Index: test/unittests/compiler/x64/instruction-selector-x64-unittest.cc |
diff --git a/test/unittests/compiler/x64/instruction-selector-x64-unittest.cc b/test/unittests/compiler/x64/instruction-selector-x64-unittest.cc |
index 26df0c8e714476d514778c21ff438200c46485cf..f1293f0fa622dd810db950ea4d61f9e5e04d282d 100644 |
--- a/test/unittests/compiler/x64/instruction-selector-x64-unittest.cc |
+++ b/test/unittests/compiler/x64/instruction-selector-x64-unittest.cc |
@@ -249,10 +249,9 @@ TEST_F(InstructionSelectorTest, Int32AddWithInt32ParametersLea) { |
Node* const p0 = m.Parameter(0); |
Node* const p1 = m.Parameter(1); |
Node* const a0 = m.Int32Add(p0, p1); |
- USE(a0); |
// Additional uses of input to add chooses lea |
- Node* const a1 = m.Int32Add(p0, p1); |
- m.Return(m.Int32Add(a0, a1)); |
+ Node* const a1 = m.Int32Div(p0, p1); |
+ m.Return(m.Int32Div(a0, a1)); |
Stream s = m.Build(); |
ASSERT_EQ(3U, s.size()); |
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode()); |
@@ -266,20 +265,21 @@ TEST_F(InstructionSelectorTest, Int32AddConstantAsLeaSingle) { |
StreamBuilder m(this, kMachInt32, kMachInt32); |
Node* const p0 = m.Parameter(0); |
Node* const c0 = m.Int32Constant(15); |
- // If there is only a single use of an add's input, still use lea and not add, |
- // it is faster. |
- m.Return(m.Int32Add(p0, c0)); |
+ // If there is only a single use of an add's input, use an "addl" not a |
+ // "leal", it is faster. |
+ Node* const v0 = m.Int32Add(p0, c0); |
+ m.Return(v0); |
Stream s = m.Build(); |
ASSERT_EQ(1U, s.size()); |
- EXPECT_EQ(kX64Lea32, s[0]->arch_opcode()); |
- EXPECT_EQ(kMode_MRI, s[0]->addressing_mode()); |
+ EXPECT_EQ(kX64Add32, s[0]->arch_opcode()); |
+ EXPECT_EQ(kMode_None, s[0]->addressing_mode()); |
ASSERT_EQ(2U, s[0]->InputCount()); |
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0))); |
EXPECT_TRUE(s[0]->InputAt(1)->IsImmediate()); |
} |
-TEST_F(InstructionSelectorTest, Int32AddConstantAsInc) { |
+TEST_F(InstructionSelectorTest, Int32AddConstantAsAdd) { |
StreamBuilder m(this, kMachInt32, kMachInt32); |
Node* const p0 = m.Parameter(0); |
Node* const c0 = m.Int32Constant(1); |
@@ -288,26 +288,11 @@ TEST_F(InstructionSelectorTest, Int32AddConstantAsInc) { |
m.Return(m.Int32Add(p0, c0)); |
Stream s = m.Build(); |
ASSERT_EQ(1U, s.size()); |
- EXPECT_EQ(kX64Inc32, s[0]->arch_opcode()); |
- EXPECT_EQ(kMode_None, s[0]->addressing_mode()); |
- ASSERT_EQ(1U, s[0]->InputCount()); |
- EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0))); |
-} |
- |
- |
-TEST_F(InstructionSelectorTest, Int32AddConstantAsDec) { |
- StreamBuilder m(this, kMachInt32, kMachInt32); |
- Node* const p0 = m.Parameter(0); |
- Node* const c0 = m.Int32Constant(-1); |
- // If there is only a single use of an add's input and the immediate constant |
- // for the add is -11, use dec. |
- m.Return(m.Int32Add(p0, c0)); |
- Stream s = m.Build(); |
- ASSERT_EQ(1U, s.size()); |
