| Index: native_client_sdk/doc_generated/reference/pnacl-bitcode-manual.html
|
| diff --git a/native_client_sdk/doc_generated/reference/pnacl-bitcode-manual.html b/native_client_sdk/doc_generated/reference/pnacl-bitcode-manual.html
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..485fc68a36443aa7510916a28bceae1b6304ad45
|
| --- /dev/null
|
| +++ b/native_client_sdk/doc_generated/reference/pnacl-bitcode-manual.html
|
| @@ -0,0 +1,5778 @@
|
| +{{+bindTo:partials.standard_nacl_article}}
|
| +
|
| +<section id="contents-of-pnacl-bitcode-files">
|
| +<h1 id="contents-of-pnacl-bitcode-files">Contents Of PNaCl Bitcode Files</h1>
|
| +<div class="contents local" id="contents" style="display: none">
|
| +<ul class="small-gap">
|
| +<li><a class="reference internal" href="#introduction" id="id6">Introduction</a></li>
|
| +<li><a class="reference internal" href="#data-model" id="id7">Data Model</a></li>
|
| +<li><a class="reference internal" href="#pnacl-blocks" id="id8">PNaCl Blocks</a></li>
|
| +<li><a class="reference internal" href="#pnacl-records" id="id9">PNaCl Records</a></li>
|
| +<li><a class="reference internal" href="#default-abbreviations" id="id10">Default Abbreviations</a></li>
|
| +<li><a class="reference internal" href="#pnacl-identifiers" id="id11">PNaCl Identifiers</a></li>
|
| +<li><a class="reference internal" href="#conventions-for-describing-records" id="id12">Conventions For Describing Records</a></li>
|
| +<li><a class="reference internal" href="#factorial-example" id="id13">Factorial Example</a></li>
|
| +<li><a class="reference internal" href="#road-map" id="id14">Road Map</a></li>
|
| +<li><p class="first"><a class="reference internal" href="#global-state" id="id15">Global State</a></p>
|
| +<ul class="small-gap">
|
| +<li><a class="reference internal" href="#typing-functions" id="id16">Typing Functions</a></li>
|
| +<li><a class="reference internal" href="#link-to-id-counters" id="id17">ID Counters</a></li>
|
| +<li><a class="reference internal" href="#size-variables" id="id18">Size Variables</a></li>
|
| +<li><a class="reference internal" href="#other-variables" id="id19">Other Variables</a></li>
|
| +</ul>
|
| +</li>
|
| +<li><p class="first"><a class="reference internal" href="#global-records" id="id20">Global Records</a></p>
|
| +<ul class="small-gap">
|
| +<li><a class="reference internal" href="#header-record" id="id21">Header Record</a></li>
|
| +<li><a class="reference internal" href="#enter-block-record" id="id22">Enter Block Record</a></li>
|
| +<li><a class="reference internal" href="#exit-block-record" id="id23">Exit Block Record</a></li>
|
| +<li><a class="reference internal" href="#abbreviation-record" id="id24">Abbreviation Record</a></li>
|
| +</ul>
|
| +</li>
|
| +<li><p class="first"><a class="reference internal" href="#types-block" id="id25">Types Block</a></p>
|
| +<ul class="small-gap">
|
| +<li><a class="reference internal" href="#count-record" id="id26">Count Record</a></li>
|
| +<li><a class="reference internal" href="#void-type" id="id27">Void Type</a></li>
|
| +<li><a class="reference internal" href="#integer-types" id="id28">Integer Types</a></li>
|
| +<li><a class="reference internal" href="#bit-floating-point-type" id="id29">32-Bit Floating Point Type</a></li>
|
| +<li><a class="reference internal" href="#id1" id="id30">64-bit Floating Point Type</a></li>
|
| +<li><a class="reference internal" href="#vector-types" id="id31">Vector Types</a></li>
|
| +<li><a class="reference internal" href="#function-type" id="id32">Function Type</a></li>
|
| +</ul>
|
| +</li>
|
| +<li><p class="first"><a class="reference internal" href="#globals-block" id="id33">Globals Block</a></p>
|
| +<ul class="small-gap">
|
| +<li><a class="reference internal" href="#link-for-globals-count-record" id="id34">Count Record</a></li>
|
| +<li><a class="reference internal" href="#global-variable-addresses" id="id35">Global Variable Addresses</a></li>
|
| +<li><a class="reference internal" href="#global-constant-addresses" id="id36">Global Constant Addresses</a></li>
|
| +<li><a class="reference internal" href="#zerofill-initializer" id="id37">Zerofill Initializer</a></li>
|
| +<li><a class="reference internal" href="#data-initializer" id="id38">Data Initializer</a></li>
|
| +<li><a class="reference internal" href="#relocation-initializer" id="id39">Relocation Initializer</a></li>
|
| +<li><a class="reference internal" href="#subfield-relocation-initializer" id="id40">Subfield Relocation Initializer</a></li>
|
| +<li><a class="reference internal" href="#compound-initializer" id="id41">Compound Initializer</a></li>
|
| +</ul>
|
| +</li>
|
| +<li><p class="first"><a class="reference internal" href="#valuesymtab-block" id="id42">Valuesymtab Block</a></p>
|
| +<ul class="small-gap">
|
| +<li><a class="reference internal" href="#entry-record" id="id43">Entry Record</a></li>
|
| +</ul>
|
| +</li>
|
| +<li><p class="first"><a class="reference internal" href="#module-block" id="id44">Module Block</a></p>
|
| +<ul class="small-gap">
|
| +<li><a class="reference internal" href="#version-record" id="id45">Version Record</a></li>
|
| +<li><a class="reference internal" href="#function-address" id="id46">Function Address</a></li>
|
| +</ul>
|
| +</li>
|
| +<li><p class="first"><a class="reference internal" href="#constants-blocks" id="id47">Constants Blocks</a></p>
|
| +<ul class="small-gap">
|
| +<li><a class="reference internal" href="#set-type-record" id="id48">Set Type Record</a></li>
|
| +<li><a class="reference internal" href="#undefined-literal" id="id49">Undefined Literal</a></li>
|
| +<li><a class="reference internal" href="#integer-literal" id="id50">Integer Literal</a></li>
|
| +<li><a class="reference internal" href="#floating-point-literal" id="id51">Floating Point Literal</a></li>
|
| +</ul>
|
| +</li>
|
| +<li><p class="first"><a class="reference internal" href="#function-blocks" id="id52">Function Blocks</a></p>
|
| +<ul class="small-gap">
|
| +<li><a class="reference internal" href="#function-enter" id="id53">Function Enter</a></li>
|
| +<li><a class="reference internal" href="#link-for-basic-blocks-count" id="id54">Count Record</a></li>
|
| +</ul>
|
| +</li>
|
| +<li><p class="first"><a class="reference internal" href="#terminator-instructions" id="id55">Terminator Instructions</a></p>
|
| +<ul class="small-gap">
|
| +<li><a class="reference internal" href="#return-void-instruction" id="id56">Return Void Instruction</a></li>
|
| +<li><a class="reference internal" href="#return-value-instruction" id="id57">Return Value Instruction</a></li>
|
| +<li><a class="reference internal" href="#unconditional-branch-instruction" id="id58">Unconditional Branch Instruction</a></li>
|
| +<li><a class="reference internal" href="#conditional-branch-instruction" id="id59">Conditional Branch Instruction</a></li>
|
| +<li><a class="reference internal" href="#unreachable" id="id60">Unreachable</a></li>
|
| +<li><a class="reference internal" href="#switch-instruction" id="id61">Switch Instruction</a></li>
|
| +</ul>
|
| +</li>
|
| +<li><p class="first"><a class="reference internal" href="#integer-binary-instructions" id="id62">Integer Binary Instructions</a></p>
|
| +<ul class="small-gap">
|
| +<li><a class="reference internal" href="#integer-add" id="id63">Integer Add</a></li>
|
| +<li><a class="reference internal" href="#integer-subtract" id="id64">Integer Subtract</a></li>
|
| +<li><a class="reference internal" href="#integer-multiply" id="id65">Integer Multiply</a></li>
|
| +<li><a class="reference internal" href="#signed-integer-divide" id="id66">Signed Integer Divide</a></li>
|
| +<li><a class="reference internal" href="#unsigned-integer-divide" id="id67">Unsigned Integer Divide</a></li>
|
| +<li><a class="reference internal" href="#signed-integer-remainder" id="id68">Signed Integer Remainder</a></li>
|
| +<li><a class="reference internal" href="#unsigned-integer-remainder-instruction" id="id69">Unsigned Integer Remainder Instruction</a></li>
|
| +<li><a class="reference internal" href="#shift-left" id="id70">Shift Left</a></li>
|
| +<li><a class="reference internal" href="#logical-shift-right" id="id71">Logical Shift Right</a></li>
|
| +<li><a class="reference internal" href="#arithmetic-shift-right" id="id72">Arithmetic Shift Right</a></li>
|
| +<li><a class="reference internal" href="#logical-and" id="id73">Logical And</a></li>
|
| +<li><a class="reference internal" href="#logical-or" id="id74">Logical Or</a></li>
|
| +<li><a class="reference internal" href="#logical-xor" id="id75">Logical Xor</a></li>
|
| +</ul>
|
| +</li>
|
| +<li><p class="first"><a class="reference internal" href="#floating-point-binary-instructions" id="id76">Floating Point Binary Instructions</a></p>
|
| +<ul class="small-gap">
|
| +<li><a class="reference internal" href="#floating-point-add" id="id77">Floating Point Add</a></li>
|
| +<li><a class="reference internal" href="#floating-point-subtract" id="id78">Floating Point Subtract</a></li>
|
| +<li><a class="reference internal" href="#floating-point-multiply" id="id79">Floating Point Multiply</a></li>
|
| +<li><a class="reference internal" href="#floating-point-divide" id="id80">Floating Point Divide</a></li>
|
| +<li><a class="reference internal" href="#floating-point-remainder" id="id81">Floating Point Remainder</a></li>
|
| +</ul>
|
| +</li>
|
| +<li><p class="first"><a class="reference internal" href="#memory-creation-and-access-instructions" id="id82">Memory Creation and Access Instructions</a></p>
|
| +<ul class="small-gap">
|
| +<li><a class="reference internal" href="#alloca-instruction" id="id83">Alloca Instruction</a></li>
|
| +<li><a class="reference internal" href="#load-instruction" id="id84">Load Instruction</a></li>
|
| +<li><a class="reference internal" href="#store-instruction" id="id85">Store Instruction</a></li>
|
| +</ul>
|
| +</li>
|
| +<li><p class="first"><a class="reference internal" href="#conversion-instructions" id="id86">Conversion Instructions</a></p>
|
| +<ul class="small-gap">
|
| +<li><a class="reference internal" href="#integer-truncating-instruction" id="id87">Integer Truncating Instruction</a></li>
|
| +<li><a class="reference internal" href="#floating-point-truncating-instruction" id="id88">Floating Point Truncating Instruction</a></li>
|
| +<li><a class="reference internal" href="#zero-extending-instruction" id="id89">Zero Extending Instruction</a></li>
|
| +<li><a class="reference internal" href="#sign-extending-instruction" id="id90">Sign Extending Instruction</a></li>
|
| +<li><a class="reference internal" href="#floating-point-extending-instruction" id="id91">Floating Point Extending Instruction</a></li>
|
| +<li><a class="reference internal" href="#floating-point-to-unsigned-integer-instruction" id="id92">Floating Point to Unsigned Integer Instruction</a></li>
|
| +<li><a class="reference internal" href="#floating-point-to-signed-integer-instruction" id="id93">Floating Point to Signed Integer Instruction</a></li>
|
| +<li><a class="reference internal" href="#unsigned-integer-to-floating-point-instruction" id="id94">Unsigned Integer to Floating Point Instruction</a></li>
|
| +<li><a class="reference internal" href="#signed-integer-to-floating-point-instruction" id="id95">Signed Integer to Floating Point Instruction</a></li>
|
| +<li><a class="reference internal" href="#bitcast-instruction" id="id96">Bitcast Instruction</a></li>
|
| +</ul>
|
| +</li>
|
| +<li><p class="first"><a class="reference internal" href="#comparison-instructions" id="id97">Comparison Instructions</a></p>
|
| +<ul class="small-gap">
|
| +<li><a class="reference internal" href="#integer-comparison-instructions" id="id98">Integer Comparison Instructions</a></li>
|
| +<li><a class="reference internal" href="#floating-point-comparison-instructions" id="id99">Floating Point Comparison Instructions</a></li>
|
| +</ul>
|
| +</li>
|
| +<li><p class="first"><a class="reference internal" href="#vector-instructions" id="id100">Vector Instructions</a></p>
|
| +<ul class="small-gap">
|
| +<li><a class="reference internal" href="#insert-element-instruction" id="id101">Insert Element Instruction</a></li>
|
| +<li><a class="reference internal" href="#extract-element-instruction" id="id102">Extract Element Instruction</a></li>
|
| +</ul>
|
| +</li>
|
| +<li><p class="first"><a class="reference internal" href="#other-instructions" id="id103">Other Instructions</a></p>
|
| +<ul class="small-gap">
|
| +<li><a class="reference internal" href="#forward-type-declaration" id="id104">Forward Type Declaration</a></li>
|
| +<li><a class="reference internal" href="#phi-instruction" id="id105">Phi Instruction</a></li>
|
| +<li><a class="reference internal" href="#select-instruction" id="id106">Select Instruction</a></li>
|
| +<li><p class="first"><a class="reference internal" href="#call-instructions" id="id107">Call Instructions</a></p>
|
| +<ul class="small-gap">
|
| +<li><a class="reference internal" href="#direct-procedure-call" id="id108">Direct Procedure Call</a></li>
|
| +<li><a class="reference internal" href="#direct-function-call" id="id109">Direct Function Call</a></li>
|
| +<li><a class="reference internal" href="#indirect-procedure-call" id="id110">Indirect Procedure Call</a></li>
|
| +<li><a class="reference internal" href="#indirect-function-call" id="id111">Indirect Function Call</a></li>
|
| +</ul>
|
| +</li>
|
| +</ul>
|
| +</li>
|
| +<li><a class="reference internal" href="#memory-blocks-and-alignment" id="id112">Memory Blocks and Alignment</a></li>
|
| +<li><a class="reference internal" href="#intrinsic-functions" id="id113">Intrinsic Functions</a></li>
|
| +<li><p class="first"><a class="reference internal" href="#support-functions" id="id114">Support Functions</a></p>
|
| +<ul class="small-gap">
|
| +<li><a class="reference internal" href="#signrotate" id="id115">SignRotate</a></li>
|
| +<li><a class="reference internal" href="#absoluteindex" id="id116">AbsoluteIndex</a></li>
|
| +<li><a class="reference internal" href="#relativeindex" id="id117">RelativeIndex</a></li>
|
| +<li><a class="reference internal" href="#abbrevindex" id="id118">AbbrevIndex</a></li>
|
| +<li><a class="reference internal" href="#log2" id="id119">Log2</a></li>
|
| +<li><a class="reference internal" href="#bitsizeof" id="id120">BitSizeOf</a></li>
|
| +<li><a class="reference internal" href="#underlyingtype" id="id121">UnderlyingType</a></li>
|
| +<li><a class="reference internal" href="#underlyingcount" id="id122">UnderlyingCount</a></li>
|
| +<li><a class="reference internal" href="#isinteger" id="id123">IsInteger</a></li>
|
| +<li><a class="reference internal" href="#isfloat" id="id124">IsFloat</a></li>
|
| +<li><a class="reference internal" href="#isvector" id="id125">IsVector</a></li>
|
| +<li><a class="reference internal" href="#isprimitive" id="id126">IsPrimitive</a></li>
|
| +<li><a class="reference internal" href="#isfcnargtype" id="id127">IsFcnArgType</a></li>
|
| +</ul>
|
| +</li>
|
| +<li><p class="first"><a class="reference internal" href="#abbreviations" id="id128">Abbreviations</a></p>
|
| +<ul class="small-gap">
|
| +<li><a class="reference internal" href="#abbreviations-block" id="id129">Abbreviations Block</a></li>
|
| +<li><a class="reference internal" href="#todo" id="id130">TODO</a></li>
|
| +</ul>
|
| +</li>
|
| +</ul>
|
| +
|
| +</div><h2 id="introduction">Introduction</h2>
|
| +<p>This document is a reference manual for the contents of PNaCl bitcode files. We
|
| +define bitcode files via three layers. The first layer is presented using
|
| +assembly language <em>PNaClAsm</em>, and defines the textual form of the bitcode
|
| +file. The textual form is then lowered to a sequence of <a class="reference internal" href="#link-for-pnacl-records"><em>PNaCl
|
| +records</em></a>. The final layer applies abbreviations that
|
| +convert each PNaCl record into a corresponding sequence of bits.</p>
|
| +<img alt="/native-client/images/PNaClBitcodeFlow.png" src="/native-client/images/PNaClBitcodeFlow.png" />
|
| +<p>PNaClAsm uses a <em>static single assignment</em> (SSA) based representation that
|
| +requires generated results to have a single (assignment) source.</p>
|
| +<p>PNaClAsm focuses on the semantic content of the file, not the bit-encoding of
|
| +that content. However, it does provide annotations that allow one to specify how
|
| +the <a class="reference internal" href="#link-for-abbreviations-section"><em>abbreviations</em></a> are used to convert
|
| +PNaCl records into the sequence of bits.</p>
|
| +<p>Each construct in PNaClAsm defines a corresponding <a class="reference internal" href="#link-for-pnacl-records"><em>PNaCl
|
| +record</em></a>. A PNaCl bitcode file is simply a sequence of
|
| +PNaCl records. The goal of PNaClAsm is to make records easier to read, and not
|
| +to define a high-level user programming language.</p>
|
| +<p>PNaCl records are an abstract encoding of structured data, similar to XML. Like
|
| +XML, A PNaCl record has a notion of a tag (i.e. the first element in a record,
|
| +called a <em>code</em>). PNaCl records can be nested. Nesting is defined by a
|
| +corresponding <a class="reference internal" href="#link-for-enter-block-record-section"><em>enter</em></a> and
|
| +<a class="reference internal" href="#link-for-exit-block-record-section"><em>exit</em></a> block record.</p>
|
| +<p>These block records must be used like balanced parentheses to define the block
|
| +structure that is imposed on top of records. Each exit record must be preceded
|
| +by a corresponding enter record. Blocks can be nested by nesting enter/exit
|
| +records appropriately.</p>
|
| +<p>The <em>PNaCl bitcode writer</em> takes the sequence of records, defined by a PNaClAsm
|
| +program, and converts each record into a (variable-length) sequence of bits. The
|
| +output of each bit sequence is appended together. The resulting generated
|
| +sequence of bits is the contents of the PNaCl bitcode file.</p>
|
| +<p>For every kind of record, there is a method for converting records into bit
|
| +sequences. These methods correspond to a notion of
|
| +<a class="reference internal" href="#link-for-abbreviations-section"><em>abbreviations</em></a>. Each abbreviation defines
|
| +a specific bit sequence conversion to be applied.</p>
|
| +<p>Abbreviations can be user-defined, but there are also predefined defaults. All
|
| +user-specified abbreviations are included in the generated bitcode
|
| +file. Predefined defaults are not.</p>
|
| +<p>Each abbreviation defines how a record is converted to a bit sequence. The
|
| +<a class="reference internal" href="/native-client/overview.html#link-for-pnacl-translator"><em>PNaCl translator</em></a> uses these abbreviations
|
| +to convert the bit sequence back to the corresponding sequence of PNaCl records.
|
| +As a result, all records have an abbreviation (user or default) associated with
|
| +them.</p>
|
| +<p>Conceptually, abbreviations are used to define how to pack the contents of
|
| +records into bit sequences. The main reason for defining abbreviations is to
|
| +save space. The default abbreviations are simplistic and are intended to handle
|
| +all possible records. The default abbreviations do not really worry about being
|
| +efficient, in terms of the number of bits generated.</p>
|
| +<p>By separating the concepts of PNaCl records and abbreviations, the notion of
|
| +data compression is cleanly separated from semantic content. This allows
|
| +different use cases to decide how much effort should be spent on compressing
|
| +records.</p>
|
| +<p>For a JIT compiler that produces bitcode, little (if any) compression should be
|
| +applied. In fact, the API to the JIT may just be the records themselves. The
|
| +goal of a JIT is to perform the final translation to machine code as quickly as
|
| +possible.</p>
|
| +<p>On the other hand, when delivering across the web, one may want to compress the
|
| +sequence of bits considerably, to reduce costs in delivering web pages. Note
|
| +that <a class="reference internal" href="/native-client/devguide/devcycle/building.html#pnacl-compress"><em>pnacl-compress</em></a> is provided as part of the SDK to do
|
| +this job.</p>
|
| +<h2 id="data-model">Data Model</h2>
|
| +<p>The data model for PNaCl bitcode is fixed at little-endian ILP32: pointers are
|
| +32 bits in size. 64-bit integer types are also supported natively via the i64
|
| +type (for example, a front-end can generate these from the C/C++ type <code>long
|
| +long</code>).</p>
|
| +<p>Integers are assumed to be modeled using two’s complement. Floating point
|
| +support is fixed at <a class="reference internal" href="/native-client/reference/pnacl-c-cpp-language-support.html#c-cpp-floating-point"><em>IEEE 754</em></a> 32-bit and 64-bit
|
| +values (float and double, respectively).</p>
|
| +<h2 id="pnacl-blocks">PNaCl Blocks</h2>
|
| +<p>Blocks are used to organize records in the bitcode file. The kinds of blocks
|
| +defined in PNaClAsm are:</p>
|
| +<dl class="docutils">
|
| +<dt>Module block</dt>
|
| +<dd>A top-level block defining the program. The <a class="reference internal" href="#link-for-module-block"><em>module
|
| +block</em></a> defines global information used by the program,
|
| +followed by function blocks defining the implementation of functions within
|
| +the program. All other blocks (listed below) must appear within a module
|
| +block.</dd>
|
| +<dt>Types block</dt>
|
| +<dd>The <a class="reference internal" href="#link-for-types-block-section"><em>types block</em></a> defines the set of types
|
| +used by the program. All types used in the program must be defined in the
|
| +types block. These types consist of primitive types as well as high level
|
| +constructs such as vectors and function signatures.</dd>
|
| +<dt>Globals block</dt>
|
| +<dd>The <a class="reference internal" href="#link-for-globals-block-section"><em>globals block</em></a> defines the set of
|
| +global addresses of global variables and constants used by the program. It
|
| +also defines how each global (associated with the global address) is
|
| +initialized.</dd>
|
| +<dt>Valuesymtab block</dt>
|
| +<dd>The <a class="reference internal" href="#link-for-valuesymtab-block-section"><em>valuesymtab block</em></a> defines
|
| +textual names for external function addresses.</dd>
|
| +<dt>Function block</dt>
|
| +<dd>Each function (implemented) in a program has its own <a class="reference internal" href="#link-for-function-blocks-section"><em>function
|
| +block</em></a> that defines the implementation of
|
| +the corresponding function.</dd>
|
| +<dt>Constants block</dt>
|
| +<dd>Each implemented function that uses constants in its instructions defines a
|
| +<a class="reference internal" href="#link-for-constants-block-section"><em>constants block</em></a>. Constants blocks
|
| +appear within the corresponding function block of the implemented function.</dd>
|
| +<dt>Abbreviations block</dt>
|
| +<dd>Defines global abbreviations that are used to compress PNaCl records. The
|
| +<a class="reference internal" href="#link-for-abbreviations-block-section"><em>abbreviations block</em></a> is segmented
|
| +into multiple sections, one section for each kind of block. This block appears
|
| +at the beginning of the module block.</dd>
|
| +</dl>
|
| +<p>This section is only intended as a high-level discussion of blocks. Later
|
| +sections will dive more deeply into the constraints on how blocks must be laid
|
| +out. This section only presents the overall concepts of what kinds of data are
|
| +stored in each of the blocks.</p>
|
| +<p>A PNaCl program consists of a <a class="reference internal" href="#link-for-header-record-section"><em>header
|
| +record</em></a> and a <a class="reference internal" href="#link-for-module-block"><em>module
|
| +block</em></a>. The header record defines a sequence of bytes
|
| +uniquely identifying the file as a bitcode file. The module block defines the
|
| +program to run.</p>
|
| +<p>Each block, within a bitcode file, defines values. These values are associated
|
| +with IDs. Each type of block defines different kinds of IDs. The
|
| +<a class="reference internal" href="#link-for-module-block"><em>module</em></a>,
|
| +<a class="reference internal" href="#link-for-types-block-section"><em>types</em></a>,
|
| +<a class="reference internal" href="#link-for-globals-block-section"><em>globals</em></a>, and
|
| +<a class="reference internal" href="#link-for-abbreviations-block-section"><em>abbreviations</em></a> blocks define global
|
| +identifiers, and only a single instance can appear. The
|
| +<a class="reference internal" href="#link-for-function-blocks-section"><em>function</em></a> and
|
| +<a class="reference internal" href="#link-for-constants-block-section"><em>constant</em></a> blocks define local
|
| +identifiers, and can have multiple instances (one for each implemented
|
| +function).</p>
|
| +<p>The only records in the module block that define values, are <a class="reference internal" href="#link-for-function-address-section"><em>function
|
| +address</em></a> records. Each function address
|
| +record defines a different function address, and the <a class="reference internal" href="#link-for-function-type"><em>type
|
| +signature</em></a> associated with that function address.</p>
|
| +<p>Each <a class="reference internal" href="#link-for-function-blocks-section"><em>function block</em></a> defines the
|
| +implementation of a single function. Each function block defines the
|
| +intermediate representation of the function, consisting of basic blocks and
|
| +instructions. If constants are used within instructions, they are defined in a
|
| +<a class="reference internal" href="#link-for-constants-block-section"><em>constants block</em></a>, nested within the
|
| +corresponding function block.</p>
|
| +<p>All function blocks are associated with a corresponding function address. This
|
| +association is positional rather than explicit. That is, the Nth function block
|
| +in a module block corresponds to the Nth
|
| +<a class="reference internal" href="#link-for-function-address-section"><em>defining</em></a> (rather than declared)
|
| +function address record in the module block.</p>
|
| +<p>Hence, within a function block, there is no explicit reference to the function
|
| +address the block defines. For readability, PNaClAsm uses the corresponding
|
| +function signature, associated with the corresponding function address record,
|
| +even though that data does not appear in the corresponding records.</p>
|
| +<h2 id="pnacl-records"><span id="link-for-pnacl-records"></span>PNaCl Records</h2>
|
| +<p>A PNaCl record is a non-empty sequence of unsigned, 64-bit, integers. A record
|
| +is identified by the record <em>code</em>, which is the first element in the
|
| +sequence. Record codes are unique within a specific kind of block, but are not
|
| +necessarily unique across different kinds of blocks. The record code acts as the
|
| +variant discriminator (i.e. tag) within a block, to identify what kind of record
|
| +it is.</p>
|
| +<p>Record codes that are local to a specific kind of block are small values
|
| +(starting from zero). In an ideal world, they would be a consecutive sequence of
|
| +integers, starting at zero. However, the reality is that PNaCl records evolved
|
| +over time (and actually started as <a class="reference external" href="http://llvm.org/docs/BitCodeFormat.html">LLVM records</a>). For backward compatibility,
|
| +obsolete numbers have not been reused, leaving gaps in the actual record code
|
| +values used.</p>
|
| +<p>Global record codes are record codes that have the same meaning in multiple
|
| +kinds of blocks. To separate global record codes from local record codes, large
|
| +values are used. Currently there are four <a class="reference internal" href="#link-for-global-record-codes"><em>global record
|
| +codes</em></a>. To make these cases clear, and to leave
|
| +ample room for future growth in PNaClAsm, these special records have record
|
| +codes close to the value 2<sup>16</sup>. Note: Well-formed PNaCl bitcode files
|
| +do not have record codes >= 2<sup>16</sup>.</p>
|
| +<p>A PNaCl record is denoted as follows:</p>
|
| +<pre class="prettyprint">
|
| +a: <v0, v1, ... , vN>
|
| +</pre>
|
| +<p>The value <code>v0</code> is the record code. The remaining values, <code>v1</code> through
|
| +<code>vN</code>, are parameters that fill in additional information needed by the
|
| +construct it represents. All records must have a record code. Hence, empty PNaCl
|
| +records are not allowed. <code>a</code> is the index to the abbreviation used to convert
|
| +the record to a bit sequence.</p>
|
| +<p>While most records (for a given record code) have the same length, it
|
| +is not true of all record codes. Some record codes can have arbitrary
|
| +length. In particular, function type signatures, call instructions,
|
| +phi instructions, switch instructions, and global variable
|
| +initialization records all have variable length. The expected length
|
| +is predefined and part of the PNaClAsm language. See the corresponding
|
| +construct (associated with the record) to determine the expected
|
| +length.</p>
|
| +<p>The <em>PNaCl bitstream writer</em>, which converts records to bit sequences, does
|
| +this by writing out the abbreviation index used to encode the record, followed
|
| +by the contents of the record. The details of this are left to the section on
|
| +<a class="reference internal" href="#link-for-abbreviations-section"><em>abbreviations</em></a>. However, at the record
|
| +level, one important aspect of this appears in <a class="reference internal" href="#link-for-enter-block-record-section"><em>block
|
| +enter</em></a> records. These records must define
|
| +how many bits are required to hold abbreviation indices associated with records
|
| +of that block.</p>
|
| +<h2 id="default-abbreviations"><span id="link-for-default-abbreviations"></span>Default Abbreviations</h2>
|
| +<p>There are 4 predefined (default) abbreviation indices, used as the default
|
| +abbreviations for PNaCl records. They are:</p>
|
| +<dl class="docutils">
|
| +<dt>0</dt>
|
| +<dd>Abbreviation index for the abbreviation used to bit-encode an exit block
|
| +record.</dd>
|
| +<dt>1</dt>
|
| +<dd>Abbreviation index for the abbreviation used to bit-encode an enter block
|
| +record.</dd>
|
| +<dt>2</dt>
|
| +<dd>Abbreviation index for the abbreviation used to bit-encode a user-defined
|
| +abbreviation. Note: User-defined abbreviations are also encoded as records,
|
| +and hence need an abbreviation index to bit-encode them.</dd>
|
| +<dt>3</dt>
|
| +<dd>Abbreviation index for the default abbreviation to bit-encode all other
|
| +records in the bitcode file.</dd>
|
| +</dl>
|
| +<p>A block may, in addition, define a list of block specific, user-defined,
|
| +abbreviations (of length <code>U</code>). The number of bits <code>B</code> specified for an enter
|
| +record must be sufficiently large such that:</p>
|
| +<pre class="prettyprint">
|
| +2**B >= U + 4
|
| +</pre>
|
| +<p>In addition, the upper limit for <code>B</code> is <code>16</code>.</p>
|
| +<p>PNaClAsm requires specifying the number of bits needed to read abbreviations as
|
| +part of the enter block record. This allows the PNaCl bitcode reader/writer to
|
| +use the specified number of bits to encode abbreviation indices.</p>
|
| +<h2 id="pnacl-identifiers">PNaCl Identifiers</h2>
|
| +<p>A program is defined by a <a class="reference internal" href="#link-for-module-block"><em>module block</em></a>. Blocks can
|
| +be nested within other blocks, including the module block. Each block defines a
|
| +sequence of records.</p>
|
| +<p>Most of the records, within a block, also define unique values. Each unique
|
| +value is given a corresponding unique identifier (i.e. <em>ID</em>). In PNaClAsm, each
|
| +kind of block defines its own kind of identifiers. The names of these
|
| +identifiers are defined by concatenating a prefix character (<code>'@'</code> or
|
| +<code>'%'</code>), the kind of block (a single character), and a suffix index. The suffix
|
| +index is defined by the positional location of the defined value within the
|
| +records of the corresponding block. The indices are all zero based, meaning that
|
| +the first defined value (within a block) is defined using index 0.</p>
|
| +<p>Identifiers are categorized into two types, <em>local</em> and <em>global</em>. Local
|
| +identifiers are identifiers that are associated with the implementation of a
|
| +single function. In that sense, they are local to the block they appear in.</p>
|
| +<p>All other identifiers are global, and can appear in multiple blocks. This split
|
| +is intentional. Global identifiers are used by multiple functions, and therefore
|
| +must be known in all function implementations. Local identifiers only apply to a
|
| +single function, and can be reused between functions. The <a class="reference internal" href="/native-client/overview.html#link-for-pnacl-translator"><em>PNaCl
|
| +translator</em></a> uses this separation to parallelize the
|
| +compilation of functions.</p>
|
| +<p>Note that local abbreviation identifiers are unique to the block they appear
|
| +in. Global abbreviation identifiers are only unique to the block type they are
|
| +defined for. Different block types can reuse global abbreviation identifiers.</p>
|
| +<p>Global identifiers use the prefix character <code>'@'</code> while local identifiers use
|
| +the prefix character <code>'%'</code>.</p>
|
| +<p>Note that by using positional location to define identifiers (within a block),
|
| +the values defined in PNaCl bitcode files need not be explicitly included in the
|
| +bitcode file. Rather, they are inferred by the (ordered) position of the record
|
| +in the block. This is also intentional. It is used to reduce the amount of data
|
| +that must be (explicitly) passed to the <a class="reference internal" href="/native-client/overview.html#link-for-pnacl-translator"><em>PNaCl
|
| +translator</em></a>, when downloaded into Chrome.</p>
|
| +<p>In general, most of the records within blocks are assumed to be topologically
|
| +sorted, putting value definitions before their uses. This implies that records
|
| +do not need to encode data if they can deduce the corresponding information from
|
| +their uses.</p>
|
| +<p>The most common use of this is that many instructions use the type of their
|
| +operands to determine the type of the instruction. Again, this is
|
| +intentional. It allows less information to be stored.</p>
|
| +<p>However, for function blocks (which define instructions), a topological sort may
|
| +not exist. Loop carried value dependencies simply do not allow topologically
|
| +sorting. To deal with this, function blocks have a notion of (instruction value)
|
| +<a class="reference internal" href="#link-for-forward-type-declaration-section"><em>forward type
|
| +declarations</em></a>. These declarations
|
| +must appear before any of the uses of that value, if the (instruction) value is
|
| +defined later in the function than its first use.</p>
|
| +<p>The kinds of identifiers used in PNaClAsm are:</p>
|
| +<dl class="docutils">
|
| +<dt>@a</dt>
|
| +<dd>Global abbreviation identifier.</dd>
|
| +<dt>%a</dt>
|
| +<dd>Local abbreviation identifier.</dd>
|
| +<dt>%b</dt>
|
| +<dd>Function basic block identifier.</dd>
|
| +<dt>%c</dt>
|
| +<dd>Function constant identifier.</dd>
|
| +<dt>@f</dt>
|
| +<dd>Global function address identifier.</dd>
|
| +<dt>@g</dt>
|
| +<dd>Global variable/constant address identifier.</dd>
|
| +<dt>%p</dt>
|
| +<dd>Function parameter identifier.</dd>
|
| +<dt>@t</dt>
|
| +<dd>Global type identifier.</dd>
|
| +<dt>%v</dt>
|
| +<dd>Value generated by an instruction in a function block.</dd>
|
| +</dl>
|
| +<h2 id="conventions-for-describing-records">Conventions For Describing Records</h2>
|
| +<p>PNaClAsm is the textual representation of <a class="reference internal" href="#link-for-pnacl-records"><em>PNaCl
|
| +records</em></a>. Each PNaCl record is described by a
|
| +corresponding PNaClAsm construct. These constructs are described using syntax
|
| +rules, and semantics on how they are converted to records. Along with the rules,
|
| +is a notion of <a class="reference internal" href="#link-for-global-state-section"><em>global state</em></a>. The global
|
| +state is updated by syntax rules. The purpose of the global state is to track
|
| +positional dependencies between records.</p>
|
| +<p>For each PNaCl construct, we define multiple sections. The <strong>Syntax</strong>
|
| +section defines a syntax rule for the construct. The <strong>Record</strong> section
|
| +defines the corresponding record associated with the syntax rule. The
|
| +<strong>Semantics</strong> section describes the semantics associated with the record, in
|
| +terms of data within the global state and the corresponding syntax. It also
|
| +includes other high-level semantics, when appropriate.</p>
|
| +<p>The <strong>Constraints</strong> section (if present) defines any constraints associated
|
| +with the construct, including the global state. The <strong>Updates</strong> section (if
|
| +present) defines how the global state is updated when the construct is
|
| +processed. The <strong>Examples</strong> section gives one or more examples of using the
|
| +corresponding PNaClAsm construct.</p>
|
| +<p>Some semantics sections use functions to compute values. The meaning of
|
| +functions can be found in <a class="reference internal" href="#link-for-support-functions-section"><em>support
|
| +functions</em></a>.</p>
|
| +<p>The syntax rule may include the
|
| +<a class="reference internal" href="#link-for-abbreviations-section"><em>abbreviation</em></a> to use, when converting to a
|
| +bit-sequence. These abbreviations, if allowed, are at the end of the construct,
|
| +and enclosed in <code><</code> and <code>></code> brackets. These abbreviations are optional in
|
| +the syntax, and can be omitted. If they are used, the abbreviation brackets are
|
| +part of the actual syntax of the construct. If the abbreviation is omitted, the
|
| +default abbreviation index is used. To make it clear that abbreviations are
|
| +optional, syntax rules separate abbreviations using plenty of whitespace.</p>
|
| +<p>Within a syntax rule, lower case characters are literal values. Sequences of
|
| +upper case alphanumeric characters are named values. If we mix lower and upper
|
| +case letters within a name appearing in a syntax rule, the lower case letters
|
| +are literal while the upper case sequence of alphanumeric characters denote rule
|
| +specific values. The valid values for each of these names will be defined in
|
| +the corresponding semantics and constraints subsections.</p>
|
| +<p>For example, consider the following syntax rule:</p>
|
| +<pre class="prettyprint">
|
| +%vN = add T O1, O2; <A>
|
| +</pre>
|
| +<p>This rule defines a PNaClAsm add instruction. This construct defines an
|
| +instruction that adds two values (<code>O1</code> and <code>O2</code>) to generate instruction
|
| +value <code>%vN</code>. The types of the arguments, and the result, are all of type
|
| +<code>T</code>. If abbreviation ID <code>A</code> is present, the record is encoded using that
|
| +abbreviation. Otherwise the corresponding <a class="reference internal" href="#link-for-default-abbreviations"><em>default abbreviation
|
| +index</em></a> is used.</p>
|
| +<p>To be concrete, the syntactic rule above defines the structure of the following
|
| +PNaClAsm examples:</p>
|
| +<pre class="prettyprint">
|
| +%v10 = add i32 %v1, %v2; <@a5>
|
| +%v11 = add i32 %v10, %v3;
|
| +</pre>
|
| +<p>In addition to specifying the syntax, each syntax rule can also also specify the
|
| +contents of the corresponding record in the corresponding record subsection. In
|
| +simple cases, the elements of the corresponding record are predefined (literal)
|
| +constants. Otherwise the record element is an identifier from another subsection
|
| +associated with the construct.</p>
|
| +<h2 id="factorial-example">Factorial Example</h2>
|
| +<p>This section provides a simple example of a PNaCl bitcode file. Its contents
|
| +describe a bitcode file that only defines a function to compute the factorial
|
| +value of a number.</p>
|
| +<p>In C, the factorial function can be defined as:</p>
|
| +<pre class="prettyprint">
|
| +int fact(int n) {
|
| + if (n == 1) return 1;
|
| + return n * fact(n-1);
|
| +}
|
| +</pre>
|
| +<p>Compiling this into a PNaCl bitcode file, and dumping out its contents with
|
| +utility <a class="reference internal" href="/native-client/devguide/devcycle/building.html#pnacl-bcdis"><em>pnacl-bcdis</em></a>, the corresponding output is:</p>
|
| +<pre class="prettyprint">
|
| + 0:0|<65532, 80, 69, 88, 69, 1, 0,|Magic Number: 'PEXE' (80, 69, 88, 69)
|
| + | 8, 0, 17, 0, 4, 0, 2, 0, 0, |PNaCl Version: 2
|
| + | 0> |
|
| + 16:0|1: <65535, 8, 2> |module { // BlockID = 8
|
| + 24:0| 3: <1, 1> | version 1;
|
| + 26:4| 1: <65535, 0, 2> | abbreviations { // BlockID = 0
|
| + 36:0| 0: <65534> | }
|
| + 40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| + 48:0| 3: <1, 4> | count 4;
|
| + 50:4| 3: <7, 32> | @t0 = i32;
|
| + 53:6| 3: <2> | @t1 = void;
|
| + 55:4| 3: <21, 0, 0, 0> | @t2 = i32 (i32);
|
| + 59:4| 3: <7, 1> | @t3 = i1;
|
| + 62:0| 0: <65534> | }
|
| + 64:0| 3: <8, 2, 0, 0, 0> | define external i32 @f0(i32);
|
| + 68:6| 1: <65535, 19, 2> | globals { // BlockID = 19
|
| + 76:0| 3: <5, 0> | count 0;
|
| + 78:4| 0: <65534> | }
|
| + 80:0| 1: <65535, 14, 2> | valuesymtab { // BlockID = 14
|
| + 88:0| 3: <1, 0, 102, 97, 99, | @f0 : "fact";
|
| + | 116> |
|
| + 96:4| 0: <65534> | }
|
| +100:0| 1: <65535, 12, 2> | function i32 @f0(i32 %p0) {
|
| + | | // BlockID = 12
|
| +108:0| 3: <1, 3> | blocks 3;
|
| +110:4| 1: <65535, 11, 2> | constants { // BlockID = 11
|
| +120:0| 3: <1, 0> | i32:
|
| +122:4| 3: <4, 2> | %c0 = i32 1;
|
| +125:0| 0: <65534> | }
|
| + | | %b0:
|
| +128:0| 3: <28, 2, 1, 32> | %v0 = icmp eq i32 %p0, %c0;
|
| +132:6| 3: <11, 1, 2, 1> | br i1 %v0, label %b1, label %b2;
|
| + | | %b1:
|
| +136:6| 3: <10, 2> | ret i32 %c0;
|
| + | | %b2:
|
| +139:2| 3: <2, 3, 2, 1> | %v1 = sub i32 %p0, %c0;
|
| +143:2| 3: <34, 0, 5, 1> | %v2 = call i32 @f0(i32 %v1);
|
| +148:0| 3: <2, 5, 1, 2> | %v3 = mul i32 %p0, %v2;
|
| +152:0| 3: <10, 1> | ret i32 %v3;
|
| +154:4| 0: <65534> | }
|
| +156:0|0: <65534> |}
|
| +</pre>
|
| +<p>Note that there are three columns in this output. The first column contains the
|
| +bit positions of the records within the bitcode file. The second column contains
|
| +the sequence of records within the bitcode file. The third column contains the
|
| +corresponding PNaClAsm program.</p>
|
| +<p>Bit positions are defined by a pair <code>B:N</code>. <code>B</code> is the number of bytes, while
|
| +<code>N</code> is the bit offset within the <code>B</code>-th byte. Hence, the bit position (in
|
| +bits) is:</p>
|
| +<pre class="prettyprint">
|
| +B*8 + N
|
| +</pre>
|
| +<p>Hence, the first record is at bit offset <code>0</code> (<code>0*8+0</code>). The second record is
|
| +at bit offset <code>128</code> (<code>16*8+0</code>). The third record is at bit offset <code>192</code>
|
| +(<code>24*8+0</code>). The fourth record is at bit offset <code>212</code> (<code>26*8+4</code>).</p>
|
| +<p>The <a class="reference internal" href="#link-for-header-record-section"><em>header record</em></a> is a sequence of 16
|
| +bytes, defining the contents of the first 16 bytes of the bitcode file. These
|
| +bytes never change, and are expected for all version 2, PNaCl bitcode files. The
|
| +first four bytes define the magic number of the file, i.e. ‘PEXE’. All PEXE
|
| +bitcode files begin with these four bytes.</p>
|
| +<p>All but the header record has an abbreviation index associated with it. Since no
|
| +user-defined abbreviations are provided, all records were converted to
|
| +bit sequences using default abbreviations.</p>
|
| +<p>The types block (starting at bit address <code>40:0</code>), defines 4 types: <code>i1</code>,
|
| +<code>i32</code>, <code>void</code>, and function signature <code>i32 (i32)</code>.</p>
|
| +<p>Bit address <code>64:0</code> declares the factorial function address <code>@f0</code>, and its
|
| +corresponding type signature. Bit address <code>88:0</code> associates the name <code>fact</code>
|
| +with function address <code>@f0</code>.</p>
|
| +<p>Bit address <code>100:0</code> defines the function block that implements function
|
| +<code>fact</code>. The entry point is <code>%b0</code> (at bit address <code>128:0</code>). It uses the
|
| +32-bit integer constant <code>1</code> (defined at bit addresses <code>122:4</code>). Bit address
|
| +<code>128:0</code> defines an equality comparison of the argument <code>%p0</code> with <code>1</code>
|
| +(constant <code>%c0</code>). Bit address <code>132:6</code> defines a conditional branch. If the
|
| +result of the previous comparison (<code>%v0</code>) is true, the program will branch to
|
| +block <code>%b1</code>. Otherwise it will branch to block <code>%b2</code>.</p>
|
| +<p>Bit address <code>136:6</code> returns constant <code>1</code> (<code>%c0</code>) when the input parameter
|
| +is 1. Instructions between bit address <code>139:2</code> and <code>154:4</code> compute and
|
| +return <code>n * fact(n-1)</code>.</p>
|
| +<h2 id="road-map">Road Map</h2>
|
| +<p>At this point, this document transitions from basic concepts to the details
|
| +of how records should be formatted. This section defines the road map to
|
| +the remaining sections in this document.</p>
|
| +<p>Many records have implicit information associated with them, and must be
|
| +maintained across records. <a class="reference internal" href="#link-for-global-state-section"><em>Global state</em></a>
|
| +describes how this implicit information is modeled. In addition, there are
|
| +various <a class="reference internal" href="#link-for-support-functions-section"><em>support functions</em></a> that are
|
| +used to define the semantics of records, and how they update the global state.</p>
|
| +<p>There are just a handful of global records (records that either don’t appear in
|
| +any block, or can appear in all blocks). <a class="reference internal" href="#link-for-global-record-codes"><em>Global
|
| +records</em></a> describes these records. This includes
|
| +the block delimiter records <a class="reference internal" href="#link-for-enter-block-record-section"><em>enter</em></a>
|
| +and <a class="reference internal" href="#link-for-exit-block-record-section"><em>exit</em></a> that define block
|
| +boundaries.</p>
|
| +<p>PNaClAsm is a strongly typed language, and most block values are typed.
