| OLD | NEW |
| 1 // Copyright 2011 the V8 project authors. All rights reserved. | 1 // Copyright 2011 the V8 project authors. All rights reserved. |
| 2 // Redistribution and use in source and binary forms, with or without | 2 // Redistribution and use in source and binary forms, with or without |
| 3 // modification, are permitted provided that the following conditions are | 3 // modification, are permitted provided that the following conditions are |
| 4 // met: | 4 // met: |
| 5 // | 5 // |
| 6 // * Redistributions of source code must retain the above copyright | 6 // * Redistributions of source code must retain the above copyright |
| 7 // notice, this list of conditions and the following disclaimer. | 7 // notice, this list of conditions and the following disclaimer. |
| 8 // * Redistributions in binary form must reproduce the above | 8 // * Redistributions in binary form must reproduce the above |
| 9 // copyright notice, this list of conditions and the following | 9 // copyright notice, this list of conditions and the following |
| 10 // disclaimer in the documentation and/or other materials provided | 10 // disclaimer in the documentation and/or other materials provided |
| (...skipping 142 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 153 return false; | 153 return false; |
| 154 } | 154 } |
| 155 | 155 |
| 156 // We are sure that we have mapped a block of requested addresses. | 156 // We are sure that we have mapped a block of requested addresses. |
| 157 ASSERT(code_range_->size() == requested); | 157 ASSERT(code_range_->size() == requested); |
| 158 LOG(isolate_, NewEvent("CodeRange", code_range_->address(), requested)); | 158 LOG(isolate_, NewEvent("CodeRange", code_range_->address(), requested)); |
| 159 Address base = reinterpret_cast<Address>(code_range_->address()); | 159 Address base = reinterpret_cast<Address>(code_range_->address()); |
| 160 Address aligned_base = | 160 Address aligned_base = |
| 161 RoundUp(reinterpret_cast<Address>(code_range_->address()), | 161 RoundUp(reinterpret_cast<Address>(code_range_->address()), |
| 162 MemoryChunk::kAlignment); | 162 MemoryChunk::kAlignment); |
| 163 int size = code_range_->size() - (aligned_base - base); | 163 size_t size = code_range_->size() - (aligned_base - base); |
| 164 allocation_list_.Add(FreeBlock(aligned_base, size)); | 164 allocation_list_.Add(FreeBlock(aligned_base, size)); |
| 165 current_allocation_block_index_ = 0; | 165 current_allocation_block_index_ = 0; |
| 166 return true; | 166 return true; |
| 167 } | 167 } |
| 168 | 168 |
| 169 | 169 |
| 170 int CodeRange::CompareFreeBlockAddress(const FreeBlock* left, | 170 int CodeRange::CompareFreeBlockAddress(const FreeBlock* left, |
| 171 const FreeBlock* right) { | 171 const FreeBlock* right) { |
| 172 // The entire point of CodeRange is that the difference between two | 172 // The entire point of CodeRange is that the difference between two |
| 173 // addresses in the range can be represented as a signed 32-bit int, | 173 // addresses in the range can be represented as a signed 32-bit int, |
| (...skipping 139 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 313 } | 313 } |
| 314 } | 314 } |
| 315 | 315 |
| 316 | 316 |
| 317 Address MemoryAllocator::ReserveAlignedMemory(const size_t requested, | 317 Address MemoryAllocator::ReserveAlignedMemory(const size_t requested, |
| 318 size_t alignment, | 318 size_t alignment, |
| 319 size_t* allocated_size) { | 319 size_t* allocated_size) { |
| 320 ASSERT(IsAligned(alignment, OS::AllocateAlignment())); | 320 ASSERT(IsAligned(alignment, OS::AllocateAlignment())); |
| 321 if (size_ + requested > capacity_) return NULL; | 321 if (size_ + requested > capacity_) return NULL; |
| 322 | 322 |
| 323 size_t allocated = RoundUp(requested + alignment, OS::AllocateAlignment()); | 323 size_t allocated = RoundUp(requested + alignment, |
| 324 static_cast<intptr_t>(OS::AllocateAlignment())); |
| 324 | 325 |
