| OLD | NEW |
| 1 /* | 1 /* |
| 2 * Copyright 2013 Google Inc. | 2 * Copyright 2013 Google Inc. |
| 3 * | 3 * |
| 4 * Use of this source code is governed by a BSD-style license that can be | 4 * Use of this source code is governed by a BSD-style license that can be |
| 5 * found in the LICENSE file. | 5 * found in the LICENSE file. |
| 6 */ | 6 */ |
| 7 #include "GrGLProgramDesc.h" | 7 #include "GrGLProgramDesc.h" |
| 8 | 8 |
| 9 #include "GrGLProcessor.h" | 9 #include "GrGLProcessor.h" |
| 10 #include "GrProcessor.h" | 10 #include "GrProcessor.h" |
| (...skipping 22 matching lines...) Expand all Loading... |
| 33 } | 33 } |
| 34 if (kRGB_GrColorComponentFlags & swizzleComponentMask) { | 34 if (kRGB_GrColorComponentFlags & swizzleComponentMask) { |
| 35 // The 'r', 'g', and/or 'b's must be mapped to 'a' according to our
semantics that | 35 // The 'r', 'g', and/or 'b's must be mapped to 'a' according to our
semantics that |
| 36 // alpha-only textures smear alpha across all four channels when rea
d. | 36 // alpha-only textures smear alpha across all four channels when rea
d. |
| 37 return true; | 37 return true; |
| 38 } | 38 } |
| 39 } | 39 } |
| 40 return false; | 40 return false; |
| 41 } | 41 } |
| 42 | 42 |
| 43 static uint32_t gen_attrib_key(const GrGeometryProcessor& proc) { | |
| 44 uint32_t key = 0; | |
| 45 | |
| 46 const GrGeometryProcessor::VertexAttribArray& vars = proc.getAttribs(); | |
| 47 int numAttributes = vars.count(); | |
| 48 SkASSERT(numAttributes <= GrGeometryProcessor::kMaxVertexAttribs); | |
| 49 for (int a = 0; a < numAttributes; ++a) { | |
| 50 uint32_t value = 1 << a; | |
| 51 key |= value; | |
| 52 } | |
| 53 return key; | |
| 54 } | |
| 55 | |
| 56 /** | 43 /** |
| 57 * The key for an individual coord transform is made up of a matrix type, a prec
ision, and a bit | 44 * The key for an individual coord transform is made up of a matrix type, a prec
ision, and a bit |
| 58 * that indicates the source of the input coords. | 45 * that indicates the source of the input coords. |
| 59 */ | 46 */ |
| 60 enum { | 47 enum { |
| 61 kMatrixTypeKeyBits = 1, | 48 kMatrixTypeKeyBits = 1, |
| 62 kMatrixTypeKeyMask = (1 << kMatrixTypeKeyBits) - 1, | 49 kMatrixTypeKeyMask = (1 << kMatrixTypeKeyBits) - 1, |
| 63 | 50 |
| 64 kPrecisionBits = 2, | 51 kPrecisionBits = 2, |
| 65 kPrecisionShift = kMatrixTypeKeyBits, | 52 kPrecisionShift = kMatrixTypeKeyBits, |
| (...skipping 58 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 124 * be dependent on properties of the effect that the effect itself doesn't use | 111 * be dependent on properties of the effect that the effect itself doesn't use |
| 125 * in its key (e.g. the pixel format of textures used). So we create a meta-key
for | 112 * in its key (e.g. the pixel format of textures used). So we create a meta-key
for |
| 126 * every effect using this function. It is also responsible for inserting the ef
fect's class ID | 113 * every effect using this function. It is also responsible for inserting the ef
fect's class ID |
| 127 * which must be different for every GrProcessor subclass. It can fail if an eff
ect uses too many | 114 * which must be different for every GrProcessor subclass. It can fail if an eff
ect uses too many |
| 128 * textures, transforms, etc, for the space allotted in the meta-key. NOTE, bot
h FPs and GPs share | 115 * textures, transforms, etc, for the space allotted in the meta-key. NOTE, bot
h FPs and GPs share |