|
| +<a class="reference internal" href="#link-for-types-block-section"><em>types</em></a> describes the set of legal types, and
|
| +how to define types.</p>
|
| +<p>Global variables and their initializers are presented in the <a class="reference internal" href="#link-for-globals-block-section"><em>globals
|
| +block</em></a>. <a class="reference internal" href="#link-for-function-address-section"><em>Function
|
| +addresses</em></a> are part of the <a class="reference internal" href="#link-for-module-block"><em>module
|
| +block</em></a>, but must be defined before any global variables.</p>
|
| +<p>Names to be associated with global variables and function addresses, are defined
|
| +in the <a class="reference internal" href="#link-for-valuesymtab-block-section"><em>valuesymtab block</em></a>, and must
|
| +appear after the <a class="reference internal" href="#link-for-globals-block-section"><em>globals block</em></a>, but
|
| +before any <a class="reference internal" href="#link-for-function-blocks-section"><em>function definition</em></a>.</p>
|
| +<p>The <a class="reference internal" href="#link-for-module-block"><em>module block</em></a> is the top-most block, and all
|
| +other blocks must appear within the module block. The module block defines the
|
| +executable in the bitcode file.</p>
|
| +<p>Constants used within a <a class="reference internal" href="#link-for-function-blocks-section"><em>function
|
| +definition</em></a> must be defined using a
|
| +<a class="reference internal" href="#link-for-constants-block-section"><em>constants block</em></a>. Each function
|
| +definition is defined by a <a class="reference internal" href="#link-for-function-blocks-section"><em>function
|
| +block</em></a> and constant blocks can only appear
|
| +within function blocks. Constants defined within a constant block can only be
|
| +used in the enclosing function block.</p>
|
| +<p>Function definitions are defined by a sequence of instructions. There are
|
| +several types of instructions.</p>
|
| +<p>A <a class="reference internal" href="#link-for-terminator-instruction-section"><em>terminator instruction</em></a> is the
|
| +last instruction in a <a class="reference internal" href="#link-for-function-blocks-section"><em>basic block</em></a>, and
|
| +is a branch, return, or unreachable instruction.</p>
|
| +<p>There are <a class="reference internal" href="#link-for-integer-binary-instructions"><em>integer</em></a> and
|
| +<a class="reference internal" href="#link-for-floating-point-binary-instructions"><em>floating point</em></a> binary
|
| +operations. Integer binary instructions include both arithmetic and logical
|
| +operations. Floating point instructions define arithmetic operations.</p>
|
| +<p>There are also <a class="reference internal" href="#link-for-memory-creation-and-access-instructions"><em>memory
|
| +access</em></a> instructions that
|
| +allow one to load and store values. That section also includes how to define
|
| +local variables using the <a class="reference internal" href="#link-for-alloca-instruction"><em>alloca
|
| +instruction</em></a>.</p>
|
| +<p>One can also convert integer and floating point values using <a class="reference internal" href="#link-for-conversion-instructions"><em>conversion
|
| +instructions</em></a>.</p>
|
| +<p><a class="reference internal" href="#link-for-compare-instructions"><em>Comparison instructions</em></a>
|
| +allow you to compare values.</p>
|
| +<p><a class="reference internal" href="#link-for-vector-instructions"><em>Vector instructions</em></a> allow you to build and
|
| +update vectors. Corresponding <a class="reference internal" href="#link-for-intrinsic-functions-section"><em>intrinsic
|
| +functions</em></a>, as well as
|
| +<a class="reference internal" href="#link-for-integer-binary-instructions"><em>integer</em></a> and <a class="reference internal" href="#link-for-floating-point-binary-instructions"><em>floating
|
| +point</em></a> binary instructions allow
|
| +you to apply operations to vectors.</p>
|
| +<p>In addition, <a class="reference internal" href="#link-for-other-pnaclasm-instructions"><em>other instructions</em></a> are
|
| +available. This includes function and procedure calls.</p>
|
| +<p>There are also <a class="reference internal" href="#link-for-memory-blocks-and-alignment-section"><em>memory
|
| +alignment</em></a> issues that should be
|
| +considered for global and local variables, as well as load and store
|
| +instructions.</p>
|
| +<p>Finally, how to pack records is described in the
|
| +<a class="reference internal" href="#link-for-abbreviations-section"><em>abbreviations</em></a> section.</p>
|
| +<h2 id="global-state"><span id="link-for-global-state-section"></span>Global State</h2>
|
| +<p>This section describes the global state associated with PNaClAsm. It is used to
|
| +define contextual data that is carried between records.</p>
|
| +<p>In particular, PNaClAsm is a strongly typed language, and hence, we must track
|
| +the type associated with values. Subsection <a class="reference internal" href="#link-to-typing-functions"><em>Typing Functions</em></a>
|
| +describes the functions used to maintain typing information associated with
|
| +values.</p>
|
| +<p>Values are implicitly ordered within a block, and the indices associated with
|
| +the values do not appear in records. Rather, ID counters are used to figure out
|
| +what corresponding ID name is associated with a value generating record.
|
| +Subsection <a class="reference internal" href="#link-to-id-counters"><em>ID Counters</em></a> defines counters maintained in the global
|
| +state.</p>
|
| +<p>In several blocks, one of the first records in the block defines how many values
|
| +are defined in in the block. The main purpose of these counts is to communicate
|
| +to the <a class="reference internal" href="/native-client/overview.html#link-for-pnacl-translator"><em>PNaCl translator</em></a> space requirements, or
|
| +a limit so that it can detect bad references to values. Subsection
|
| +<a class="reference internal" href="#link-for-size-variables"><em>Size Variables</em></a> defines variables that hold size definitions in
|
| +the corresponding records.</p>
|
| +<p>Finally, the function and constants block contain implicit context between
|
| +records in those blocks. Subsection <a class="reference internal" href="#link-to-other-variables"><em>Other Variables</em></a> defines the
|
| +variables that contain this implicit context.</p>
|
| +<h3 id="typing-functions"><span id="link-to-typing-functions"></span>Typing Functions</h3>
|
| +<p>Associated with most identifiers is a type. This type defines what type the
|
| +corresponding value has. It is defined by the (initially empty) map:</p>
|
| +<pre class="prettyprint">
|
| +TypeOf: ID -> Type
|
| +</pre>
|
| +<p>For each type in the <a class="reference internal" href="#link-for-types-block-section"><em>types block</em></a>, a
|
| +corresponding inverse map:</p>
|
| +<pre class="prettyprint">
|
| +TypeID: Type -> ID
|
| +</pre>
|
| +<p>is maintained to convert syntactic types to the corresponding type ID.</p>
|
| +<p>Note: This document assumes that map <code>TypeID</code> is automatically maintained
|
| +during updates to map <code>TypeOf</code> (when given a type <code>ID</code>). Hence, <em>Updates</em>
|
| +subsections will not contain assignments to this map.</p>
|
| +<p>Associated with each function identifier is its <a class="reference internal" href="#link-for-function-type"><em>type
|
| +signature</em></a>. This is different than the type of the
|
| +function identifier, since function identifiers represent the function address
|
| +which is a pointer (and pointers are always implemented as a 32-bit integer
|
| +following the ILP32 data model).</p>
|
| +<p>Function type signatures are maintained using:</p>
|
| +<pre class="prettyprint">
|
| +TypeOfFcn: ID -> Type
|
| +</pre>
|
| +<p>In addition, if a function address has an implementing block, there is a
|
| +corresponding implementation associated with the function address. To indicate
|
| +which function addresses have implementations, we use the set:</p>
|
| +<pre class="prettyprint">
|
| +DefiningFcnIDs: set(ID)
|
| +</pre>
|
| +<h3 id="link-to-id-counters"><span id="id-counters"></span>ID Counters</h3>
|
| +<p>Each block defines one or more kinds of values. Value indices are generated
|
| +sequentially, starting at zero. To capture this, the following counters are
|
| +defined:</p>
|
| +<dl class="docutils">
|
| +<dt>NumTypes</dt>
|
| +<dd>The number of types defined so far (in the <a class="reference internal" href="#link-for-types-block-section"><em>types
|
| +block</em></a>).</dd>
|
| +<dt>NumFuncAddresses</dt>
|
| +<dd>The number of function addresses defined so far (in the <a class="reference internal" href="#link-for-module-block"><em>module
|
| +block</em></a>).</dd>
|
| +<dt>NumGlobalAddresses</dt>
|
| +<dd>The number of global variable/constant addresses defined so far (in the
|
| +<a class="reference internal" href="#link-for-globals-block-section"><em>globals block</em></a>).</dd>
|
| +<dt>NumParams</dt>
|
| +<dd>The number of parameters defined for a function. Note: Unlike other counters,
|
| +this value is set once, at the beginning of the corresponding <a class="reference internal" href="#link-for-function-blocks-section"><em>function
|
| +block</em></a>, based on the type signature
|
| +associated with the function.</dd>
|
| +<dt>NumFcnConsts</dt>
|
| +<dd>The number of constants defined in a function so far (in the corresponding
|
| +nested <a class="reference internal" href="#link-for-constants-block-section"><em>constants block</em></a>).</dd>
|
| +<dt>NumBasicBlocks</dt>
|
| +<dd>The number of basic blocks defined so far (within a <a class="reference internal" href="#link-for-function-blocks-section"><em>function
|
| +block</em></a>).</dd>
|
| +<dt>NumValuedInsts</dt>
|
| +<dd>The number of instructions, generating values, defined so far (within a
|
| +<a class="reference internal" href="#link-for-function-blocks-section"><em>function block</em></a>).</dd>
|
| +</dl>
|
| +<h3 id="size-variables"><span id="link-for-size-variables"></span>Size Variables</h3>
|
| +<p>A number of blocks define expected sizes of constructs. These sizes are recorded
|
| +in the following size variables:</p>
|
| +<dl class="docutils">
|
| +<dt>ExpectedBasicBlocks</dt>
|
| +<dd>The expected <a class="reference internal" href="#link-for-basic-blocks-count"><em>number of basic blocks</em></a> within
|
| +a function implementation.</dd>
|
| +<dt>ExpectedTypes</dt>
|
| +<dd>The expected <a class="reference internal" href="#link-for-types-count-record"><em>number of types</em></a> defined in
|
| +the types block.</dd>
|
| +<dt>ExpectedGlobals</dt>
|
| +<dd>The expected <a class="reference internal" href="#link-for-globals-count-record"><em>number of global variable/constant
|
| +addresses</em></a> in the globals block.</dd>
|
| +<dt>ExpectedInitializers</dt>
|
| +<dd>The expected <a class="reference internal" href="#link-for-compound-initializer"><em>number of initializers</em></a> for
|
| +a global variable/constant address in the globals block.</dd>
|
| +</dl>
|
| +<p>It is assumed that the corresponding <a class="reference internal" href="#link-to-id-counters"><em>ID counters</em></a> are
|
| +always smaller than the corresponding size variables (except
|
| +ExpectedInitializers). That is:</p>
|
| +<pre class="prettyprint">
|
| +NumBasicBlocks < ExpectedBasicBlocks
|
| +NumTypes < ExpectedTypes
|
| +NumGlobalAddresses < ExpectedGlobals
|
| +</pre>
|
| +<h3 id="other-variables"><span id="link-to-other-variables"></span>Other Variables</h3>
|
| +<dl class="docutils">
|
| +<dt>EnclosingFcnID</dt>
|
| +<dd>The function ID of the function block being processed.</dd>
|
| +<dt>ConstantsSetType</dt>
|
| +<dd>Holds the type associated with the last <a class="reference internal" href="#link-for-constants-set-type-record"><em>set type
|
| +record</em></a> in the constants block. Note: at
|
| +the beginning of each constants block, this variable is set to type void.</dd>
|
| +</dl>
|
| +<h2 id="global-records"><span id="link-for-global-record-codes"></span>Global Records</h2>
|
| +<p>Global records are records that can appear in any block. These records have
|
| +the same meaning in multiple kinds of blocks.</p>
|
| +<p>There are four global PNaCl records, each having its own record code. These
|
| +global records are:</p>
|
| +<dl class="docutils">
|
| +<dt>Header</dt>
|
| +<dd>The <a class="reference internal" href="#link-for-header-record-section"><em>header record</em></a> is the first record
|
| +of a PNaCl bitcode file, and identifies the file’s magic number, as well as
|
| +the bitcode version it uses. The record defines the sequence of bytes that
|
| +make up the header and uniquely identifies the file as a PNaCl bitcode file.</dd>
|
| +<dt>Enter</dt>
|
| +<dd>An <a class="reference internal" href="#link-for-enter-block-record-section"><em>enter record</em></a> defines the
|
| +beginning of a block. Since blocks can be nested, one can appear inside other
|
| +blocks, as well as at the top level.</dd>
|
| +<dt>Exit</dt>
|
| +<dd>An <a class="reference internal" href="#link-for-exit-block-record-section"><em>exit record</em></a> defines the end of a
|
| +block. Hence, it must appear in every block, to end the block.</dd>
|
| +<dt>Abbreviation</dt>
|
| +<dd>An <a class="reference internal" href="#link-for-abbreviation-record"><em>abbreviation record</em></a> defines a
|
| +user-defined abbreviation to be applied to records within blocks.
|
| +Abbreviation records appearing in the abbreviations block define global
|
| +abbreviations. All other abbreviations are local to the block they appear in,
|
| +and can only be used in that block.</dd>
|
| +</dl>
|
| +<p>All global records can’t have user-defined abbreviations associated with
|
| +them. The <a class="reference internal" href="#link-for-default-abbreviations"><em>default abbreviation</em></a> is always
|
| +used.</p>
|
| +<h3 id="header-record"><span id="link-for-header-record-section"></span>Header Record</h3>
|
| +<p>The header record must be the first record in the file. It is the only record in
|
| +the bitcode file that doesn’t have a corresponding construct in PNaClAsm. In
|
| +addition, no abbreviation index is associated with it.</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<p>There is no syntax for header records in PNaClAsm.</p>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +<65532, 80, 69, 88, 69, 1, 0, 8, 0, 17, 0, 4, 0, 2, 0, 0, 0>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p>The header record defines the initial sequence of bytes that must appear at the
|
| +beginning of all (PNaCl bitcode version 2) files. That sequence is the list of
|
| +bytes inside the record (excluding the record code). As such, it uniquely
|
| +identifies all PNaCl bitcode files.</p>
|
| +<p><strong>Examples</strong>:</p>
|
| +<pre class="prettyprint">
|
| +0:0|<65532, 80, 69, 88, 69, 1, 0,|Magic Number: 'PEXE' (80, 69, 88, 69)
|
| + | 8, 0, 17, 0, 4, 0, 2, 0, 0, |PNaCl Version: 2
|
| + | 0> |
|
| +</pre>
|
| +<h3 id="enter-block-record"><span id="link-for-enter-block-record-section"></span>Enter Block Record</h3>
|
| +<p>Block records can be top-level, as well as nested in other blocks. Blocks must
|
| +begin with an <em>enter</em> record, and end with an
|
| +<a class="reference internal" href="#link-for-exit-block-record-section"><em>exit</em></a> record.</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| +N { <B>
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +1: <65535, ID, B>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p>Enter block records define the beginning of a block. <code>B</code>, if present, is the
|
| +number of bits needed to represent all possible abbreviation indices used within
|
| +the block. If omitted, <code>B=2</code> is assumed.</p>
|
| +<p>The block <code>ID</code> value is dependent on the name <code>N</code>. Valid names and
|
| +corresponding <code>BlockID</code> values are defined as follows:</p>
|
| +<table border="1" class="docutils">
|
| +<colgroup>
|
| +</colgroup>
|
| +<thead valign="bottom">
|
| +<tr class="row-odd"><th class="head">N</th>
|
| +<th class="head">Block ID</th>
|
| +</tr>
|
| +</thead>
|
| +<tbody valign="top">
|
| +<tr class="row-even"><td>abbreviations</td>
|
| +<td>0</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>constants</td>
|
| +<td>11</td>
|
| +</tr>
|
| +<tr class="row-even"><td>function</td>
|
| +<td>12</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>globals</td>
|
| +<td>19</td>
|
| +</tr>
|
| +<tr class="row-even"><td>module</td>
|
| +<td>8</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>types</td>
|
| +<td>17</td>
|
| +</tr>
|
| +<tr class="row-even"><td>valuesymtab</td>
|
| +<td>14</td>
|
| +</tr>
|
| +</tbody>
|
| +</table>
|
| +<p>Note: For readability, PNaClAsm defines a more readable form of a function block
|
| +enter record. See <a class="reference internal" href="#link-for-function-blocks-section"><em>function blocks</em></a> for
|
| +more details.</p>
|
| +<p><strong>Examples</strong>:</p>
|
| +<pre class="prettyprint">
|
| +16:0|1: <65535, 8, 2> |module { // BlockID = 8
|
| +24:0| 3: <1, 1> | version 1;
|
| +26:4| 1: <65535, 0, 2> | abbreviations { // BlockID = 0
|
| +36:0| 0: <65534> | }
|
| +40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| +48:0| 3: <1, 2> | count 2;
|
| +50:4| 3: <2> | @t0 = void;
|
| +52:2| 3: <21, 0, 0> | @t1 = void ();
|
| +55:4| 0: <65534> | }
|
| +56:0| 3: <8, 1, 0, 1, 0> | declare external void @f0();
|
| +60:6| 1: <65535, 19, 2> | globals { // BlockID = 19
|
| +68:0| 3: <5, 0> | count 0;
|
| +70:4| 0: <65534> | }
|
| +72:0|0: <65534> |}
|
| +</pre>
|
| +<h3 id="exit-block-record"><span id="link-for-exit-block-record-section"></span>Exit Block Record</h3>
|
| +<p>Block records can be top-level, as well as nested, records. Blocks must begin
|
| +with an <a class="reference internal" href="#link-for-enter-block-record-section"><em>enter</em></a> record, and end with
|
| +an <em>exit</em> record.</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| +}
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +0: <65534>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p>All exit records are identical, no matter what block they are ending. An exit
|
| +record defines the end of the block.</p>
|
| +<p><strong>Examples</strong>:</p>
|
| +<pre class="prettyprint">
|
| +16:0|1: <65535, 8, 2> |module { // BlockID = 8
|
| +24:0| 3: <1, 1> | version 1;
|
| +26:4| 1: <65535, 0, 2> | abbreviations { // BlockID = 0
|
| +36:0| 0: <65534> | }
|
| +40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| +48:0| 3: <1, 2> | count 2;
|
| +50:4| 3: <2> | @t0 = void;
|
| +52:2| 3: <21, 0, 0> | @t1 = void ();
|
| +55:4| 0: <65534> | }
|
| +56:0| 3: <8, 1, 0, 1, 0> | declare external void @f0();
|
| +60:6| 1: <65535, 19, 2> | globals { // BlockID = 19
|
| +68:0| 3: <5, 0> | count 0;
|
| +70:4| 0: <65534> | }
|
| +72:0|0: <65534> |}
|
| +</pre>
|
| +<h3 id="abbreviation-record"><span id="link-for-abbreviation-record"></span>Abbreviation Record</h3>
|
| +<p>Abbreviation records define abbreviations. See
|
| +<a class="reference internal" href="#link-for-abbreviations-section"><em>abbreviations</em></a> for details on how
|
| +abbreviations should be written. This section only presents the mechanical
|
| +details for converting an abbreviation into a PNaCl record.</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| +A = abbrev <E1, ... , EM>;
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +2: <65533, M, EE1, ... , EEM>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p>Defines an abbreviation <code>A</code> as the sequence of encodings <code>E1</code> through
|
| +<code>EM</code>. If the abbreviation appears within the <a class="reference internal" href="#link-for-abbreviations-block-section"><em>abbreviations
|
| +block</em></a>, <code>A</code> must be a global
|
| +abbreviation. Otherwise, <code>A</code> must be a local abbreviation.</p>
|
| +<p>Abbreviations within a block (or a section within the abbreviations block), must
|
| +be enumerated in order, starting at index <code>0</code>.</p>
|
| +<p>Valid encodings <code>Ei</code>, and the corresponding sequence of (unsigned) integers
|
| +<code>EEi</code>, ( for <code>1 <= i <= M</code>) are defined by the following table:</p>
|
| +<table border="1" class="docutils">
|
| +<colgroup>
|
| +</colgroup>
|
| +<thead valign="bottom">
|
| +<tr class="row-odd"><th class="head">Ei</th>
|
| +<th class="head">EEi</th>
|
| +<th class="head">Form</th>
|
| +</tr>
|
| +</thead>
|
| +<tbody valign="top">
|
| +<tr class="row-even"><td>C</td>
|
| +<td>1, C</td>
|
| +<td>Literal C in corresponding position in record.</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>fixed(N)</td>
|
| +<td>0, 1, N</td>
|
| +<td>Encode value as a fixed sequence of N bits.</td>
|
| +</tr>
|
| +<tr class="row-even"><td>vbr(N)</td>
|
| +<td>0, 2, N</td>
|
| +<td>Encode value using a variable bit rate of N.</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>char6</td>
|
| +<td>0, 4</td>
|
| +<td>Encode value as 6-bit char containing
|
| +characters [a-zA-Z0-9._].</td>
|
| +</tr>
|
| +<tr class="row-even"><td>array</td>
|
| +<td>0, 3</td>
|
| +<td>Allow zero or more of the succeeding abbreviation.</td>
|
| +</tr>
|
| +</tbody>
|
| +</table>
|
| +<p>Note that ‘array’ can only appear as the second to last element <code>Em</code>.