| 325 Address base = reinterpret_cast<Address>( | 326 Address base = reinterpret_cast<Address>( |
| 326 VirtualMemory::ReserveRegion(allocated)); | 327 VirtualMemory::ReserveRegion(allocated)); |
| 327 | 328 |
| 328 Address end = base + allocated; | 329 Address end = base + allocated; |
| 329 | 330 |
| 330 if (base == 0) return NULL; | 331 if (base == 0) return NULL; |
| 331 | 332 |
| 332 Address aligned_base = RoundUp(base, alignment); | 333 Address aligned_base = RoundUp(base, alignment); |
| 333 | 334 |
| (...skipping 174 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 508 MemoryChunk::kAlignment, | 509 MemoryChunk::kAlignment, |
| 509 executable, | 510 executable, |
| 510 &chunk_size); | 511 &chunk_size); |
| 511 | 512 |
| 512 if (base == NULL) return NULL; | 513 if (base == NULL) return NULL; |
| 513 } | 514 } |
| 514 | 515 |
| 515 #ifdef DEBUG | 516 #ifdef DEBUG |
| 516 ZapBlock(base, chunk_size); | 517 ZapBlock(base, chunk_size); |
| 517 #endif | 518 #endif |
| 518 isolate_->counters()->memory_allocated()->Increment(chunk_size); | 519 isolate_->counters()->memory_allocated()-> |
| 520 Increment(static_cast<int>(chunk_size)); |
| 519 | 521 |
| 520 LOG(isolate_, NewEvent("MemoryChunk", base, chunk_size)); | 522 LOG(isolate_, NewEvent("MemoryChunk", base, chunk_size)); |
| 521 if (owner != NULL) { | 523 if (owner != NULL) { |
| 522 ObjectSpace space = static_cast<ObjectSpace>(1 << owner->identity()); | 524 ObjectSpace space = static_cast<ObjectSpace>(1 << owner->identity()); |
| 523 PerformAllocationCallback(space, kAllocationActionAllocate, chunk_size); | 525 PerformAllocationCallback(space, kAllocationActionAllocate, chunk_size); |
| 524 } | 526 } |
| 525 | 527 |
| 526 return MemoryChunk::Initialize(heap, | 528 return MemoryChunk::Initialize(heap, |
| 527 base, | 529 base, |
| 528 chunk_size, | 530 chunk_size, |
| (...skipping 1303 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 1832 int new_node_size = 0; | 1834 int new_node_size = 0; |
| 1833 FreeListNode* new_node = FindNodeFor(size_in_bytes, &new_node_size); | 1835 FreeListNode* new_node = FindNodeFor(size_in_bytes, &new_node_size); |
| 1834 if (new_node == NULL) return NULL; | 1836 if (new_node == NULL) return NULL; |
| 1835 | 1837 |
| 1836 available_ -= new_node_size; | 1838 available_ -= new_node_size; |
| 1837 ASSERT(IsVeryLong() || available_ == SumFreeLists()); | 1839 ASSERT(IsVeryLong() || available_ == SumFreeLists()); |
| 1838 | 1840 |
| 1839 int bytes_left = new_node_size - size_in_bytes; | 1841 int bytes_left = new_node_size - size_in_bytes; |
| 1840 ASSERT(bytes_left >= 0); | 1842 ASSERT(bytes_left >= 0); |
| 1841 | 1843 |
| 1842 int old_linear_size = owner_->limit() - owner_->top(); | 1844 int old_linear_size = static_cast<int>(owner_->limit() - owner_->top()); |
| 1843 | |
| 1844 // Mark the old linear allocation area with a free space map so it can be | 1845 // Mark the old linear allocation area with a free space map so it can be |
| 1845 // skipped when scanning the heap. This also puts it back in the free list | 1846 // skipped when scanning the heap. This also puts it back in the free list |
| 1846 // if it is big enough. | 1847 // if it is big enough. |
| 1847 owner_->Free(owner_->top(), old_linear_size); | 1848 owner_->Free(owner_->top(), old_linear_size); |
| 1848 owner_->heap()->incremental_marking()->Step(size_in_bytes - old_linear_size); | 1849 owner_->heap()->incremental_marking()->Step(size_in_bytes - old_linear_size); |
| 1849 | 1850 |
| 1850 const int kThreshold = IncrementalMarking::kAllocatedThreshold; | 1851 const int kThreshold = IncrementalMarking::kAllocatedThreshold; |
| 1851 | 1852 |
| 1852 // Memory in the linear allocation area is counted as allocated. We may free | 1853 // Memory in the linear allocation area is counted as allocated. We may free |
| 1853 // a little of this again immediately - see below. | 1854 // a little of this again immediately - see below. |
