OLD | NEW |
(Empty) | |
| 1 // Copyright 2014 the V8 project authors. All rights reserved. |
| 2 // Use of this source code is governed by a BSD-style license that can be |
| 3 // found in the LICENSE file. |
| 4 |
| 5 #include <assert.h> // For assert |
| 6 #include <limits.h> // For LONG_MIN, LONG_MAX. |
| 7 |
| 8 #include "src/v8.h" |
| 9 |
| 10 #if V8_TARGET_ARCH_PPC |
| 11 |
| 12 #include "src/base/bits.h" |
| 13 #include "src/base/division-by-constant.h" |
| 14 #include "src/bootstrapper.h" |
| 15 #include "src/codegen.h" |
| 16 #include "src/cpu-profiler.h" |
| 17 #include "src/debug.h" |
| 18 #include "src/isolate-inl.h" |
| 19 #include "src/runtime/runtime.h" |
| 20 |
| 21 namespace v8 { |
| 22 namespace internal { |
| 23 |
| 24 MacroAssembler::MacroAssembler(Isolate* arg_isolate, void* buffer, int size) |
| 25 : Assembler(arg_isolate, buffer, size), |
| 26 generating_stub_(false), |
| 27 has_frame_(false) { |
| 28 if (isolate() != NULL) { |
| 29 code_object_ = |
| 30 Handle<Object>(isolate()->heap()->undefined_value(), isolate()); |
| 31 } |
| 32 } |
| 33 |
| 34 |
| 35 void MacroAssembler::Jump(Register target) { |
| 36 mtctr(target); |
| 37 bctr(); |
| 38 } |
| 39 |
| 40 |
| 41 void MacroAssembler::JumpToJSEntry(Register target) { |
| 42 Move(ip, target); |
| 43 Jump(ip); |
| 44 } |
| 45 |
| 46 |
| 47 void MacroAssembler::Jump(intptr_t target, RelocInfo::Mode rmode, |
| 48 Condition cond, CRegister cr) { |
| 49 Label skip; |
| 50 |
| 51 if (cond != al) b(NegateCondition(cond), &skip, cr); |
| 52 |
| 53 DCHECK(rmode == RelocInfo::CODE_TARGET || rmode == RelocInfo::RUNTIME_ENTRY); |
| 54 |
| 55 mov(ip, Operand(target, rmode)); |
| 56 mtctr(ip); |
| 57 bctr(); |
| 58 |
| 59 bind(&skip); |
| 60 } |
| 61 |
| 62 |
| 63 void MacroAssembler::Jump(Address target, RelocInfo::Mode rmode, Condition cond, |
| 64 CRegister cr) { |
| 65 DCHECK(!RelocInfo::IsCodeTarget(rmode)); |
| 66 Jump(reinterpret_cast<intptr_t>(target), rmode, cond, cr); |
| 67 } |
| 68 |
| 69 |
| 70 void MacroAssembler::Jump(Handle<Code> code, RelocInfo::Mode rmode, |
| 71 Condition cond) { |
| 72 DCHECK(RelocInfo::IsCodeTarget(rmode)); |
| 73 // 'code' is always generated ppc code, never THUMB code |
| 74 AllowDeferredHandleDereference embedding_raw_address; |
| 75 Jump(reinterpret_cast<intptr_t>(code.location()), rmode, cond); |
| 76 } |
| 77 |
| 78 |
| 79 int MacroAssembler::CallSize(Register target) { return 2 * kInstrSize; } |
| 80 |
| 81 |
| 82 void MacroAssembler::Call(Register target) { |
| 83 BlockTrampolinePoolScope block_trampoline_pool(this); |
| 84 Label start; |
| 85 bind(&start); |
| 86 |
| 87 // Statement positions are expected to be recorded when the target |
| 88 // address is loaded. |
| 89 positions_recorder()->WriteRecordedPositions(); |
| 90 |
| 91 // branch via link register and set LK bit for return point |
| 92 mtctr(target); |
| 93 bctrl(); |
| 94 |
| 95 DCHECK_EQ(CallSize(target), SizeOfCodeGeneratedSince(&start)); |
| 96 } |
| 97 |
| 98 |
| 99 void MacroAssembler::CallJSEntry(Register target) { |