- EXPECT_EQ(kX64Dec32, s[0]->arch_opcode()); |
+ EXPECT_EQ(kX64Add32, s[0]->arch_opcode()); |
EXPECT_EQ(kMode_None, s[0]->addressing_mode()); |
- ASSERT_EQ(1U, s[0]->InputCount()); |
+ ASSERT_EQ(2U, s[0]->InputCount()); |
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0))); |
+ EXPECT_TRUE(s[0]->InputAt(1)->IsImmediate()); |
} |
@@ -317,10 +302,9 @@ TEST_F(InstructionSelectorTest, Int32AddConstantAsLeaDouble) { |
Node* const c0 = m.Int32Constant(15); |
// A second use of an add's input uses lea |
Node* const a0 = m.Int32Add(p0, c0); |
- USE(a0); |
- m.Return(m.Int32Add(p0, c0)); |
+ m.Return(m.Int32Div(a0, p0)); |
Stream s = m.Build(); |
- ASSERT_EQ(1U, s.size()); |
+ ASSERT_EQ(2U, s.size()); |
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode()); |
EXPECT_EQ(kMode_MRI, s[0]->addressing_mode()); |
ASSERT_EQ(2U, s[0]->InputCount()); |
@@ -333,13 +317,12 @@ TEST_F(InstructionSelectorTest, Int32AddCommutedConstantAsLeaSingle) { |
StreamBuilder m(this, kMachInt32, kMachInt32); |
Node* const p0 = m.Parameter(0); |
Node* const c0 = m.Int32Constant(15); |
- // If there is only a single use of an add's input, still use lea... it's |
- // generally faster than the add to reduce register pressure. |
+ // If there is only a single use of an add's input, use "addl" |
m.Return(m.Int32Add(c0, p0)); |
Stream s = m.Build(); |
ASSERT_EQ(1U, s.size()); |
- EXPECT_EQ(kX64Lea32, s[0]->arch_opcode()); |
- EXPECT_EQ(kMode_MRI, s[0]->addressing_mode()); |
+ EXPECT_EQ(kX64Add32, s[0]->arch_opcode()); |
+ EXPECT_EQ(kMode_None, s[0]->addressing_mode()); |
ASSERT_EQ(2U, s[0]->InputCount()); |
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0))); |
EXPECT_TRUE(s[0]->InputAt(1)->IsImmediate()); |
@@ -353,9 +336,9 @@ TEST_F(InstructionSelectorTest, Int32AddCommutedConstantAsLeaDouble) { |
// A second use of an add's input uses lea |
Node* const a0 = m.Int32Add(c0, p0); |
USE(a0); |
- m.Return(m.Int32Add(c0, p0)); |
+ m.Return(m.Int32Div(a0, p0)); |
Stream s = m.Build(); |
- ASSERT_EQ(1U, s.size()); |
+ ASSERT_EQ(2U, s.size()); |
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode()); |
EXPECT_EQ(kMode_MRI, s[0]->addressing_mode()); |
ASSERT_EQ(2U, s[0]->InputCount()); |
@@ -364,6 +347,39 @@ TEST_F(InstructionSelectorTest, Int32AddCommutedConstantAsLeaDouble) { |
} |
+TEST_F(InstructionSelectorTest, Int32AddSimpleAsAdd) { |
+ StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32); |
+ Node* const p0 = m.Parameter(0); |
+ Node* const p1 = m.Parameter(1); |
+ // If one of the add's operands is only used once, use an "addl". |
+ m.Return(m.Int32Add(p0, p1)); |
+ Stream s = m.Build(); |
+ ASSERT_EQ(1U, s.size()); |
+ EXPECT_EQ(kX64Add32, s[0]->arch_opcode()); |
+ EXPECT_EQ(kMode_None, s[0]->addressing_mode()); |
+ ASSERT_EQ(2U, s[0]->InputCount()); |
+ EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0))); |
+ EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1))); |
+} |
+ |