| 129 * this function because it is hairy, though FPs do not have attribs, and GPs do
not have transforms | 116 * this function because it is hairy, though FPs do not have attribs, and GPs do
not have transforms |
| 130 */ | 117 */ |
| 131 static bool get_meta_key(const GrProcessor& proc, | 118 static bool get_meta_key(const GrProcessor& proc, |
| 132 const GrGLCaps& caps, | 119 const GrGLCaps& caps, |
| 133 uint32_t transformKey, | 120 uint32_t transformKey, |
| 134 uint32_t attribKey, | |
| 135 GrProcessorKeyBuilder* b) { | 121 GrProcessorKeyBuilder* b) { |
| 136 size_t processorKeySize = b->size(); | 122 size_t processorKeySize = b->size(); |
| 137 uint32_t textureKey = gen_texture_key(proc, caps); | 123 uint32_t textureKey = gen_texture_key(proc, caps); |
| 138 uint32_t classID = proc.classID(); | 124 uint32_t classID = proc.classID(); |
| 139 | 125 |
| 140 // Currently we allow 16 bits for each of the above portions of the meta-key
. Fail if they | 126 // Currently we allow 16 bits for each of the above portions of the meta-key
. Fail if they |
| 141 // don't fit. | 127 // don't fit. |
| 142 static const uint32_t kMetaKeyInvalidMask = ~((uint32_t) SK_MaxU16); | 128 static const uint32_t kMetaKeyInvalidMask = ~((uint32_t) SK_MaxU16); |
| 143 if ((textureKey | transformKey | classID) & kMetaKeyInvalidMask) { | 129 if ((textureKey | transformKey | classID) & kMetaKeyInvalidMask) { |
| 144 return false; | 130 return false; |
| 145 } | 131 } |
| 146 if (processorKeySize > SK_MaxU16) { | 132 if (processorKeySize > SK_MaxU16) { |
| 147 return false; | 133 return false; |
| 148 } | 134 } |
| 149 | 135 |
| 150 uint32_t* key = b->add32n(2); | 136 uint32_t* key = b->add32n(2); |
| 151 key[0] = (textureKey << 16 | transformKey); | 137 key[0] = (textureKey << 16 | transformKey); |
| 152 key[1] = (classID << 16 | SkToU16(processorKeySize)); | 138 key[1] = (classID << 16 | SkToU16(processorKeySize)); |
| 153 return true; | 139 return true; |
| 154 } | 140 } |
| 155 | 141 |
| 156 bool GrGLProgramDescBuilder::Build(const GrOptDrawState& optState, | 142 bool GrGLProgramDescBuilder::Build(const GrOptDrawState& optState, |
| 157 const GrProgramDesc::DescInfo& descInfo, | 143 const GrProgramDesc::DescInfo& descInfo, |
| 158 GrGpu::DrawType drawType, | 144 GrGpu::DrawType drawType, |
| 159 GrGpuGL* gpu, | 145 GrGpuGL* gpu, |
| 160 GrProgramDesc* desc) { | 146 GrProgramDesc* desc) { |
| 161 bool inputColorIsUsed = descInfo.fInputColorIsUsed; | |
| 162 bool inputCoverageIsUsed = descInfo.fInputCoverageIsUsed; | |
| 163 | |
| 164 // The descriptor is used as a cache key. Thus when a field of the | 147 // The descriptor is used as a cache key. Thus when a field of the |
| 165 // descriptor will not affect program generation (because of the attribute | 148 // descriptor will not affect program generation (because of the attribute |
| 166 // bindings in use or other descriptor field settings) it should be set | 149 // bindings in use or other descriptor field settings) it should be set |
| 167 // to a canonical value to avoid duplicate programs with different keys. | 150 // to a canonical value to avoid duplicate programs with different keys. |
| 168 | 151 |
| 169 bool requiresLocalCoordAttrib = descInfo.fRequiresLocalCoordAttrib; | 152 bool requiresLocalCoordAttrib = descInfo.fRequiresLocalCoordAttrib; |
| 170 | 153 |
| 171 GR_STATIC_ASSERT(0 == kProcessorKeysOffset % sizeof(uint32_t)); | 154 GR_STATIC_ASSERT(0 == kProcessorKeysOffset % sizeof(uint32_t)); |