| 100 DCHECK(target.is(ip)); |
| 101 Call(target); |
| 102 } |
| 103 |
| 104 |
| 105 int MacroAssembler::CallSize(Address target, RelocInfo::Mode rmode, |
| 106 Condition cond) { |
| 107 Operand mov_operand = Operand(reinterpret_cast<intptr_t>(target), rmode); |
| 108 return (2 + instructions_required_for_mov(mov_operand)) * kInstrSize; |
| 109 } |
| 110 |
| 111 |
| 112 int MacroAssembler::CallSizeNotPredictableCodeSize(Address target, |
| 113 RelocInfo::Mode rmode, |
| 114 Condition cond) { |
| 115 return (2 + kMovInstructionsNoConstantPool) * kInstrSize; |
| 116 } |
| 117 |
| 118 |
| 119 void MacroAssembler::Call(Address target, RelocInfo::Mode rmode, |
| 120 Condition cond) { |
| 121 BlockTrampolinePoolScope block_trampoline_pool(this); |
| 122 DCHECK(cond == al); |
| 123 |
| 124 #ifdef DEBUG |
| 125 // Check the expected size before generating code to ensure we assume the same |
| 126 // constant pool availability (e.g., whether constant pool is full or not). |
| 127 int expected_size = CallSize(target, rmode, cond); |
| 128 Label start; |
| 129 bind(&start); |
| 130 #endif |
| 131 |
| 132 // Statement positions are expected to be recorded when the target |
| 133 // address is loaded. |
| 134 positions_recorder()->WriteRecordedPositions(); |
| 135 |
| 136 // This can likely be optimized to make use of bc() with 24bit relative |
| 137 // |
| 138 // RecordRelocInfo(x.rmode_, x.imm_); |
| 139 // bc( BA, .... offset, LKset); |
| 140 // |
| 141 |
| 142 mov(ip, Operand(reinterpret_cast<intptr_t>(target), rmode)); |
| 143 mtctr(ip); |
| 144 bctrl(); |
| 145 |
| 146 DCHECK_EQ(expected_size, SizeOfCodeGeneratedSince(&start)); |
| 147 } |
| 148 |
| 149 |
| 150 int MacroAssembler::CallSize(Handle<Code> code, RelocInfo::Mode rmode, |
| 151 TypeFeedbackId ast_id, Condition cond) { |
| 152 AllowDeferredHandleDereference using_raw_address; |
| 153 return CallSize(reinterpret_cast<Address>(code.location()), rmode, cond); |
| 154 } |
| 155 |
| 156 |
| 157 void MacroAssembler::Call(Handle<Code> code, RelocInfo::Mode rmode, |
| 158 TypeFeedbackId ast_id, Condition cond) { |
| 159 BlockTrampolinePoolScope block_trampoline_pool(this); |
| 160 DCHECK(RelocInfo::IsCodeTarget(rmode)); |
| 161 |
| 162 #ifdef DEBUG |
| 163 // Check the expected size before generating code to ensure we assume the same |
| 164 // constant pool availability (e.g., whether constant pool is full or not). |
| 165 int expected_size = CallSize(code, rmode, ast_id, cond); |
| 166 Label start; |
| 167 bind(&start); |
| 168 #endif |
| 169 |
| 170 if (rmode == RelocInfo::CODE_TARGET && !ast_id.IsNone()) { |
| 171 SetRecordedAstId(ast_id); |
| 172 rmode = RelocInfo::CODE_TARGET_WITH_ID; |
| 173 } |
| 174 AllowDeferredHandleDereference using_raw_address; |
| 175 Call(reinterpret_cast<Address>(code.location()), rmode, cond); |
| 176 DCHECK_EQ(expected_size, SizeOfCodeGeneratedSince(&start)); |
| 177 } |
| 178 |
| 179 |
| 180 void MacroAssembler::Ret(Condition cond) { |
| 181 DCHECK(cond == al); |
| 182 blr(); |
| 183 } |
| 184 |
| 185 |