+ |
+TEST_F(InstructionSelectorTest, Int32AddSimpleAsLea) { |
+ StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32); |
+ Node* const p0 = m.Parameter(0); |
+ Node* const p1 = m.Parameter(1); |
+ // If all of of the add's operands are used multiple times, use an "leal". |
+ Node* const v1 = m.Int32Add(p0, p1); |
+ m.Return(m.Int32Add(m.Int32Add(v1, p1), p0)); |
+ Stream s = m.Build(); |
+ ASSERT_EQ(3U, s.size()); |
+ EXPECT_EQ(kX64Lea32, s[0]->arch_opcode()); |
+ EXPECT_EQ(kMode_MR1, s[0]->addressing_mode()); |
+ ASSERT_EQ(2U, s[0]->InputCount()); |
+ EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0))); |
+ EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1))); |
+} |
+ |
+ |
TEST_F(InstructionSelectorTest, Int32AddScaled2Mul) { |
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32); |
Node* const p0 = m.Parameter(0); |
@@ -690,35 +706,38 @@ TEST_F(InstructionSelectorTest, Int32AddScaled8ShlWithConstant) { |
} |
-TEST_F(InstructionSelectorTest, Int32SubConstantAsInc) { |
+TEST_F(InstructionSelectorTest, Int32SubConstantAsSub) { |
StreamBuilder m(this, kMachInt32, kMachInt32); |
Node* const p0 = m.Parameter(0); |
Node* const c0 = m.Int32Constant(-1); |
- // If there is only a single use of an add's input and the immediate constant |
- // for the add is 1, use inc. |
+ // If there is only a single use of on of the sub's non-constant input, use a |
+ // "subl" instruction. |
m.Return(m.Int32Sub(p0, c0)); |
Stream s = m.Build(); |
ASSERT_EQ(1U, s.size()); |
- EXPECT_EQ(kX64Inc32, s[0]->arch_opcode()); |
+ EXPECT_EQ(kX64Sub32, s[0]->arch_opcode()); |
EXPECT_EQ(kMode_None, s[0]->addressing_mode()); |
- ASSERT_EQ(1U, s[0]->InputCount()); |
+ ASSERT_EQ(2U, s[0]->InputCount()); |
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0))); |
+ EXPECT_TRUE(s[0]->InputAt(1)->IsImmediate()); |
} |
-TEST_F(InstructionSelectorTest, Int32SubConstantAsDec) { |
+TEST_F(InstructionSelectorTest, Int32SubConstantAsLea) { |
StreamBuilder m(this, kMachInt32, kMachInt32); |
Node* const p0 = m.Parameter(0); |
- Node* const c0 = m.Int32Constant(1); |
- // If there is only a single use of an sub's input and the immediate constant |
- // for the add is 1, use dec. |
- m.Return(m.Int32Sub(p0, c0)); |
+ Node* const c0 = m.Int32Constant(-1); |
+ // If there are multiple uses of on of the sub's non-constant input, use a |
+ // "leal" instruction. |
+ Node* const v0 = m.Int32Sub(p0, c0); |
+ m.Return(m.Int32Div(p0, v0)); |
Stream s = m.Build(); |
- ASSERT_EQ(1U, s.size()); |
- EXPECT_EQ(kX64Dec32, s[0]->arch_opcode()); |
- EXPECT_EQ(kMode_None, s[0]->addressing_mode()); |
- ASSERT_EQ(1U, s[0]->InputCount()); |
+ ASSERT_EQ(2U, s.size()); |
+ EXPECT_EQ(kX64Lea32, s[0]->arch_opcode()); |
+ EXPECT_EQ(kMode_MRI, s[0]->addressing_mode()); |
+ ASSERT_EQ(2U, s[0]->InputCount()); |
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0))); |
+ EXPECT_TRUE(s[0]->InputAt(1)->IsImmediate()); |
} |