| 172 // Make room for everything up to the effect keys. | 155 // Make room for everything up to the effect keys. |
| 173 desc->fKey.reset(); | 156 desc->fKey.reset(); |
| 174 desc->fKey.push_back_n(kProcessorKeysOffset); | 157 desc->fKey.push_back_n(kProcessorKeysOffset); |
| 175 | 158 |
| 176 // We can only have one effect which touches the vertex shader | 159 GrProcessorKeyBuilder b(&desc->fKey); |
| 177 if (optState.hasGeometryProcessor()) { | 160 |
| 178 const GrGeometryProcessor& gp = *optState.getGeometryProcessor(); | 161 const GrPrimitiveProcessor& primProc = *optState.getPrimitiveProcessor(); |
| 179 GrProcessorKeyBuilder b(&desc->fKey); | 162 primProc.getGLProcessorKey(optState.getBatchTracker(), gpu->glCaps(), &b); |
| 180 gp.getGLProcessorKey(optState.getBatchTracker(), gpu->glCaps(), &b); | 163 if (!get_meta_key(primProc, gpu->glCaps(), 0, &b)) { |
| 181 if (!get_meta_key(gp, gpu->glCaps(), 0, gen_attrib_key(gp), &b)) { | 164 desc->fKey.reset(); |
| 182 desc->fKey.reset(); | 165 return false; |
| 183 return false; | |
| 184 } | |
| 185 } | 166 } |
| 186 | 167 |
| 187 for (int s = 0; s < optState.numFragmentStages(); ++s) { | 168 for (int s = 0; s < optState.numFragmentStages(); ++s) { |
| 188 const GrPendingFragmentStage& fps = optState.getFragmentStage(s); | 169 const GrPendingFragmentStage& fps = optState.getFragmentStage(s); |
| 189 const GrFragmentProcessor& fp = *fps.getProcessor(); | 170 const GrFragmentProcessor& fp = *fps.getProcessor(); |
| 190 GrProcessorKeyBuilder b(&desc->fKey); | |
| 191 fp.getGLProcessorKey(gpu->glCaps(), &b); | 171 fp.getGLProcessorKey(gpu->glCaps(), &b); |
| 192 if (!get_meta_key(fp, gpu->glCaps(), | 172 if (!get_meta_key(fp, gpu->glCaps(), |
| 193 gen_transform_key(fps, requiresLocalCoordAttrib), 0, &
b)) { | 173 gen_transform_key(fps, requiresLocalCoordAttrib), &b))
{ |
| 194 desc->fKey.reset(); | 174 desc->fKey.reset(); |
| 195 return false; | 175 return false; |
| 196 } | 176 } |
| 197 } | 177 } |
| 198 | 178 |
| 199 const GrXferProcessor& xp = *optState.getXferProcessor(); | 179 const GrXferProcessor& xp = *optState.getXferProcessor(); |
| 200 GrProcessorKeyBuilder b(&desc->fKey); | |
| 201 xp.getGLProcessorKey(gpu->glCaps(), &b); | 180 xp.getGLProcessorKey(gpu->glCaps(), &b); |
| 202 if (!get_meta_key(xp, gpu->glCaps(), 0, 0, &b)) { | 181 if (!get_meta_key(xp, gpu->glCaps(), 0, &b)) { |
| 203 desc->fKey.reset(); | 182 desc->fKey.reset(); |
| 204 return false; | 183 return false; |
| 205 } | 184 } |
| 206 | 185 |
| 207 // --------DO NOT MOVE HEADER ABOVE THIS LINE-------------------------------
------------------- | 186 // --------DO NOT MOVE HEADER ABOVE THIS LINE-------------------------------
------------------- |
| 208 // Because header is a pointer into the dynamic array, we can't push any new
data into the key | 187 // Because header is a pointer into the dynamic array, we can't push any new
data into the key |
| 209 // below here. | 188 // below here. |
| 210 GLKeyHeader* header = desc->atOffset<GLKeyHeader, kHeaderOffset>(); | 189 GLKeyHeader* header = desc->atOffset<GLKeyHeader, kHeaderOffset>(); |
| 211 | 190 |
| 212 // make sure any padding in the header is zeroed. | 191 // make sure any padding in the header is zeroed. |
| 213 memset(header, 0, kHeaderSize); | 192 memset(header, 0, kHeaderSize); |
| 214 | 193 |
| 215 header->fHasGeometryProcessor = optState.hasGeometryProcessor(); | |
| 216 | |