|
| +Notationally, <code>Array(EM)</code> is used in place of <code>array</code> and <code>EM</code>, the last
|
| +two entries in an abbreviation.</p>
|
| +<p><strong>Examples</strong>:</p>
|
| +<pre class="prettyprint">
|
| + 0:0|<65532, 80, 69, 88, 69, 1, 0,|Magic Number: 'PEXE' (80, 69, 88, 69)
|
| + | 8, 0, 17, 0, 4, 0, 2, 0, 0, |PNaCl Version: 2
|
| + | 0> |
|
| + 16:0|1: <65535, 8, 2> |module { // BlockID = 8
|
| + 24:0| 3: <1, 1> | version 1;
|
| + 26:4| 1: <65535, 0, 2> | abbreviations { // BlockID = 0
|
| + 36:0| 1: <1, 14> | valuesymtab:
|
| + 38:4| 2: <65533, 4, 0, 1, 3, 0,| @a0 = abbrev <fixed(3), vbr(8),
|
| + | 2, 8, 0, 3, 0, 1, 8> | array(fixed(8))>;
|
| + 43:2| 2: <65533, 4, 1, 1, 0, 2,| @a1 = abbrev <1, vbr(8),
|
| + | 8, 0, 3, 0, 1, 7> | array(fixed(7))>;
|
| + 48:0| 2: <65533, 4, 1, 1, 0, 2,| @a2 = abbrev <1, vbr(8),
|
| + | 8, 0, 3, 0, 4> | array(char6)>;
|
| + 52:1| 2: <65533, 4, 1, 2, 0, 2,| @a3 = abbrev <2, vbr(8),
|
| + | 8, 0, 3, 0, 4> | array(char6)>;
|
| + 56:2| 1: <1, 11> | constants:
|
| + 58:6| 2: <65533, 2, 1, 1, 0, 1,| @a0 = abbrev <1, fixed(2)>;
|
| + | 2> |
|
| + 61:7| 2: <65533, 2, 1, 4, 0, 2,| @a1 = abbrev <4, vbr(8)>;
|
| + | 8> |
|
| + 65:0| 2: <65533, 2, 1, 4, 1, 0>| @a2 = abbrev <4, 0>;
|
| + 68:1| 2: <65533, 2, 1, 6, 0, 2,| @a3 = abbrev <6, vbr(8)>;
|
| + | 8> |
|
| + 71:2| 1: <1, 12> | function:
|
| + 73:6| 2: <65533, 4, 1, 20, 0, | @a0 = abbrev <20, vbr(6), vbr(4),
|
| + | 2, 6, 0, 2, 4, 0, 2, | vbr(4)>;
|
| + | 4> |
|
| + 79:1| 2: <65533, 4, 1, 2, 0, 2,| @a1 = abbrev <2, vbr(6), vbr(6),
|
| + | 6, 0, 2, 6, 0, 1, 4> | fixed(4)>;
|
| + 84:4| 2: <65533, 4, 1, 3, 0, 2,| @a2 = abbrev <3, vbr(6),
|
| + | 6, 0, 1, 2, 0, 1, 4> | fixed(2), fixed(4)>;
|
| + 89:7| 2: <65533, 1, 1, 10> | @a3 = abbrev <10>;
|
| + 91:7| 2: <65533, 2, 1, 10, 0, | @a4 = abbrev <10, vbr(6)>;
|
| + | 2, 6> |
|
| + 95:0| 2: <65533, 1, 1, 15> | @a5 = abbrev <15>;
|
| + 97:0| 2: <65533, 3, 1, 43, 0, | @a6 = abbrev <43, vbr(6),
|
| + | 2, 6, 0, 1, 2> | fixed(2)>;
|
| +101:2| 2: <65533, 4, 1, 24, 0, | @a7 = abbrev <24, vbr(6), vbr(6),
|
| + | 2, 6, 0, 2, 6, 0, 2, | vbr(4)>;
|
| + | 4> |
|
| +106:5| 1: <1, 19> | globals:
|
| +109:1| 2: <65533, 3, 1, 0, 0, 2,| @a0 = abbrev <0, vbr(6),
|
| + | 6, 0, 1, 1> | fixed(1)>;
|
| +113:3| 2: <65533, 2, 1, 1, 0, 2,| @a1 = abbrev <1, vbr(8)>;
|
| + | 8> |
|
| +116:4| 2: <65533, 2, 1, 2, 0, 2,| @a2 = abbrev <2, vbr(8)>;
|
| + | 8> |
|
| +119:5| 2: <65533, 3, 1, 3, 0, 3,| @a3 = abbrev <3, array(fixed(8))>
|
| + | 0, 1, 8> | ;
|
| +123:2| 2: <65533, 2, 1, 4, 0, 2,| @a4 = abbrev <4, vbr(6)>;
|
| + | 6> |
|
| +126:3| 2: <65533, 3, 1, 4, 0, 2,| @a5 = abbrev <4, vbr(6), vbr(6)>;
|
| + | 6, 0, 2, 6> |
|
| +130:5| 0: <65534> | }
|
| +132:0| 1: <65535, 17, 3> | types { // BlockID = 17
|
| +140:0| 2: <65533, 4, 1, 21, 0, | %a0 = abbrev <21, fixed(1),
|
| + | 1, 1, 0, 3, 0, 1, 2> | array(fixed(2))>;
|
| +144:7| 3: <1, 3> | count 3;
|
| +147:4| 3: <7, 32> | @t0 = i32;
|
| +150:7| 4: <21, 0, 0, 0, 0> | @t1 = i32 (i32, i32); <%a0>
|
| +152:7| 3: <2> | @t2 = void;
|
| +154:6| 0: <65534> | }
|
| +156:0| 3: <8, 1, 0, 0, 0> | define external i32 @f0(i32, i32);
|
| +160:6| 1: <65535, 19, 4> | globals { // BlockID = 19
|
| +168:0| 3: <5, 0> | count 0;
|
| +170:6| 0: <65534> | }
|
| +172:0| 1: <65535, 14, 3> | valuesymtab { // BlockID = 14
|
| +180:0| 6: <1, 0, 102> | @f0 : "f"; <@a2>
|
| +182:7| 0: <65534> | }
|
| +184:0| 1: <65535, 12, 4> | function i32 @f0(i32 %p0, i32 %p1) {
|
| + | | // BlockID = 12
|
| +192:0| 3: <1, 1> | blocks 1;
|
| + | | %b0:
|
| +194:6| 5: <2, 2, 1, 0> | %v0 = add i32 %p0, %p1; <@a1>
|
| +197:2| 5: <2, 3, 1, 0> | %v1 = add i32 %p0, %v0; <@a1>
|
| +199:6| 8: <10, 1> | ret i32 %v1; <@a4>
|
| +201:0| 0: <65534> | }
|
| +204:0|0: <65534> |}
|
| +</pre>
|
| +<p>Note that the example above shows the standard abbreviations used by
|
| +<em>pnacl-finalize</em>.</p>
|
| +<h2 id="types-block"><span id="link-for-types-block-section"></span>Types Block</h2>
|
| +<p>The types block defines all types used in a program. It must appear in the
|
| +<a class="reference internal" href="#link-for-module-block"><em>module block</em></a>, before any <a class="reference internal" href="#link-for-function-address-section"><em>function
|
| +address</em></a> records, the <a class="reference internal" href="#link-for-globals-block-section"><em>globals
|
| +block</em></a>, the <a class="reference internal" href="#link-for-valuesymtab-block-section"><em>valuesymtab
|
| +block</em></a>, and any <a class="reference internal" href="#link-for-function-blocks-section"><em>function
|
| +blocks</em></a>.</p>
|
| +<p>All types used in a program must be defined in the types block. Many PNaClAsm
|
| +constructs allow one to use explicit type names, rather than the type
|
| +identifiers defined by this block. However, they are internally converted to the
|
| +corresponding type identifier in the types block. Hence, the requirement that
|
| +the types block must appear early in the module block.</p>
|
| +<p>Each record in the types block defines a type used by the program. Types can be
|
| +broken into the following groups:</p>
|
| +<dl class="docutils">
|
| +<dt>Primitive value types</dt>
|
| +<dd>Defines the set of base types for values. This includes various sizes of
|
| +integer and floating point types.</dd>
|
| +<dt>Void type</dt>
|
| +<dd>A primitive type that doesn’t represent any value and has no size.</dd>
|
| +<dt>Function types</dt>
|
| +<dd>The type signatures of functions.</dd>
|
| +<dt>Vector type</dt>
|
| +<dd>Defines vectors of primitive types.</dd>
|
| +</dl>
|
| +<p>In addition, any type that is not defined using another type is a primitive
|
| +type. All other types (i.e. function and vector) are composite types.</p>
|
| +<p>Types must be defined in a topological order, causing primitive types to appear
|
| +before the composite types that use them. Each type must be unique. There are no
|
| +additional restrictions on the order that types can be defined in a types block.</p>
|
| +<p>The following subsections introduce each valid PNaClAsm type, and the
|
| +corresponding PNaClAsm construct that defines the type. Types not defined in the
|
| +types block, can’t be used in a PNaCl program.</p>
|
| +<p>The first record of a types block must be a <a class="reference internal" href="#link-for-types-count-record"><em>count
|
| +record</em></a>, defining how many types are defined by the
|
| +types block. All remaining records defines a type. The following subsections
|
| +defines valid records within a types block. The order of type records is
|
| +important. The position of each defining record implicitly defines the type ID
|
| +that will be used to denote that type, within other PNaCl records of the bitcode
|
| +file.</p>
|
| +<p>To make this more concrete, consider the following example types block:</p>
|
| +<pre class="prettyprint">
|
| +40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| +48:0| 3: <1, 4> | count 4;
|
| +50:4| 3: <7, 32> | @t0 = i32;
|
| +53:6| 3: <3> | @t1 = float;
|
| +55:4| 3: <2> | @t2 = void;
|
| +57:2| 3: <21, 0, 2, 0, 1> | @t3 = void (i32, float);
|
| +62:0| 0: <65534> | }
|
| +</pre>
|
| +<p>This example defines a types block that defines four type IDs:</p>
|
| +<dl class="docutils">
|
| +<dt>@t0</dt>
|
| +<dd>A 32-bit integer type.</dd>
|
| +<dt>@t1</dt>
|
| +<dd>A 32-bit floating point type.</dd>
|
| +<dt>@t2</dt>
|
| +<dd>The void type.</dd>
|
| +<dt>@t3</dt>
|
| +<dd>A function, taking 32-bit integer and float point arguments that returns
|
| +void.</dd>
|
| +</dl>
|
| +<h3 id="count-record"><span id="link-for-types-count-record"></span>Count Record</h3>
|
| +<p>The <em>count record</em> defines how many types are defined in the types
|
| +block. Following the types count record are records that define types used by
|
| +the PNaCl program.</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| +count N; <A>
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA: <1, N>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p>This construct defines the number of types used by the PNaCl program. <code>N</code> is
|
| +the number of types defined in the types block. It is an error to define more
|
| +(or fewer) types than value <code>N</code>, within the enclosing types block.</p>
|
| +<p><strong>Constraints</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A) &
|
| +0 == NumTypes
|
| +</pre>
|
| +<p><strong>Updates</strong>:</p>
|
| +<pre class="prettyprint">
|
| +ExpectedTypes = N;
|
| +</pre>
|
| +<p><strong>Examples</strong>:</p>
|
| +<pre class="prettyprint">
|
| +40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| +48:0| 3: <1, 4> | count 4;
|
| +50:4| 3: <7, 32> | @t0 = i32;
|
| +53:6| 3: <3> | @t1 = float;
|
| +55:4| 3: <2> | @t2 = void;
|
| +57:2| 3: <21, 0, 2, 0, 1> | @t3 = void (i32, float);
|
| +62:0| 0: <65534> | }
|
| +</pre>
|
| +<h3 id="void-type">Void Type</h3>
|
| +<p>The <em>void</em> type record defines the void type, which corresponds to the type that
|
| +doesn’t define any value, and has no size.</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| +@tN = void; <A>
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA: <2>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p>The void type record defines the type that has no values and has no size.</p>
|
| +<p><strong>Constraints</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A) &
|
| +N == NumTypes
|
| +</pre>
|
| +<p><strong>Updates</strong>:</p>
|
| +<pre class="prettyprint">
|
| +++NumTypes;
|
| +TypeOf(@tN) = void;
|
| +</pre>
|
| +<p><strong>Examples</strong>:</p>
|
| +<pre class="prettyprint">
|
| +40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| +48:0| 3: <1, 4> | count 4;
|
| +50:4| 3: <7, 32> | @t0 = i32;
|
| +53:6| 3: <3> | @t1 = float;
|
| +55:4| 3: <2> | @t2 = void;
|
| +62:0| 0: <65534> | }
|
| +</pre>
|
| +<h3 id="integer-types">Integer Types</h3>
|
| +<p>PNaClAsm allows integer types for various bit sizes. Valid bit sizes are 1, 8,
|
| +16, 32, and 64. Integers can be signed or unsigned, but the signed component of
|
| +an integer is not specified by the type. Rather, individual instructions
|
| +determine whether the value is assumed to be signed or unsigned.</p>
|
| +<p>It should be noted that in PNaClAsm, all pointers are implemented as 32-bit
|
| +(unsigned) integers. There isn’t a separate type for pointers. The only way to
|
| +tell that a 32-bit integer is a pointer, is when it is used in an instruction
|
| +that requires a pointer (such as load and store instructions).</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| +@tN = iB; <A>
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA: <7, B>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p>An integer type record defines an integer type. <code>B</code> defines the number of bits
|
| +of the integer type.</p>
|
| +<p><strong>Constraints</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A) &
|
| +N == NumTypes &
|
| +B in {1, 8, 16, 32, 64}
|
| +</pre>
|
| +<p><strong>Updates</strong>:</p>
|
| +<pre class="prettyprint">
|
| +++NumTypes;
|
| +TypeOf(@tN) = iB;
|
| +</pre>
|
| +<p><strong>Examples</strong>:</p>
|
| +<pre class="prettyprint">
|
| +40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| +48:0| 3: <1, 7> | count 7;
|
| +50:4| 3: <7, 64> | @t0 = i64;
|
| +53:6| 3: <7, 1> | @t1 = i1;
|
| +56:2| 3: <7, 8> | @t2 = i8;
|
| +58:6| 3: <7, 16> | @t3 = i16;
|
| +61:2| 3: <7, 32> | @t4 = i32;
|
| +64:4| 3: <21, 0, 0, 1> | @t5 = i64 (i1);
|
| +68:4| 3: <2> | @t6 = void;
|
| +70:2| 0: <65534> | }
|
| +</pre>
|
| +<h3 id="bit-floating-point-type">32-Bit Floating Point Type</h3>
|
| +<p>PNaClAsm allows computation on 32-bit floating point values. A floating point
|
| +type record defines the 32-bit floating point type.</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| +@tN = float; <A>
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA: <3>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p>A floating point type record defines the 32-bit floating point type.</p>
|
| +<p><strong>Constraints</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A) &
|
| +N == NumTypes
|
| +</pre>
|
| +<p><strong>Updates</strong>:</p>
|
| +<pre class="prettyprint">
|
| +++NumTypes;
|
| +TypeOf(@tN) = float;
|
| +</pre>
|
| +<p><strong>Examples</strong>:</p>
|
| +<pre class="prettyprint">
|
| +40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| +48:0| 3: <1, 4> | count 4;
|
| +50:4| 3: <4> | @t0 = double;
|
| +52:2| 3: <3> | @t1 = float;
|
| +54:0| 3: <21, 0, 0, 1> | @t2 = double (float);
|
| +58:0| 3: <2> | @t3 = void;
|
| +59:6| 0: <65534> | }
|
| +</pre>
|
| +<h3 id="id1">64-bit Floating Point Type</h3>
|
| +<p>PNaClAsm allows computation on 64-bit floating point values. A 64-bit floating
|
| +type record defines the 64-bit floating point type.</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| +@tN = double; <A>
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA: <4>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p>A double type record defines the 64-bit floating point type.</p>
|
| +<p><strong>Constraints</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A) &
|
| +N == NumTypes
|
| +</pre>
|
| +<p><strong>Updates</strong>:</p>
|
| +<pre class="prettyprint">
|
| +++NumTypes;
|
| +TypeOf(@tN) = double;
|
| +</pre>
|
| +<p><strong>Examples</strong>:</p>
|
| +<pre class="prettyprint">
|
| +40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| +48:0| 3: <1, 4> | count 4;
|
| +50:4| 3: <4> | @t0 = double;
|
| +52:2| 3: <3> | @t1 = float;
|
| +54:0| 3: <21, 0, 0, 1> | @t2 = double (float);
|
| +58:0| 3: <2> | @t3 = void;
|
| +59:6| 0: <65534> | }
|
| +</pre>
|
| +<h3 id="vector-types">Vector Types</h3>
|
| +<p>A vector type is a derived type that represents a vector of elements. Vector
|
| +types are used when multiple primitive data values are operated in parallel
|
| +using a single (SIMD) <a class="reference internal" href="#link-for-vector-instructions"><em>vector instruction</em></a>. A
|
| +vector type requires a size (number of elements) and an underlying primitive
|
| +data type.</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| +@tN = < E x T > <A>
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA: <12, E, TT>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p>The vector type defines a vector of elements. <code>T</code> is the type of each
|
| +element. <code>E</code> is the number of elements in the vector.</p>
|
| +<p>Vector types can only be defined on <code>i1</code>, <code>i8</code>, <code>i16</code>, <code>i32</code>, and
|
| +<code>float</code>. All vector types, except those on <code>i1</code>, must contain exactly 128
|
| +bits. The valid element sizes are restricted as follows:</p>
|
| +<table border="1" class="docutils">
|
| +<colgroup>
|
| +</colgroup>
|
| +<thead valign="bottom">
|
| +<tr class="row-odd"><th class="head">Type</th>
|
| +<th class="head">Valid element sizes</th>
|
| +</tr>
|
| +</thead>
|
| +<tbody valign="top">
|
| +<tr class="row-even"><td>i1</td>
|
| +<td>4, 8, 16</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>i8</td>
|
| +<td>16</td>
|
| +</tr>
|
| +<tr class="row-even"><td>i16</td>
|
| +<td>8</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>i32</td>
|
| +<td>4</td>
|
| +</tr>
|
| +<tr class="row-even"><td>float</td>
|
| +<td>4</td>
|
| +</tr>
|
| +</tbody>
|
| +</table>
|
| +<p><strong>Constraints</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A) &
|
| +TT == AbsoluteIndex(TypeID(T)) &
|
| +N == NumTypes
|
| +</pre>
|
| +<p><strong>Updates</strong>:</p>
|
| +<pre class="prettyprint">
|
| +++NumTypes
|
| +TypeOf(@tN) = <E x T>
|
| +</pre>
|
| +<p><strong>Examples</strong>:</p>
|
| +<pre class="prettyprint">
|
| +40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| +48:0| 3: <1, 14> | count 14;
|
| +50:4| 3: <7, 32> | @t0 = i32;
|
| +53:6| 3: <7, 1> | @t1 = i1;
|
| +56:2| 3: <2> | @t2 = void;
|
| +58:0| 3: <12, 4, 1> | @t3 = <4 x i1>;
|
| +61:2| 3: <12, 8, 1> | @t4 = <8 x i1>;
|
| +64:4| 3: <12, 16, 1> | @t5 = <16 x i1>;
|
| +67:6| 3: <7, 8> | @t6 = i8;
|
| +70:2| 3: <12, 16, 6> | @t7 = <16 x i8>;
|
| +73:4| 3: <7, 16> | @t8 = i16;
|
| +76:0| 3: <12, 8, 8> | @t9 = <8 x i16>;
|
| +79:2| 3: <12, 4, 0> | @t10 = <4 x i32>;
|
| +82:4| 3: <3> | @t11 = float;
|
| +84:2| 3: <12, 4, 11> | @t12 = <4 x float>;
|
| +87:4| 3: <21, 0, 2> | @t13 = void ();
|
| +90:6| 0: <65534> | }
|
| +</pre>
|
| +<h3 id="function-type"><span id="link-for-function-type"></span>Function Type</h3>
|
| +<p>The <em>function</em> type can be thought of as a function signature. It consists of a
|
| +return type, and a (possibly empty) list of formal parameter types.</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| +%tN = RT (T1, ... , TM) <A>
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA: <21, 0, IRT, IT1, ... , ITM>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p>The function type defines the signature of a function. <code>RT</code> is the return type
|
| +of the function, while types <code>T1</code> through <code>TM</code> are the types of the
|
| +arguments. Indices to the corresponding type identifiers are stored in the
|
| +corresponding record.</p>
|
| +<p>The return value must either be a primitive type, type <code>void</code>, or a vector
|
| +type. Parameter types can be a primitive or vector type.</p>
|
| +<p>For ordinary functions, the only valid integer types that can be used for a
|
| +return or parameter type are <code>i32</code> and <code>i64</code>. All other integer types are
|
| +not allowed.</p>
|
| +<p>For <a class="reference internal" href="#link-for-intrinsic-functions-section"><em>intrinsic functions</em></a>, all
|
| +integer types are allowed for both return and parameter types.</p>
|
| +<p><strong>Constraints</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A) &
|
| +M >= 0 &
|
| +IRT == AbsoluteIndex(TypeID(RT)) &
|
| +IT1 == AbsoluteIndex(TypeID(T1)) &
|
| +...
|
| +ITM == AbsoluteIndex(TypeID(TM)) &
|
| +N == NumTypes
|
| +</pre>
|
| +<p><strong>Updates</strong>:</p>
|
| +<pre class="prettyprint">
|
| +++NumTypes
|
| +TypeOf(@tN) = RT (T1, ... , TM)
|
| +</pre>
|
| +<p><strong>Examples</strong>:</p>
|
| +<pre class="prettyprint">
|
| +40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| +48:0| 3: <1, 7> | count 7;
|
| +50:4| 3: <7, 32> | @t0 = i32;
|
| +53:6| 3: <3> | @t1 = float;
|
| +55:4| 3: <4> | @t2 = double;
|
| +57:2| 3: <21, 0, 2, 1> | @t3 = double (float);
|
| +61:2| 3: <2> | @t4 = void;
|
| +63:0| 3: <21, 0, 4> | @t5 = void ();
|
| +66:2| 3: <21, 0, 0, 0, 1, 0, 2>| @t6 =
|
| + | | i32 (i32, float, i32, double);
|
| +72:4| 0: <65534> | }
|
| +</pre>
|
| +<h2 id="globals-block"><span id="link-for-globals-block-section"></span>Globals Block</h2>
|
| +<p>The globals block defines global addresses of variables and constants, used by
|
| +the PNaCl program. It also defines the memory associated with the global
|
| +addresses, and how to initialize each global variable/constant. It must appear
|
| +in the <a class="reference internal" href="#link-for-module-block"><em>module block</em></a>. It must appear after the
|
| +<a class="reference internal" href="#link-for-types-block-section"><em>types block</em></a>, as well as after all
|
| +<a class="reference internal" href="#link-for-function-address-section"><em>function address</em></a> records. But, it must
|
| +also appear before the <a class="reference internal" href="#link-for-valuesymtab-block-section"><em>valuesymtab
|
| +block</em></a>, and any
|
| +<a class="reference internal" href="#link-for-function-blocks-section"><em>function blocks</em></a>.</p>
|
| +<p>The globals block begins with a <a class="reference internal" href="#link-for-globals-count-record"><em>count
|
| +record</em></a>, defining how many global addresses are
|
| +defined by the PNaCl program. It is then followed by a sequence of records that
|
| +defines each global address, and how each global address is initialized.</p>
|
| +<p>The standard sequence, for defining global addresses, begins with a global
|
| +address record. It is then followed by a sequence of records defining how the
|
| +global address is initialized. If the initializer is simple, a single record is
|
| +used. Otherwise, the initializer is preceded with a <a class="reference internal" href="#link-for-compound-initializer"><em>compound
|
| +record</em></a>, specifying a number <em>N</em>, followed by
|
| +sequence of <em>N</em> simple initializer records.</p>
|
| +<p>The size of the memory referenced by each global address is defined by its
|
| +initializer records. All simple initializer records define a sequence of
|
| +bytes. A compound initializer defines the sequence of bytes by concatenating the
|
| +corresponding sequence of bytes for each of its simple initializer records.</p>
|
| +<p>For notational convenience, PNaClAsm begins a compound record with a “{”, and
|
| +inserts a “}” after the last initializer record associated with the compound
|
| +record. This latter “}” does not correspond to any record. It is implicitly
|
| +assumed by the size specified in the compound record, and is added only to
|
| +improve readability.</p>
|
| +<p>Explicit alignment is specified for global addresses, and must be a power of
|
| +2. See <a class="reference internal" href="#link-for-memory-blocks-and-alignment-section"><em>memory blocks and
|
| +alignment</em></a> for a more detailed
|
| +discussion on how to define alignment.</p>
|
| +<p>For example, consider the following pnacl-bcdis output snippet:</p>
|
| +<pre class="prettyprint">
|
| +52:0| 1: <65535, 19, 2> | globals { // BlockID = 19
|
| +60:0| 3: <5, 2> | count 2;
|
| +62:4| 3: <0, 1, 1> | const @g0, align 1,
|
| +65:6| 3: <2, 8> | zerofill 8;
|
| +68:2| 3: <0, 1, 0> | var @g1, align 1,
|
| +71:4| 3: <1, 2> | initializers 2 {
|
| +74:0| 3: <3, 1, 2, 3, 4> | { 1, 2, 3, 4}
|
| +78:6| 3: <2, 2> | zerofill 2;
|
| + | | }
|
| +81:2| 0: <65534> | }
|
| +</pre>
|
| +<p>This snippet defines the global constant <code>@g0</code>, and the global variable
|
| +<code>@g1</code>. <code>@g0</code> is 8 bytes long, and initialized to zero. <code>@g1</code> is
|
| +initialized with 6 bytes: <code>1 2 3 4 0 0</code>.</p>
|
| +<h3 id="link-for-globals-count-record"><span id="id2"></span>Count Record</h3>
|
| +<p>The count record defines the number of global addresses used by the PNaCl
|
| +program.</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| +count N; <A>
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA: <5, N>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p>This record must appear first in the globals block. The count record defines
|
| +the number of global addresses used by the program.</p>
|
| +<p><strong>Constraints</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A)
|
| +</pre>
|
| +<p><strong>Updates</strong>:</p>
|
| +<pre class="prettyprint">
|
| +ExpectedGlobals = N;
|
| +ExpectedInitializers = 0;
|
| +</pre>
|
| +<p><strong>Examples</strong>:</p>
|
| +<pre class="prettyprint">
|
| +52:0| 1: <65535, 19, 2> | globals { // BlockID = 19
|
| +60:0| 3: <5, 2> | count 2;
|
| +62:4| 3: <0, 1, 1> | const @g0, align 1,
|
| +65:6| 3: <2, 8> | zerofill 8;
|
| +68:2| 3: <0, 1, 0> | var @g1, align 1,
|
| +71:4| 3: <1, 2> | initializers 2 {
|
| +74:0| 3: <3, 1, 2, 3, 4> | { 1, 2, 3, 4}
|
| +78:6| 3: <2, 2> | zerofill 2;
|
| + | | }
|
| +81:2| 0: <65534> | }
|
| +</pre>
|
| +<h3 id="global-variable-addresses"><span id="link-for-global-variable-address"></span>Global Variable Addresses</h3>
|
| +<p>A global variable address record defines a global address to global data. The
|
| +global variable address record must be immediately followed by initializer
|
| +record(s) that define how the corresponding global variable is initialized.</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| +var @gN, align V, <A>
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA: <0, VV, 0>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p>A global variable address record defines a global address for a global variable.
|
| +<code>V</code> is the <a class="reference internal" href="#link-for-memory-blocks-and-alignment-section"><em>memory
|
| +alignment</em></a> for the global variable
|
| +address, and is a power of 2.</p>
|
| +<p>It is assumed that the memory, referenced by the global variable address, can be
|
| +both read and written to.</p>
|
| +<p><strong>Constraints</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A) &
|
| +N == NumGlobalAddresses &
|
| +ExpectedInitializers == 0 &
|
| +VV == Log2(V+1)
|
| +</pre>
|
| +<p><strong>Updates</strong>:</p>
|
| +<pre class="prettyprint">
|
| +++NumGlobalAddresses;
|
| +ExpectedInitializers = 1;
|
| +TypeOf(@gN) = i32;
|
| +</pre>
|
| +<p><strong>Examples</strong>:</p>
|
| +<pre class="prettyprint">
|
| +52:0| 1: <65535, 19, 2> | globals { // BlockID = 19
|
| +60:0| 3: <5, 2> | count 2;
|
| +62:4| 3: <0, 3, 0> | var @g0, align 4,
|
| +65:6| 3: <2, 8> | zerofill 8;
|
| +68:2| 3: <0, 1, 0> | var @g1, align 1,
|
| +71:4| 3: <3, 1, 2, 3, 4> | { 1, 2, 3, 4}
|
| +76:2| 0: <65534> | }
|
| +80:0|0: <65534> |}
|
| +</pre>
|
| +<h3 id="global-constant-addresses"><span id="link-for-global-constant-address"></span>Global Constant Addresses</h3>
|
| +<p>A global constant address record defines an address corresponding to a global
|
| +constant that can’t be modified by the program. The global constant address
|
| +record must be immediately followed by initializer record(s) that define how
|
| +the corresponding global constant is initialized.</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| +const @gN, align V, <A>
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA: <0, VV, 1>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p>A global constant address record defines a global address for a global constant.
|
| +<code>V</code> is the <a class="reference internal" href="#link-for-memory-blocks-and-alignment-section"><em>memory
|
| +alignment</em></a> for the global constant
|
| +address, and is a power of 2.</p>
|
| +<p>It is assumed that the memory, referenced by the global constant address, is
|
| +only read, and can’t be written to.</p>
|
| +<p>Note that the only difference between a global variable address and a global
|
| +constant address record is the third element of the record. If the value is
|
| +zero, it defines a global variable address. If the value is one, it defines a
|
| +global constant address.</p>
|
| +<p><strong>Constraints</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A) &
|
| +N == NumGlobalAddresses &
|
| +ExpectedInitializers == 0 &
|
| +VV == Log2(V+1)
|
| +</pre>
|
| +<p><strong>Updates</strong>:</p>
|
| +<pre class="prettyprint">
|
| +++NumGlobalAddresses;
|
| +ExpectedInitializers = 1;
|
| +TypeOf(@gN) = i32;
|
| +</pre>
|
| +<p><strong>Examples</strong>:</p>
|
| +<pre class="prettyprint">
|
| +52:0| 1: <65535, 19, 2> | globals { // BlockID = 19
|
| +60:0| 3: <5, 2> | count 2;
|
| +62:4| 3: <0, 3, 1> | const @g0, align 4,
|
| +65:6| 3: <2, 8> | zerofill 8;
|
| +68:2| 3: <0, 1, 1> | const @g1, align 1,
|
| +71:4| 3: <3, 1, 2, 3, 4> | { 1, 2, 3, 4}
|
| +76:2| 0: <65534> | }
|
| +</pre>
|
| +<h3 id="zerofill-initializer">Zerofill Initializer</h3>
|
| +<p>The zerofill initializer record initializes a sequence of bytes, associated with
|
| +a global address, with zeros.</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| +zerofill N; <A>
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA: <2, N>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p>A zerofill initializer record initializes a sequence of bytes, associated with a
|
| +global address, with zeros. The number of bytes initialized to zero is <code>N</code>.</p>
|
| +<p><strong>Constraints</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A) &
|
| +ExpectedInitializers > 0
|
| +</pre>
|
| +<p><strong>Updates</strong>:</p>
|
| +<pre class="prettyprint">
|
| +--ExpectedInitializers;
|
| +</pre>
|
| +<p><strong>Examples</strong>:</p>
|
| +<pre class="prettyprint">
|
| +52:0| 1: <65535, 19, 2> | globals { // BlockID = 19
|
| +60:0| 3: <5, 2> | count 2;
|
| +62:4| 3: <0, 3, 1> | const @g0, align 4,
|
| +65:6| 3: <2, 8> | zerofill 8;
|
| +68:2| 3: <0, 1, 0> | var @g1, align 1,
|
| +71:4| 3: <2, 4> | zerofill 4;
|
| +74:0| 0: <65534> | }
|
| +</pre>
|
| +<h3 id="data-initializer">Data Initializer</h3>
|
| +<p>Data records define a sequence of bytes. These bytes define the initial value of
|
| +the contents of the corresponding memory.</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| +{ B1 , .... , BN } <A>
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA: <3, B1, ..., BN>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p>A data record defines a sequence of (unsigned) bytes <code>B1</code> through <code>BN</code>, that
|
| +initialize <code>N</code> bytes of memory.</p>
|
| +<p><strong>Constraints</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A) &
|
| +ExpectedInitializers > 0
|
| +</pre>
|
| +<p><strong>Updates</strong>:</p>
|
| +<pre class="prettyprint">
|
| +--ExpectedInitializers;
|
| +</pre>
|
| +<p><strong>Examples</strong>:</p>
|
| +<pre class="prettyprint">
|
| + 56:0| 3: <8, 1, 0, 1, 0> | declare external void @f0();
|
| + 60:6| 1: <65535, 19, 2> | globals { // BlockID = 19
|
| + 68:0| 3: <5, 2> | count 2;
|
| + 70:4| 3: <0, 1, 1> | const @g0, align 1,
|
| + 73:6| 3: <3, 1, 2, 97, 36, 44, | { 1, 2, 97, 36, 44, 88,
|
| + | 88, 44, 50> | 44, 50}
|
| + 86:0| 3: <0, 1, 1> | const @g1, align 1,
|
| + 89:2| 3: <1, 3> | initializers 3 {
|
| + 91:6| 3: <3, 1, 2, 3, 4> | { 1, 2, 3, 4}
|
| + 96:4| 3: <4, 0> | reloc @f0;
|
| + 99:0| 3: <3, 99, 66, 22, 12> | { 99, 66, 22, 12}
|
| + | | }
|
| +105:2| 0: <65534> | }
|
| +</pre>
|
| +<h3 id="relocation-initializer">Relocation Initializer</h3>
|
| +<p>A relocation initializer record allows one to define the initial value of a
|
| +global address with the value of another global address (i.e. either
|
| +<a class="reference internal" href="#link-for-function-address-section"><em>function</em></a>,
|
| +<a class="reference internal" href="#link-for-global-variable-address"><em>variable</em></a>, or
|
| +<a class="reference internal" href="#link-for-global-constant-address"><em>constant</em></a>). Since addresses are
|
| +pointers, a relocation initializer record defines 4 bytes of memory.</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| +reloc V; <A>
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA: <4, VV>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p>A relocation initializer record defines a 4-byte value containing the specified
|
| +global address <code>V</code>.</p>
|
| +<p><strong>Constraints</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A) &
|
| +VV == AbsoluteIndex(V) &
|
| +VV >= NumFuncAddresses &
|
| +VV < NumFuncAddresses + ExpectedGlobals &
|
| +ExpectedInitializers > 0
|
| +</pre>
|
| +<p><strong>Updates</strong>:</p>
|
| +<pre class="prettyprint">
|
| +--ExpectedInitializers;
|
| +</pre>
|
| +<p><strong>Examples</strong>:</p>
|
| +<pre class="prettyprint">
|
| +40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| +48:0| 3: <1, 2> | count 2;
|
| +50:4| 3: <2> | @t0 = void;
|
| +52:2| 3: <21, 0, 0> | @t1 = void ();
|
| +55:4| 0: <65534> | }
|
| +56:0| 3: <8, 1, 0, 1, 0> | declare external void @f0();
|
| +60:6| 1: <65535, 19, 2> | globals { // BlockID = 19
|
| +68:0| 3: <5, 2> | count 2;
|
| +70:4| 3: <0, 1, 0> | var @g0, align 1,
|
| +73:6| 3: <1, 3> | initializers 3 {
|
| +76:2| 3: <4, 0> | reloc @f0;
|
| +78:6| 3: <4, 1> | reloc @g0;
|
| +81:2| 3: <4, 2> | reloc @g1;
|
| + | | }
|
| +83:6| 3: <0, 3, 0> | var @g1, align 4,
|
| +87:0| 3: <2, 4> | zerofill 4;
|
| +89:4| 0: <65534> | }
|
| +</pre>
|
| +<p>This example defines global address <code>@g0</code> and <code>@g1</code>. <code>@g0</code> defines 12
|
| +bytes of memory, and is initialized with three addresses <code>@f1</code>, <code>@g0</code>, and
|
| +<code>@g1</code>. Note that all global addresses can be used in a relocation
|
| +initialization record, even if it isn’t defined yet.</p>
|
| +<h3 id="subfield-relocation-initializer">Subfield Relocation Initializer</h3>
|
| +<p>A subfield relocation initializer record allows one to define the initial value
|
| +of a global address with the value of another (non-function) global address
|
| +(i.e. either <a class="reference internal" href="#link-for-global-variable-address"><em>variable</em></a> or
|
| +<a class="reference internal" href="#link-for-global-constant-address"><em>constant</em></a> address), plus a
|
| +constant. Since addresses are pointers, a relocation initializer record defines
|
| +4 bytes of memory.</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| +reloc V + X; <A>
|
| +reloc V - X; <A>
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA: <4, VV, XXX>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p>A subfield relocation initializer record defines a 4-byte value containing the
|
| +specified global (non-function) address <code>V</code>, modified by the unsigned offset
|
| +<code>X</code>. <code>XX</code> is the corresponding signed offset. In the first form, <code>XX ==
|
| +X</code>. In the second form, <code>XX == -X</code>.</p>
|
| +<p><strong>Constraints</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A)
|
| +VV == AbsoluteIndex(V)
|
| +VV >= NumFuncAddresses
|
| +VV < NumFuncAddresses + ExpectedGlobals
|
| +ExpectedInitializers > 0
|
| +XXX == SignRotate(XX)
|
| +</pre>
|
| +<p><strong>Updates</strong>:</p>
|
| +<pre class="prettyprint">
|
| +--ExpectedInitializers;
|
| +</pre>
|
| +<p><strong>Examples</strong>:</p>
|
| +<pre class="prettyprint">
|
| +40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| +48:0| 3: <1, 0> | count 0;
|
| +50:4| 0: <65534> | }
|
| +52:0| 1: <65535, 19, 2> | globals { // BlockID = 19
|
| +60:0| 3: <5, 3> | count 3;
|
| +62:4| 3: <0, 1, 0> | var @g0, align 1,
|
| +65:6| 3: <1, 3> | initializers 3 {
|
| +68:2| 3: <4, 0, 1> | reloc @g0 + 1;
|
| +71:4| 3: <4, 1, 4294967295> | reloc @g1 - 1;
|
| +79:2| 3: <4, 2, 4> | reloc @g2 + 4;
|
| + | | }
|
| +82:4| 3: <0, 3, 0> | var @g1, align 4,
|
| +85:6| 3: <2, 4> | zerofill 4;
|
| +88:2| 3: <0, 3, 0> | var @g2, align 4,
|
| +91:4| 3: <2, 8> | zerofill 8;
|
| +94:0| 0: <65534> | }
|
| +</pre>
|
| +<h3 id="compound-initializer"><span id="link-for-compound-initializer"></span>Compound Initializer</h3>
|
| +<p>The compound initializer record must immediately follow a global
|
| +<a class="reference internal" href="#link-for-global-variable-address"><em>variable</em></a> or
|
| +<a class="reference internal" href="#link-for-global-constant-address"><em>constant</em></a> address record. It defines how
|
| +many simple initializer records are used to define the initializer. The size of
|
| +the corresponding memory is the sum of the bytes needed for each of the
|
| +succeeding initializers.</p>
|
| +<p>Note that a compound initializer can’t be used as a simple initializer of
|
| +another compound initializer (i.e. nested compound initializers are not
|
| +allowed).</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| +initializers N { <A>
|
| + ...
