width,
504 uint64_t mask, 484 uint64_t mask,
505 uint64_t value, 485 uint64_t value,
506 const ErrorCode& passed, 486 const ErrorCode& passed,
507 const ErrorCode& failed) { 487 const ErrorCode& failed) {
508 return ErrorCode(argno, 488 return ErrorCode(argno,
509 width, 489 width,
510 mask, 490 mask,
511 value, 491 value,
512 &*conds_.insert(passed).first, 492 &*conds_.insert(passed).first,
513 &*conds_.insert(failed).first); 493 &*conds_.insert(failed).first);
514 } 494 }
515 495
516 ErrorCode PolicyCompiler::Kill(const char* msg) {
517 return Trap(BPFFailure, const_cast<char*>(msg));
518 }
519
520 } // namespace bpf_dsl 496 } // namespace bpf_dsl
521 } // namespace sandbox 497 } // namespace sandbox
OLDNEW
« no previous file with comments | « sandbox/linux/bpf_dsl/policy_compiler.h ('k') | sandbox/linux/sandbox_linux.gypi » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698