| 217 bool isPathRendering = GrGpu::IsPathRenderingDrawType(drawType); | 194 bool isPathRendering = GrGpu::IsPathRenderingDrawType(drawType); |
| 218 if (gpu->caps()->pathRenderingSupport() && isPathRendering) { | 195 if (gpu->caps()->pathRenderingSupport() && isPathRendering) { |
| 219 header->fUseNvpr = true; | 196 header->fUseNvpr = true; |
| 220 SkASSERT(!optState.hasGeometryProcessor()); | 197 SkASSERT(!optState.hasGeometryProcessor()); |
| 221 } else { | 198 } else { |
| 222 header->fUseNvpr = false; | 199 header->fUseNvpr = false; |
| 223 } | 200 } |
| 224 | 201 |
| 225 bool hasUniformColor = inputColorIsUsed && (isPathRendering || !descInfo.fHa
sVertexColor); | |
| 226 | |
| 227 if (!inputColorIsUsed) { | |
| 228 header->fColorInput = GrProgramDesc::kAllOnes_ColorInput; | |
| 229 } else if (hasUniformColor) { | |
| 230 header->fColorInput = GrProgramDesc::kUniform_ColorInput; | |
| 231 } else { | |
| 232 header->fColorInput = GrProgramDesc::kAttribute_ColorInput; | |
| 233 SkASSERT(!header->fUseNvpr); | |
| 234 } | |
| 235 | |
| 236 bool hasVertexCoverage = !isPathRendering && descInfo.fHasVertexCoverage; | |
| 237 | |
| 238 bool covIsSolidWhite = !hasVertexCoverage && 0xffffffff == optState.getCover
ageColor(); | |
| 239 | |
| 240 if (covIsSolidWhite || !inputCoverageIsUsed) { | |
| 241 header->fCoverageInput = GrProgramDesc::kAllOnes_ColorInput; | |
| 242 } else if (!hasVertexCoverage) { | |
| 243 header->fCoverageInput = GrProgramDesc::kUniform_ColorInput; | |
| 244 } else { | |
| 245 header->fCoverageInput = GrProgramDesc::kAttribute_ColorInput; | |
| 246 SkASSERT(!header->fUseNvpr); | |
| 247 } | |
| 248 | |
| 249 if (descInfo.fReadsDst) { | 202 if (descInfo.fReadsDst) { |
| 250 const GrDeviceCoordTexture* dstCopy = optState.getDstCopy(); | 203 const GrDeviceCoordTexture* dstCopy = optState.getDstCopy(); |
| 251 SkASSERT(dstCopy || gpu->caps()->dstReadInShaderSupport()); | 204 SkASSERT(dstCopy || gpu->caps()->dstReadInShaderSupport()); |
| 252 const GrTexture* dstCopyTexture = NULL; | 205 const GrTexture* dstCopyTexture = NULL; |
| 253 if (dstCopy) { | 206 if (dstCopy) { |
| 254 dstCopyTexture = dstCopy->texture(); | 207 dstCopyTexture = dstCopy->texture(); |
| 255 } | 208 } |
| 256 header->fDstReadKey = GrGLFragmentShaderBuilder::KeyForDstRead(dstCopyTe
xture, | 209 header->fDstReadKey = GrGLFragmentShaderBuilder::KeyForDstRead(dstCopyTe
xture, |
| 257 gpu->glCa
ps()); | 210 gpu->glCa
ps()); |
| 258 SkASSERT(0 != header->fDstReadKey); | 211 SkASSERT(0 != header->fDstReadKey); |
| 259 } else { | 212 } else { |
| 260 header->fDstReadKey = 0; | 213 header->fDstReadKey = 0; |
| 261 } | 214 } |
| 262 | 215 |
| 263 if (descInfo.fReadsFragPosition) { | 216 if (descInfo.fReadsFragPosition) { |
| 264 header->fFragPosKey = | 217 header->fFragPosKey = |
| 265 GrGLFragmentShaderBuilder::KeyForFragmentPosition(optState.getRe
nderTarget(), | 218 GrGLFragmentShaderBuilder::KeyForFragmentPosition(optState.getRe
nderTarget(), |
| 266 gpu->glCaps())
; | 219 gpu->glCaps())
; |
| 267 } else { | 220 } else { |
| 268 header->fFragPosKey = 0; | 221 header->fFragPosKey = 0; |
| 269 } | 222 } |
| 270 | 223 |
| 271 header->fColorEffectCnt = optState.numColorStages(); | 224 header->fColorEffectCnt = optState.numColorStages(); |
| 272 header->fCoverageEffectCnt = optState.numCoverageStages(); | 225 header->fCoverageEffectCnt = optState.numCoverageStages(); |
| 273 desc->finalize(); | 226 desc->finalize(); |
| 274 return true; | 227 return true; |
| 275 } | 228 } |
| OLD | NEW |