|
| +}
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA: <1, N>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p>Defines that the next <cite>N</cite> initializers should be associated with the global
|
| +address of the previous record.</p>
|
| +<p><strong>Constraints</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A) &
|
| +ExpectedInitializers == 1
|
| +</pre>
|
| +<p><strong>Updates</strong>:</p>
|
| +<pre class="prettyprint">
|
| +ExpectedInitializers = N;
|
| +</pre>
|
| +<p><strong>Examples</strong>:</p>
|
| +<pre class="prettyprint">
|
| +40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| +48:0| 3: <1, 0> | count 0;
|
| +50:4| 0: <65534> | }
|
| +52:0| 1: <65535, 19, 2> | globals { // BlockID = 19
|
| +60:0| 3: <5, 2> | count 2;
|
| +62:4| 3: <0, 0, 1> | const @g0, align 0,
|
| +65:6| 3: <1, 2> | initializers 2 {
|
| +68:2| 3: <2, 8> | zerofill 8;
|
| +70:6| 3: <3, 3, 2, 1, 0> | { 3, 2, 1, 0}
|
| + | | }
|
| +75:4| 3: <0, 0, 0> | var @g1, align 0,
|
| +78:6| 3: <1, 2> | initializers 2 {
|
| +81:2| 3: <3, 1, 2, 3, 4> | { 1, 2, 3, 4}
|
| +86:0| 3: <2, 2> | zerofill 2;
|
| + | | }
|
| +88:4| 0: <65534> | }
|
| +</pre>
|
| +<h2 id="valuesymtab-block"><span id="link-for-valuesymtab-block-section"></span>Valuesymtab Block</h2>
|
| +<p>The valuesymtab block does not define any values. Its only goal is to associate
|
| +text names with external <a class="reference internal" href="#link-for-function-address-section"><em>function
|
| +addresses</em></a>. Each association is defined by a
|
| +record in the valuesymtab block. Currently, only
|
| +<a class="reference internal" href="#link-for-intrinsic-functions-section"><em>intrinsic</em></a> function addresses and
|
| +the (external) start function (<code>_start</code>) can be named. All named function
|
| +addresses must be external. Each record in the valuesymtab block is a <em>entry</em>
|
| +record, defining a single name association.</p>
|
| +<h3 id="entry-record">Entry Record</h3>
|
| +<p>The <em>entry</em> record defines a name for a function address.</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| +V : "NAME"; <A>
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA: <1, B1, ... , BN>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p>The <em>entry</em> record defines a name <code>NAME</code> for function address <code>V</code>. <code>NAME</code>
|
| +is a sequence of ASCII characters <code>B1</code> through <code>BN</code>.</p>
|
| +<p><strong>Examples</strong>:</p>
|
| +<pre class="prettyprint">
|
| + 72:0| 3: <8, 4, 0, 1, 0> | declare external
|
| + | | void @f0(i32, i32, i32, i32, i1);
|
| + 76:6| 3: <8, 4, 0, 1, 0> | declare external
|
| + | | void @f1(i32, i32, i32, i32, i1);
|
| + 81:4| 3: <8, 5, 0, 0, 0> | define external void @f2(i32);
|
| + 86:2| 1: <65535, 19, 2> | globals { // BlockID = 19
|
| + 92:0| 3: <5, 0> | count 0;
|
| + 94:4| 0: <65534> | }
|
| + 96:0| 1: <65535, 14, 2> | valuesymtab { // BlockID = 14
|
| +104:0| 3: <1, 1, 108, 108, 118, | @f1 : "llvm.memmove.p0i8.p0i8.i32";
|
| + | 109, 46, 109, 101, |
|
| + | 109, 109, 111, 118, |
|
| + | 101, 46, 112, 48, |
|
| + | 105, 56, 46, 112, 48,|
|
| + | 105, 56, 46, 105, 51,|
|
| + | 50> |
|
| +145:4| 3: <1, 2, 95, 115, 116, | @f2 : "_start";
|
| + | 97, 114, 116> |
|
| +157:0| 3: <1, 0, 108, 108, 118, | @f0 : "llvm.memcpy.p0i8.p0i8.i32";
|
| + | 109, 46, 109, 101, |
|
| + | 109, 99, 112, 121, |
|
| + | 46, 112, 48, 105, 56,|
|
| + | 46, 112, 48, 105, 56,|
|
| + | 46, 105, 51, 50> |
|
| +197:0| 0: <65534> | }
|
| +</pre>
|
| +<h2 id="module-block"><span id="link-for-module-block"></span>Module Block</h2>
|
| +<p>The module block, like all blocks, is enclosed in a pair of
|
| +<a class="reference internal" href="#link-for-enter-block-record-section"><em>enter</em></a> /
|
| +<a class="reference internal" href="#link-for-exit-block-record-section"><em>exit</em></a> records, using block ID 8. A
|
| +well-formed module block consists of the following records (in order):</p>
|
| +<dl class="docutils">
|
| +<dt>A version record</dt>
|
| +<dd>The <a class="reference internal" href="#link-for-version-record"><em>version record</em></a> communicates which version
|
| +of the PNaCl bitcode reader/writer should be used. Note that this is
|
| +different than the PNaCl bitcode (ABI) version. The PNaCl bitcode (ABI)
|
| +version defines what is expected in records, and is defined in the header
|
| +record of the bitcode file. The version record defines the version of the
|
| +PNaCl bitcode reader/writer to use to convert records into bit sequences.</dd>
|
| +<dt>Optional local abbreviations</dt>
|
| +<dd>Defines a list of local <a class="reference internal" href="#link-for-abbreviations-section"><em>abbreviations</em></a>
|
| +to use for records within the module block.</dd>
|
| +<dt>An abbreviations block</dt>
|
| +<dd>The <a class="reference internal" href="#link-for-abbreviations-block-section"><em>abbreviations block</em></a> defines
|
| +user-defined, global abbreviations that are used to convert PNaCl records to
|
| +bit sequences in blocks following the abbreviations block.</dd>
|
| +<dt>A types block</dt>
|
| +<dd>The <a class="reference internal" href="#link-for-types-block-section"><em>types block</em></a> defines the set of all
|
| +types used in the program.</dd>
|
| +<dt>A non-empty sequence of function address records</dt>
|
| +<dd>Each record defines a <a class="reference internal" href="#link-for-function-address-section"><em>function
|
| +address</em></a> used by the program. Function
|
| +addresses must either be external, or defined internally by the program. If
|
| +they are defined by the program, there must be a <a class="reference internal" href="#link-for-function-blocks-section"><em>function
|
| +block</em></a> (appearing later in the module) that
|
| +defines the sequence of instructions for each defined function.</dd>
|
| +<dt>A globals block defining the global variables.</dt>
|
| +<dd>This <a class="reference internal" href="#link-for-globals-block-section"><em>block</em></a> defines the set of
|
| +global <a class="reference internal" href="#link-for-global-variable-address"><em>variable</em></a> and
|
| +<a class="reference internal" href="#link-for-global-constant-address"><em>constant</em></a> addresses used by the
|
| +program. In addition to the addresses, each global variable also defines how
|
| +the corresponding global variable is initialized.</dd>
|
| +<dt>An optional value symbol table block.</dt>
|
| +<dd>This <a class="reference internal" href="#link-for-valuesymtab-block-section"><em>block</em></a>, if defined, provides
|
| +textual names for <a class="reference internal" href="#link-for-function-address-section"><em>function
|
| +addresses</em></a> (previously defined in the
|
| +module). Note that only names for intrinsic functions and the start function
|
| +are specified.</dd>
|
| +<dt>A sequence of function blocks.</dt>
|
| +<dd>Each <a class="reference internal" href="#link-for-function-blocks-section"><em>function block</em></a> defines the
|
| +corresponding intermediate representation for each defined function. The
|
| +order of function blocks is used to associate them with <a class="reference internal" href="#link-for-function-address-section"><em>function
|
| +addresses</em></a>. The order of the defined
|
| +function blocks must follow the same order as the corresponding function
|
| +addresses defined in the module block.</dd>
|
| +</dl>
|
| +<p>Descriptions of the <a class="reference internal" href="#link-for-abbreviations-section"><em>abbreviations</em></a>,
|
| +<a class="reference internal" href="#link-for-types-block-section"><em>types</em></a>,
|
| +<a class="reference internal" href="#link-for-globals-block-section"><em>globals</em></a>, <a class="reference internal" href="#link-for-valuesymtab-block-section"><em>value symbol
|
| +table</em></a>, and
|
| +<a class="reference internal" href="#link-for-function-blocks-section"><em>function</em></a> blocks are not provided
|
| +here. See the appropriate reference for more details. The following subsections
|
| +describe each of the records that can appear in a module block.</p>
|
| +<h3 id="version-record"><span id="link-for-version-record"></span>Version Record</h3>
|
| +<p>The version record defines the implementation of the PNaCl bitstream
|
| +reader/writer to use. That is, the implementation that converts PNaCl records to
|
| +bit sequences, and converts them back to PNaCl records. Note that this is
|
| +different than the PNaCl version of the bitcode file (encoded in the header
|
| +record of the bitcode file). The PNaCl version defines the valid forms of PNaCl
|
| +records. The version record is specific to the PNaCl version, and may have
|
| +different values for different PNaCl versions.</p>
|
| +<p>Note that currently, only PNaCl bitcode version 2, and version record value 1 is
|
| +defined.</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| +version N; <A>
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA: <1, N>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p>The version record defines which PNaCl reader/writer rules should be
|
| +followed. <code>N</code> is the version number. Currently <code>N</code> must be 1. Future
|
| +versions of PNaCl may define additional legal values.</p>
|
| +<p><strong>Constraints</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A)
|
| +</pre>
|
| +<p><em>Examples</em>:</p>
|
| +<pre class="prettyprint">
|
| +16:0|1: <65535, 8, 2> |module { // BlockID = 8
|
| +24:0| 3: <1, 1> | version 1;
|
| +26:4| 1: <65535, 0, 2> | abbreviations { // BlockID = 0
|
| +36:0| 0: <65534> | }
|
| +</pre>
|
| +<h3 id="function-address"><span id="link-for-function-address-section"></span>Function Address</h3>
|
| +<p>A function address record describes a function address. <em>Defined</em> function
|
| +addresses define <a class="reference internal" href="#link-for-function-blocks-section"><em>implementations</em></a> while
|
| +<em>declared</em> function addresses do not.</p>
|
| +<p>Since a PNaCl program is assumed to be a complete (statically linked)
|
| +executable, All functions should be <em>defined</em> and <em>internal</em>. The exception to
|
| +this are <a class="reference internal" href="#link-for-intrinsic-functions-section"><em>intrinsic functions</em></a>, which
|
| +should only be <em>declared</em> and <em>external</em>, since intrinsic functions will be
|
| +automatically converted to appropriate code by the <a class="reference internal" href="/native-client/overview.html#link-for-pnacl-translator"><em>PNaCl
|
| +translator</em></a>.</p>
|
| +<p>The implementation of a <em>defined</em> function address is provided by a
|
| +corresponding function block, appearing later in the module block. The
|
| +association of a <em>defined</em> function address with the corresponding function
|
| +block is based on position. The <em>Nth</em> defined function address record, in the
|
| +module block, has its implementation in the <em>Nth</em> function block of that module
|
| +block.</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| +PN LN T0 @fN ( T1 , ... , TM ); <A>
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA: <8, T, C, P, L>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p>Describes the function address <code>@fN</code>. <code>PN</code> is the name that specifies the
|
| +prototype value <code>P</code> associated with the function. A function address is
|
| +<em>defined</em> only if <code>P == 0</code>. Otherwise, it is only <em>declared</em>. The type of the
|
| +function is <a class="reference internal" href="#link-for-function-type"><em>function type</em></a> <code>@tT</code>. <code>L</code> is the
|
| +linkage specification corresponding to name <code>LN</code>. <code>C</code> is the calling
|
| +convention used by the function.</p>
|
| +<p>Note that function signature must be defined by a function type in the types
|
| +block. Hence, the return value must either be a primitive type, type <code>void</code>,
|
| +or a vector type.</p>
|
| +<p>For ordinary functions, integer parameter and types can only be <code>i32</code> and
|
| +<code>i64</code>. All other integer types are not allowed. For intrinsic functions, all
|
| +integer types are allowed.</p>
|
| +<p>Valid prototype names <code>PN</code>, and corresponding <code>P</code> values, are:</p>
|
| +<table border="1" class="docutils">
|
| +<colgroup>
|
| +</colgroup>
|
| +<thead valign="bottom">
|
| +<tr class="row-odd"><th class="head">P</th>
|
| +<th class="head">PN</th>
|
| +</tr>
|
| +</thead>
|
| +<tbody valign="top">
|
| +<tr class="row-even"><td>1</td>
|
| +<td>declare</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>0</td>
|
| +<td>define</td>
|
| +</tr>
|
| +</tbody>
|
| +</table>
|
| +<p>Valid linkage names <code>LN</code>, and corresponding <code>L</code> values, are:</p>
|
| +<table border="1" class="docutils">
|
| +<colgroup>
|
| +</colgroup>
|
| +<thead valign="bottom">
|
| +<tr class="row-odd"><th class="head">L</th>
|
| +<th class="head">LN</th>
|
| +</tr>
|
| +</thead>
|
| +<tbody valign="top">
|
| +<tr class="row-even"><td>3</td>
|
| +<td>internal</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>0</td>
|
| +<td>external</td>
|
| +</tr>
|
| +</tbody>
|
| +</table>
|
| +<p>Currently, only one calling convention <code>C</code> is supported:</p>
|
| +<table border="1" class="docutils">
|
| +<colgroup>
|
| +</colgroup>
|
| +<thead valign="bottom">
|
| +<tr class="row-odd"><th class="head">C</th>
|
| +<th class="head">Calling Convention</th>
|
| +</tr>
|
| +</thead>
|
| +<tbody valign="top">
|
| +<tr class="row-even"><td>0</td>
|
| +<td>C calling convention</td>
|
| +</tr>
|
| +</tbody>
|
| +</table>
|
| +<p><strong>Constraints</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA = AbbrevIndex(A) &
|
| +T = TypeID(TypeOf(T0 ( T1 , ... , TN ))) &
|
| +N = NumFuncAddresses
|
| +</pre>
|
| +<p><strong>Updates</strong>:</p>
|
| +<pre class="prettyprint">
|
| +++NumFuncAddresses;
|
| +TypeOf(@fN) = TypeOf(TypeID(i32));
|
| +TypeOfFcn(@fN) = TypeOf(@tT);
|
| +
|
| +if PN == 0:
|
| + DefiningFcnIDs += @FN;
|
| + ++NumDefinedFunctionAddresses;
|
| +</pre>
|
| +<p><strong>Examples</strong>:</p>
|
| +<pre class="prettyprint">
|
| +40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| +48:0| 3: <1, 7> | count 7;
|
| +50:4| 3: <7, 32> | @t0 = i32;
|
| +53:6| 3: <3> | @t1 = float;
|
| +55:4| 3: <4> | @t2 = double;
|
| +57:2| 3: <2> | @t3 = void;
|
| +59:0| 3: <21, 0, 2, 1> | @t4 = double (float);
|
| +63:0| 3: <21, 0, 0, 0, 1, 0, 2>| @t5 =
|
| + | | i32 (i32, float, i32, double);
|
| +69:2| 3: <21, 0, 3> | @t6 = void ();
|
| +72:4| 0: <65534> | }
|
| +76:0| 3: <8, 4, 0, 1, 0> | declare external double @f0(float);
|
| +80:6| 3: <8, 5, 0, 1, 0> | declare external
|
| + | | i32 @f1(i32, float, i32, double);
|
| +85:4| 3: <8, 6, 0, 0, 0> | define external void @f2();
|
| +</pre>
|
| +<h2 id="constants-blocks"><span id="link-for-constants-block-section"></span>Constants Blocks</h2>
|
| +<p>Constants blocks define literal constants used within each function. Its intent
|
| +is to define them once, before instructions. A constants block can only appear
|
| +in a <a class="reference internal" href="#link-for-function-blocks-section"><em>function block</em></a>, and must appear
|
| +before any instructions in the function block.</p>
|
| +<p>Currently, only integer literals, floating point literals, and undefined vector
|
| +constants can be defined.</p>
|
| +<p>To minimize type information put in a constants block, the type information is
|
| +separated from the constants. This allows a sequence of constants to be given
|
| +the same type. This is done by defining a <a class="reference internal" href="#link-for-constants-set-type-record"><em>set type
|
| +record</em></a>, followed by a sequence of literal
|
| +constants. These literal constants all get converted to the type of the
|
| +preceding set type record.</p>
|
| +<p>Note that constants that are used for switch case selectors should not be added
|
| +to the constants block, since the switch instruction contains the constants used
|
| +for case selectors. All other constants in the function block must be put into a
|
| +constants block, so that instructions can use them.</p>
|
| +<p>To make this more concrete, consider the following example constants block:</p>
|
| +<pre class="prettyprint">
|
| +106:4| 1: <65535, 11, 2> | constants { // BlockID = 11
|
| +116:0| 3: <1, 0> | i32:
|
| +118:4| 3: <4, 2> | %c0 = i32 1;
|
| +121:0| 3: <4, 4> | %c1 = i32 2;
|
| +123:4| 3: <1, 2> | i8:
|
| +126:0| 3: <4, 8> | %c2 = i8 4;
|
| +128:4| 3: <4, 6> | %c3 = i8 3;
|
| +131:0| 3: <1, 1> | float:
|
| +133:4| 3: <6, 1065353216> | %c4 = float 1;
|
| +139:6| 0: <65534> | }
|
| +</pre>
|
| +<h3 id="set-type-record"><span id="link-for-constants-set-type-record"></span>Set Type Record</h3>
|
| +<p>The <em>set type</em> record defines the type to use for the (immediately) succeeding
|
| +literals.</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| +T: <A>
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA: <1, TT>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p>The <em>set type</em> record defines type <code>T</code> to be used to type the (immediately)
|
| +succeeding literals. <code>T</code> must be a non-void primitive value type or a vector
|
| +type.</p>
|
| +<p><strong>Constraints</strong>:</p>
|
| +<pre class="prettyprint">
|
| +TT == TypeID(T)
|
| +</pre>
|
| +<p><strong>Updates</strong>:</p>
|
| +<pre class="prettyprint">
|
| +ConstantsSetType = T;
|
| +</pre>
|
| +<p><strong>Examples</strong>:</p>
|
| +<pre class="prettyprint">
|
| +106:4| 1: <65535, 11, 2> | constants { // BlockID = 11
|
| +116:0| 3: <1, 0> | i32:
|
| +118:4| 3: <4, 2> | %c0 = i32 1;
|
| +121:0| 3: <4, 4> | %c1 = i32 2;
|
| +123:4| 3: <1, 2> | i8:
|
| +126:0| 3: <4, 8> | %c2 = i8 4;
|
| +128:4| 3: <4, 6> | %c3 = i8 3;
|
| +131:0| 3: <1, 1> | float:
|
| +133:4| 3: <6, 1065353216> | %c4 = float 1;
|
| +139:6| 0: <65534> | }
|
| +</pre>
|
| +<h3 id="undefined-literal"><span id="link-for-undefined-literal"></span>Undefined Literal</h3>
|
| +<p>The <em>undefined</em> literal record creates an undefined literal for the type <em>T</em>
|
| +defined by the preceding <em>set type</em> record.</p>
|
| +<p>Note: See <a class="reference internal" href="#link-for-insert-element-instruction-section"><em>insert element
|
| +instruction</em></a> for an example of how
|
| +you would use the undefined literal with vector types.</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| +%cN = T undef; <50>
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA: <3>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p>The <em>undefined</em> literal record creates an undefined literal constant <code>%cN</code> for
|
| +type <code>T</code>. <code>T</code> must be the type defined by the preceding <em>set type</em> record,
|
| +and be a primitive value type or a vector type.</p>
|
| +<p><strong>Constraints</strong>:</p>
|
| +<pre class="prettyprint">
|
| +N == NumFcnConsts &
|
| +T == ConstantsSetType &
|
| +IsPrimitive(T) or IsVector(T)
|
| +</pre>
|
| +<p><strong>Updates</strong>:</p>
|
| +<pre class="prettyprint">
|
| +++NumFcnConsts;
|
| +TypeOf(%cN) = T;
|
| +</pre>
|
| +<p><strong>Examples</strong>:</p>
|
| +<pre class="prettyprint">
|
| + 40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| + 48:0| 3: <1, 5> | count 5;
|
| + 50:4| 3: <7, 32> | @t0 = i32;
|
| + 53:6| 3: <3> | @t1 = float;
|
| + 55:4| 3: <2> | @t2 = void;
|
| + 57:2| 3: <12, 4, 0> | @t3 = <4 x i32>;
|
| + 60:4| 3: <21, 0, 2> | @t4 = void ();
|
| + 63:6| 0: <65534> | }
|
| + ...
|
| +106:4| 1: <65535, 11, 2> | constants { // BlockID = 11
|
| +116:0| 3: <1, 0> | i32:
|
| +118:4| 3: <3> | %c0 = i32 undef;
|
| +120:2| 3: <4, 2> | %c1 = i32 1;
|
| +122:6| 3: <1, 3> | <4 x i32>:
|
| +125:2| 3: <3> | %c2 = <4 x i32> undef;
|
| +127:0| 3: <1, 1> | float:
|
| +129:4| 3: <3> | %c3 = float undef;
|
| +131:2| 0: <65534> | }
|
| +</pre>
|
| +<h3 id="integer-literal"><span id="link-for-integer-literal"></span>Integer Literal</h3>
|
| +<p>The <em>integer literal</em> record creates an integer literal for the integer type <em>T</em>
|
| +defined by the preceding <em>set type</em> record.</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| +%cN = T V; <A>
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA: <4, VV>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p>The <em>integer literal</em> record creates an integer literal constant <code>%cN</code> for
|
| +type <code>T</code>. <code>T</code> must be the type defined by the preceding <em>set type</em> record,
|
| +and an integer type. The literal <code>V</code> can be signed, but must be definable by
|
| +type <code>T</code>.</p>
|
| +<p><strong>Constraints</strong>:</p>
|
| +<pre class="prettyprint">
|
| +N == NumFcnConsts &
|
| +T == ConstantsSetType &
|
| +VV == SignRotate(V) &
|
| +IsInteger(T)
|
| +</pre>
|
| +<p><strong>Updates</strong>:</p>
|
| +<pre class="prettyprint">
|
| +TypeOf(%cN) = T;
|
| +</pre>
|
| +<p><strong>Examples</strong>:</p>
|
| +<pre class="prettyprint">
|
| + 40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| + 48:0| 3: <1, 7> | count 7;
|
| + 50:4| 3: <7, 8> | @t0 = i8;
|
| + 53:0| 3: <7, 16> | @t1 = i16;
|
| + 55:4| 3: <7, 32> | @t2 = i32;
|
| + 58:6| 3: <7, 64> | @t3 = i64;
|
| + 62:0| 3: <7, 1> | @t4 = i1;
|
| + 64:4| 3: <2> | @t5 = void;
|
| + 66:2| 3: <21, 0, 5> | @t6 = void ();
|
| + 69:4| 0: <65534> | }
|
| + ...
|
| +114:4| 1: <65535, 11, 2> | constants { // BlockID = 11
|
| +124:0| 3: <1, 0> | i8:
|
| +126:4| 3: <4, 2> | %c0 = i8 1;
|
| +129:0| 3: <4, 4> | %c1 = i8 2;
|
| +131:4| 3: <1, 1> | i16:
|
| +134:0| 3: <4, 6> | %c2 = i16 3;
|
| +136:4| 3: <4, 8> | %c3 = i16 4;
|
| +139:0| 3: <1, 2> | i32:
|
| +141:4| 3: <4, 10> | %c4 = i32 5;
|
| +144:0| 3: <4, 12> | %c5 = i32 6;
|
| +146:4| 3: <1, 3> | i64:
|
| +149:0| 3: <4, 3> | %c6 = i64 -1;
|
| +151:4| 3: <4, 5> | %c7 = i64 -2;
|
| +154:0| 3: <1, 4> | i1:
|
| +156:4| 3: <4, 3> | %c8 = i1 1;
|
| +159:0| 3: <4, 0> | %c9 = i1 0;
|
| +161:4| 0: <65534> | }
|
| +</pre>
|
| +<h3 id="floating-point-literal">Floating Point Literal</h3>
|
| +<p>The <em>floating point literal</em> record creates a floating point literal for the
|
| +floating point type <em>T</em> defined by the preceding <em>set type</em> record.</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| +%cN = T V; <A>
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA: <6, VV>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p>The <em>floating point literal</em> record creates a floating point literal constant
|
| +<code>%cN</code> for type <code>T</code>. <code>T</code> must the type type defined by the preceding <em>set
|
| +type</em> record, and be a floating point type. The literal <code>V</code> is the floating
|
| +value to be defined. The value <code>VV</code> if the corresponding IEEE unsigned integer
|
| +that defines value <code>V</code>. That is, the literal <code>VV</code> must be a valid IEEE 754
|
| +32-bit (unsigned integer) value if <code>T</code> is <code>float</code>, and a valid IEEE 754
|
| +64-bit (unsigned integer) value if <code>T</code> is <code>double</code>.</p>
|
| +<p><strong>Constraints</strong>:</p>
|
| +<pre class="prettyprint">
|
| +N == NumFcnConsts
|
| +T == ConstantsSetType
|
| +IsFloat(T)
|
| +</pre>
|
| +<p><strong>Updates</strong>:</p>
|
| +<pre class="prettyprint">
|
| +TypeOf(%cN) = T;
|
| +</pre>
|
| +<p><strong>Examples</strong>:</p>
|
| +<pre class="prettyprint">
|
| + 40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| + 48:0| 3: <1, 4> | count 4;
|
| + 50:4| 3: <3> | @t0 = float;
|
| + 52:2| 3: <4> | @t1 = double;
|
| + 54:0| 3: <2> | @t2 = void;
|
| + 55:6| 3: <21, 0, 2> | @t3 = void ();
|
| + 59:0| 0: <65534> | }
|
| + ...
|
| +102:4| 1: <65535, 11, 2> | constants { // BlockID = 11
|
| +112:0| 3: <1, 0> | float:
|
| +114:4| 3: <6, 0> | %c0 = float 0;
|
| +117:0| 3: <6, 1065353216> | %c1 = float 1;
|
| +123:2| 3: <6, 1088421888> | %c2 = float 7;
|
| +130:2| 3: <6, 1090519040> | %c3 = float 8;
|
| +137:2| 3: <3> | %c4 = float undef;
|
| +139:0| 3: <6, 2143289344> | %c5 = float nan;
|
| +146:0| 3: <6, 2139095040> | %c6 = float inf;
|
| +153:0| 3: <6, 4286578688> | %c7 = float -inf;
|
| +160:0| 3: <1, 1> | double:
|
| +162:4| 3: <6, | %c8 = double 1;
|
| + | 4607182418800017408> |
|
| +174:0| 3: <6, 0> | %c9 = double 0;
|
| +176:4| 3: <6, | %c10 = double 5;
|
| + | 4617315517961601024> |
|
| +188:0| 3: <6, | %c11 = double 6;
|
| + | 4618441417868443648> |
|
| +199:4| 3: <6, | %c12 = double nan;
|
| + | 9221120237041090560> |
|
| +211:0| 3: <6, | %c13 = double inf;
|
| + | 9218868437227405312> |
|
| +222:4| 3: <6, | %c14 = double -inf;
|
| + | 18442240474082181120>|
|
| +234:0| 0: <65534> | }
|
| +</pre>
|
| +<h2 id="function-blocks"><span id="link-for-function-blocks-section"></span>Function Blocks</h2>
|
| +<p>A function block defines the implementation of a defined <a class="reference internal" href="#link-for-function-address-section"><em>function
|
| +address</em></a>. The function address it defines is
|
| +based on the position of the corresponding defined function address. The Nth
|
| +defined function address always corresponds to the Nth function block in the
|
| +module block.</p>
|
| +<p>A function implementation contains a list of basic blocks, forming the control
|
| +flow graph. Each <em>basic block</em> contains a list of instructions, and ends with a
|
| +<a class="reference internal" href="#link-for-terminator-instruction-section"><em>terminator instruction</em></a>
|
| +(e.g. branch).</p>
|
| +<p>Basic blocks are not represented by records. Rather, context is implicit. The
|
| +first basic block begins with the first instruction record in the function
|
| +block. Block boundaries are determined by terminator instructions. The
|
| +instruction that follows a terminator instruction begins a new basic block.</p>
|
| +<p>The first basic block in a function is special in two ways: it is immediately
|
| +executed on entrance to the function, and it is not allowed to have predecessor
|
| +basic blocks (i.e. there can’t be any branches to the entry block of a
|
| +function). Because the entry block has no predecessors, it also can’t have any
|
| +<a class="reference internal" href="#link-for-phi-instruction-section"><em>phi</em></a> instructions.</p>
|
| +<p>The parameters are implied by the type of the corresponding function
|
| +address. One parameter is defined for each argument of the function <a class="reference internal" href="#link-for-function-type"><em>type
|
| +signature</em></a> of the corresponding <a class="reference internal" href="#link-for-function-address-section"><em>function
|
| +address</em></a>.</p>
|
| +<p>The number of basic blocks is defined by the <a class="reference internal" href="#link-for-basic-blocks-count"><em>count
|
| +record</em></a>. Each <a class="reference internal" href="#link-for-terminator-instruction-section"><em>terminator
|
| +instruction</em></a> ends the current basic
|
| +block, and the next instruction begins a new basic block. Basic blocks are
|
| +numbered by the order they appear (starting with index 0). Basic block IDs have
|
| +the form <code>%bN</code>, where <code>N</code> corresponds to the position of the basic block
|
| +within the function block.</p>
|
| +<p>Each instruction, within a function block, corresponds to a corresponding PNaCl
|
| +record. The layout of a function block is the (basic block) count record,
|
| +followed by a sequence of instruction records.</p>
|
| +<p>For readability, PNaClAsm introduces basic block IDs. These basic block IDs do
|
| +not correspond to PNaCl records, since basic block boundaries are defined
|
| +implicitly, after terminator instructions. They appear only for readability.</p>
|
| +<p>Operands of instructions are defined using an <a class="reference internal" href="#link-for-absolute-index-section"><em>absolute
|
| +index</em></a>. This absolute index implicitly encodes
|
| +function addresses, global addresses, parameters, constants, and instructions
|
| +that generate values. The encoding takes advantage of the implied ordering of
|
| +these values in the bitcode file, defining a contiguous sequence of indices for
|
| +each kind of identifier. That is, indices are ordered by putting function
|
| +address identifiers first, followed by global address identifiers, followed by
|
| +parameter identifiers, followed by constant identifiers, and lastly instruction
|
| +value identifiers.</p>
|
| +<p>To save space in the encoded bitcode file, most operands are encoded using a
|
| +<a class="reference internal" href="#link-for-relative-index"><em>relative index</em></a> value, rather than
|
| +<a class="reference internal" href="#link-for-absolute-index-section"><em>absolute</em></a>. This
|
| +is done because most instruction operands refer to values defined earlier in the
|
| +(same) basic block. As a result, the relative distance (back) from the next
|
| +value defining instruction is frequently a small number. Small numbers tend to
|
| +require fewer bits when they are converted to bit sequences.</p>
|
| +<p>Note that instructions that can appear in a function block are defined in
|
| +sections <a class="reference internal" href="#link-for-terminator-instruction-section"><em>Terminator Instructions</em></a>,
|
| +<a class="reference internal" href="#link-for-integer-binary-instructions"><em>Integer Binary Instructions</em></a>,
|
| +<a class="reference internal" href="#link-for-floating-point-binary-instructions"><em>Floating Point Binary Instructions</em></a>,
|
| +<a class="reference internal" href="#link-for-memory-creation-and-access-instructions"><em>Memory Creation and Access Instructions</em></a>,
|
| +<a class="reference internal" href="#link-for-conversion-instructions"><em>Conversion Instructions</em></a>, <a class="reference internal" href="#link-for-compare-instructions"><em>Comparison Instructions</em></a>,
|
| +<a class="reference internal" href="#link-for-vector-instructions"><em>Vector Instructions</em></a>, and
|
| +<a class="reference internal" href="#link-for-other-pnaclasm-instructions"><em>Other Instructions</em></a>.</p>
|
| +<p>The following subsections define the remaining records that can appear in a
|
| +function block.</p>
|
| +<h3 id="function-enter">Function Enter</h3>
|
| +<p>PNaClAsm defines a function enter block construct. The corresponding record is
|
| +simply an <a class="reference internal" href="#link-for-enter-block-record-section"><em>enter block</em></a> record, with
|
| +BlockID value <code>12</code>. All context about the defining address is implicit by the
|
| +position of the function block, and the corresponding defining <a class="reference internal" href="#link-for-function-address-section"><em>function
|
| +address</em></a>. To improve readability, PNaClAsm
|
| +includes the function signature into the syntax rule.</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| +function TR @fN ( T0 %p0, ... , TM %pM ) { <B>
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +1: <65535, 12, B>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p><code>B</code> is the number of bits reserved for abbreviations in the block. If it is
|
| +omitted, 2 is assumed. See <a class="reference internal" href="#link-for-enter-block-record-section"><em>enter</em></a>
|
| +block records for more details.</p>
|
| +<p>The value of <code>N</code> corresponds to the positional index of the corresponding
|
| +defining function address this block is associated with. <code>M</code> is the number of
|
| +defined parameters (minus one) in the function heading.</p>
|
| +<p><strong>Constraints</strong>:</p>
|
| +<pre class="prettyprint">
|
| +N == NumFcnImpls &
|
| +@fN in DefiningFcnIDs &
|
| +TypeOfFcn(@fN) == TypeOf(TypeID(TR (T0, ... , TM)))
|
| +</pre>
|
| +<p><strong>Updates</strong>:</p>
|
| +<pre class="prettyprint">
|
| +++NumFcnImpls;
|
| +EnclosingFcnID = @fN;
|
| +NumBasicBlocks = 0;
|
| +ExpectedBlocks = 0;
|
| +NumParams = M;
|
| +for I in [0..M]:
|
| + TypeOf(%pI) = TypeOf(TypeID(TI));
|
| +</pre>
|
| +<p><strong>Examples</strong>:</p>
|
| +<pre class="prettyprint">
|
| + 40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| + 48:0| 3: <1, 4> | count 4;
|
| + 50:4| 3: <7, 32> | @t0 = i32;
|
| + 53:6| 3: <2> | @t1 = void;
|
| + 55:4| 3: <21, 0, 1> | @t2 = void ();
|
| + 58:6| 3: <21, 0, 0, 0> | @t3 = i32 (i32);
|
| + 62:6| 0: <65534> | }
|
| + ...