| (...skipping 105 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 1959 Address top = allocation_info_.top; | 1960 Address top = allocation_info_.top; |
| 1960 return limit - top >= bytes; | 1961 return limit - top >= bytes; |
| 1961 } | 1962 } |
| 1962 | 1963 |
| 1963 | 1964 |
| 1964 void PagedSpace::PrepareForMarkCompact() { | 1965 void PagedSpace::PrepareForMarkCompact() { |
| 1965 // We don't have a linear allocation area while sweeping. It will be restored | 1966 // We don't have a linear allocation area while sweeping. It will be restored |
| 1966 // on the first allocation after the sweep. | 1967 // on the first allocation after the sweep. |
| 1967 // Mark the old linear allocation area with a free space map so it can be | 1968 // Mark the old linear allocation area with a free space map so it can be |
| 1968 // skipped when scanning the heap. | 1969 // skipped when scanning the heap. |
| 1969 int old_linear_size = limit() - top(); | 1970 int old_linear_size = static_cast<int>(limit() - top()); |
| 1970 Free(top(), old_linear_size); | 1971 Free(top(), old_linear_size); |
| 1971 SetTop(NULL, NULL); | 1972 SetTop(NULL, NULL); |
| 1972 | 1973 |
| 1973 // Stop lazy sweeping for the space. | 1974 // Stop lazy sweeping for the space. |
| 1974 first_unswept_page_ = last_unswept_page_ = Page::FromAddress(NULL); | 1975 first_unswept_page_ = last_unswept_page_ = Page::FromAddress(NULL); |
| 1975 | 1976 |
| 1976 // Clear the free list before a full GC---it will be rebuilt afterward. | 1977 // Clear the free list before a full GC---it will be rebuilt afterward. |
| 1977 free_list_.Reset(); | 1978 free_list_.Reset(); |
| 1978 | 1979 |
| 1979 // Clear EVACUATED flag from all pages. | 1980 // Clear EVACUATED flag from all pages. |
| 1980 PageIterator it(this); | 1981 PageIterator it(this); |
| 1981 while (it.has_next()) { | 1982 while (it.has_next()) { |
| 1982 Page* page = it.next(); | 1983 Page* page = it.next(); |
| 1983 page->ClearSwept(); | 1984 page->ClearSwept(); |
| 1984 } | 1985 } |
| 1985 } | 1986 } |
| 1986 | 1987 |
| 1987 | 1988 |
| 1988 bool PagedSpace::ReserveSpace(int size_in_bytes) { | 1989 bool PagedSpace::ReserveSpace(int size_in_bytes) { |
| 1989 ASSERT(size_in_bytes <= Page::kMaxHeapObjectSize); | 1990 ASSERT(size_in_bytes <= Page::kMaxHeapObjectSize); |
| 1990 ASSERT(size_in_bytes == RoundSizeDownToObjectAlignment(size_in_bytes)); | 1991 ASSERT(size_in_bytes == RoundSizeDownToObjectAlignment(size_in_bytes)); |
| 1991 Address current_top = allocation_info_.top; | 1992 Address current_top = allocation_info_.top; |
| 1992 Address new_top = current_top + size_in_bytes; | 1993 Address new_top = current_top + size_in_bytes; |
| 1993 if (new_top <= allocation_info_.limit) return true; | 1994 if (new_top <= allocation_info_.limit) return true; |
| 1994 | 1995 |
| 1995 HeapObject* new_area = free_list_.Allocate(size_in_bytes); | 1996 HeapObject* new_area = free_list_.Allocate(size_in_bytes); |
| 1996 if (new_area == NULL) new_area = SlowAllocateRaw(size_in_bytes); | 1997 if (new_area == NULL) new_area = SlowAllocateRaw(size_in_bytes); |
| 1997 if (new_area == NULL) return false; | 1998 if (new_area == NULL) return false; |
| 1998 | 1999 |
| 1999 int old_linear_size = limit() - top(); | 2000 int old_linear_size = static_cast<int>(limit() - top()); |
| 2000 // Mark the old linear allocation area with a free space so it can be | 2001 // Mark the old linear allocation area with a free space so it can be |
| 2001 // skipped when scanning the heap. This also puts it back in the free list | 2002 // skipped when scanning the heap. This also puts it back in the free list |
| 2002 // if it is big enough. | 2003 // if it is big enough. |
| 2003 Free(top(), old_linear_size); | 2004 Free(top(), old_linear_size); |
| 2004 | 2005 |
| 2005 SetTop(new_area->address(), new_area->address() + size_in_bytes); | 2006 SetTop(new_area->address(), new_area->address() + size_in_bytes); |
| 2006 Allocate(size_in_bytes); | 2007 Allocate(size_in_bytes); |