| 186 void MacroAssembler::Drop(int count, Condition cond) { |
| 187 DCHECK(cond == al); |
| 188 if (count > 0) { |
| 189 Add(sp, sp, count * kPointerSize, r0); |
| 190 } |
| 191 } |
| 192 |
| 193 |
| 194 void MacroAssembler::Ret(int drop, Condition cond) { |
| 195 Drop(drop, cond); |
| 196 Ret(cond); |
| 197 } |
| 198 |
| 199 |
| 200 void MacroAssembler::Call(Label* target) { b(target, SetLK); } |
| 201 |
| 202 |
| 203 void MacroAssembler::Push(Handle<Object> handle) { |
| 204 mov(r0, Operand(handle)); |
| 205 push(r0); |
| 206 } |
| 207 |
| 208 |
| 209 void MacroAssembler::Move(Register dst, Handle<Object> value) { |
| 210 AllowDeferredHandleDereference smi_check; |
| 211 if (value->IsSmi()) { |
| 212 LoadSmiLiteral(dst, reinterpret_cast<Smi*>(*value)); |
| 213 } else { |
| 214 DCHECK(value->IsHeapObject()); |
| 215 if (isolate()->heap()->InNewSpace(*value)) { |
| 216 Handle<Cell> cell = isolate()->factory()->NewCell(value); |
| 217 mov(dst, Operand(cell)); |
| 218 LoadP(dst, FieldMemOperand(dst, Cell::kValueOffset)); |
| 219 } else { |
| 220 mov(dst, Operand(value)); |
| 221 } |
| 222 } |
| 223 } |
| 224 |
| 225 |
| 226 void MacroAssembler::Move(Register dst, Register src, Condition cond) { |
| 227 DCHECK(cond == al); |
| 228 if (!dst.is(src)) { |
| 229 mr(dst, src); |
| 230 } |
| 231 } |
| 232 |
| 233 |
| 234 void MacroAssembler::Move(DoubleRegister dst, DoubleRegister src) { |
| 235 if (!dst.is(src)) { |
| 236 fmr(dst, src); |
| 237 } |
| 238 } |
| 239 |
| 240 |
| 241 void MacroAssembler::MultiPush(RegList regs) { |
| 242 int16_t num_to_push = NumberOfBitsSet(regs); |
| 243 int16_t stack_offset = num_to_push * kPointerSize; |
| 244 |
| 245 subi(sp, sp, Operand(stack_offset)); |
| 246 for (int16_t i = kNumRegisters - 1; i >= 0; i--) { |
| 247 if ((regs & (1 << i)) != 0) { |
| 248 stack_offset -= kPointerSize; |
| 249 StoreP(ToRegister(i), MemOperand(sp, stack_offset)); |
| 250 } |
| 251 } |
| 252 } |
| 253 |
| 254 |
| 255 void MacroAssembler::MultiPop(RegList regs) { |
| 256 int16_t stack_offset = 0; |
| 257 |
| 258 for (int16_t i = 0; i < kNumRegisters; i++) { |
| 259 if ((regs & (1 << i)) != 0) { |
| 260 LoadP(ToRegister(i), MemOperand(sp, stack_offset)); |
| 261 stack_offset += kPointerSize; |
| 262 } |
| 263 } |
| 264 addi(sp, sp, Operand(stack_offset)); |
| 265 } |
| 266 |
| 267 |
| 268 void MacroAssembler::LoadRoot(Register destination, Heap::RootListIndex index, |
| 269 Condition cond) { |
| 270 DCHECK(cond == al); |
| 271 LoadP(destination, MemOperand(kRootRegister, index << kPointerSizeLog2), r0); |
| 272 } |
| 273 |
| 274 |
| 275 void MacroAssembler::StoreRoot(Register source, Heap::RootListIndex index, |
| 276 Condition cond) { |
| 277 DCHECK(cond == al); |
| 278 StoreP(source, MemOperand(kRootRegister, index << kPointerSizeLog2), r0); |
| 279 } |
| 280 |
| 281 |
| 282 void MacroAssembler::InNewSpace(Register object, Register scratch, |
| 283 Condition cond, Label* branch) { |
| 284 // N.B. scratch may be same register as object |
| 285 DCHECK(cond == eq || cond == ne); |