|
| +104:0| 1: <65535, 12, 2> | function void @f0() {
|
| + | | // BlockID = 12
|
| +112:0| 3: <1, 1> | blocks 1;
|
| + | | %b0:
|
| +114:4| 3: <10> | ret void;
|
| +116:2| 0: <65534> | }
|
| +120:0| 1: <65535, 12, 2> | function i32 @f1(i32 %p0) {
|
| + | | // BlockID = 12
|
| +128:0| 3: <1, 1> | blocks 1;
|
| + | | %b0:
|
| +130:4| 3: <10, 1> | ret i32 %p0;
|
| +133:0| 0: <65534> | }
|
| +</pre>
|
| +<h3 id="link-for-basic-blocks-count"><span id="id3"></span>Count Record</h3>
|
| +<p>The count record, within a function block, defines the number of basic blocks
|
| +used to define the function implementation. It must be the first record in the
|
| +function block.</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| + blocks: N; <A>
|
| +%b0:
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA: <1, N>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p>The count record defines the number <code>N</code> of basic blocks in the implemented
|
| +function.</p>
|
| +<p><strong>Constraints</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A) &
|
| +ExpectedBasicBlocks == N &
|
| +NumBasicBlocks == 0
|
| +</pre>
|
| +<p><strong>Updates</strong>:</p>
|
| +<pre class="prettyprint">
|
| +104:0| 1: <65535, 12, 2> | function void @f0() {
|
| + | | // BlockID = 12
|
| +112:0| 3: <1, 1> | blocks 1;
|
| + | | %b0:
|
| +114:4| 3: <10> | ret void;
|
| +116:2| 0: <65534> | }
|
| +120:0| 1: <65535, 12, 2> | function i32 @f1(i32 %p0) {
|
| + | | // BlockID = 12
|
| +128:0| 3: <1, 1> | blocks 1;
|
| + | | %b0:
|
| +130:4| 3: <10, 1> | ret i32 %p0;
|
| +133:0| 0: <65534> | }
|
| +</pre>
|
| +<h2 id="terminator-instructions"><span id="link-for-terminator-instruction-section"></span>Terminator Instructions</h2>
|
| +<p>Terminator instructions are instructions that appear in a <a class="reference internal" href="#link-for-function-blocks-section"><em>function
|
| +block</em></a>, and define the end of the current
|
| +basic block. A terminator instruction indicates which block should be executed
|
| +after the current block is finished. The function block is well formed only if
|
| +the number of terminator instructions, in the function block, corresponds to the
|
| +value defined by the corresponding function basic block <a class="reference internal" href="#link-for-basic-blocks-count"><em>count
|
| +record</em></a>.</p>
|
| +<p>Note that any branch instruction to label <code>%bN</code>, where <code>N >=
|
| +ExpectedBasicBlocks</code>, is illegal. For ease of readability, this constraint
|
| +hasn’t been put on branch instructions. Rather it is only implied.</p>
|
| +<p>In addition, it must be the case that <code>NumBasicBlocks < ExpectedBasicBlocks</code>,
|
| +and will not be listed as a constraint. Further, if <code>B = NumBasicBlocks + 1</code>
|
| +is the number associated with the next basic block. Label <cite>%bB:</cite> only appears
|
| +if:</p>
|
| +<pre class="prettyprint">
|
| +B < ExpectedBasicBlocks
|
| +</pre>
|
| +<p>That is, the label is omitted only if this terminator instruction is the last
|
| +instruction in the function block.</p>
|
| +<h3 id="return-void-instruction">Return Void Instruction</h3>
|
| +<p>The return void instruction is used to return control from a function back to
|
| +the caller, without returning any value.</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| + ret void; <A>
|
| +%bB:
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA: <10>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p>The return void instruction returns control to the calling function.</p>
|
| +<p><strong>Constraints</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A) &
|
| +B == NumBasicBlocks + 1 &
|
| +ReturnType(TypeOf(EnclosingFcnID)) == void
|
| +</pre>
|
| +<p><strong>Updates</strong>:</p>
|
| +<pre class="prettyprint">
|
| +++NumBasicBlocks;
|
| +</pre>
|
| +<p><strong>Examples</strong>:</p>
|
| +<pre class="prettyprint">
|
| +104:0| 1: <65535, 12, 2> | function void @f0() {
|
| + | | // BlockID = 12
|
| +112:0| 3: <1, 1> | blocks 1;
|
| + | | %b0:
|
| +114:4| 3: <10> | ret void;
|
| +116:2| 0: <65534> | }
|
| +</pre>
|
| +<h3 id="return-value-instruction">Return Value Instruction</h3>
|
| +<p>The return value instruction is used to return control from a function back to
|
| +the caller, including a value. The value must correspond to the return type of
|
| +the enclosing function.</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| + ret T V; <A>
|
| +%bB:
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA: <10, VV>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p>The return value instruction returns control to the calling function, returning
|
| +the provided value.</p>
|
| +<p><code>V</code> is the value to return. Type <code>T</code> must be of the type returned by the
|
| +function. It must also be the type associated with value <code>V</code>.</p>
|
| +<p>The return type <code>T</code> must either be a (non-void) primitive type, or a vector
|
| +type. If the function block is implementing an ordinary function, and the return
|
| +type is an integer type, it must be either <code>i32</code> or <code>i64</code>.</p>
|
| +<p><strong>Constraints</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A) &
|
| +VV == RelativeIndex(V) &
|
| +B == NumBasicBlocks + 1 &
|
| +T == TypeOf(V) == ReturnType(TypeOf(EnclosingFcnID))
|
| +</pre>
|
| +<p><strong>Updates</strong>:</p>
|
| +<pre class="prettyprint">
|
| +++NumBasicBlocks;
|
| +</pre>
|
| +<p><strong>Examples</strong>:</p>
|
| +<pre class="prettyprint">
|
| +120:0| 1: <65535, 12, 2> | function i32 @f1(i32 %p0) {
|
| + | | // BlockID = 12
|
| +128:0| 3: <1, 1> | blocks 1;
|
| + | | %b0:
|
| +130:4| 3: <10, 1> | ret i32 %p0;
|
| +</pre>
|
| +<h3 id="unconditional-branch-instruction">Unconditional Branch Instruction</h3>
|
| +<p>The unconditional branch instruction is used to cause control flow to transfer
|
| +to a different basic block of the function.</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| + br %bN; <A>
|
| +%bB:
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA: <11, N>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p>The unconditional branch instruction causes control flow to transfer to basic
|
| +block <code>N</code>.</p>
|
| +<p><strong>Constraints</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A) &
|
| +B == NumBasicBlocks + 1 &
|
| +0 < N &
|
| +N < ExpectedBasicBlocks
|
| +</pre>
|
| +<p><strong>Updates</strong>:</p>
|
| +<pre class="prettyprint">
|
| +++NumBasicBlocks;
|
| +</pre>
|
| +<p><strong>Examples</strong>:</p>
|
| +<pre class="prettyprint">
|
| + 88:0| 1: <65535, 12, 2> | function void @f0() {
|
| + | | // BlockID = 12
|
| + 96:0| 3: <1, 5> | blocks 5;
|
| + | | %b0:
|
| + 98:4| 3: <11, 3> | br label %b3;
|
| + | | %b1:
|
| +101:0| 3: <11, 4> | br label %b4;
|
| + | | %b2:
|
| +103:4| 3: <11, 1> | br label %b1;
|
| + | | %b3:
|
| +106:0| 3: <11, 2> | br label %b2;
|
| + | | %b4:
|
| +108:4| 3: <10> | ret void;
|
| +110:2| 0: <65534> | }
|
| +</pre>
|
| +<h3 id="conditional-branch-instruction">Conditional Branch Instruction</h3>
|
| +<p>The conditional branch instruction is used to cause control flow to transfer to
|
| +a different basic block of the function, based on a boolean test condition.</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| + br i1 C, %bT, %bBF; <A>
|
| +%bB:
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA: <11, T, F, CC>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p>Upon execution of a conditional branch instruction, the <em>i1</em> (boolean) argument
|
| +<code>C</code> is evaluated. If the value is <code>true</code>, control flows to basic block
|
| +<code>%bT</code>. Otherwise control flows to basic block <code>%bF</code>.</p>
|
| +<p><strong>Constraints</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A) &
|
| +CC == RelativeIndex(C) &
|
| +B == NumBasicBlocks + 1 &
|
| +0 < T &
|
| +B1 < ExpectedBasicBlocks &
|
| +0 < F &
|
| +B2 < ExpectedBasicBlocks &
|
| +TypeOf(C) == i1
|
| +</pre>
|
| +<p><strong>Updates</strong>:</p>
|
| +<pre class="prettyprint">
|
| +++NumBasicBlocks;
|
| +</pre>
|
| +<p><strong>Examples</strong>:</p>
|
| +<pre class="prettyprint">
|
| + 92:0| 1: <65535, 12, 2> | function void @f0() {
|
| + | | // BlockID = 12
|
| +100:0| 3: <1, 5> | blocks 5;
|
| +102:4| 1: <65535, 11, 2> | constants { // BlockID = 11
|
| +112:0| 3: <1, 1> | i1:
|
| +114:4| 3: <4, 3> | %c0 = i1 1;
|
| +117:0| 3: <4, 0> | %c1 = i1 0;
|
| +119:4| 0: <65534> | }
|
| + | | %b0:
|
| +120:0| 3: <11, 3> | br label %b3;
|
| + | | %b1:
|
| +122:4| 3: <11, 2, 4, 2> | br i1 %c0, label %b2, label %b4;
|
| + | | %b2:
|
| +126:4| 3: <11, 3> | br label %b3;
|
| + | | %b3:
|
| +129:0| 3: <10> | ret void;
|
| + | | %b4:
|
| +130:6| 3: <11, 2, 3, 1> | br i1 %c1, label %b2, label %b3;
|
| +134:6| 0: <65534> | }
|
| +</pre>
|
| +<h3 id="unreachable">Unreachable</h3>
|
| +<p>The unreachable instruction has no defined semantics. The instruction is used to
|
| +inform the <a class="reference internal" href="/native-client/overview.html#link-for-pnacl-translator"><em>PNaCl translator</em></a> that control
|
| +can’t reach this instruction.</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| + unreachable; <A>
|
| +%bB:
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA: <15>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p>Directive to the <a class="reference internal" href="/native-client/overview.html#link-for-pnacl-translator"><em>PNaCl translator</em></a> that
|
| +this instruction is unreachable.</p>
|
| +<p><strong>Constraints</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A)
|
| +B == NumBasicBlocks + 1 &
|
| +</pre>
|
| +<p><strong>Updates</strong>:</p>
|
| +<pre class="prettyprint">
|
| +++NumBasicBlocks;
|
| +</pre>
|
| +<p><strong>Examples</strong>:</p>
|
| +<pre class="prettyprint">
|
| +108:0| 1: <65535, 12, 2> | function void @f0(i32 %p0) {
|
| + | | // BlockID = 12
|
| +116:0| 3: <1, 5> | blocks 5;
|
| +118:4| 1: <65535, 11, 2> | constants { // BlockID = 11
|
| +128:0| 3: <1, 2> | i1:
|
| +130:4| 3: <4, 3> | %c0 = i1 1;
|
| +133:0| 3: <4, 0> | %c1 = i1 0;
|
| +135:4| 0: <65534> | }
|
| + | | %b0:
|
| +136:0| 3: <11, 1, 2, 2> | br i1 %c0, label %b1, label %b2;
|
| + | | %b1:
|
| +140:0| 3: <11, 3, 4, 1> | br i1 %c1, label %b3, label %b4;
|
| + | | %b2:
|
| +144:0| 3: <15> | unreachable;
|
| + | | %b3:
|
| +145:6| 3: <15> | unreachable;
|
| + | | %b4:
|
| +147:4| 3: <10> | ret void;
|
| +149:2| 0: <65534> | }
|
| +</pre>
|
| +<h3 id="switch-instruction">Switch Instruction</h3>
|
| +<p>The <em>switch</em> instruction transfers control flow to one of several different
|
| +places, based on a selector value. It is a generalization of the conditional
|
| +branch instruction.</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| + switch T V0 {
|
| + default: br label %bB0;
|
| + T V1: br label %bB1;
|
| + ...
|
| + T VN: br label %bBN;
|
| + } <A>
|
| +%bB:
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA: <12, TT, B0, N, (1, 1, VVI, BI | 1 <= i <= N)>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p>The switch instruction transfers control to a basic block in <code>B0</code> through
|
| +<code>BN</code>. Value <code>V</code> is used to conditionally select which block to branch
|
| +to. <code>T</code> is the type of <code>V</code> and <code>V1</code> through <code>VN</code>, and must be an integer
|
| +type. Value <code>V1</code> through <code>VN</code> are integers to compare against <code>V</code>. If
|
| +selector <code>V</code> matches <code>VI</code> (for some <code>I</code>, <code>1 <= I <= N</code>), then the
|
| +instruction branches to block <code>BI</code>. If <code>V</code> is not in <code>V1</code> through <code>VN</code>,
|
| +the instruction branches to block <code>B0</code>.</p>
|
| +<p><strong>Constraints</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A) &
|
| +B == NumBasicBlocks + 1 &
|
| +TT == TypeID(T) &
|
| +VI == SignRotate(VI) for all I, 1 <= I <= N &
|
| +</pre>
|
| +<p><strong>Updates</strong>:</p>
|
| +<pre class="prettyprint">
|
| +++NumBasicBlocks;
|
| +</pre>
|
| +<p><strong>Examples</strong>:</p>
|
| +<pre class="prettyprint">
|
| +116:0| 1: <65535, 12, 2> | function void @f0(i32 %p0) {
|
| + | | // BlockID = 12
|
| +124:0| 3: <1, 6> | blocks 6;
|
| + | | %b0:
|
| +126:4| 3: <12, 1, 1, 2, 4, 1, 1,| switch i32 %p0 {
|
| + | 2, 3, 1, 1, 4, 3, 1, | default: br label %b2;
|
| + | 1, 8, 4, 1, 1, 10, 4>| i32 1: br label %b3;
|
| + | | i32 2: br label %b3;
|
| + | | i32 4: br label %b4;
|
| + | | i32 5: br label %b4;
|
| + | | }
|
| + | | %b1:
|
| +143:2| 3: <11, 5> | br label %b5;
|
| + | | %b2:
|
| +145:6| 3: <11, 5> | br label %b5;
|
| + | | %b3:
|
| +148:2| 3: <11, 5> | br label %b5;
|
| + | | %b4:
|
| +150:6| 3: <11, 5> | br label %b5;
|
| + | | %b5:
|
| +153:2| 3: <10> | ret void;
|
| +155:0| 0: <65534> | }
|
| +156:0| 1: <65535, 12, 2> | function void @f1(i64 %p0) {
|
| + | | // BlockID = 12
|
| +164:0| 3: <1, 6> | blocks 6;
|
| + | | %b0:
|
| +166:4| 3: <12, 2, 1, 2, 4, 1, 1,| switch i64 %p0 {
|
| + | 2, 3, 1, 1, 4, 3, 1, | default: br label %b2;
|
| + | 1, 8, 4, 1, 1, | i64 1: br label %b3;
|
| + | 39777555332, 4> | i64 2: br label %b3;
|
| + | | i64 4: br label %b4;
|
| + | | i64 19888777666: br label %b4;
|
| + | | }
|
| + | | %b1:
|
| +188:4| 3: <11, 5> | br label %b5;
|
| + | | %b2:
|
| +191:0| 3: <11, 5> | br label %b5;
|
| + | | %b3:
|
| +193:4| 3: <11, 5> | br label %b5;
|
| + | | %b4:
|
| +196:0| 3: <11, 5> | br label %b5;
|
| + | | %b5:
|
| +198:4| 3: <10> | ret void;
|
| +200:2| 0: <65534> | }
|
| +</pre>
|
| +<h2 id="integer-binary-instructions"><span id="link-for-integer-binary-instructions"></span>Integer Binary Instructions</h2>
|
| +<p>Binary instructions are used to do most of the computation in a program. This
|
| +section focuses on binary instructions that operator on integer values, or
|
| +vectors of integer values.</p>
|
| +<p>All binary operations require two operands of the same type, execute an
|
| +operation on them, and produce a value. The value may represent multiple values
|
| +if the type is a vector type. The result value always has the same type as its
|
| +operands.</p>
|
| +<p>Some integer binary operations can be applied to both signed and unsigned
|
| +integers. Others, the sign is significant. In general, if the sign plays a role
|
| +in the instruction, the sign information is encoded into the name of the
|
| +instruction.</p>
|
| +<p>For most binary operations (except some of the logical operations), integer
|
| +type i1 is disallowed.</p>
|
| +<h3 id="integer-add">Integer Add</h3>
|
| +<p>The integer add instruction returns the sum of its two arguments. Both arguments
|
| +and the result must be of the same type. That type must be integer, or an
|
| +integer vector type.</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| +%vN = add T V1, V2; <A>
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA: <2, VV1, VV2, 0>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p>The integer add instruction returns the sum of its two arguments. Arguments
|
| +<code>V1</code> and <code>V2</code>, and the result <code>%vN</code>, must be of type <code>T</code>. <code>T</code> must be
|
| +an integer type, or an integer vector type. <code>N</code> is defined by the record
|
| +position, defining the corresponding value generated by the instruction.</p>
|
| +<p>The result returned is the mathematical result modulo 2<sup>n</sup>, where <code>n</code>
|
| +is the bit width of the integer result.</p>
|
| +<p>Because integers are assumed to use a two’s complement representation,
|
| +this instruction is appropriate for both signed and unsigned integers.</p>
|
| +<p>In the add instruction, integer type <code>i1</code> (and a vector of integer type
|
| +<code>i1</code>) is disallowed.</p>
|
| +<p><strong>Constraints</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A) &
|
| +VV1 == RelativeIndex(V1) &
|
| +VV2 == RelativeIndex(V2) &
|
| +T == TypeOf(V1) == TypeOf(V2) &
|
| +IsInteger(UnderlyingType(T)) &
|
| +UnderlyingType(T) != i1 &
|
| +N == NumValuedInsts
|
| +</pre>
|
| +<p><strong>Updates</strong>:</p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +TypeOf(%vN) = T
|
| +</pre>
|
| +<p><strong>Examples</strong>:</p>
|
| +<pre class="prettyprint">
|
| + 96:0| 1: <65535, 12, 2> | function i32 @f0(i32 %p0, i32 %p1) {
|
| + | | // BlockID = 12
|
| +104:0| 3: <1, 1> | blocks 1;
|
| + | | %b0:
|
| +106:4| 3: <2, 2, 1, 0> | %v0 = add i32 %p0, %p1;
|
| +110:4| 3: <2, 3, 1, 0> | %v1 = add i32 %p0, %v0;
|
| +114:4| 3: <10, 1> | ret i32 %v1;
|
| +117:0| 0: <65534> | }
|
| +</pre>
|
| +<h3 id="integer-subtract">Integer Subtract</h3>
|
| +<p>The integer subtract instruction returns the difference of its two arguments.
|
| +Both arguments and the result must be of the same type. That type must be
|
| +integer, or an integer vector type.</p>
|
| +<p>Note: Since there isn’t a negate instruction, subtraction from constant zero
|
| +should be used to negate values.</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| +%vN = sub T V1, V2; <A>
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA: <2, VV1, VV2, 1>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p>The integer subtract returns the difference of its two arguments. Arguments
|
| +<code>V1</code> and <code>V2</code>, and the result <code>%vN</code> must be of type <code>T</code>. <code>T</code> must be
|
| +an integer type, or an integer vector type. <code>N</code> is defined by the record
|
| +position, defining the corresponding value generated by the instruction.</p>
|
| +<p>The result returned is the mathematical result modulo 2<sup>n</sup>, where <code>n</code>
|
| +is the bit width of the integer result.</p>
|
| +<p>Because integers are assumed to use a two’s complement representation,
|
| +this instruction is appropriate for both signed and unsigned integers.</p>
|
| +<p>In the subtract instruction, integer type <code>i1</code> (and a vector of integer type
|
| +<code>i1</code>) is disallowed.</p>
|
| +<p><strong>Constraints</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A) &
|
| +VV1 == RelativeIndex(V1) &
|
| +VV2 == RelativeIndex(V2) &
|
| +T == TypeOf(V1) == TypeOf(V2) &
|
| +IsInteger(UnderlyingType(T)) &
|
| +UnderlyingType(T) != i1 &
|
| +N == NumValuedInsts
|
| +</pre>
|
| +<p><strong>Updates</strong>:</p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +TypeOf(%vN) = T
|
| +</pre>
|
| +<p><strong>Examples</strong>:</p>
|
| +<pre class="prettyprint">
|
| + 96:0| 1: <65535, 12, 2> | function i32 @f0(i32 %p0, i32 %p1) {
|
| + | | // BlockID = 12
|
| +104:0| 3: <1, 1> | blocks 1;
|
| + | | %b0:
|
| +106:4| 3: <2, 2, 1, 1> | %v0 = sub i32 %p0, %p1;
|
| +110:4| 3: <2, 3, 1, 1> | %v1 = sub i32 %p0, %v0;
|
| +114:4| 3: <10, 1> | ret i32 %v1;
|
| +117:0| 0: <65534> | }
|
| +</pre>
|
| +<h3 id="integer-multiply">Integer Multiply</h3>
|
| +<p>The integer multiply instruction returns the product of its two arguments. Both
|
| +arguments and the result must be of the same type. That type must be integer,
|
| +or an integer based vector type.</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| +&vN = mul T V1, V2; <A>
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA: <2, VV1, VV2, 2>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p>The integer multiply instruction returns the product of its two
|
| +arguments. Arguments <code>V1</code> and <code>V2</code>, and the result <code>%vN</code>, must be of type
|
| +<code>T</code>. <code>T</code> must be an integer type, or an integer vector type. <code>N</code> is
|
| +defined by the record position, defining the corresponding value generated by
|
| +the instruction.</p>
|
| +<p>The result returned is the mathematical result modulo 2<sup>n</sup>, where <code>n</code>
|
| +is the bit width of the integer result.</p>
|
| +<p>Because integers are assumed to use a two’s complement representation,
|
| +this instruction is appropriate for both signed and unsigned integers.</p>
|
| +<p>In the subtract instruction, integer type <code>i1</code> (or a vector on integer type
|
| +<code>i1</code>) is disallowed.</p>
|
| +<p><strong>Constraints</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A) &
|
| +VV1 == RelativeIndex(V1) &
|
| +VV2 == RelativeIndex(V2) &
|
| +T == TypeOf(V1) == TypeOf(V2) &
|
| +IsInteger(UnderlyingType(T)) &
|
| +UnderlyingType(T) != i1 &
|
| +N == NumValuedInsts
|
| +</pre>
|
| +<p><strong>Updates</strong>:</p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +TypeOf(%vN) = T
|
| +</pre>
|
| +<p><strong>Examples</strong>:</p>
|
| +<pre class="prettyprint">
|
| + 96:0| 1: <65535, 12, 2> | function i32 @f0(i32 %p0, i32 %p1) {
|
| + | | // BlockID = 12
|
| +104:0| 3: <1, 1> | blocks 1;
|
| + | | %b0:
|
| +106:4| 3: <2, 2, 1, 2> | %v0 = mul i32 %p0, %p1;
|
| +110:4| 3: <2, 1, 3, 2> | %v1 = mul i32 %v0, %p0;
|
| +114:4| 3: <10, 1> | ret i32 %v1;
|
| +117:0| 0: <65534> | }
|
| +</pre>
|
| +<h3 id="signed-integer-divide">Signed Integer Divide</h3>
|
| +<p>The signed integer divide instruction returns the quotient of its two arguments.
|
| +Both arguments and the result must be of the same type. That type must be
|
| +integer, or an integer vector type.</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| +%vN = sdiv T V1, V2; <A>
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA: <2, VV1, VV2, 4>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p>The signed integer divide instruction returns the quotient of its two
|
| +arguments. Arguments <code>V1</code> and <code>V2</code>, and the result <code>%vN</code>, must be of type
|
| +<code>T</code>. <code>T</code> must be a integer type, or an integer vector type. <code>N</code> is defined
|
| +by the record position, defining the corresponding value generated by the
|
| +instruction.</p>
|
| +<p>Signed values are assumed. Note that signed and unsigned integer division are
|
| +distinct operations. For unsigned integer division use the unsigned integer
|
| +divide instruction (udiv).</p>
|
| +<p>In the signed integer divide instruction, integer type <code>i1</code> (and a vector of
|
| +integer type <code>i1</code>) is disallowed. Integer division by zero is guaranteed to
|
| +trap.</p>
|
| +<p>Note that overflow can happen with this instruction when dividing the maximum
|
| +negative integer by <code>-1</code>. The behavior for this case is currently undefined.</p>
|
| +<p><strong>Constraints</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A) &
|
| +VV1 == RelativeIndex(V1) &
|
| +VV2 == RelativeIndex(V2) &
|
| +T == TypeOf(V1) == TypeOf(V2) &
|
| +IsInteger(UnderlyingType(T)) &
|
| +UnderlyingType(T) != i1 &
|
| +N == NumValuedInsts
|
| +</pre>
|
| +<p><strong>Updates</strong>:</p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +TypeOf(%vN) = T
|
| +</pre>
|
| +<p><strong>Examples</strong>:</p>
|
| +<pre class="prettyprint">
|
| + 96:0| 1: <65535, 12, 2> | function i32 @f0(i32 %p0, i32 %p1) {
|
| + | | // BlockID = 12
|
| +104:0| 3: <1, 1> | blocks 1;
|
| + | | %b0:
|
| +106:4| 3: <2, 2, 1, 4> | %v0 = sdiv i32 %p0, %p1;
|
| +110:4| 3: <2, 1, 2, 4> | %v1 = sdiv i32 %v0, %p1;
|
| +114:4| 3: <10, 1> | ret i32 %v1;
|
| +117:0| 0: <65534> | }
|
| +</pre>
|
| +<h3 id="unsigned-integer-divide">Unsigned Integer Divide</h3>
|
| +<p>The unsigned integer divide instruction returns the quotient of its two
|
| +arguments. Both the arguments and the result must be of the same type. That type
|
| +must be integer, or an integer vector type.</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| +%vN = udiv T V1, V2; <a>
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA: <2, A1, A2, 3>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p>The unsigned integer divide instruction returns the quotient of its two
|
| +arguments. Arguments <code>V1</code> and <code>V2</code>, and the result <code>%vN</code>, must be of type
|
| +<code>T</code>. <code>T</code> must be an integer type, or an integer vector type. <code>N</code> is
|
| +defined by the record position, defining the corresponding value generated by
|
| +the instruction.</p>
|
| +<p>Unsigned integer values are assumed. Note that signed and unsigned integer
|
| +division are distinct operations. For signed integer division use the signed
|
| +integer divide instruction (sdiv).</p>
|
| +<p>In the unsigned integer divide instruction, integer type <code>i1</code> (and a vector of
|
| +integer type <code>i1</code>) is disallowed. Division by zero is guaranteed to trap.</p>
|
| +<p><strong>Constraints</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A) &
|
| +VV1 == RelativeIndex(V1) &
|
| +VV2 == RelativeIndex(V2) &
|
| +T == TypeOf(V1) == TypeOf(V2) &
|
| +IsInteger(UnderlyingType(T)) &
|
| +UnderlyingType(T) != i1 &
|
| +N == NumValuedInsts
|
| +</pre>
|
| +<p><strong>Updates</strong>:</p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +TypeOf(%vN) = T
|
| +</pre>
|
| +<p><strong>Examples</strong>:</p>
|
| +<pre class="prettyprint">
|
| + 96:0| 1: <65535, 12, 2> | function i32 @f0(i32 %p0, i32 %p1) {
|
| + | | // BlockID = 12
|
| +104:0| 3: <1, 1> | blocks 1;
|
| + | | %b0:
|
| +106:4| 3: <2, 2, 1, 3> | %v0 = udiv i32 %p0, %p1;
|
| +110:4| 3: <2, 1, 2, 3> | %v1 = udiv i32 %v0, %p1;
|
| +114:4| 3: <10, 1> | ret i32 %v1;
|
| +117:0| 0: <65534> | }
|
| +</pre>
|
| +<h3 id="signed-integer-remainder">Signed Integer Remainder</h3>
|
| +<p>The signed integer remainder instruction returns the remainder of the quotient
|
| +of its two arguments. Both arguments and the result must be of the same
|
| +type. That type must be integer, or an integer based vector type.</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| +%vN = srem T V1, V2; <A>
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA: <2, VV1, VV2, 6>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p>The signed integer remainder instruction returns the remainder of the quotient
|
| +of its two arguments. Arguments <code>V1</code> and <code>V2</code>, and the result <code>%vN</code>, must
|
| +be of type <code>T</code>. <code>T</code> must be a integer type, or an integer vector type. <code>N</code>
|
| +is defined by the record position, defining the corresponding value generated by
|
| +the instruction.</p>
|
| +<p>Signed values are assumed. Note that signed and unsigned integer division are
|
| +distinct operations. For unsigned integer division use the unsigned integer
|
| +remainder instruction (urem).</p>
|
| +<p>In the signed integer remainder instruction, integer type <code>i1</code> (and a vector
|
| +of integer type <code>i1</code>) is disallowed. Division by zero is guaranteed to trap.</p>
|
| +<p>Note that overflow can happen with this instruction when dividing the maximum
|
| +negative integer by <code>-1</code>. The behavior for this case is currently undefined.</p>
|
| +<p><strong>Constraints</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A) &
|
| +VV1 == RelativeIndex(V1) &
|
| +VV2 == RelativeIndex(V2) &
|
| +T == TypeOf(V1) == TypeOf(V2) &
|
| +IsInteger(UnderlyingType(T)) &
|
| +UnderlyingType(T) != i1 &
|
| +N == NumValuedInsts
|
| +</pre>
|
| +<p><strong>Updates</strong>:</p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +TypeOf(%vN) = T
|
| +</pre>
|
| +<p><strong>Examples</strong>:</p>
|
| +<pre class="prettyprint">
|
| + 96:0| 1: <65535, 12, 2> | function i32 @f0(i32 %p0, i32 %p1) {
|
| + | | // BlockID = 12
|
| +104:0| 3: <1, 1> | blocks 1;
|
| + | | %b0:
|
| +106:4| 3: <2, 2, 1, 6> | %v0 = srem i32 %p0, %p1;
|
| +110:4| 3: <2, 1, 2, 6> | %v1 = srem i32 %v0, %p1;
|
| +114:4| 3: <10, 1> | ret i32 %v1;
|
| +117:0| 0: <65534> | }
|
| +</pre>
|
| +<h3 id="unsigned-integer-remainder-instruction">Unsigned Integer Remainder Instruction</h3>
|
| +<p>The unsigned integer remainder instruction returns the remainder of the quotient
|
| +of its two arguments. Both the arguments and the result must be of the same
|
| +type. The type must be integer, or an integer vector type.</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| +%vN = urem T V1, V2; <A>
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA: <2, A1, A2, 5>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p>The unsigned integer remainder instruction returns the remainder of the quotient
|
| +of its two arguments. Arguments <code>V1</code> and <code>V2</code>, and the result <code>%vN</code>, must
|
| +be of type <code>T</code>. <code>T</code> must be an integer type, or an integer vector type.
|
| +<code>N</code> is defined by the record position, defining the corresponding value
|
| +generated by the instruction.</p>
|
| +<p>Unsigned values are assumed. Note that signed and unsigned integer division are
|
| +distinct operations. For signed integer division use the remainder instruction
|
| +(srem).</p>
|
| +<p>In the unsigned integer remainder instruction, integer type <code>i1</code> (and a vector
|
| +of integer type <code>i1</code>) is disallowed. Division by zero is guaranteed to trap.</p>
|
| +<p><strong>Constraints</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A) &
|
| +VV1 == RelativeIndex(V1) &
|
| +VV2 == RelativeIndex(V2) &
|
| +T == TypeOf(V1) == TypeOf(V2) &
|
| +IsInteger(UnderlyingType(T)) &
|
| +UnderlyingType(T) != i1 &
|
| +N == NumValuedInsts
|
| +</pre>
|
| +<p><strong>Updates</strong>:</p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +TypeOf(%vN) = T
|
| +</pre>
|
| +<p><strong>Examples</strong>:</p>
|
| +<pre class="prettyprint">
|
| + 96:0| 1: <65535, 12, 2> | function i32 @f0(i32 %p0, i32 %p1) {
|
| + | | // BlockID = 12
|
| +104:0| 3: <1, 1> | blocks 1;
|
| + | | %b0:
|
| +106:4| 3: <2, 2, 1, 5> | %v0 = urem i32 %p0, %p1;
|
| +110:4| 3: <2, 1, 2, 5> | %v1 = urem i32 %v0, %p1;
|
| +114:4| 3: <10, 1> | ret i32 %v1;
|
| +117:0| 0: <65534> | }
|
| +</pre>
|
| +<h3 id="shift-left">Shift Left</h3>
|
| +<p>The (integer) shift left instruction returns the first operand, shifted to the
|
| +left a specified number of bits with zero fill. The shifted value must be
|
| +integer, or an integer vector type.</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| +%vN = shl T V1, V2; <A>
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA: <2, VV1, VV2, 7>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p>This instruction performs a shift left operation. Arguments <code>V1</code> and <code>V2</code>
|
| +and the result <code>%vN</code> must be of type <code>T</code>. <code>T</code> must be an integer, or a
|
| +vector of integers. <code>N</code> is defined by the record position, defining the
|
| +corresponding value generated by the instruction.</p>
|
| +<p><code>V2</code> is assumed to be unsigned. The least significant bits of the result will
|
| +be filled with zero bits after the shift. If <code>V2</code> is (statically or
|
| +dynamically) negative or equal to or larger than the number of bits in
|
| +<code>V1</code>, the result is undefined. If the arguments are vectors, each vector
|
| +element of <code>V1</code> is shifted by the corresponding shift amount in <code>V2</code>.</p>
|
| +<p>In the shift left instruction, integer type <code>i1</code> (and a vector of integer type
|
| +<code>i1</code>) is disallowed.</p>
|
| +<p><strong>Constraints</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A) &
|
| +VV1 == RelativeIndex(V1) &
|
| +VV2 == RelativeIndex(V2) &
|
| +T == TypeOf(V1) == TypeOf(V2) &
|
| +IsInteger(UnderlyingType(T)) &
|
| +UnderlyingType(T) != i1 &
|
| +N == NumValuedInsts
|
| +</pre>
|
| +<p><strong>Updates</strong>:</p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +TypeOf(%vN) = T
|
| +</pre>
|
| +<p><strong>Examples</strong>:</p>
|
| +<pre class="prettyprint">
|
| + 96:0| 1: <65535, 12, 2> | function i32 @f0(i32 %p0, i32 %p1) {
|
| + | | // BlockID = 12
|
| +104:0| 3: <1, 1> | blocks 1;
|
| + | | %b0:
|
| +106:4| 3: <2, 2, 1, 7> | %v0 = shl i32 %p0, %p1;
|
| +110:4| 3: <2, 1, 2, 7> | %v1 = shl i32 %v0, %p1;
|
| +114:4| 3: <10, 1> | ret i32 %v1;
|
| +117:0| 0: <65534> | }
|
| +</pre>
|
| +<h3 id="logical-shift-right">Logical Shift Right</h3>
|
| +<p>The logical shift right instruction returns the first operand, shifted to the
|
| +right a specified number of bits with zero fill.</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| +%vN = lshr T V1, V2; <A>
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA: <2, VV1, VV2, 8>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p>This instruction performs a logical shift right operation. Arguments <code>V1</code> and
|
| +<code>V2</code> and the result <code>%vN</code> must be of type <code>T</code>. <code>T</code> must be an integer,
|
| +or a vector of integers. <code>N</code> is defined by the record position, defining the
|
| +corresponding value generated by the instruction.</p>
|
| +<p><code>V2</code> is assumed to be unsigned. The most significant bits of the result will
|
| +be filled with zero bits after the shift. If <code>V2</code> is (statically or
|
| +dynamically) negative or equal to or larger than the number of bits in <code>V1</code>,
|
| +the result is undefined. If the arguments are vectors, each vector element of
|
| +<code>V1</code> is shifted by the corresponding shift amount in <code>V2</code>.</p>
|
| +<p>In the logical shift right instruction, integer type <code>i1</code> (and a vector of
|
| +integer type <code>i1</code>) is disallowed.</p>
|
| +<p><strong>Constraints</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A) &
|
| +VV1 == RelativeIndex(V1) &
|
| +VV2 == RelativeIndex(V2) &
|
| +T == TypeOf(V1) == TypeOf(V2) &
|
| +IsInteger(UnderlyingType(T)) &
|
| +UnderlyingType(T) != i1 &
|
| +N == NumValuedInsts
|
| +</pre>
|
| +<p><strong>Updates</strong>:</p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +TypeOf(%vN) = T
|
| +</pre>
|
| +<p><strong>Examples</strong>:</p>
|
| +<pre class="prettyprint">
|
| + 96:0| 1: <65535, 12, 2> | function i32 @f0(i32 %p0, i32 %p1) {
|
| + | | // BlockID = 12
|
| +104:0| 3: <1, 1> | blocks 1;
|
| + | | %b0:
|
| +106:4| 3: <2, 2, 1, 8> | %v0 = lshr i32 %p0, %p1;
|
| +110:4| 3: <2, 1, 2, 8> | %v1 = lshr i32 %v0, %p1;
|
| +114:4| 3: <10, 1> | ret i32 %v1;
|
| +117:0| 0: <65534> | }
|
| +</pre>
|
| +<h3 id="arithmetic-shift-right">Arithmetic Shift Right</h3>
|
| +<p>The arithmetic shift right instruction returns the first operand, shifted to the
|
| +right a specified number of bits with sign extension.</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| +%vN = ashr T V1, V2; <A>
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA: <2, VV1, VVA2, 9>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p>This instruction performs an arithmetic shift right operation. Arguments <code>V1</code>
|
| +and <code>V2</code> and and the result <code>%vN</code> must be of type <code>T</code>. <code>T</code> must be an
|
| +integer, or a vector of integers. <code>N</code> is defined by the record position,
|
| +defining the corresponding value generated by the instruction.</p>
|
| +<p><code>V2</code> is assumed to be unsigned. The most significant bits of the result will
|
| +be filled with the sign bit of <code>V1</code>. If <code>V2</code> is (statically or dynamically)
|
| +negative or equal to or larger than the number of bits in <code>V1</code>, the result is
|
| +undefined. If the arguments are vectors, each vector element of <code>V1</code> is
|
| +shifted by the corresponding shift amount in <code>V2</code>.</p>
|
| +<p>In the arithmetic shift right instruction, integer type <code>i1</code> (and a vector of
|
| +integral type <code>i1</code>) is disallowed.</p>
|
| +<p><strong>Constraints</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A) &
|
| +VV1 == RelativeIndex(V1) &
|
| +VV2 == RelativeIndex(V2) &
|
| +T == TypeOf(V1) == TypeOf(V2) &
|
| +IsInteger(UnderlyingType(T)) &
|
| +UnderlyingType(T) != i1 &
|
| +N == NumValuedInsts
|
| +</pre>
|
| +<p><strong>Updates</strong>:</p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +TypeOf(%vN) = T
|
| +</pre>
|
| +<p><strong>Examples</strong>:</p>
|
| +<pre class="prettyprint">
|
| + 96:0| 1: <65535, 12, 2> | function i32 @f0(i32 %p0, i32 %p1) {
|
| + | | // BlockID = 12
|
| +104:0| 3: <1, 1> | blocks 1;
|
| + | | %b0:
|
| +106:4| 3: <2, 2, 1, 9> | %v0 = ashr i32 %p0, %p1;
|
| +110:4| 3: <2, 1, 2, 9> | %v1 = ashr i32 %v0, %p1;
|
| +114:4| 3: <10, 1> | ret i32 %v1;
|
| +117:0| 0: <65534> | }
|
| +</pre>
|
| +<h3 id="logical-and">Logical And</h3>
|
| +<p>The <em>and</em> instruction returns the bitwise logical and of its two operands.</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| +%vN = and T V1, V2; <A>
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA: <2, VV1, VV2, 10>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p>This instruction performs a bitwise logical and of its arguments. Arguments
|
| +<code>V1</code> and <code>V2</code>, and the result <code>%vN</code> must be of type <code>T</code>. <code>T</code> must be
|
| +an integer, or a vector of integers. <code>N</code> is defined by the record position,
|
| +defining the corresponding value generated by the instruction. <code>A</code> is the
|
| +(optional) abbreviation associated with the corresponding record.</p>
|
| +<p>The truth table used for the <em>and</em> instruction is:</p>
|
| +<table border="1" class="docutils">
|
| +<colgroup>
|
| +</colgroup>
|
| +<thead valign="bottom">
|
| +<tr class="row-odd"><th class="head">Arg 1</th>
|
| +<th class="head">Arg 2</th>
|
| +<th class="head">Result</th>
|
| +</tr>
|
| +</thead>
|
| +<tbody valign="top">
|
| +<tr class="row-even"><td>0</td>
|
| +<td>0</td>
|
| +<td>0</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>0</td>
|
| +<td>1</td>
|
| +<td>0</td>
|
| +</tr>
|
| +<tr class="row-even"><td>1</td>
|
| +<td>0</td>
|
| +<td>0</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>1</td>
|
| +<td>1</td>
|
| +<td>1</td>
|
| +</tr>
|
| +</tbody>
|
| +</table>
|
| +<p><strong>Constraints</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A) &
|
| +VV1 == RelativeIndex(V1) &
|
| +VV2 == RelativeIndex(V2) &
|
| +T == TypeOf(V1) == TypeOf(V2) &
|
| +IsInteger(UnderlyingType(T))) &
|
| +N == NumValuedInsts
|
| +</pre>
|
| +<p><strong>Updates</strong>:</p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +TypeOf(%vN) = T
|
| +</pre>
|
| +<p><strong>Examples</strong>:</p>
|
| +<pre class="prettyprint">
|
| + 96:0| 1: <65535, 12, 2> | function i32 @f0(i32 %p0, i32 %p1) {
|
| + | | // BlockID = 12
|
| +104:0| 3: <1, 1> | blocks 1;
|
| + | | %b0:
|
| +106:4| 3: <2, 2, 1, 10> | %v0 = and i32 %p0, %p1;
|
| +110:4| 3: <2, 1, 2, 10> | %v1 = and i32 %v0, %p1;
|
| +114:4| 3: <10, 1> | ret i32 %v1;
|
| +117:0| 0: <65534> | }
|
| +</pre>
|
| +<h3 id="logical-or">Logical Or</h3>
|
| +<p>The <em>or</em> instruction returns the bitwise logical inclusive or of its
|
| +two operands.</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| +%vN = or T V1, V2; <A>
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA: <2, VV1, VV2, 11>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p>This instruction performs a bitwise logical inclusive or of its arguments.