| 2007 return true; | 2008 return true; |
| 2008 } | 2009 } |
| 2009 | 2010 |
| 2010 | 2011 |
| 2011 // You have to call this last, since the implementation from PagedSpace | 2012 // You have to call this last, since the implementation from PagedSpace |
| 2012 // doesn't know that memory was 'promised' to large object space. | 2013 // doesn't know that memory was 'promised' to large object space. |
| 2013 bool LargeObjectSpace::ReserveSpace(int bytes) { | 2014 bool LargeObjectSpace::ReserveSpace(int bytes) { |
| 2014 return heap()->OldGenerationSpaceAvailable() >= bytes; | 2015 return heap()->OldGenerationSpaceAvailable() >= bytes; |
| 2015 } | 2016 } |
| 2016 | 2017 |
| 2017 | 2018 |
| 2018 bool PagedSpace::AdvanceSweeper(intptr_t bytes_to_sweep) { | 2019 bool PagedSpace::AdvanceSweeper(intptr_t bytes_to_sweep) { |
| 2019 if (IsSweepingComplete()) return true; | 2020 if (IsSweepingComplete()) return true; |
| 2020 | 2021 |
| 2021 int freed_bytes = 0; | 2022 intptr_t freed_bytes = 0; |
| 2022 Page* last = last_unswept_page_->next_page(); | 2023 Page* last = last_unswept_page_->next_page(); |
| 2023 Page* p = first_unswept_page_; | 2024 Page* p = first_unswept_page_; |
| 2024 do { | 2025 do { |
| 2025 Page* next_page = p->next_page(); | 2026 Page* next_page = p->next_page(); |
| 2026 // Evacuation candidates were swept by evacuator. | 2027 // Evacuation candidates were swept by evacuator. |
| 2027 if (!p->IsEvacuationCandidate() && | 2028 if (!p->IsEvacuationCandidate() && |
| 2028 !p->IsFlagSet(Page::RESCAN_ON_EVACUATION) && | 2029 !p->IsFlagSet(Page::RESCAN_ON_EVACUATION) && |
| 2029 !p->WasSwept()) { | 2030 !p->WasSwept()) { |
| 2030 freed_bytes += MarkCompactCollector::SweepConservatively(this, p); | 2031 freed_bytes += MarkCompactCollector::SweepConservatively(this, p); |
| 2031 } | 2032 } |
| (...skipping 444 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 2476 heap()->FreeQueuedChunks(); | 2477 heap()->FreeQueuedChunks(); |
| 2477 } | 2478 } |
| 2478 | 2479 |
| 2479 | 2480 |
| 2480 bool LargeObjectSpace::Contains(HeapObject* object) { | 2481 bool LargeObjectSpace::Contains(HeapObject* object) { |
| 2481 Address address = object->address(); | 2482 Address address = object->address(); |
| 2482 MemoryChunk* chunk = MemoryChunk::FromAddress(address); | 2483 MemoryChunk* chunk = MemoryChunk::FromAddress(address); |
| 2483 | 2484 |
| 2484 bool owned = (chunk->owner() == this); | 2485 bool owned = (chunk->owner() == this); |
| 2485 | 2486 |
| 2486 SLOW_ASSERT(!owned | 2487 SLOW_ASSERT(!owned || !FindObject(address)->IsFailure()); |
| 2487 || !FindObject(address)->IsFailure()); | |
| 2488 | 2488 |
| 2489 return owned; | 2489 return owned; |
| 2490 } | 2490 } |
| 2491 | 2491 |
| 2492 | 2492 |
| 2493 #ifdef DEBUG | 2493 #ifdef DEBUG |
| 2494 // We do not assume that the large object iterator works, because it depends | 2494 // We do not assume that the large object iterator works, because it depends |
| 2495 // on the invariants we are checking during verification. | 2495 // on the invariants we are checking during verification. |
| 2496 void LargeObjectSpace::Verify() { | 2496 void LargeObjectSpace::Verify() { |
| 2497 for (LargePage* chunk = first_page_; | 2497 for (LargePage* chunk = first_page_; |
| (...skipping 72 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 2570 for (HeapObject* obj = obj_it.Next(); obj != NULL; obj = obj_it.Next()) { | 2570 for (HeapObject* obj = obj_it.Next(); obj != NULL; obj = obj_it.Next()) { |
| 2571 if (obj->IsCode()) { | 2571 if (obj->IsCode()) { |
| 2572 Code* code = Code::cast(obj); | 2572 Code* code = Code::cast(obj); |
| 2573 isolate->code_kind_statistics()[code->kind()] += code->Size(); | 2573 isolate->code_kind_statistics()[code->kind()] += code->Size(); |
| 2574 } | 2574 } |
| 2575 } | 2575 } |
| 2576 } | 2576 } |
| 2577 #endif // DEBUG | 2577 #endif // DEBUG |
| 2578 | 2578 |
| 2579 } } // namespace v8::internal | 2579 } } // namespace v8::internal |
| OLD | NEW |