| 286 mov(r0, Operand(ExternalReference::new_space_mask(isolate()))); |
| 287 and_(scratch, object, r0); |
| 288 mov(r0, Operand(ExternalReference::new_space_start(isolate()))); |
| 289 cmp(scratch, r0); |
| 290 b(cond, branch); |
| 291 } |
| 292 |
| 293 |
| 294 void MacroAssembler::RecordWriteField( |
| 295 Register object, int offset, Register value, Register dst, |
| 296 LinkRegisterStatus lr_status, SaveFPRegsMode save_fp, |
| 297 RememberedSetAction remembered_set_action, SmiCheck smi_check, |
| 298 PointersToHereCheck pointers_to_here_check_for_value) { |
| 299 // First, check if a write barrier is even needed. The tests below |
| 300 // catch stores of Smis. |
| 301 Label done; |
| 302 |
| 303 // Skip barrier if writing a smi. |
| 304 if (smi_check == INLINE_SMI_CHECK) { |
| 305 JumpIfSmi(value, &done); |
| 306 } |
| 307 |
| 308 // Although the object register is tagged, the offset is relative to the start |
| 309 // of the object, so so offset must be a multiple of kPointerSize. |
| 310 DCHECK(IsAligned(offset, kPointerSize)); |
| 311 |
| 312 Add(dst, object, offset - kHeapObjectTag, r0); |
| 313 if (emit_debug_code()) { |
| 314 Label ok; |
| 315 andi(r0, dst, Operand((1 << kPointerSizeLog2) - 1)); |
| 316 beq(&ok, cr0); |
| 317 stop("Unaligned cell in write barrier"); |
| 318 bind(&ok); |
| 319 } |
| 320 |
| 321 RecordWrite(object, dst, value, lr_status, save_fp, remembered_set_action, |
| 322 OMIT_SMI_CHECK, pointers_to_here_check_for_value); |
| 323 |
| 324 bind(&done); |
| 325 |
| 326 // Clobber clobbered input registers when running with the debug-code flag |
| 327 // turned on to provoke errors. |
| 328 if (emit_debug_code()) { |
| 329 mov(value, Operand(bit_cast<intptr_t>(kZapValue + 4))); |
| 330 mov(dst, Operand(bit_cast<intptr_t>(kZapValue + 8))); |
| 331 } |
| 332 } |
| 333 |
| 334 |
| 335 // Will clobber 4 registers: object, map, dst, ip. The |
| 336 // register 'object' contains a heap object pointer. |
| 337 void MacroAssembler::RecordWriteForMap(Register object, Register map, |
| 338 Register dst, |
| 339 LinkRegisterStatus lr_status, |
| 340 SaveFPRegsMode fp_mode) { |
| 341 if (emit_debug_code()) { |
| 342 LoadP(dst, FieldMemOperand(map, HeapObject::kMapOffset)); |
| 343 Cmpi(dst, Operand(isolate()->factory()->meta_map()), r0); |
| 344 Check(eq, kWrongAddressOrValuePassedToRecordWrite); |
| 345 } |
| 346 |
| 347 if (!FLAG_incremental_marking) { |
| 348 return; |
| 349 } |
| 350 |
| 351 if (emit_debug_code()) { |
| 352 LoadP(ip, FieldMemOperand(object, HeapObject::kMapOffset)); |
| 353 cmp(ip, map); |
| 354 Check(eq, kWrongAddressOrValuePassedToRecordWrite); |
| 355 } |
| 356 |
| 357 Label done; |
| 358 |
| 359 // A single check of the map's pages interesting flag suffices, since it is |
| 360 // only set during incremental collection, and then it's also guaranteed that |
| 361 // the from object's page's interesting flag is also set. This optimization |
| 362 // relies on the fact that maps can never be in new space. |
| 363 CheckPageFlag(map, |