|
| +Arguments <code>V1</code> and <code>V2</code>, and the result <code>%vN</code> must be of type <code>T</code>. <code>T</code>
|
| +must be an integer, or a vector of integers. <code>N</code> is defined by the record
|
| +position, defining the corresponding value generated by the instruction.</p>
|
| +<p>The truth table used for the <em>or</em> instruction is:</p>
|
| +<table border="1" class="docutils">
|
| +<colgroup>
|
| +</colgroup>
|
| +<thead valign="bottom">
|
| +<tr class="row-odd"><th class="head">Arg 1</th>
|
| +<th class="head">Arg 2</th>
|
| +<th class="head">Result</th>
|
| +</tr>
|
| +</thead>
|
| +<tbody valign="top">
|
| +<tr class="row-even"><td>0</td>
|
| +<td>0</td>
|
| +<td>0</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>0</td>
|
| +<td>1</td>
|
| +<td>1</td>
|
| +</tr>
|
| +<tr class="row-even"><td>1</td>
|
| +<td>0</td>
|
| +<td>1</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>1</td>
|
| +<td>1</td>
|
| +<td>1</td>
|
| +</tr>
|
| +</tbody>
|
| +</table>
|
| +<p><strong>Constraints</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A) &
|
| +VV1 == RelativeIndex(V1) &
|
| +VV2 == RelativeIndex(V2) &
|
| +T == TypeOf(V1) == TypeOf(V2) &
|
| +IsInteger(UnderlyingType(T))) &
|
| +N == NumValuedInsts
|
| +</pre>
|
| +<p><strong>Updates</strong>:</p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +TypeOf(%vN) = T
|
| +</pre>
|
| +<p><strong>Examples</strong>:</p>
|
| +<pre class="prettyprint">
|
| + 96:0| 1: <65535, 12, 2> | function i32 @f0(i32 %p0, i32 %p1) {
|
| + | | // BlockID = 12
|
| +104:0| 3: <1, 1> | blocks 1;
|
| + | | %b0:
|
| +106:4| 3: <2, 2, 1, 11> | %v0 = or i32 %p0, %p1;
|
| +110:4| 3: <2, 1, 2, 11> | %v1 = or i32 %v0, %p1;
|
| +114:4| 3: <10, 1> | ret i32 %v1;
|
| +117:0| 0: <65534> | }
|
| +</pre>
|
| +<h3 id="logical-xor">Logical Xor</h3>
|
| +<p>The <em>xor</em> instruction returns the bitwise logical exclusive or of its
|
| +two operands.</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| +%vN = xor T V1, V2; <A>
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA: <2, VV1, VV2, 12>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p>This instruction performs a bitwise logical exclusive or of its arguments.
|
| +Arguments <code>V1</code> and <code>V2</code>, and the result <code>%vN</code> must be of type <code>T</code>. <code>T</code>
|
| +must be an integer, or a vector of integers. <code>N</code> is defined by the record
|
| +position, defining the corresponding value generated by the instruction.</p>
|
| +<p>The truth table used for the <em>xor</em> instruction is:</p>
|
| +<table border="1" class="docutils">
|
| +<colgroup>
|
| +</colgroup>
|
| +<thead valign="bottom">
|
| +<tr class="row-odd"><th class="head">Arg 1</th>
|
| +<th class="head">Arg 2</th>
|
| +<th class="head">Result</th>
|
| +</tr>
|
| +</thead>
|
| +<tbody valign="top">
|
| +<tr class="row-even"><td>0</td>
|
| +<td>0</td>
|
| +<td>0</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>0</td>
|
| +<td>1</td>
|
| +<td>1</td>
|
| +</tr>
|
| +<tr class="row-even"><td>1</td>
|
| +<td>0</td>
|
| +<td>1</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>1</td>
|
| +<td>1</td>
|
| +<td>0</td>
|
| +</tr>
|
| +</tbody>
|
| +</table>
|
| +<p><strong>Constraints</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A) &
|
| +A1 == RelativeIndex(V1) &
|
| +A2 == RelativeIndex(V2) &
|
| +T == TypeOf(V1) == TypeOf(V2) &
|
| +IsInteger(UnderlyingType(T))) &
|
| +N == NumValuedInsts
|
| +</pre>
|
| +<p><strong>Updates</strong>:</p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +TypeOf(%vN) = T
|
| +</pre>
|
| +<p><strong>Examples</strong>:</p>
|
| +<pre class="prettyprint">
|
| + 96:0| 1: <65535, 12, 2> | function i32 @f0(i32 %p0, i32 %p1) {
|
| + | | // BlockID = 12
|
| +104:0| 3: <1, 1> | blocks 1;
|
| + | | %b0:
|
| +106:4| 3: <2, 2, 1, 12> | %v0 = xor i32 %p0, %p1;
|
| +110:4| 3: <2, 1, 2, 12> | %v1 = xor i32 %v0, %p1;
|
| +114:4| 3: <10, 1> | ret i32 %v1;
|
| +117:0| 0: <65534> | }
|
| +</pre>
|
| +<h2 id="floating-point-binary-instructions"><span id="link-for-floating-point-binary-instructions"></span>Floating Point Binary Instructions</h2>
|
| +<p>Floating point binary instructions require two operands of the same type,
|
| +execute an operation on them, and produce a value. The value may represent
|
| +multiple values if the type is a vector type. The result value always has the
|
| +same type as its operands.</p>
|
| +<h3 id="floating-point-add">Floating Point Add</h3>
|
| +<p>The floating point add instruction returns the sum of its two arguments. Both
|
| +arguments and the result must be of the same type. That type must be a floating
|
| +point type, or a vector of a floating point type.</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| +%vN = fadd T V1, V2; <A>
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA: <2, VV1, VV2, 0>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p>The floating point add instruction returns the sum of its two arguments.
|
| +Arguments <code>V1</code> and <code>V2</code> and the result <code>%vN</code> must be of type <code>T</code>. <code>T</code>
|
| +must be a floating point type, or a vector of a floating point type. <code>N</code> is
|
| +defined by the record position, defining the corresponding value generated by
|
| +the instruction.</p>
|
| +<p><strong>Constraints</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A) &
|
| +VV1 == RelativeIndex(V1) &
|
| +VV2 == RelativeIndex(V2) &
|
| +T == TypeOf(V1) == TypeOf(V2) &
|
| +IsFloat(UnderlyingType(T)) &
|
| +N == NumValuedInsts
|
| +</pre>
|
| +<p><strong>Updates</strong>:</p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +TypeOf(%vN) = T
|
| +</pre>
|
| +<p><strong>Examples</strong>:</p>
|
| +<pre class="prettyprint">
|
| + 92:0| 1: <65535, 12, 2> | function
|
| + | | float @f0(float %p0, float %p1) {
|
| + | | // BlockID = 12
|
| +100:0| 3: <1, 1> | blocks 1;
|
| + | | %b0:
|
| +102:4| 3: <2, 2, 1, 0> | %v0 = fadd float %p0, %p1;
|
| +106:4| 3: <2, 3, 1, 0> | %v1 = fadd float %p0, %v0;
|
| +110:4| 3: <10, 1> | ret float %v1;
|
| +113:0| 0: <65534> | }
|
| +</pre>
|
| +<h3 id="floating-point-subtract">Floating Point Subtract</h3>
|
| +<p>The floating point subtract instruction returns the difference of its two
|
| +arguments. Both arguments and the result must be of the same type. That type
|
| +must be a floating point type, or a vector of a floating point type.</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| +%vN = fsub T V1, V2; <a>
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA: <2, VV1, VV2, 1>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p>The floating point subtract instruction returns the difference of its two
|
| +arguments. Arguments <code>V1</code> and <code>V2</code>, and the result <code>%vN</code> must be of type
|
| +<code>T</code>. <code>T</code> must be a floating point type, or a vector of a floating point
|
| +type. <code>N</code> is defined by the record position, defining the corresponding value
|
| +generated by the instruction.</p>
|
| +<p><strong>Constraints</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A) &
|
| +VV1 == RelativeIndex(V1) &
|
| +VV2 == RelativeIndex(V2) &
|
| +T == TypeOf(V1) == TypeOf(V2) &
|
| +IsFloat(UnderlyingType(T)) &
|
| +N == NumValuedInsts
|
| +</pre>
|
| +<p><strong>Updates</strong>:</p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +TypeOf(%vN) = T
|
| +</pre>
|
| +<p><strong>Examples</strong>:</p>
|
| +<pre class="prettyprint">
|
| + 92:0| 1: <65535, 12, 2> | function
|
| + | | float @f0(float %p0, float %p1) {
|
| + | | // BlockID = 12
|
| +100:0| 3: <1, 1> | blocks 1;
|
| + | | %b0:
|
| +102:4| 3: <2, 2, 1, 1> | %v0 = fsub float %p0, %p1;
|
| +106:4| 3: <2, 3, 1, 1> | %v1 = fsub float %p0, %v0;
|
| +110:4| 3: <10, 1> | ret float %v1;
|
| +113:0| 0: <65534> | }
|
| +</pre>
|
| +<h3 id="floating-point-multiply">Floating Point Multiply</h3>
|
| +<p>The floating point multiply instruction returns the product of its two
|
| +arguments. Both arguments and the result must be of the same type. That type
|
| +must be a floating point type, or a vector of a floating point type.</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| +&vN = fmul T V1, V2; <A>
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA: <2, VV1, VV2, 2>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p>The floating point multiply instruction returns the product of its two
|
| +arguments. Arguments <code>V1</code> and <code>V2</code>, and the result <code>%vN</code> must be of type
|
| +<code>T</code>. <code>T</code> must be a floating point type, or a vector of a floating point
|
| +type. <code>N</code> is defined by the record position, defining the corresponding value
|
| +generated by the instruction.</p>
|
| +<p><strong>Constraints</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A) &
|
| +VV1 == RelativeIndex(V1) &
|
| +VV2 == RelativeIndex(V2) &
|
| +T == TypeOf(V1) == TypeOf(V2) &
|
| +IsFloat(UnderlyingType(T)) &
|
| +N == NumValuedInsts
|
| +</pre>
|
| +<p><strong>Updates</strong>:</p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +TypeOf(%vN) = T
|
| +</pre>
|
| +<p><strong>Examples</strong>:</p>
|
| +<pre class="prettyprint">
|
| + 92:0| 1: <65535, 12, 2> | function
|
| + | | float @f0(float %p0, float %p1) {
|
| + | | // BlockID = 12
|
| +100:0| 3: <1, 1> | blocks 1;
|
| + | | %b0:
|
| +102:4| 3: <2, 2, 1, 2> | %v0 = fmul float %p0, %p1;
|
| +106:4| 3: <2, 3, 1, 2> | %v1 = fmul float %p0, %v0;
|
| +110:4| 3: <10, 1> | ret float %v1;
|
| +113:0| 0: <65534> | }
|
| +</pre>
|
| +<h3 id="floating-point-divide">Floating Point Divide</h3>
|
| +<p>The floating point divide instruction returns the quotient of its two
|
| +arguments. Both arguments and the result must be of the same type. That type
|
| +must be a floating point type, or a vector of a floating point type.</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| +%vN = fdiv T V1, V2; <A>
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA: <2, V1, V2, 4>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p>The floating point divide instruction returns the quotient of its two
|
| +arguments. Arguments <code>V1</code> and <code>V2</code>, and the result <code>%vN</code> must be of type
|
| +<code>T</code>. <code>T</code> must be a floating point type, or a vector of a floating point
|
| +type. <code>N</code> is defined by the record position, defining the corresponding value
|
| +generated by the instruction.</p>
|
| +<p><strong>Constraints</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A) &
|
| +VV1 == RelativeIndex(V1) &
|
| +VV22 == RelativeIndex(V2) &
|
| +T == TypeOf(V1) == TypeOf(V2) &
|
| +IsFloat(UnderlyingType(T)) &
|
| +N == NumValuedInsts
|
| +</pre>
|
| +<p><strong>Updates</strong>:</p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +TypeOf(%vN) = T;
|
| +</pre>
|
| +<p><strong>Examples</strong>:</p>
|
| +<pre class="prettyprint">
|
| + 92:0| 1: <65535, 12, 2> | function
|
| + | | double
|
| + | | @f0(double %p0, double %p1) {
|
| + | | // BlockID = 12
|
| +100:0| 3: <1, 1> | blocks 1;
|
| + | | %b0:
|
| +102:4| 3: <2, 2, 1, 4> | %v0 = fdiv double %p0, %p1;
|
| +106:4| 3: <2, 3, 1, 4> | %v1 = fdiv double %p0, %v0;
|
| +110:4| 3: <10, 1> | ret double %v1;
|
| +113:0| 0: <65534> | }
|
| +</pre>
|
| +<h3 id="floating-point-remainder">Floating Point Remainder</h3>
|
| +<p>The floating point remainder instruction returns the remainder of the quotient
|
| +of its two arguments. Both arguments and the result must be of the same
|
| +type. That type must be a floating point type, or a vector of a floating point
|
| +type.</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| +%vN = frem T V1, V2; <A>
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA: <2, VV1, VV2, 6>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p>The floating point remainder instruction returns the remainder of the quotient
|
| +of its two arguments. Arguments <code>V1</code> and <code>V2</code>, and the result <code>%vN</code> must
|
| +be of type <code>T</code>. <code>T</code> must be a floating point type, or a vector of a floating
|
| +point type. <code>N</code> is defined by the record position, defining the corresponding
|
| +value generated by the instruction.</p>
|
| +<p><strong>Constraints</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A) &
|
| +VV1 == RelativeIndex(V1) &
|
| +VV2 == RelativeIndex(V2) &
|
| +T == TypeOf(V1) == TypeOf(V2) &
|
| +IsFloat(UnderlyingType(T)) &
|
| +N == NumValuedInsts
|
| +</pre>
|
| +<p><strong>Updates</strong>:</p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +TypeOf(%vN) = T
|
| +</pre>
|
| +<p><strong>Examples</strong>:</p>
|
| +<pre class="prettyprint">
|
| + 92:0| 1: <65535, 12, 2> | function
|
| + | | double
|
| + | | @f0(double %p0, double %p1) {
|
| + | | // BlockID = 12
|
| +100:0| 3: <1, 1> | blocks 1;
|
| + | | %b0:
|
| +102:4| 3: <2, 2, 1, 6> | %v0 = frem double %p0, %p1;
|
| +106:4| 3: <2, 3, 1, 6> | %v1 = frem double %p0, %v0;
|
| +110:4| 3: <10, 1> | ret double %v1;
|
| +113:0| 0: <65534> | }
|
| +</pre>
|
| +<h2 id="memory-creation-and-access-instructions"><span id="link-for-memory-creation-and-access-instructions"></span>Memory Creation and Access Instructions</h2>
|
| +<p>A key design point of SSA-based representation is how it represents
|
| +memory. In PNaCl bitcode files, no memory locations are in SSA
|
| +form. This makes things very simple.</p>
|
| +<h3 id="alloca-instruction"><span id="link-for-alloca-instruction"></span>Alloca Instruction</h3>
|
| +<p>The <em>alloca</em> instruction allocates memory on the stack frame of the
|
| +currently executing function. This memory is automatically released
|
| +when the function returns to its caller.</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| +%vN = alloca i8, i32 S, align V; <A>
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA: <19, SS, VV>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p>The <em>alloca</em> instruction allocates memory on the stack frame of the currently
|
| +executing function. The resulting value is a pointer to the allocated memory
|
| +(i.e. of type i32). <code>S</code> is the number of bytes that are allocated on the
|
| +stack. <code>S</code> must be of integer type i32. <code>V</code> is the alignment of the
|
| +generated stack address.</p>
|
| +<p>Alignment must be a power of 2. See <a class="reference internal" href="#link-for-memory-blocks-and-alignment-section"><em>memory blocks and
|
| +alignment</em></a> for a more detailed
|
| +discussion on how to define alignment.</p>
|
| +<p><strong>Constraints</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A) &
|
| +VV == Log2(V+1) &
|
| +SS == RelativeIndex(S) &
|
| +i32 == TypeOf(S) &
|
| +N == NumValuedInsts
|
| +</pre>
|
| +<p><strong>Updates</strong>:</p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +TypeOf(%vN) = i32;
|
| +</pre>
|
| +<p><strong>Examples</strong>:</p>
|
| +<pre class="prettyprint">
|
| +112:0| 1: <65535, 12, 2> | function void @f1() {
|
| + | | // BlockID = 12
|
| +120:0| 3: <1, 1> | blocks 1;
|
| +122:4| 1: <65535, 11, 2> | constants { // BlockID = 11
|
| +132:0| 3: <1, 0> | i32:
|
| +134:4| 3: <4, 4> | %c0 = i32 2;
|
| +137:0| 3: <4, 8> | %c1 = i32 4;
|
| +139:4| 3: <4, 16> | %c2 = i32 8;
|
| +142:0| 0: <65534> | }
|
| + | | %b0:
|
| +144:0| 3: <19, 3, 1> | %v0 = alloca i8, i32 %c0, align 1;
|
| +147:2| 3: <19, 3, 3> | %v1 = alloca i8, i32 %c1, align 4;
|
| +150:4| 3: <19, 3, 4> | %v2 = alloca i8, i32 %c2, align 8;
|
| +153:6| 3: <10> | ret void;
|
| +155:4| 0: <65534> | }
|
| +</pre>
|
| +<h3 id="load-instruction">Load Instruction</h3>
|
| +<p>The <em>load</em> instruction is used to read from memory.</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| +%vN = load T* P, align V; <A>
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA: <20, PP, VV, TT>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p>The load instruction is used to read from memory. <code>P</code> is the identifier of the
|
| +memory address to read. The type of <code>P</code> must be an <code>i32</code>. <code>T</code> is the type
|
| +of value to read. <code>V</code> is the alignment of the memory address.</p>
|
| +<p>Type <code>T</code> must be a vector, integer, or floating point type. Both <code>float</code> and
|
| +<code>double</code> types are allowed for floating point types. All integer types except
|
| +i1 are allowed.</p>
|
| +<p>Alignment must be a power of 2. See <a class="reference internal" href="#link-for-memory-blocks-and-alignment-section"><em>memory blocks and
|
| +alignment</em></a> for a more detailed
|
| +discussion on how to define alignment.</p>
|
| +<p><strong>Constraints</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A) &
|
| +i32 == TypeOf(P) &
|
| +PP == RelativeIndex(P) &
|
| +VV == Log2(V+1) &
|
| +%tTT == TypeID(T) &
|
| +N == NumValuedInsts
|
| +</pre>
|
| +<p><strong>Updates</strong>:</p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +TypeOf(%vN) = T;
|
| +</pre>
|
| +<p><strong>Examples</strong>:</p>
|
| +<pre class="prettyprint">
|
| + 40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| + 48:0| 3: <1, 4> | count 4;
|
| + 50:4| 3: <7, 32> | @t0 = i32;
|
| + 53:6| 3: <2> | @t1 = void;
|
| + 55:4| 3: <4> | @t2 = double;
|
| + 57:2| 3: <21, 0, 1, 0> | @t3 = void (i32);
|
| + 61:2| 0: <65534> | }
|
| + ...
|
| + 96:0| 1: <65535, 12, 2> | function void @f0(i32 %p0) {
|
| + | | // BlockID = 12
|
| +104:0| 3: <1, 1> | blocks 1;
|
| + | | %b0:
|
| +106:4| 3: <20, 1, 1, 0> | %v0 = load i32* %p0, align 1;
|
| +110:4| 3: <20, 1, 4, 2> | %v1 = load double* %v0, align 8;
|
| +114:4| 3: <10> | ret void;
|
| +116:2| 0: <65534> | }
|
| +</pre>
|
| +<h3 id="store-instruction">Store Instruction</h3>
|
| +<p>The <em>store</em> instruction is used to write to memory.</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| +store T S, T* P, align V; <A>
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA: <24, PP, SS, VV>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p>The store instruction is used to write to memory. <code>P</code> is the identifier of the
|
| +memory address to write to. The type of <code>P</code> must be an i32 integer. <code>T</code> is
|
| +the type of value to store. <code>S</code> is the value to store, and must be of type
|
| +<code>T</code>. <code>V</code> is the alignment of the memory address. <code>A</code> is the (optional)
|
| +abbreviation index associated with the record.</p>
|
| +<p>Type <code>T</code> must be an integer or floating point type. Both <code>float</code> and
|
| +<code>double</code> types are allowed for floating point types. All integer types except
|
| +i1 are allowed.</p>
|
| +<p>Alignment must be a power of 2. See <a class="reference internal" href="#link-for-memory-blocks-and-alignment-section"><em>memory blocks and
|
| +alignment</em></a> for a more detailed
|
| +discussion on how to define alignment.</p>
|
| +<p><strong>Constraints</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A) &
|
| +i32 == TypeOf(P) &
|
| +PP == RelativeIndex(P) &
|
| +VV == Log2(V+1)
|
| +</pre>
|
| +<p><strong>Examples</strong>:</p>
|
| +<pre class="prettyprint">
|
| + 40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| + 48:0| 3: <1, 4> | count 4;
|
| + 50:4| 3: <7, 32> | @t0 = i32;
|
| + 53:6| 3: <2> | @t1 = void;
|
| + 55:4| 3: <4> | @t2 = double;
|
| + 57:2| 3: <21, 0, 1, 0, 0, 0, 2>| @t3 = void (i32, i32, i32, double);
|
| + 63:4| 0: <65534> | }
|
| + ...
|
| + 96:0| 1: <65535, 12, 2> | function
|
| + | | void
|
| + | | @f0(i32 %p0, i32 %p1, i32 %p2,
|
| + | | double %p3) {
|
| + | | // BlockID = 12
|
| +104:0| 3: <1, 1> | blocks 1;
|
| + | | %b0:
|
| +106:4| 3: <24, 4, 3, 1> | store i32 %p1, i32* %p0, align 1;
|
| +110:4| 3: <24, 2, 1, 4> | store double %p3, double* %p2,
|
| + | | align 8;
|
| +114:4| 3: <10> | ret void;
|
| +116:2| 0: <65534> | }
|
| +</pre>
|
| +<h2 id="conversion-instructions"><span id="link-for-conversion-instructions"></span>Conversion Instructions</h2>
|
| +<p>Conversion instructions all take a single operand and a type. The value is
|
| +converted to the corresponding type.</p>
|
| +<h3 id="integer-truncating-instruction">Integer Truncating Instruction</h3>
|
| +<p>The integer truncating instruction takes a value to truncate, and a type
|
| +defining the truncated type. Both types must be integer types, or integer
|
| +vectors with the same number of elements. The bit size of the value must be
|
| +larger than the bit size of the destination type. Equal sized types are not
|
| +allowed.</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| +%vN = trunc T1 V to T2; <A>
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA: <3, VV, TT2, 0>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p>The integer truncating instruction takes a value <code>V</code>, and truncates to type
|
| +<code>T2</code>. Both <code>T1</code> and <code>T2</code> must be integer types, or integer vectors with
|
| +the same number of elements. <code>T1</code> has to be wider than <code>T2</code>. If the value
|
| +doesn’t fit in in <code>T2</code>, then the higher order bits are dropped.</p>
|
| +<p><strong>Constraints</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A) &
|
| +TypeOf(V) == T1 &
|
| +VV == RelativeIndex(V) &
|
| +%tTT2 == TypeID(T2) &
|
| +BitSizeOf(UnderlyingType(T1)) > BitSizeOf(UnderlyingType(T2)) &
|
| +UnderlyingCount(T1) == UnderlyingCount(T2) &
|
| +IsInteger(UnderlyingType(T1)) &
|
| +IsInteger(UnderlyingType(T2)) &
|
| +N == NumValuedInsts
|
| +</pre>
|
| +<p><strong>Updates</strong>:</p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +TypeOf(%vN) = T2;
|
| +</pre>
|
| +<p><strong>Examples</strong>:</p>
|
| +<pre class="prettyprint">
|
| + 40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| + 48:0| 3: <1, 5> | count 5;
|
| + 50:4| 3: <7, 32> | @t0 = i32;
|
| + 53:6| 3: <2> | @t1 = void;
|
| + 55:4| 3: <7, 16> | @t2 = i16;
|
| + 58:0| 3: <21, 0, 1, 0> | @t3 = void (i32);
|
| + 62:0| 3: <7, 8> | @t4 = i8;
|
| + 64:4| 0: <65534> | }
|
| + ...
|
| +100:0| 1: <65535, 12, 2> | function void @f0(i32 %p0) {
|
| + | | // BlockID = 12
|
| +108:0| 3: <1, 1> | blocks 1;
|
| + | | %b0:
|
| +110:4| 3: <3, 1, 2, 0> | %v0 = trunc i32 %p0 to i16;
|
| +114:4| 3: <3, 1, 4, 0> | %v1 = trunc i16 %v0 to i8;
|
| +118:4| 3: <10> | ret void;
|
| +120:2| 0: <65534> | }
|
| +</pre>
|
| +<h3 id="floating-point-truncating-instruction">Floating Point Truncating Instruction</h3>
|
| +<p>The floating point truncating instruction takes a value to truncate, and a type
|
| +defining the truncated type. Both types must be floating point types, or
|
| +floating point vectors with the same number of elements. The source must be
|
| +<code>double</code> while the destination is <code>float</code>. If the source is a vector, the
|
| +destination must also be vector with the same size as the source.</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| +%vN = fptrunc T1 V to T2; <A>
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA: <3, VV, TT2, 7>
|
| +</pre>
|
| +<p><strong>Semantics</strong></p>
|
| +<p>The floating point truncating instruction takes a value <code>V</code>, and truncates to
|
| +type <code>T2</code>. Both <code>T1</code> and <code>T2</code> must be floating point types, or floating
|
| +point vectors with the same number of elements. <code>T1</code> must be defined on
|
| +<code>double</code> while <code>T2</code> is defined on <code>float</code>. If the value can’t fit within
|
| +the destination type <code>T2</code>, the results are undefined.</p>
|
| +<p><strong>Constraints</strong>:</p>
|
| +<pre class="prettyprint">
|
| +TypeOf(V) == T1 &
|
| +double == UnderlyingType(T1) &
|
| +float == UnderlyingType(T2) &
|
| +VV == RelativeIndex(V) &
|
| +%tTT2 == TypeID(T2) &
|
| +BitSizeOf(UnderlyingType(T1)) > BitSizeOf(UnderlyingType(T2)) &
|
| +UnderlyingCount(T1) == UnderlyingCount(T2) &
|
| +IsFloat(UnderlyingType(T1)) &
|
| +IsFloat(UnderlyingType(T2)) &
|
| +N == NumValuedInsts
|
| +</pre>
|
| +<p><strong>Updates</strong>:</p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +TypeOf(%vN) = T2;
|
| +</pre>
|
| +<p><strong>Examples</strong>:</p>
|
| +<pre class="prettyprint">
|
| + 40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| + 48:0| 3: <1, 4> | count 4;
|
| + 50:4| 3: <3> | @t0 = float;
|
| + 52:2| 3: <4> | @t1 = double;
|
| + 54:0| 3: <21, 0, 0, 1> | @t2 = float (double);
|
| + 58:0| 3: <2> | @t3 = void;
|
| + 59:6| 0: <65534> | }
|
| +...
|
| + 92:0| 1: <65535, 12, 2> | function float @f0(double %p0) {
|
| + | | // BlockID = 12
|
| +100:0| 3: <1, 1> | blocks 1;
|
| + | | %b0:
|
| +102:4| 3: <3, 1, 0, 7> | %v0 = fptrunc double %p0 to float;
|
| +106:4| 3: <10, 1> | ret float %v0;
|
| +109:0| 0: <65534> | }
|
| +</pre>
|
| +<h3 id="zero-extending-instruction">Zero Extending Instruction</h3>
|
| +<p>The zero extending instruction takes a value to extend, and a type to extend it
|
| +to. Both types must be integer types, or integer vectors with the same number
|
| +of elements. The bit size of the source type must be smaller than the bit size
|
| +of the destination type. Equal sized types are not allowed.</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| +%vN = zext T1 V to T2; <A>
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA: <3, VV, TT2, 1>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p>The zero extending instruction takes a value <code>V</code>, and expands it to type
|
| +<code>T2</code>. Both <code>T1</code> and <code>T2</code> must be integer types, or integer vectors with
|
| +the same number of elements. <code>T2</code> must be wider than <code>T1</code>.</p>
|
| +<p>The instruction fills the high order bits of the value with zero bits until it
|
| +reaches the size of the destination type. When zero extending from i1, the
|
| +result will always be either 0 or 1.</p>
|
| +<p><strong>Constraints</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A) &
|
| +TypeOf(V) == T1 &
|
| +VV == RelativeIndex(V) &
|
| +%tTT2 == TypeID(T2) &
|
| +BitSizeOf(UnderlyingType(T1)) < BitSizeOf(UnderlyingType(T2)) &
|
| +UnderlyingCount(T1) == UnderlyingCount(T2) &
|
| +IsInteger(UnderlyingType(T1)) &
|
| +IsInteger(UnderlyingType(T2)) &
|
| +N == NumValuedInsts
|
| +</pre>
|
| +<p><strong>Updates</strong>:</p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +TypeOf(%vN) = T2;
|
| +</pre>
|
| +<p><strong>Examples</strong>:</p>
|
| +<pre class="prettyprint">
|
| + 40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| + 48:0| 3: <1, 5> | count 5;
|
| + 50:4| 3: <7, 64> | @t0 = i64;
|
| + 53:6| 3: <7, 32> | @t1 = i32;
|
| + 57:0| 3: <21, 0, 0> | @t2 = i64 ();
|
| + 60:2| 3: <7, 8> | @t3 = i8;
|
| + 62:6| 3: <2> | @t4 = void;
|
| + 64:4| 0: <65534> | }
|
| + ...
|
| +100:0| 1: <65535, 12, 2> | function i64 @f0() { // BlockID = 12
|
| +108:0| 3: <1, 1> | blocks 1;
|
| +110:4| 1: <65535, 11, 2> | constants { // BlockID = 11
|
| +120:0| 3: <1, 3> | i8:
|
| +122:4| 3: <4, 2> | %c0 = i8 1;
|
| +125:0| 0: <65534> | }
|
| + | | %b0:
|
| +128:0| 3: <3, 1, 1, 1> | %v0 = zext i8 %c0 to i32;
|
| +132:0| 3: <3, 1, 0, 1> | %v1 = zext i32 %v0 to i64;
|
| +136:0| 3: <10, 1> | ret i64 %v1;
|
| +138:4| 0: <65534> | }
|
| +</pre>
|
| +<h3 id="sign-extending-instruction">Sign Extending Instruction</h3>
|
| +<p>The sign extending instruction takes a value to cast, and a type to extend it
|
| +to. Both types must be integer types, or integral vectors with the same number
|
| +of elements. The bit size of the source type must be smaller than the bit size
|
| +of the destination type. Equal sized types are not allowed.</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| +%vN = sext T1 V to T2; <A>
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA: <3, VV, TT2, 2>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p>The sign extending instruction takes a value <code>V</code>, and expands it to type
|
| +<code>T2</code>. Both <code>T1</code> and <code>T2</code> must be integer types, or integer vectors with
|
| +the same number of integers. <code>T2</code> has to be wider than <code>T1</code>.</p>
|
| +<p>When sign extending, the instruction fills the high order bits of the value with
|
| +the (current) high order bit of the value. When sign extending from i1, the
|
| +extension always results in -1 or 0.</p>
|
| +<p><strong>Constraints</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A) &
|
| +TypeOf(V) == T1 &
|
| +VV == RelativeIndex(V) &
|
| +%tTT2 == TypeID(T2) &
|
| +BitSizeOf(UnderlyingType(T1)) < BitSizeOf(UnderlyingType(T2)) &
|
| +UnderlyingCount(T1) == UnderlyingCount(T2) &
|
| +IsInteger(UnderlyingType(T1)) &
|
| +IsInteger(UnderlyingType(T2)) &
|
| +N == NumValuedInsts
|
| +</pre>
|
| +<p><strong>Updates</strong>:</p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +TypeOf(%vN) = T2;
|
| +</pre>
|
| +<p><strong>Examples</strong>:</p>
|
| +<pre class="prettyprint">
|
| + 40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| + 48:0| 3: <1, 5> | count 5;
|
| + 50:4| 3: <7, 64> | @t0 = i64;
|
| + 53:6| 3: <7, 32> | @t1 = i32;
|
| + 57:0| 3: <21, 0, 0> | @t2 = i64 ();
|
| + 60:2| 3: <7, 8> | @t3 = i8;
|
| + 62:6| 3: <2> | @t4 = void;
|
| + 64:4| 0: <65534> | }
|
| + ...
|
| +100:0| 1: <65535, 12, 2> | function i64 @f0() { // BlockID = 12
|
| +108:0| 3: <1, 1> | blocks 1;
|
| +110:4| 1: <65535, 11, 2> | constants { // BlockID = 11
|
| +120:0| 3: <1, 3> | i8:
|
| +122:4| 3: <4, 3> | %c0 = i8 -1;
|
| +125:0| 0: <65534> | }
|
| + | | %b0:
|
| +128:0| 3: <3, 1, 1, 2> | %v0 = sext i8 %c0 to i32;
|
| +132:0| 3: <3, 1, 0, 2> | %v1 = sext i32 %v0 to i64;
|
| +136:0| 3: <10, 1> | ret i64 %v1;
|
| +138:4| 0: <65534> | }
|
| +</pre>
|
| +<h3 id="floating-point-extending-instruction">Floating Point Extending Instruction</h3>
|
| +<p>The floating point extending instruction takes a value to extend, and a type to
|
| +extend it to. Both types must either be floating point types, or vectors of
|
| +floating point types with the same number of elements. The source value must be
|
| +<code>float</code> while the destination is <code>double</code>. If the source is a vector, the
|
| +destination must also be vector with the same size as the source.</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| +%vN = fpext T1 V to T2; <A>
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA: <3, VV, TT2, 8>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p>The floating point extending instruction converts floating point values.
|
| +<code>V</code> is the value to extend, and <code>T2</code> is the type to extend it
|
| +to. Both <code>T1</code> and <code>T2</code> must be floating point types, or floating point
|
| +vector types with the same number of floating point values. <code>T1</code> contains
|
| +<code>float</code> while <code>T2</code> contains <code>double</code>.</p>
|
| +<p><strong>Constraints</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A) &
|
| +TypeOf(V) == T1 &
|
| +VV == RelativeIndex(V) &
|
| +%tTT2 == TypeID(T2) &
|
| +BitSizeOf(UnderlyingType(T1)) < BitSizeOf(UnderlyingType(T2)) &
|
| +UnderlyingCount(T1) == UnderlyingCount(T2) &
|
| +IsFloat(UnderlyingType(T1)) &
|
| +IsFloat(UnderlyingType(T2)) &
|
| +N == NumValuedInsts
|
| +</pre>
|
| +<p><strong>Updates</strong>:</p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +TypeOf(%vN) = T2;
|
| +</pre>
|
| +<p><strong>Examples</strong>:</p>
|
| +<pre class="prettyprint">
|
| + 40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| + 48:0| 3: <1, 4> | count 4;
|
| + 50:4| 3: <4> | @t0 = double;
|
| + 52:2| 3: <3> | @t1 = float;
|
| + 54:0| 3: <21, 0, 0, 1> | @t2 = double (float);
|
| + 58:0| 3: <2> | @t3 = void;
|
| + 59:6| 0: <65534> | }
|
| + ...
|
| + 92:0| 1: <65535, 12, 2> | function double @f0(float %p0) {
|
| + | | // BlockID = 12
|
| +100:0| 3: <1, 1> | blocks 1;
|
| + | | %b0:
|
| +102:4| 3: <3, 1, 0, 8> | %v0 = fpext float %p0 to double;
|
| +106:4| 3: <10, 1> | ret double %v0;
|
| +109:0| 0: <65534> | }
|
| +</pre>
|
| +<h3 id="floating-point-to-unsigned-integer-instruction">Floating Point to Unsigned Integer Instruction</h3>
|
| +<p>The floating point to unsigned integer instruction converts floating point
|
| +values to unsigned integers.</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| +%vN = fptoui T1 V to T2; <A>
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA: <3, VV, TT2, 3>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p>The floating point to unsigned integer instruction converts floating point
|
| +value(s) in <code>V</code> to its unsigned integer equivalent of type <code>T2</code>. <code>T1</code> must
|
| +be a floating point type, or a floating point vector type. <code>T2</code> must be an
|
| +integer type, or an integer vector type. If either type is a vector type, they
|
| +both must have the same number of elements.</p>
|
| +<p><strong>Constraints</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A) &
|
| +TypeOf(V) == T1 &
|
| +VV == RelativeIndex(V) &
|
| +%tTT2 == TypeID(T2) &
|
| +UnderlyingCount(T1) == UnderlyingCount(T2) &
|
| +IsFloat(UnderlyingType(T1)) &
|
| +IsInteger(UnderlyingType(T2)) &
|
| +N == NumValuedInsts
|
| +</pre>
|
| +<p><strong>Updates</strong>:</p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +TypeOf(%vN) = T2;
|
| +</pre>
|
| +<p><strong>Examples</strong>:</p>
|
| +<pre class="prettyprint">
|
| + 40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| + 48:0| 3: <1, 6> | count 6;
|
| + 50:4| 3: <3> | @t0 = float;
|
| + 52:2| 3: <4> | @t1 = double;
|
| + 54:0| 3: <2> | @t2 = void;
|
| + 55:6| 3: <21, 0, 2, 0, 1> | @t3 = void (float, double);
|
| + 60:4| 3: <7, 32> | @t4 = i32;
|
| + 63:6| 3: <7, 16> | @t5 = i16;
|
| + 66:2| 0: <65534> | }
|
| + ...
|
| +100:0| 1: <65535, 12, 2> | function
|
| + | | void @f0(float %p0, double %p1) {
|
| + | | // BlockID = 12
|
| +108:0| 3: <1, 1> | blocks 1;
|
| + | | %b0:
|
| +110:4| 3: <3, 2, 4, 3> | %v0 = fptoui float %p0 to i32;
|
| +114:4| 3: <3, 2, 5, 3> | %v1 = fptoui double %p1 to i16;
|
| +118:4| 3: <10> | ret void;
|
| +120:2| 0: <65534> | }
|
| +</pre>
|
| +<h3 id="floating-point-to-signed-integer-instruction">Floating Point to Signed Integer Instruction</h3>
|
| +<p>The floating point to signed integer instruction converts floating point
|
| +values to signed integers.</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| +%vN = fptosi T1 V to T2; <A>
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA: <3, VV, TT2, 4>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p>The floating point to signed integer instruction converts floating point
|
| +value(s) in <code>V</code> to its signed integer equivalent of type <code>T2</code>. <code>T1</code> must
|
| +be a floating point type, or a floating point vector type. <code>T2</code> must be an
|
| +integer type, or an integer vector type. If either type is a vector type, they
|
| +both must have the same number of elements.</p>
|
| +<p><strong>Constraints</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A) &
|
| +TypeOf(V) == T1 &
|
| +VV == RelativeIndex(V) &
|
| +%tTT2 = TypeID(T2) &
|
| +UnderlyingCount(T1) = UnderlyingCount(T2) &
|
| +IsFloat(UnderlyingType(T1)) &
|
| +IsInteger(UnderlyingType(T2)) &
|
| +N = NumValuedInsts
|
| +</pre>
|
| +<p><strong>Updates</strong>:</p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +TypeOf(%vN) = T2;
|
| +</pre>
|
| +<p><strong>Examples</strong>:</p>
|
| +<pre class="prettyprint">
|
| + 40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| + 48:0| 3: <1, 6> | count 6;
|
| + 50:4| 3: <3> | @t0 = float;
|
| + 52:2| 3: <4> | @t1 = double;
|
| + 54:0| 3: <2> | @t2 = void;
|
| + 55:6| 3: <21, 0, 2, 0, 1> | @t3 = void (float, double);
|
| + 60:4| 3: <7, 8> | @t4 = i8;
|
| + 63:0| 3: <7, 16> | @t5 = i16;
|
| + 65:4| 0: <65534> | }
|
| + ...
|
| +100:0| 1: <65535, 12, 2> | function
|
| + | | void @f0(float %p0, double %p1) {
|
| + | | // BlockID = 12
|
| +108:0| 3: <1, 1> | blocks 1;
|
| + | | %b0:
|
| +110:4| 3: <3, 2, 4, 4> | %v0 = fptosi float %p0 to i8;
|
| +114:4| 3: <3, 2, 5, 4> | %v1 = fptosi double %p1 to i16;
|
| +118:4| 3: <10> | ret void;
|
| +120:2| 0: <65534> | }
|
| +</pre>
|
| +<h3 id="unsigned-integer-to-floating-point-instruction">Unsigned Integer to Floating Point Instruction</h3>
|
| +<p>The unsigned integer to floating point instruction converts unsigned integers to
|
| +floating point values.</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| +%vN = uitofp T1 V to T2; <A>
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA: <3, VV, TT2, 5>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p>The unsigned integer to floating point instruction converts unsigned integer(s)
|
| +to its floating point equivalent of type <code>T2</code>. <code>T1</code> must be an integer type,
|
| +or a integer vector type. <code>T2</code> must be a floating point type, or a floating
|
| +point vector type. If either type is a vector type, they both must have the same
|
| +number of elements.</p>
|
| +<p><strong>Constraints</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A) &
|
| +TypeOf(V) == T1 &
|
| +VV == RelativeIndex(V) &
|
| +%tTT2 = TypeID(T2) &
|
| +UnderlyingCount(T1) == UnderlyingCount(T2) &
|
| +IsInteger(UnderlyingType(T1)) &
|
| +IsFloat(UnderlyingType(T2)) &
|
| +N == NumValuedInsts
|
| +</pre>
|
| +<p><strong>Updates</strong>:</p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +TypeOf(%vN) == T2;
|
| +</pre>
|
| +<p><strong>Examples</strong>:</p>
|
| +<pre class="prettyprint">
|
| + 40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| + 48:0| 3: <1, 7> | count 7;
|
| + 50:4| 3: <7, 32> | @t0 = i32;
|
| + 53:6| 3: <7, 64> | @t1 = i64;
|
| + 57:0| 3: <2> | @t2 = void;
|
| + 58:6| 3: <3> | @t3 = float;
|
| + 60:4| 3: <21, 0, 2, 0, 1> | @t4 = void (i32, i64);
|
| + 65:2| 3: <7, 1> | @t5 = i1;
|
| + 67:6| 3: <4> | @t6 = double;
|
| + 69:4| 0: <65534> | }
|
| +...
|
| +104:0| 1: <65535, 12, 2> | function void @f0(i32 %p0, i64 %p1) {
|
| + | | // BlockID = 12
|
| +112:0| 3: <1, 1> | blocks 1;
|
| +114:4| 1: <65535, 11, 2> | constants { // BlockID = 11
|
| +124:0| 3: <1, 5> | i1:
|
| +126:4| 3: <4, 3> | %c0 = i1 1;
|
| +129:0| 0: <65534> | }
|
| + | | %b0:
|
| +132:0| 3: <3, 1, 6, 5> | %v0 = uitofp i1 %c0 to double;
|
| +136:0| 3: <3, 4, 3, 5> | %v1 = uitofp i32 %p0 to float;
|
| +140:0| 3: <3, 4, 3, 5> | %v2 = uitofp i64 %p1 to float;
|
| +144:0| 3: <10> | ret void;
|
| +145:6| 0: <65534> | }
|
| +</pre>
|
| +<h3 id="signed-integer-to-floating-point-instruction">Signed Integer to Floating Point Instruction</h3>
|
| +<p>The signed integer to floating point instruction converts signed integers to
|
| +floating point values.</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| +%vN = sitofp T1 V to T2; <A>
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA: <3, VV, TT2, 6>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p>The signed integer to floating point instruction converts signed integer(s) to
|
| +its floating point equivalent of type <code>T2</code>. <code>T1</code> must be an integer type, or
|
| +a integer vector type. <code>T2</code> must be a floating point type, or a floating point
|
| +vector type. If either type is a vector type, they both must have the same
|
| +number of elements.</p>
|
| +<p><strong>Constraints</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A) &
|
| +TypeOf(V) == T1 &
|
| +VV == RelativeIndex(V) &
|
| +%tTT2 = TypeID(T2) &
|
| +UnderlyingCount(T1) == UnderlyingCount(T2) &
|
| +IsInteger(UnderlyingType(T1)) &
|
| +IsFloat(UnderlyingType(T2)) &
|
| +N == NumValuedInsts
|
| +</pre>
|
| +<p><strong>Updates</strong>:</p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +TypeOf(%vN) = T2;
|
| +</pre>
|
| +<p><strong>Examples</strong>:</p>
|
| +<pre class="prettyprint">
|
| + 40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| + 48:0| 3: <1, 7> | count 7;
|
| + 50:4| 3: <7, 32> | @t0 = i32;
|
| + 53:6| 3: <7, 64> | @t1 = i64;
|
| + 57:0| 3: <2> | @t2 = void;
|
| + 58:6| 3: <3> | @t3 = float;
|
| + 60:4| 3: <21, 0, 2, 0, 1> | @t4 = void (i32, i64);
|
| + 65:2| 3: <7, 8> | @t5 = i8;
|
| + 67:6| 3: <4> | @t6 = double;
|
| + 69:4| 0: <65534> | }
|
| + ...
|
| +104:0| 1: <65535, 12, 2> | function void @f0(i32 %p0, i64 %p1) {
|
| + | | // BlockID = 12
|
| +112:0| 3: <1, 1> | blocks 1;
|
| +114:4| 1: <65535, 11, 2> | constants { // BlockID = 11
|
| +124:0| 3: <1, 5> | i8:
|
| +126:4| 3: <4, 3> | %c0 = i8 -1;
|
| +129:0| 0: <65534> | }
|
| + | | %b0:
|
| +132:0| 3: <3, 1, 6, 6> | %v0 = sitofp i8 %c0 to double;
|
| +136:0| 3: <3, 4, 3, 6> | %v1 = sitofp i32 %p0 to float;
|
| +140:0| 3: <3, 4, 3, 6> | %v2 = sitofp i64 %p1 to float;
|
| +144:0| 3: <10> | ret void;
|
| +145:6| 0: <65534> | }
|
| +</pre>
|
| +<h3 id="bitcast-instruction">Bitcast Instruction</h3>
|
| +<p>The bitcast instruction converts the type of the value without changing the bit
|
| +contents of the value. The bit size of the type of the value must be the same as
|
| +the bit size of the cast type.</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| +%vN = bitcast T1 V to T2; <A>
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA: <3, VV, TT2, 11>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p>The bitcast instruction converts the type of value <code>V</code> to type <code>T2</code>. <code>T1</code>
|
| +and <code>T2</code> must be primitive types or vectors, and define the same number of
|
| +bits.</p>
|
| +<p><strong>Constraints</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A) &
|
| +TypeOf(V) == T1 &
|
| +VV = RelativeIndex(V) &
|
| +%tTT2 = TypeID(T2) &
|
| +BitSizeOf(T1) == BitSizeOf(T2) &
|
| +N == NumValuedInsts
|
| +</pre>
|
| +<p><strong>Updates</strong>:</p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +TypeOf(%vN) = T2;
|
| +</pre>
|
| +<p><strong>Examples</strong>:</p>
|
| +<pre class="prettyprint">
|
| + 40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| + 48:0| 3: <1, 6> | count 6;
|
| + 50:4| 3: <3> | @t0 = float;
|
| + 52:2| 3: <7, 64> | @t1 = i64;
|
| + 55:4| 3: <2> | @t2 = void;
|
| + 57:2| 3: <21, 0, 2, 0, 1> | @t3 = void (float, i64);
|
| + 62:0| 3: <7, 32> | @t4 = i32;
|
| + 65:2| 3: <4> | @t5 = double;
|
| + 67:0| 0: <65534> | }
|
| + ...
|
| +100:0| 1: <65535, 12, 2> | function void @f0(float %p0, i64 %p1)
|
| + | | { // BlockID = 12
|
| +108:0| 3: <1, 1> | blocks 1;
|
| + | | %b0:
|
| +110:4| 3: <3, 2, 4, 11> | %v0 = bitcast float %p0 to i32;
|
| +114:4| 3: <3, 2, 5, 11> | %v1 = bitcast i64 %p1 to double;
|
| +118:4| 3: <10> | ret void;
|
| +120:2| 0: <65534> | }
|
| +</pre>
|
| +<h2 id="comparison-instructions"><span id="link-for-compare-instructions"></span>Comparison Instructions</h2>
|
| +<p>The comparison instructions compare values and generates a boolean (i1) result
|
| +for each pair of compared values. There are different comparison operations for
|
| +integer and floating point values.</p>
|
| +<h3 id="integer-comparison-instructions">Integer Comparison Instructions</h3>
|
| +<p>The integer comparison instruction compares integer values and returns a
|
| +boolean (i1) result for each pair of compared values.</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| +%vN = icmp C T V1, V2; <A>
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA: <9, VV1, VV2, CC>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p>The integer comparison instruction compares integer values and returns a boolean
|
| +(i1) result for each pair of compared values in <code>V1</code> and <code>V2</code>. <code>V1</code> and
|
| +<code>V2</code> must be of type <code>T</code>. <code>T</code> must be an integer type, or an integer
|
| +vector type. Condition code <code>C</code> is the condition applied to all elements in
|
| +<code>V1</code> and <code>V2</code>. Each comparison always yields an i1. If <code>T</code> is a primitive
|
| +type, the resulting type is i1. If <code>T</code> is a vector, then the resulting type is
|
| +a vector of i1 with the same size as <code>T</code>.</p>
|
| +<p>Legal test conditions are:</p>
|
| +<table border="1" class="docutils">
|
| +<colgroup>
|
| +</colgroup>
|
| +<thead valign="bottom">
|
| +<tr class="row-odd"><th class="head">C</th>
|
| +<th class="head">CC</th>
|
| +<th class="head">Operator</th>
|
| +</tr>
|
| +</thead>
|
| +<tbody valign="top">
|
| +<tr class="row-even"><td>eq</td>
|
| +<td>32</td>
|
| +<td>equal</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>ne</td>
|
| +<td>33</td>
|
| +<td>not equal</td>
|
| +</tr>
|
| +<tr class="row-even"><td>ugt</td>
|
| +<td>34</td>
|
| +<td>unsigned greater than</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>uge</td>
|
| +<td>35</td>
|
| +<td>unsigned greater than or equal</td>
|
| +</tr>
|
| +<tr class="row-even"><td>ult</td>
|
| +<td>36</td>
|
| +<td>unsigned less than</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>ule</td>
|
| +<td>37</td>
|
| +<td>unsigned less than or equal</td>
|
| +</tr>
|
| +<tr class="row-even"><td>sgt</td>
|
| +<td>38</td>
|
| +<td>signed greater than</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>sge</td>
|
| +<td>39</td>
|
| +<td>signed greater than or equal</td>
|
| +</tr>
|
| +<tr class="row-even"><td>slt</td>
|
| +<td>40</td>
|
| +<td>signed less than</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>sle</td>
|
| +<td>41</td>
|
| +<td>signed less than or equal</td>
|
| +</tr>
|
| +</tbody>
|
| +</table>
|
| +<p><strong>Constraints</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A) &
|
| +IsInteger(UnderlyingType(T) &
|
| +T == TypeOf(V1) == TypeOf(V2) &
|
| +N == NumValuedInsts
|
| +</pre>
|
| +<p><strong>Updates</strong>:</p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +if IsVector(T) then
|
| + TypeOf(%vN) = <UnderlyingCount(T), i1>
|
| +else
|
| + TypeOf(%vN) = i1
|
| +endif
|
| +</pre>
|
| +<p><strong>Examples</strong>:</p>
|
| +<pre class="prettyprint">
|
| + 40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| + 48:0| 3: <1, 4> | count 4;
|
| + 50:4| 3: <7, 32> | @t0 = i32;
|
| + 53:6| 3: <7, 1> | @t1 = i1;
|
| + 56:2| 3: <2> | @t2 = void;
|
| + 58:0| 3: <21, 0, 2> | @t3 = void ();
|
| + 61:2| 0: <65534> | }
|
| + ...
|
| +108:0| 1: <65535, 12, 2> | function void @f0() {
|
| + | | // BlockID = 12
|
| +116:0| 3: <1, 1> | blocks 1;
|
| +118:4| 1: <65535, 11, 2> | constants { // BlockID = 11
|
| +128:0| 3: <1, 0> | i32:
|
| +130:4| 3: <4, 0> | %c0 = i32 0;
|
| +133:0| 3: <4, 2> | %c1 = i32 1;
|
| +135:4| 0: <65534> | }
|
| + | | %b0:
|
| +136:0| 3: <28, 2, 1, 32> | %v0 = icmp eq i32 %c0, %c1;
|
| +140:6| 3: <28, 3, 2, 33> | %v1 = icmp ne i32 %c0, %c1;
|
| +145:4| 3: <28, 4, 3, 34> | %v2 = icmp ugt i32 %c0, %c1;
|
| +150:2| 3: <28, 5, 4, 36> | %v3 = icmp ult i32 %c0, %c1;
|
| +155:0| 3: <28, 6, 5, 37> | %v4 = icmp ule i32 %c0, %c1;
|
| +159:6| 3: <28, 7, 6, 38> | %v5 = icmp sgt i32 %c0, %c1;
|
| +164:4| 3: <28, 8, 7, 38> | %v6 = icmp sgt i32 %c0, %c1;
|
| +169:2| 3: <28, 9, 8, 39> | %v7 = icmp sge i32 %c0, %c1;
|
| +174:0| 3: <28, 10, 9, 40> | %v8 = icmp slt i32 %c0, %c1;
|
| +178:6| 3: <28, 11, 10, 41> | %v9 = icmp sle i32 %c0, %c1;
|
| +183:4| 3: <10> | ret void;
|
| +185:2| 0: <65534> | }
|
| +</pre>
|
| +<h3 id="floating-point-comparison-instructions">Floating Point Comparison Instructions</h3>
|
| +<p>The floating point comparison instruction compares floating point values and
|
| +returns a boolean (i1) result for each pair of compared values.</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| +%vN = fcmp C T V1, V2; <A>
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA: <9, VV1, VV2, CC>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p>The floating point comparison instruction compares floating point values and
|
| +returns a boolean (i1) result for each pair of compared values in <code>V1</code> and
|
| +<code>V2</code>. <code>V1</code> and <code>V2</code> must be of type <code>T</code>. <code>T</code> must be a floating point
|
| +type, or a floating point vector type. Condition code <code>C</code> is the condition
|
| +applied to all elements in <code>V1</code> and <code>V2</code>. Each comparison always yields an
|
| +i1. If <code>T</code> is a primitive type, the resulting type is i1. If <code>T</code> is a
|
| +vector, then the resulting type is a vector of i1 with the same size as <code>T</code>.</p>
|
| +<p>Legal test conditions are:</p>
|
| +<table border="1" class="docutils">
|
| +<colgroup>
|
| +</colgroup>
|
| +<thead valign="bottom">
|
| +<tr class="row-odd"><th class="head">C</th>
|
| +<th class="head">CC</th>
|
| +<th class="head">Operator</th>
|
| +</tr>
|
| +</thead>
|
| +<tbody valign="top">
|
| +<tr class="row-even"><td>false</td>
|
| +<td>0</td>
|
| +<td>Always false</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>oeq</td>
|
| +<td>1</td>
|
| +<td>Ordered and equal</td>
|
| +</tr>
|
| +<tr class="row-even"><td>ogt</td>
|
| +<td>2</td>
|
| +<td>Ordered and greater than</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>oge</td>
|
| +<td>3</td>
|
| +<td>Ordered and greater than or equal</td>
|
| +</tr>
|
| +<tr class="row-even"><td>olt</td>
|
| +<td>4</td>
|
| +<td>Ordered and less than</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>ole</td>
|
| +<td>5</td>
|
| +<td>Ordered and less than or equal</td>
|
| +</tr>
|
| +<tr class="row-even"><td>one</td>
|
| +<td>6</td>
|
| +<td>Ordered and not equal</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>ord</td>
|
| +<td>7</td>
|
| +<td>Ordered (no NaNs)</td>
|
| +</tr>
|
| +<tr class="row-even"><td>uno</td>
|
| +<td>8</td>
|
| +<td>Unordered (either NaNs)</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>ueq</td>
|
| +<td>9</td>
|
| +<td>Unordered or equal</td>
|
| +</tr>
|
| +<tr class="row-even"><td>ugt</td>
|
| +<td>10</td>
|
| +<td>Unordered or greater than</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>uge</td>
|
| +<td>11</td>
|
| +<td>Unordered or greater than or equal</td>
|
| +</tr>
|
| +<tr class="row-even"><td>ult</td>
|
| +<td>12</td>
|
| +<td>Unordered or less than</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>ule</td>
|
| +<td>13</td>
|
| +<td>Unordered or less than or equal</td>
|
| +</tr>
|
| +<tr class="row-even"><td>une</td>
|
| +<td>14</td>
|
| +<td>Unordered or not equal</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>true</td>
|
| +<td>15</td>
|
| +<td>Always true</td>
|
| +</tr>
|
| +</tbody>
|
| +</table>
|
| +<p><strong>Constraints</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A) &
|
| +IsFloat(UnderlyingType(T) &
|
| +T == TypeOf(V1) == TypeOf(V2) &
|
| +N == NumValuedInsts
|
| +</pre>
|
| +<p><strong>Updates</strong>:</p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +if IsVector(T) then
|
| + TypeOf(%vN) = <UnderlyingCount(T), i1>
|
| +else
|
| + TypeOf(%vN) = i1
|
| +endif
|
| +</pre>
|
| +<p><strong>Examples</strong>:</p>
|
| +<pre class="prettyprint">
|
| + 40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| + 48:0| 3: <1, 4> | count 4;
|
| + 50:4| 3: <3> | @t0 = float;
|
| + 52:2| 3: <7, 1> | @t1 = i1;
|
| + 54:6| 3: <2> | @t2 = void;
|
| + 56:4| 3: <21, 0, 2> | @t3 = void ();
|
| + 59:6| 0: <65534> | }
|
| + ...
|
| +108:0| 1: <65535, 12, 2> | function void @f0() {
|
| + | | // BlockID = 12
|
| +116:0| 3: <1, 1> | blocks 1;
|
| +118:4| 1: <65535, 11, 2> | constants { // BlockID = 11
|
| +128:0| 3: <1, 0> | float:
|
| +130:4| 3: <6, 0> | %c0 = float 0;
|
| +133:0| 3: <6, 1065353216> | %c1 = float 1;
|
| +139:2| 0: <65534> | }
|
| + | | %b0:
|
| +140:0| 3: <28, 2, 1, 0> | %v0 = fcmp false float %c0, %c1;
|
| +144:0| 3: <28, 3, 2, 1> | %v1 = fcmp oeq float %c0, %c1;
|
| +148:0| 3: <28, 4, 3, 2> | %v2 = fcmp ogt float %c0, %c1;
|
| +152:0| 3: <28, 5, 4, 3> | %v3 = fcmp oge float %c0, %c1;
|
| +156:0| 3: <28, 6, 5, 4> | %v4 = fcmp olt float %c0, %c1;
|
| +160:0| 3: <28, 7, 6, 5> | %v5 = fcmp ole float %c0, %c1;
|
| +164:0| 3: <28, 8, 7, 6> | %v6 = fcmp one float %c0, %c1;
|
| +168:0| 3: <28, 9, 8, 7> | %v7 = fcmp ord float %c0, %c1;
|
| +172:0| 3: <28, 10, 9, 9> | %v8 = fcmp ueq float %c0, %c1;
|
| +176:0| 3: <28, 11, 10, 10> | %v9 = fcmp ugt float %c0, %c1;
|
| +180:0| 3: <28, 12, 11, 11> | %v10 = fcmp uge float %c0, %c1;
|
| +184:0| 3: <28, 13, 12, 12> | %v11 = fcmp ult float %c0, %c1;
|
| +188:0| 3: <28, 14, 13, 13> | %v12 = fcmp ule float %c0, %c1;
|
| +192:0| 3: <28, 15, 14, 14> | %v13 = fcmp une float %c0, %c1;
|
| +196:0| 3: <28, 16, 15, 8> | %v14 = fcmp uno float %c0, %c1;
|
| +200:0| 3: <28, 17, 16, 15> | %v15 = fcmp true float %c0, %c1;
|
| +204:0| 3: <10> | ret void;
|
| +205:6| 0: <65534> | }
|
| +208:0|0: <65534> |}
|
| +</pre>
|
| +<h2 id="vector-instructions"><span id="link-for-vector-instructions"></span>Vector Instructions</h2>
|
| +<p>PNaClAsm supports several instructions that process vectors. This includes the
|
| +<a class="reference internal" href="#link-for-integer-binary-instructions"><em>integer</em></a> and <a class="reference internal" href="#link-for-floating-point-binary-instructions"><em>floating
|
| +point</em></a> binary instructions as well
|
| +as <a class="reference internal" href="#link-for-compare-instructions"><em>compare</em></a> instructions. These
|
| +instructions work with vectors and generate resulting (new) vectors. This
|
| +section introduces the instructions to construct vectors and extract results.</p>
|
| +<h3 id="insert-element-instruction"><span id="link-for-insert-element-instruction-section"></span>Insert Element Instruction</h3>
|
| +<p>The <em>insert element</em> instruction inserts a scalar value into a vector at a
|
| +specified index. The <em>insert element</em> instruction takes an existing vector and
|
| +puts a scalar value in one of the elements of the vector.</p>
|
| +<p>The <em>insert element</em> instruction can be used to construct a vector, one element
|
| +at a time. At first glance, it may appear that one can’t construct a vector,
|
| +since the <em>insert element</em> instruction needs a vector to insert elements into.</p>
|
| +<p>The key to understanding vector construction is understand that one can create
|
| +an <a class="reference internal" href="#link-for-undefined-literal"><em>undefined</em></a> vector literal. Using that
|
| +constant as a starting point, one can built up the wanted vector by a sequence
|
| +of <em>insert element</em> instructions.</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| +%vN = insertelement TV V, TE E, i32 I; <A>
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA: <7, VV, EE, II>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p>The <em>insert element</em> instruction inserts scalar value <code>E</code> into index <code>I</code> of
|
| +vector <code>V</code>. <code>%vN</code> holds the updated vector. Type <code>TV</code> is the type of
|
| +vector. It is also the type of updated vector <code>%vN</code>. Type <code>TE</code> is the type
|
| +of scalar value <code>E</code> and must be the element type of vector <code>V</code>. <code>I</code> must
|
| +be an <a class="reference internal" href="#link-for-integer-literal"><em>i32 literal</em></a>.</p>
|
| +<p>If <code>I</code> exceeds the length of <code>V</code>, the result is undefined.</p>
|
| +<p><strong>Constraints</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A) &
|
| +IsVector(TV) &
|
| +TypeOf(V) == TV &
|
| +UnderlyingType(TV) == TE &
|
| +TypeOf(I) == i32 &
|
| +N == NumValuedInsts
|
| +</pre>
|
| +<p><strong>Updates</strong>:</p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +TypeOf(%vN) = TV;
|
| +</pre>
|
| +<p><strong>Examples</strong>:</p>
|
| +<pre class="prettyprint">
|
| + 40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| + 48:0| 3: <1, 5> | count 5;
|
| + 50:4| 3: <7, 1> | @t0 = i1;
|
| + 53:0| 3: <12, 4, 0> | @t1 = <4 x i1>;
|
| + 56:2| 3: <7, 32> | @t2 = i32;
|
| + 59:4| 3: <2> | @t3 = void;
|
| + 61:2| 3: <21, 0, 3> | @t4 = void ();
|
| + 64:4| 0: <65534> | }
|
| + ...
|
| +116:0| 1: <65535, 12, 2> | function void @f0() {
|
| + | | // BlockID = 12
|
| +124:0| 3: <1, 1> | blocks 1;
|
| +126:4| 1: <65535, 11, 2> | constants { // BlockID = 11
|
| +136:0| 3: <1, 0> | i1:
|
| +138:4| 3: <4, 0> | %c0 = i1 0;
|
| +141:0| 3: <4, 3> | %c1 = i1 1;
|
| +143:4| 3: <1, 1> | <4 x i1>:
|
| +146:0| 3: <3> | %c2 = <4 x i1> undef;
|
| +147:6| 3: <1, 2> | i32:
|
| +150:2| 3: <4, 0> | %c3 = i32 0;
|
| +152:6| 3: <4, 2> | %c4 = i32 1;
|
| +155:2| 3: <4, 4> | %c5 = i32 2;
|
| +157:6| 3: <4, 6> | %c6 = i32 3;
|
| +160:2| 0: <65534> | }
|
| + | | %b0:
|
| +164:0| 3: <7, 5, 7, 4> | %v0 = insertelement <4 x i1> %c2,
|
| + | | i1 %c0, i32 %c3;
|
| +168:0| 3: <7, 1, 7, 4> | %v1 = insertelement <4 x i1> %v0,
|
| + | | i1 %c1, i32 %c4;
|
| +172:0| 3: <7, 1, 9, 4> | %v2 = insertelement <4 x i1> %v1,
|
| + | | i1 %c0, i32 %c5;
|
| +176:0| 3: <7, 1, 9, 4> | %v3 = insertelement <4 x i1> %v2,
|
| + | | i1 %c1, i32 %c6;
|
| +180:0| 3: <10> | ret void;
|
| +181:6| 0: <65534> | }
|
| +</pre>
|
| +<h3 id="extract-element-instruction">Extract Element Instruction</h3>
|
| +<p>The <em>extract element</em> instruction extracts a single scalar value from a vector
|
| +at a specified index.</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| +%vN = extractelement TV V, i32 I; <A>
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA: <6, VV, II>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p>The <em>extract element</em> instruction extracts the scalar value at index <code>I</code> from
|
| +vector <code>V</code>. The extracted value is assigned to <code>%vN</code>. Type <code>TV</code> is the
|
| +type of vector <code>V</code>. <code>I</code> must be an <a class="reference internal" href="#link-for-integer-literal"><em>i32
|
| +literal</em></a>. The type of <code>vN</code> must be the element type
|
| +of vector <code>V</code>.</p>
|
| +<p>If <code>I</code> exceeds the length of <code>V</code>, the result is undefined.</p>
|
| +<p><strong>Constraints</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A) &
|
| +IsVector(TV) &
|
| +TypeOf(V) == TV &
|
| +TypeOf(I) == i32 &
|
| +N == NumValuedInsts
|
| +</pre>
|
| +<p><strong>Updates</strong>:</p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +TypeOf(%vN) = UnderlyingType(TV);
|
| +</pre>
|
| +<p><strong>Examples</strong>:</p>
|
| +<pre class="prettyprint">
|
| + 96:0| 1: <65535, 12, 2> | function void @f0(<4 x i32> %p0) {
|
| + | | // BlockID = 12
|
| +104:0| 3: <1, 1> | blocks 1;
|
| +106:4| 1: <65535, 11, 2> | constants { // BlockID = 11
|
| +116:0| 3: <1, 0> | i32:
|
| +118:4| 3: <4, 0> | %c0 = i32 0;
|
| +121:0| 0: <65534> | }
|
| + | | %b0:
|
| +124:0| 3: <6, 2, 1> | %v0 =
|
| + | | extractelement <4 x i32> %p0,
|
| + | | i32 %c0;
|
| +127:2| 3: <10> | ret void;
|
| +129:0| 0: <65534> | }
|
| +</pre>
|
| +<h2 id="other-instructions"><span id="link-for-other-pnaclasm-instructions"></span>Other Instructions</h2>
|
| +<p>This section defines miscellaneous instructions which defy better
|
| +classification.</p>
|
| +<h3 id="forward-type-declaration"><span id="link-for-forward-type-declaration-section"></span>Forward Type Declaration</h3>
|
| +<p>The forward type declaration exists to deal with the fact that all instruction
|
| +values must have a type associated with them before they are used. For some
|
| +simple functions one can easily topologically sort instructions so that
|
| +instruction values are defined before they are used. However, if the
|
| +implementation contains loops, the loop induced values can’t be defined before
|
| +they are used.</p>
|
| +<p>The solution is to forward declare the type of an instruction value. One could
|
| +forward declare the types of all instructions at the beginning of the function
|
| +block. However, this would make the corresponding file size considerably
|
| +larger. Rather, one should only generate these forward type declarations
|
| +sparingly and only when needed.</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| +declare T %vN; <A>
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA: <43, N, TT>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p>The forward declare type declaration defines the type to be associated with a
|
| +(not yet defined) instruction value <code>%vN</code>. <code>T</code> is the type of the value
|
| +generated by the <code>Nth</code> value generating instruction in the function block.</p>
|
| +<p>Note: It is an error to define the type of <code>%vN</code> with a different type than
|
| +will be generated by the <code>Nth</code> value generating instruction in the function
|
| +block.</p>
|
| +<p>Also note that this construct is a declaration and not considered an
|
| +instruction, even though it appears in the list of instruction records. Hence,
|
| +they may appear before and between <a class="reference internal" href="#link-for-phi-instruction-section"><em>phi</em></a>
|
| +instructions in a basic block.</p>
|
| +<p><strong>Constraints</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA = AbbrevIndex(A) &
|
| +TT = TypeID(T)
|
| +</pre>
|
| +<p><strong>Updates</strong>:</p>
|
| +<pre class="prettyprint">
|
| +TypeOf(%vN) = T;
|
| +</pre>
|
| +<p><strong>Examples</strong>:</p>
|
| +<pre class="prettyprint">
|
| + 40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| + 48:0| 3: <1, 4> | count 4;
|
| + 50:4| 3: <7, 32> | @t0 = i32;
|
| + 53:6| 3: <2> | @t1 = void;
|
| + 55:4| 3: <7, 1> | @t2 = i1;
|
| + 58:0| 3: <21, 0, 1, 0> | @t3 = void (i32);
|
| + 62:0| 0: <65534> | }
|
| + ...
|
| +108:0| 1: <65535, 12, 2> | function void @f0(i32 %p0) {
|
| + | | // BlockID = 12
|
| +116:0| 3: <1, 7> | blocks 7;
|
| +118:4| 1: <65535, 11, 2> | constants { // BlockID = 11
|
| +128:0| 3: <1, 2> | i1:
|
| +130:4| 3: <4, 3> | %c0 = i1 1;
|
| +133:0| 0: <65534> | }
|
| + | | %b0:
|
| +136:0| 3: <11, 4> | br label %b4;
|
| + | | %b1:
|
| +138:4| 3: <43, 6, 0> | declare i32 %v3;
|
| +142:4| 3: <2, 2, 4294967293, 0> | %v0 = add i32 %p0, %v3;
|
| +151:0| 3: <11, 6> | br label %b6;
|
| + | | %b2:
|
| +153:4| 3: <43, 7, 0> | declare i32 %v4;
|
| +157:4| 3: <2, 3, 4294967293, 0> | %v1 = add i32 %p0, %v4;
|
| +166:0| 3: <11, 6> | br label %b6;
|
| + | | %b3:
|
| +168:4| 3: <2, 4, 4294967295, 0> | %v2 = add i32 %p0, %v3;
|
| +177:0| 3: <11, 6> | br label %b6;
|
| + | | %b4:
|
| +179:4| 3: <2, 5, 5, 0> | %v3 = add i32 %p0, %p0;
|
| +183:4| 3: <11, 1, 5, 5> | br i1 %c0, label %b1, label %b5;
|
| + | | %b5:
|
| +187:4| 3: <2, 1, 6, 0> | %v4 = add i32 %v3, %p0;
|
| +191:4| 3: <11, 2, 3, 6> | br i1 %c0, label %b2, label %b3;
|
| + | | %b6:
|
| +195:4| 3: <10> | ret void;
|
| +197:2| 0: <65534> | }
|
| +</pre>
|
| +<h3 id="phi-instruction"><span id="link-for-phi-instruction-section"></span>Phi Instruction</h3>
|
| +<p>The <em>phi</em> instruction is used to implement phi nodes in the SSA graph
|
| +representing the function. Phi instructions can only appear at the beginning of
|
| +a basic block. There must be no non-phi instructions (other than forward type
|
| +declarations) between the start of the basic block and the <em>phi</em> instruction.</p>
|
| +<p>To clarify the origin of each incoming value, the incoming value is associated
|
| +with the incoming edge from the corresponding predecessor block that the
|
| +incoming value comes from.</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| +%vN = phi T [V1, %bB1], ... , [VM, %bBM]; <A>
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA: <16, TT, VV1, B1, ..., VVM, BM>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p>The phi instruction is used to implement phi nodes in the SSA graph representing
|
| +the function. <code>%vN</code> is the resulting value of the corresponding phi
|
| +node. <code>T</code> is the type of the phi node. Values <code>V1</code> through <code>VM</code> are the
|
| +reaching definitions for the phi node while <code>%bB1</code> through <code>%bBM</code> are the
|
| +corresponding predecessor blocks. Each <code>VI</code> reaches via the incoming
|
| +predecessor edge from block <code>%bBI</code> (for 1 <= I <= M). Type <code>T</code> must be the
|
| +type associated with each <code>VI</code>.</p>
|
| +<p><strong>Constraints</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A) &
|
| +M > 1 &
|
| +TT == TypeID(T) &
|
| +T = TypeOf(VI) for all I, 1 <= I <= M &
|
| +BI < ExpectedBasicBlocks for all I, 1 <= I <= M &
|
| +VVI = SignRotate(RelativeIndex(VI)) for all I, 1 <= I <= M &
|
| +N == NumValuedInsts
|
| +</pre>
|
| +<p><strong>Updates</strong>:</p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +TypeOf(%vN) = T;
|
| +</pre>
|
| +<p><strong>Examples</strong>:</p>
|
| +<pre class="prettyprint">
|
| + 40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| + 48:0| 3: <1, 4> | count 4;
|
| + 50:4| 3: <7, 32> | @t0 = i32;
|
| + 53:6| 3: <2> | @t1 = void;
|
| + 55:4| 3: <21, 0, 1> | @t2 = void ();
|
| + 58:6| 3: <7, 1> | @t3 = i1;
|
| + 61:2| 0: <65534> | }
|
| + ...