| 364 map, // Used as scratch. |
| 365 MemoryChunk::kPointersToHereAreInterestingMask, eq, &done); |
| 366 |
| 367 addi(dst, object, Operand(HeapObject::kMapOffset - kHeapObjectTag)); |
| 368 if (emit_debug_code()) { |
| 369 Label ok; |
| 370 andi(r0, dst, Operand((1 << kPointerSizeLog2) - 1)); |
| 371 beq(&ok, cr0); |
| 372 stop("Unaligned cell in write barrier"); |
| 373 bind(&ok); |
| 374 } |
| 375 |
| 376 // Record the actual write. |
| 377 if (lr_status == kLRHasNotBeenSaved) { |
| 378 mflr(r0); |
| 379 push(r0); |
| 380 } |
| 381 RecordWriteStub stub(isolate(), object, map, dst, OMIT_REMEMBERED_SET, |
| 382 fp_mode); |
| 383 CallStub(&stub); |
| 384 if (lr_status == kLRHasNotBeenSaved) { |
| 385 pop(r0); |
| 386 mtlr(r0); |
| 387 } |
| 388 |
| 389 bind(&done); |
| 390 |
| 391 // Count number of write barriers in generated code. |
| 392 isolate()->counters()->write_barriers_static()->Increment(); |
| 393 IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1, ip, dst); |
| 394 |
| 395 // Clobber clobbered registers when running with the debug-code flag |
| 396 // turned on to provoke errors. |
| 397 if (emit_debug_code()) { |
| 398 mov(dst, Operand(bit_cast<intptr_t>(kZapValue + 12))); |
| 399 mov(map, Operand(bit_cast<intptr_t>(kZapValue + 16))); |
| 400 } |
| 401 } |
| 402 |
| 403 |
| 404 // Will clobber 4 registers: object, address, scratch, ip. The |
| 405 // register 'object' contains a heap object pointer. The heap object |
| 406 // tag is shifted away. |
| 407 void MacroAssembler::RecordWrite( |
| 408 Register object, Register address, Register value, |
| 409 LinkRegisterStatus lr_status, SaveFPRegsMode fp_mode, |
| 410 RememberedSetAction remembered_set_action, SmiCheck smi_check, |
| 411 PointersToHereCheck pointers_to_here_check_for_value) { |
| 412 DCHECK(!object.is(value)); |
| 413 if (emit_debug_code()) { |
| 414 LoadP(r0, MemOperand(address)); |
| 415 cmp(r0, value); |
| 416 Check(eq, kWrongAddressOrValuePassedToRecordWrite); |
| 417 } |
| 418 |
| 419 if (remembered_set_action == OMIT_REMEMBERED_SET && |
| 420 !FLAG_incremental_marking) { |
| 421 return; |
| 422 } |
| 423 |
| 424 // First, check if a write barrier is even needed. The tests below |
| 425 // catch stores of smis and stores into the young generation. |
| 426 Label done; |
| 427 |
| 428 if (smi_check == INLINE_SMI_CHECK) { |
| 429 JumpIfSmi(value, &done); |
| 430 } |
| 431 |
| 432 if (pointers_to_here_check_for_value != kPointersToHereAreAlwaysInteresting) { |
| 433 CheckPageFlag(value, |
| 434 value, // Used as scratch. |
| 435 MemoryChunk::kPointersToHereAreInterestingMask, eq, &done); |
| 436 } |
| 437 CheckPageFlag(object, |
| 438 value, // Used as scratch. |
| 439 MemoryChunk::kPointersFromHereAreInterestingMask, eq, &done); |
| 440 |
| 441 // Record the actual write. |
| 442 if (lr_status == kLRHasNotBeenSaved) { |
| 443 mflr(r0); |
| 444 push(r0); |
| 445 } |
| 446 RecordWriteStub stub(isolate(), object, value, address, remembered_set_action, |
| 447 fp_mode); |
| 448 CallStub(&stub); |