|
| +112:0| 1: <65535, 12, 2> | function void @f0() {
|
| + | | // BlockID = 12
|
| +120:0| 3: <1, 4> | blocks 4;
|
| +122:4| 1: <65535, 11, 2> | constants { // BlockID = 11
|
| +132:0| 3: <1, 0> | i32:
|
| +134:4| 3: <4, 2> | %c0 = i32 1;
|
| +137:0| 3: <1, 3> | i1:
|
| +139:4| 3: <4, 0> | %c1 = i1 0;
|
| +142:0| 0: <65534> | }
|
| + | | %b0:
|
| +144:0| 3: <11, 1, 2, 1> | br i1 %c1, label %b1, label %b2;
|
| + | | %b1:
|
| +148:0| 3: <2, 2, 2, 0> | %v0 = add i32 %c0, %c0;
|
| +152:0| 3: <2, 3, 3, 1> | %v1 = sub i32 %c0, %c0;
|
| +156:0| 3: <11, 3> | br label %b3;
|
| + | | %b2:
|
| +158:4| 3: <2, 4, 4, 2> | %v2 = mul i32 %c0, %c0;
|
| +162:4| 3: <2, 5, 5, 3> | %v3 = udiv i32 %c0, %c0;
|
| +166:4| 3: <11, 3> | br label %b3;
|
| + | | %b3:
|
| +169:0| 3: <16, 0, 8, 1, 4, 2> | %v4 = phi i32 [%v0, %b1],
|
| + | | [%v2, %b2];
|
| +174:4| 3: <16, 0, 8, 1, 4, 2> | %v5 = phi i32 [%v1, %b1],
|
| + | | [%v3, %b2];
|
| +180:0| 3: <10> | ret void;
|
| +181:6| 0: <65534> | }
|
| +</pre>
|
| +<h3 id="select-instruction">Select Instruction</h3>
|
| +<p>The <em>select</em> instruction is used to choose between pairs of values, based on a
|
| +condition, without PNaClAsm-level branching.</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| +%vN = select CT C, T V1, T V2; <A>
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA: <29, VV1, VV2, CC>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p>The <em>select</em> instruction chooses pairs of values <code>V1</code> and <code>V2</code>, based on
|
| +condition value <code>C</code>. The type <code>CT</code> of value <code>C</code> must either be an i1, or
|
| +a vector of type i1. The type of values <code>V1</code> and <code>V2</code> must be of type
|
| +<code>T</code>. Type <code>T</code> must either be a primitive type, or a vector of a primitive
|
| +type.</p>
|
| +<p>Both <code>CT</code> and <code>T</code> must be primitive types, or both must be vector types of
|
| +the same size. When the contents of <code>C</code> is 1, the corresponding value from
|
| +<code>V1</code> will be chosen. Otherwise the corresponding value from <code>V2</code> will be
|
| +chosen.</p>
|
| +<p><strong>Constraints</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A) &
|
| +CC == RelativeIndex(C) &
|
| +VV1 == RelativeIndex(V1) &
|
| +VV2 == RelativeIndex(V2) &
|
| +T == TypeOf(V1) == TypeOf(V2) &
|
| +UnderlyingType(CT) == i1 &
|
| +IsInteger(UnderlyingType(T)) or IsFloat(UnderlyingType(T)) &
|
| +UnderlyingCount(C) == UnderlyingCount(T) &
|
| +N == NumValuedInsts
|
| +</pre>
|
| +<p><strong>Updates</strong>:</p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +TypeOf(%vN) = T;
|
| +</pre>
|
| +<p><strong>Examples</strong>:</p>
|
| +<pre class="prettyprint">
|
| + 96:0| 1: <65535, 12, 2> | function i32 @f0(i32 %p0, i32 %p1) {
|
| + | | // BlockID = 12
|
| +104:0| 3: <1, 1> | blocks 1;
|
| +106:4| 1: <65535, 11, 2> | constants { // BlockID = 11
|
| +116:0| 3: <1, 2> | i1:
|
| +118:4| 3: <4, 3> | %c0 = i1 1;
|
| +121:0| 0: <65534> | }
|
| + | | %b0:
|
| +124:0| 3: <29, 3, 2, 1> | %v0 = select i1 %c0, i32 %p0,
|
| + | | i32 %p1;
|
| +128:0| 3: <10, 1> | ret i32 %v0;
|
| +130:4| 0: <65534> | }
|
| +</pre>
|
| +<h3 id="call-instructions">Call Instructions</h3>
|
| +<p>The <em>call</em> instruction does a function call. The call instruction is used to
|
| +cause control flow to transfer to a specified routine, with its incoming
|
| +arguments bound to the specified values. When a return instruction in the called
|
| +function is reached, control flow continues with the instruction after the
|
| +function call. If the call is to a function, the returned value is the value
|
| +generated by the call instruction. Otherwise no result is defined by the call.</p>
|
| +<p>If the <em>tail</em> flag is associated with the call instruction, then the <a class="reference internal" href="/native-client/overview.html#link-for-pnacl-translator"><em>PNaCl
|
| +translator</em></a> is free to perform tail call
|
| +optimization. That is, the <em>tail</em> flag is a hint that may be ignored by the
|
| +PNaCl translator.</p>
|
| +<p>There are two kinds of calls: <em>direct</em> and <em>indirect</em>. A <em>direct</em> call calls a
|
| +defined <a class="reference internal" href="#link-for-function-address-section"><em>function address</em></a> (i.e. a
|
| +reference to a bitcode ID of the form <code>%fF</code>). All other calls are <em>indirect</em>.</p>
|
| +<h4 id="direct-procedure-call">Direct Procedure Call</h4>
|
| +<p>The direct procedure call calls a defined <a class="reference internal" href="#link-for-function-address-section"><em>function
|
| +address</em></a> whose <a class="reference internal" href="#link-for-function-type"><em>type
|
| +signature</em></a> returns type void.</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| +TAIL call void @fF (T1 A1, ... , TN AN); <A>
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA: <34, CC, F, AA1, ... , AAN>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p>The direct procedure call calls a define function address <code>%fF</code> whose type
|
| +signature return type is void. The arguments <code>A1</code> through <code>AN</code> are passed in
|
| +the order specified. The type of argument <code>AI</code> must be type <code>TI</code> (for all I,
|
| +1 <=I <= N). Flag <code>TAIL</code> is optional. If it is included, it must be the
|
| +literal <code>tail</code>.</p>
|
| +<p>The types of the arguments must match the corresponding types of the function
|
| +signature associated with <code>%fF</code>. The return type of <code>%f</code> must be void.</p>
|
| +<p>TAIL is encoded into calling convention value <code>CC</code> as follows:</p>
|
| +<table border="1" class="docutils">
|
| +<colgroup>
|
| +</colgroup>
|
| +<thead valign="bottom">
|
| +<tr class="row-odd"><th class="head">TAIL</th>
|
| +<th class="head">CC</th>
|
| +</tr>
|
| +</thead>
|
| +<tbody valign="top">
|
| +<tr class="row-even"><td>“”</td>
|
| +<td>0</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>“tail”</td>
|
| +<td>1</td>
|
| +</tr>
|
| +</tbody>
|
| +</table>
|
| +<p><strong>Constraints</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A) &
|
| +N >= 0 &
|
| +TypeOfFcn(%fF) == void (T1, ... , TN) &
|
| +TypeOf(AI) == TI for all I, 1 <= I <= N
|
| +</pre>
|
| +<p><strong>Updates</strong>:</p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +</pre>
|
| +<p><strong>Examples</strong>:</p>
|
| +<pre class="prettyprint">
|
| + 72:0| 3: <8, 3, 0, 1, 0> | declare external
|
| + | | void @f0(i32, i64, i32);
|
| + ...
|
| +116:0| 1: <65535, 12, 2> | function void @f1(i32 %p0) {
|
| + | | // BlockID = 12
|
| +124:0| 3: <1, 1> | blocks 1;
|
| +126:4| 1: <65535, 11, 2> | constants { // BlockID = 11
|
| +136:0| 3: <1, 2> | i64:
|
| +138:4| 3: <4, 2> | %c0 = i64 1;
|
| +141:0| 0: <65534> | }
|
| + | | %b0:
|
| +144:0| 3: <34, 0, 4, 2, 1, 2> | call void
|
| + | | @f0(i32 %p0, i64 %c0, i32 %p0);
|
| +150:2| 3: <10> | ret void;
|
| +152:0| 0: <65534> | }
|
| +</pre>
|
| +<h4 id="direct-function-call">Direct Function Call</h4>
|
| +<p>The direct function call calls a defined function address whose type signature
|
| +returns a value.</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| +%vN = TAIL call RT %fF (T1 A1, ... , TM AM); <A>
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA: <34, CC, F, AA1, ... , AAM>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p>The direct function call calls a defined function address <code>%fF</code> whose type
|
| +signature returned is not type void. The arguments <code>A1</code> through <code>AM</code> are
|
| +passed in the order specified. The type of argument <code>AI</code> must be type <code>TI</code>
|
| +(for all I, 1 <= I <= N). Flag <code>TAIL</code> is optional. If it is included, it must
|
| +be the literal <code>tail</code>.</p>
|
| +<p>The types of the arguments must match the corresponding types of the function
|
| +signature associated with <code>%fF</code>. The return type must match <code>RT</code>.</p>
|
| +<p>Each parameter type <code>TI</code>, and return type <code>RT</code>, must either be a primitive
|
| +type, or a vector type. If the parameter type is an integer type, it must
|
| +either be i32 or i64.</p>
|
| +<p>TAIL is encoded into calling convention value <code>CC</code> as follows:</p>
|
| +<table border="1" class="docutils">
|
| +<colgroup>
|
| +</colgroup>
|
| +<thead valign="bottom">
|
| +<tr class="row-odd"><th class="head">TAIL</th>
|
| +<th class="head">CC</th>
|
| +</tr>
|
| +</thead>
|
| +<tbody valign="top">
|
| +<tr class="row-even"><td>“”</td>
|
| +<td>0</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>“tail”</td>
|
| +<td>1</td>
|
| +</tr>
|
| +</tbody>
|
| +</table>
|
| +<p><strong>Constraints</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A) &
|
| +N >= 0 &
|
| +TypeOfFcn(%fF) == RT (T1, ... , TN) &
|
| +TypeOf(AI) == TI for all I, 1 <= I <= M &
|
| +IsFcnArgType(TI) for all I, 1 <= I <= M &
|
| +IsFcnArgType(RT) &
|
| +N == NumValuedInsts
|
| +</pre>
|
| +<p><strong>Updates</strong>:</p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +TypeOf(%vN) = RT;
|
| +</pre>
|
| +<p><strong>Examples</strong>:</p>
|
| +<pre class="prettyprint">
|
| + 72:0| 3: <8, 2, 0, 1, 0> | declare external
|
| + | | i32 @f0(i32, i64, i32);
|
| + ...
|
| +116:0| 1: <65535, 12, 2> | function i32 @f1(i32 %p0) {
|
| + | | // BlockID = 12
|
| +124:0| 3: <1, 1> | blocks 1;
|
| +126:4| 1: <65535, 11, 2> | constants { // BlockID = 11
|
| +136:0| 3: <1, 1> | i64:
|
| +138:4| 3: <4, 2> | %c0 = i64 1;
|
| +141:0| 0: <65534> | }
|
| + | | %b0:
|
| +144:0| 3: <34, 0, 4, 2, 1, 2> | %v0 = call i32
|
| + | | @f0(i32 %p0, i64 %c0, i32 %p0);
|
| +150:2| 3: <34, 1, 4, 1> | %v1 = tail call i32 @f1(i32 %v0);
|
| +155:0| 3: <10, 2> | ret i32 %v0;
|
| +157:4| 0: <65534> | }
|
| +</pre>
|
| +<h4 id="indirect-procedure-call">Indirect Procedure Call</h4>
|
| +<p>The indirect procedure call calls a function using an indirect function address,
|
| +and whose type signature is assumed to return type void. It is different from
|
| +the direct procedure call because we can’t use the type signature of the
|
| +corresponding direct function address to type check the construct.</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| +TAIL call void V (T1 A1, ... , TN AN); <A>
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA: <44, CC, TV, VV, AA1, ... , AAN>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p>The indirect call procedure calls a function using value <code>V</code> that is an
|
| +indirect function address, and whose type signature is assumed to return type
|
| +void. The arguments <code>A1</code> through <code>AN</code> are passed in the order
|
| +specified. The type of argument <code>AI</code> must be type <code>TI</code> (for all I, 1 <= I <=
|
| +N). Flag <code>TAIL</code> is optional. If it is included, it must be the literal
|
| +<code>tail</code>.</p>
|
| +<p>Each parameter type <code>TI</code> (1 <= I <= N) must either be a primitive type, or a
|
| +vector type. If the parameter type is an integer type, it must either be i32
|
| +or i64.</p>
|
| +<p>TAIL is encoded into calling convention value <code>CC</code> as follows:</p>
|
| +<table border="1" class="docutils">
|
| +<colgroup>
|
| +</colgroup>
|
| +<thead valign="bottom">
|
| +<tr class="row-odd"><th class="head">TAIL</th>
|
| +<th class="head">CC</th>
|
| +</tr>
|
| +</thead>
|
| +<tbody valign="top">
|
| +<tr class="row-even"><td>“”</td>
|
| +<td>0</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>“tail”</td>
|
| +<td>1</td>
|
| +</tr>
|
| +</tbody>
|
| +</table>
|
| +<p>The type signature of the called procedure is assumed to be:</p>
|
| +<pre class="prettyprint">
|
| +void (T1, ... , TN)
|
| +</pre>
|
| +<p>It isn’t necessary to define this type in the <a class="reference internal" href="#link-for-types-block-section"><em>types
|
| +block</em></a>, since the type is inferred rather than
|
| +used.</p>
|
| +<p><strong>Constraints</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A) &
|
| +N >= 0 &
|
| +TV = TypeID(void) &
|
| +AbsoluteIndex(V) >= NumFuncAddresses &
|
| +TypeOf(AI) == TI for all I, 1 <= I <= N &
|
| +IsFcnArgType(TI) for all I, 1 <= I <= N
|
| +</pre>
|
| +<p><strong>Updates</strong>:</p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +</pre>
|
| +<p><strong>Examples</strong>:</p>
|
| +<pre class="prettyprint">
|
| + 40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| + 48:0| 3: <1, 3> | count 3;
|
| + 50:4| 3: <2> | @t0 = void;
|
| + 52:2| 3: <7, 32> | @t1 = i32;
|
| + 55:4| 3: <21, 0, 0, 1> | @t2 = void (i32);
|
| + 59:4| 0: <65534> | }
|
| + ...
|
| + 92:0| 1: <65535, 12, 2> | function void @f0(i32 %p0) {
|
| + | | // BlockID = 12
|
| +100:0| 3: <1, 1> | blocks 1;
|
| +102:4| 1: <65535, 11, 2> | constants { // BlockID = 11
|
| +112:0| 3: <1, 1> | i32:
|
| +114:4| 3: <4, 2> | %c0 = i32 1;
|
| +117:0| 0: <65534> | }
|
| + | | %b0:
|
| +120:0| 3: <44, 0, 2, 0, 1> | call void %p0(i32 %c0);
|
| +125:4| 3: <10> | ret void;
|
| +127:2| 0: <65534> | }
|
| +</pre>
|
| +<h4 id="indirect-function-call">Indirect Function Call</h4>
|
| +<p>The indirect function call calls a function using a value that is an indirect
|
| +function address. It is different from the direct function call because we can’t
|
| +use the type signature of the corresponding literal function address to type
|
| +check the construct.</p>
|
| +<p><strong>Syntax</strong>:</p>
|
| +<pre class="prettyprint">
|
| +%vN = TAIL call RT V (T1 A1, ... , TM AM); <A>
|
| +</pre>
|
| +<p><strong>Record</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA: <34, CC, RRT, VV, AA1, ... , AAM>
|
| +</pre>
|
| +<p><strong>Semantics</strong>:</p>
|
| +<p>The indirect function call calls a function using a value <code>V</code> that is an
|
| +indirect function address, and is assumed to return type <code>RT</code>. The arguments
|
| +<code>A1</code> through <code>AM</code> are passed in the order specified. The type of argument
|
| +<code>AI</code> must be type <code>TI</code> (for all I, 1 <= I <= N). Flag <code>TAIL</code> is
|
| +optional. If it is included, it must be the literal <code>tail</code>.</p>
|
| +<p>Each parameter type <code>TI</code> (1 <= I <= M), and return type <code>RT</code>, must either be
|
| +a primitive type, or a vector type. If the parameter type is an integer type,
|
| +it must either be i32 or i64.</p>
|
| +<p>TAIL is encoded into calling convention value <code>CC</code> as follows:</p>
|
| +<table border="1" class="docutils">
|
| +<colgroup>
|
| +</colgroup>
|
| +<thead valign="bottom">
|
| +<tr class="row-odd"><th class="head">TAIL</th>
|
| +<th class="head">CC</th>
|
| +</tr>
|
| +</thead>
|
| +<tbody valign="top">
|
| +<tr class="row-even"><td>‘’</td>
|
| +<td>0</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>‘tail’</td>
|
| +<td>1</td>
|
| +</tr>
|
| +</tbody>
|
| +</table>
|
| +<p>The type signature of the called function is assumed to be:</p>
|
| +<pre class="prettyprint">
|
| +RT (T1, ... , TN)
|
| +</pre>
|
| +<p>It isn’t necessary to define this type in the <a class="reference internal" href="#link-for-types-block-section"><em>types
|
| +block</em></a>, since the type is inferred rather than
|
| +used.</p>
|
| +<p><strong>Constraints</strong>:</p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A) &
|
| +RRT = TypeID(RT) &
|
| +VV = RelativeIndex(V) &
|
| +M >= 0 &
|
| +AbsoluteIndex(V) >= NumFcnAddresses &
|
| +TypeOf(AI) == TI for all I, 1 <= I <= M &
|
| +IsFcnArgType(TI) for all I, 1 <= I <= M &
|
| +IsFcnArgType(RT) &
|
| +N == NumValuedInsts
|
| +</pre>
|
| +<p><strong>Updates</strong>:</p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +TypeOf(%vN) = RT;
|
| +</pre>
|
| +<p><strong>Examples</strong>:</p>
|
| +<pre class="prettyprint">
|
| + 40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| + 48:0| 3: <1, 6> | count 6;
|
| + 50:4| 3: <7, 32> | @t0 = i32;
|
| + 53:6| 3: <3> | @t1 = float;
|
| + 55:4| 3: <4> | @t2 = double;
|
| + 57:2| 3: <21, 0, 0, 0, 1, 2> | @t3 = i32 (i32, float, double);
|
| + 62:6| 3: <21, 0, 0, 1, 2> | @t4 = i32 (float, double);
|
| + 67:4| 3: <2> | @t5 = void;
|
| + 69:2| 0: <65534> | }
|
| + ...
|
| +104:0| 1: <65535, 12, 2> | function
|
| + | | i32
|
| + | | @f0(i32 %p0, float %p1,
|
| + | | double %p2) {
|
| + | | // BlockID = 12
|
| +112:0| 3: <1, 1> | blocks 1;
|
| + | | %b0:
|
| +114:4| 3: <44, 0, 3, 0, 2, 1> | %v0 = call i32
|
| + | | %p0(float %p1, double %p2);
|
| +120:6| 3: <10, 1> | ret i32 %v0;
|
| +123:2| 0: <65534> | }
|
| +</pre>
|
| +<h2 id="memory-blocks-and-alignment"><span id="link-for-memory-blocks-and-alignment-section"></span>Memory Blocks and Alignment</h2>
|
| +<p>In general, variable and heap allocated data are represented as byte addressable
|
| +memory blocks. Alignment is always a power of 2, and defines an expectation on
|
| +the memory address. That is, an alignment is met if the memory address is
|
| +(evenly) divisible by the alignment. Note that alignment of 0 is never allowed.</p>
|
| +<blockquote>
|
| +<div>Alignment plays a role at two points:</div></blockquote>
|
| +<ul class="small-gap">
|
| +<li>When you create a local/global variable</li>
|
| +<li>When you load/store data using a pointer.</li>
|
| +</ul>
|
| +<p>PNaClAsm allows most types to be placed at any address, and therefore can
|
| +have alignment of 1. However, many architectures can load more efficiently
|
| +if the data has an alignment that is larger than 1. As such, choosing a larger
|
| +alignment can make load/stores more efficient.</p>
|
| +<p>On loads and stores, the alignment in the instruction is used to communicate
|
| +what assumptions the <a class="reference internal" href="/native-client/overview.html#link-for-pnacl-translator"><em>PNaCl translator</em></a> can
|
| +make when choosing the appropriate machine instructions. If the alignment is 1,
|
| +it can’t assume anything about the memory address used by the instruction. When
|
| +the alignment is greater than one, it can use that information to potentially
|
| +chose a more efficient sequence of instructions to do the load/store.</p>
|
| +<p>When laying out data within a variable, one also considers alignment. The reason
|
| +for this is that if you want an address to be aligned, within the bytes defining
|
| +the variable, you must choose an alignment for the variable that guarantees that
|
| +alignment.</p>
|
| +<p>In PNaClAsm, the valid load/store alignments are:</p>
|
| +<table border="1" class="docutils">
|
| +<colgroup>
|
| +</colgroup>
|
| +<thead valign="bottom">
|
| +<tr class="row-odd"><th class="head">Type</th>
|
| +<th class="head">Alignment</th>
|
| +</tr>
|
| +</thead>
|
| +<tbody valign="top">
|
| +<tr class="row-even"><td>i1</td>
|
| +<td>1</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>i8</td>
|
| +<td>1</td>
|
| +</tr>
|
| +<tr class="row-even"><td>i16</td>
|
| +<td>1</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>i32</td>
|
| +<td>1</td>
|
| +</tr>
|
| +<tr class="row-even"><td>i64</td>
|
| +<td>1</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>Float</td>
|
| +<td>1, 4</td>
|
| +</tr>
|
| +<tr class="row-even"><td>Double</td>
|
| +<td>1, 8</td>
|
| +</tr>
|
| +<tr class="row-odd"><td><4 x i1></td>
|
| +<td>not applicable</td>
|
| +</tr>
|
| +<tr class="row-even"><td><8 x i1></td>
|
| +<td>not applicable</td>
|
| +</tr>
|
| +<tr class="row-odd"><td><16 x i1></td>
|
| +<td>not applicable</td>
|
| +</tr>
|
| +<tr class="row-even"><td><16 x i8></td>
|
| +<td>1</td>
|
| +</tr>
|
| +<tr class="row-odd"><td><8 x i16></td>
|
| +<td>2</td>
|
| +</tr>
|
| +<tr class="row-even"><td><4 x i32></td>
|
| +<td>4</td>
|
| +</tr>
|
| +<tr class="row-odd"><td><4 x float></td>
|
| +<td>4</td>
|
| +</tr>
|
| +</tbody>
|
| +</table>
|
| +<p>Note that only vectors do not have an alignment value of 1. Hence, they can’t be
|
| +placed at an arbitrary memory address. Also, since vectors on <code>i1</code> can’t be
|
| +loaded/stored, the alignment is not applicable for these types.</p>
|
| +<h2 id="intrinsic-functions"><span id="link-for-intrinsic-functions-section"></span>Intrinsic Functions</h2>
|
| +<p>Intrinsic functions are special in PNaClAsm. They are implemented as specially
|
| +named (external) function calls. The purpose of these intrinsic functions is to
|
| +extend the PNaClAsm instruction set with additional functionality that is
|
| +architecture specific. Hence, they either can’t be implemented within PNaClAsm,
|
| +or a non-architecture specific implementation may be too slow on some
|
| +architectures. In such cases, the <a class="reference internal" href="/native-client/overview.html#link-for-pnacl-translator"><em>PNaCl
|
| +translator</em></a> must fill in the corresponding
|
| +implementation, since only it knows the architecture it is compiling down to.</p>
|
| +<p>Examples of intrinsic function calls are for concurrent operations, atomic
|
| +operations, bulk memory moves, thread pointer operations, and long jumps.</p>
|
| +<p>It should be noted that calls to intrinsic functions do not have the same
|
| +calling type constraints as ordinary functions. That is, an intrinsic can use
|
| +any integer type for arguments/results, unlike ordinary functions (which
|
| +restrict integer types to <code>i32</code> and <code>i64</code>).</p>
|
| +<p>See the <a class="reference internal" href="/native-client/reference/pnacl-bitcode-abi.html"><em>PNaCl bitcode reference manual</em></a> for the full
|
| +set of intrinsic functions allowed. Note that in PNaClAsm, all pointer types to
|
| +an (LLVM) intrinsic function is converted to type i32.</p>
|
| +<h2 id="support-functions"><span id="link-for-support-functions-section"></span>Support Functions</h2>
|
| +<p>Defines functions used to convert syntactic representation to values in the
|
| +corresponding record.</p>
|
| +<h3 id="signrotate">SignRotate</h3>
|
| +<p>The SignRotate function encodes a signed integer in an easily compressible
|
| +form. This is done by rotating the sign bit to the rightmost bit, rather than
|
| +the leftmost bit. By doing this rotation, both small positive and negative
|
| +integers are small (unsigned) integers. Therefore, all small integers can be
|
| +encoded as a small (unsigned) integers.</p>
|
| +<p>The definition of SignRotate(N) is:</p>
|
| +<table border="1" class="docutils">
|
| +<colgroup>
|
| +</colgroup>
|
| +<thead valign="bottom">
|
| +<tr class="row-odd"><th class="head">Argument</th>
|
| +<th class="head">Value</th>
|
| +<th class="head">Condition</th>
|
| +</tr>
|
| +</thead>
|
| +<tbody valign="top">
|
| +<tr class="row-even"><td>N</td>
|
| +<td>abs(N)<<1</td>
|
| +<td>N >= 0</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>N</td>
|
| +<td>abs(N)<<1 + 1</td>
|
| +<td>N < 0</td>
|
| +</tr>
|
| +</tbody>
|
| +</table>
|
| +<h3 id="absoluteindex"><span id="link-for-absolute-index-section"></span>AbsoluteIndex</h3>
|
| +<p>Bitcode IDs of the forms <code>@fN</code>, <code>@gN</code>, <code>%pN</code>, <code>%cN</code>, and <code>%vN</code>, are
|
| +combined into a single index space. This can be done because of the ordering
|
| +imposed by PNaClAsm. All function address bitcode IDs must be defined before any
|
| +of the other forms of bitcode IDs. All global address bitcode IDs must be
|
| +defined before any local bitcode IDs. Within a function block, the parameter
|
| +bitcode IDs must be defined before constant IDs, and constant IDs must be
|
| +defined before instruction value IDs.</p>
|
| +<p>Hence, within a function block, it is safe to refer to all of these
|
| +bitcode IDs using a single <em>absolute</em> index. The absolute index for
|
| +each kind of bitcode ID is computed as follows:</p>
|
| +<table border="1" class="docutils">
|
| +<colgroup>
|
| +</colgroup>
|
| +<thead valign="bottom">
|
| +<tr class="row-odd"><th class="head">Bitcode ID</th>
|
| +<th class="head">AbsoluteIndex</th>
|
| +</tr>
|
| +</thead>
|
| +<tbody valign="top">
|
| +<tr class="row-even"><td>@tN</td>
|
| +<td>N</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>@fN</td>
|
| +<td>N</td>
|
| +</tr>
|
| +<tr class="row-even"><td>@gN</td>
|
| +<td>N + NumFcnAddresses</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>@pN</td>
|
| +<td>N + NumFcnAddresses + NumGlobalAddresses</td>
|
| +</tr>
|
| +<tr class="row-even"><td>@cN</td>
|
| +<td>N + NumFcnAddresses + NumGlobalAddresses + NumParams</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>@vN</td>
|
| +<td>N + NumFcnAddresses + NumGlobalAddresses + NumParams + NumFcnConsts</td>
|
| +</tr>
|
| +</tbody>
|
| +</table>
|
| +<h3 id="relativeindex"><span id="link-for-relative-index"></span>RelativeIndex</h3>
|
| +<p>Relative indices are used to refer to values within instructions of a function.
|
| +The relative index of an ID is always defined in terms of the index associated
|
| +with the next value generating instruction. It is defined as follows:</p>
|
| +<pre class="prettyprint">
|
| +RelativeIndex(J) = AbsoluteIndex(%vN) - AbsoluteIndex(J)
|
| +</pre>
|
| +<p>where:</p>
|
| +<pre class="prettyprint">
|
| +N = NumValuedInsts
|
| +</pre>
|
| +<h3 id="abbrevindex">AbbrevIndex</h3>
|
| +<p>This function converts user-defined abbreviation indices to the corresponding
|
| +internal abbreviation index saved in the bitcode file. It adds 4 to its
|
| +argument, since there are 4 predefined internal abbreviation indices (0, 1, 2,
|
| +and 3).</p>
|
| +<table border="1" class="docutils">
|
| +<colgroup>
|
| +</colgroup>
|
| +<thead valign="bottom">
|
| +<tr class="row-odd"><th class="head">N</th>
|
| +<th class="head">AbbrevIndex(N)</th>
|
| +</tr>
|
| +</thead>
|
| +<tbody valign="top">
|
| +<tr class="row-even"><td>undefined</td>
|
| +<td>3</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>%aA</td>
|
| +<td>A + 4</td>
|
| +</tr>
|
| +<tr class="row-even"><td>@aA</td>
|
| +<td>A + 4</td>
|
| +</tr>
|
| +</tbody>
|
| +</table>
|
| +<h3 id="log2">Log2</h3>
|
| +<p>This is the 32-bit log2 value of its argument.</p>
|
| +<h3 id="bitsizeof">BitSizeOf</h3>
|
| +<p>Returns the number of bits needed to represent its argument (a type).</p>
|
| +<table border="1" class="docutils">
|
| +<colgroup>
|
| +</colgroup>
|
| +<thead valign="bottom">
|
| +<tr class="row-odd"><th class="head">T</th>
|
| +<th class="head">BitSizeOf</th>
|
| +</tr>
|
| +</thead>
|
| +<tbody valign="top">
|
| +<tr class="row-even"><td>i1</td>
|
| +<td>1</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>i8</td>
|
| +<td>8</td>
|
| +</tr>
|
| +<tr class="row-even"><td>i16</td>
|
| +<td>16</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>i32</td>
|
| +<td>32</td>
|
| +</tr>
|
| +<tr class="row-even"><td>i64</td>
|
| +<td>64</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>float</td>
|
| +<td>32</td>
|
| +</tr>
|
| +<tr class="row-even"><td>double</td>
|
| +<td>64</td>
|
| +</tr>
|
| +<tr class="row-odd"><td><N X T></td>
|
| +<td>N * BitSizeOf(T)</td>
|
| +</tr>
|
| +</tbody>
|
| +</table>
|
| +<h3 id="underlyingtype">UnderlyingType</h3>
|
| +<p>Returns the primitive type of the type construct. For primitive types, the
|
| +<em>UnderlyingType</em> is itself. For vector types, the base type of the vector is the
|
| +underlying type.</p>
|
| +<h3 id="underlyingcount">UnderlyingCount</h3>
|
| +<p>Returns the size of the vector if given a vector, and 0 for primitive types.
|
| +Note that this function is used to check if two vectors are of the same size.
|
| +It is also used to test if two types are either primitive (i.e. UnderlyingCount
|
| +returns 0 for both types) or are vectors of the same size (i.e. UnderlyingCount
|
| +returns the same non-zero value).</p>
|
| +<h3 id="isinteger">IsInteger</h3>
|
| +<p>Returns true if the argument is in {i1, i8, i16, i32, i64}.</p>
|
| +<h3 id="isfloat">IsFloat</h3>
|
| +<p>Returns true if the argument is in {<code>float</code>, <code>double</code>}.</p>
|
| +<h3 id="isvector">IsVector</h3>
|
| +<p>Returns true if the argument is a vector type.</p>
|
| +<h3 id="isprimitive">IsPrimitive</h3>
|
| +<p>Returns true if the argument is a primitive type. That is:</p>
|
| +<pre class="prettyprint">
|
| +IsPrimitive(T) == IsInteger(T) or IsFloat(T)
|
| +</pre>
|
| +<h3 id="isfcnargtype">IsFcnArgType</h3>
|
| +<p>Returns true if the argument is a primitive type or a vector type. Further,
|
| +if it is an integer type, it must be i32 or i64. That is:</p>
|
| +<pre class="prettyprint">
|
| +IsFcnArgType(T) = (IsInteger(T) and (i32 = BitSizeOf(T)
|
| + or i64 == BitSizeOf(T)))
|
| + or IsFloat(T) or IsVector(T)
|
| +</pre>
|
| +<h2 id="abbreviations"><span id="link-for-abbreviations-section"></span>Abbreviations</h2>
|
| +<p>Abbreviations are used to convert PNaCl records to a sequence of bits. PNaCl
|
| +uses the same strategy as <a class="reference external" href="http://llvm.org/docs/BitCodeFormat.html">LLVM’s bitcode file format</a>. See that document for more
|
| +details.</p>
|
| +<p>It should be noted that we replace LLVM’s header (called the <em>Bitcode Wrapper
|
| +Format</em>) with the bytes of the <a class="reference internal" href="#link-for-header-record-section"><em>PNaCl record
|
| +header</em></a>. In addition, PNaCl bitcode files do
|
| +not allow <em>blob</em> abbreviation.</p>
|
| +<h3 id="abbreviations-block"><span id="link-for-abbreviations-block-section"></span>Abbreviations Block</h3>
|
| +<p>The abbreviations block is the first block in the module build. The
|
| +block is divided into sections. Each section is a sequence of records. Each
|
| +record in the sequence defines a user-defined abbreviation. Each section
|
| +defines abbreviations that can be applied to all (succeeding) blocks of a
|
| +particular kind. These abbreviations are denoted by the (global) ID of the form
|
| +<em>@aN</em>.</p>
|
| +<p>In terms of <a class="reference external" href="http://llvm.org/docs/BitCodeFormat.html">LLVM’s bitcode file format</a>, the abbreviations block is called a
|
| +<em>BLOCKINFO</em> block. Records <em>SETBID</em> and <em>DEFINE_ABBREV</em> are the only records
|
| +allowed in PNaCl’s abbreviation block (i.e. it doesn’t allow <em>BLOCKNAME</em> and
|
| +<em>SETRECORDNAME</em> records).</p>
|
| +<h3 id="todo">TODO</h3>
|
| +<p>Extend this document to describe PNaCl’s bitcode bit sequencer
|
| +without requiring the reader to refer to <a class="reference external" href="http://llvm.org/docs/BitCodeFormat.html">LLVM’s bitcode file
|
| +format</a>.</p>
|
| +</section>
|
| +
|
| +{{/partials.standard_nacl_article}}
|
|
|