| 449 if (lr_status == kLRHasNotBeenSaved) { |
| 450 pop(r0); |
| 451 mtlr(r0); |
| 452 } |
| 453 |
| 454 bind(&done); |
| 455 |
| 456 // Count number of write barriers in generated code. |
| 457 isolate()->counters()->write_barriers_static()->Increment(); |
| 458 IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1, ip, |
| 459 value); |
| 460 |
| 461 // Clobber clobbered registers when running with the debug-code flag |
| 462 // turned on to provoke errors. |
| 463 if (emit_debug_code()) { |
| 464 mov(address, Operand(bit_cast<intptr_t>(kZapValue + 12))); |
| 465 mov(value, Operand(bit_cast<intptr_t>(kZapValue + 16))); |
| 466 } |
| 467 } |
| 468 |
| 469 |
| 470 void MacroAssembler::RememberedSetHelper(Register object, // For debug tests. |
| 471 Register address, Register scratch, |
| 472 SaveFPRegsMode fp_mode, |
| 473 RememberedSetFinalAction and_then) { |
| 474 Label done; |
| 475 if (emit_debug_code()) { |
| 476 Label ok; |
| 477 JumpIfNotInNewSpace(object, scratch, &ok); |
| 478 stop("Remembered set pointer is in new space"); |
| 479 bind(&ok); |
| 480 } |
| 481 // Load store buffer top. |
| 482 ExternalReference store_buffer = |
| 483 ExternalReference::store_buffer_top(isolate()); |
| 484 mov(ip, Operand(store_buffer)); |
| 485 LoadP(scratch, MemOperand(ip)); |
| 486 // Store pointer to buffer and increment buffer top. |
| 487 StoreP(address, MemOperand(scratch)); |
| 488 addi(scratch, scratch, Operand(kPointerSize)); |
| 489 // Write back new top of buffer. |
| 490 StoreP(scratch, MemOperand(ip)); |
| 491 // Call stub on end of buffer. |
| 492 // Check for end of buffer. |
| 493 mov(r0, Operand(StoreBuffer::kStoreBufferOverflowBit)); |
| 494 and_(r0, scratch, r0, SetRC); |
| 495 |
| 496 if (and_then == kFallThroughAtEnd) { |
| 497 beq(&done, cr0); |
| 498 } else { |
| 499 DCHECK(and_then == kReturnAtEnd); |
| 500 beq(&done, cr0); |
| 501 } |
| 502 mflr(r0); |
| 503 push(r0); |
| 504 StoreBufferOverflowStub store_buffer_overflow(isolate(), fp_mode); |
| 505 CallStub(&store_buffer_overflow); |
| 506 pop(r0); |
| 507 mtlr(r0); |
| 508 bind(&done); |
| 509 if (and_then == kReturnAtEnd) { |
| 510 Ret(); |
| 511 } |
| 512 } |
| 513 |
| 514 |
| 515 void MacroAssembler::PushFixedFrame(Register marker_reg) { |
| 516 mflr(r0); |
| 517 #if V8_OOL_CONSTANT_POOL |
| 518 if (marker_reg.is_valid()) { |
| 519 Push(r0, fp, kConstantPoolRegister, cp, marker_reg); |
| 520 } else { |
| 521 Push(r0, fp, kConstantPoolRegister, cp); |
| 522 } |
| 523 #else |
| 524 if (marker_reg.is_valid()) { |
| 525 Push(r0, fp, cp, marker_reg); |
| 526 } else { |
| 527 Push(r0, fp, cp); |
| 528 } |
| 529 #endif |
| 530 } |
| 531 |
| 532 |
| 533 void MacroAssembler::PopFixedFrame(Register marker_reg) { |
| 534 #if V8_OOL_CONSTANT_POOL |
| 535 if (marker_reg.is_valid()) { |
| 536 Pop(r0, fp, kConstantPoolRegister, cp, marker_reg); |
| 537 } else { |
| 538 Pop(r0, fp, kConstantPoolRegister, cp); |
| 539 } |
| 540 #else |
| 541 if (marker_reg.is_valid()) { |
| 542 Pop(r0, fp, cp, marker_reg); |
| 543 } else { |
| 544 Pop(r0, fp, cp); |
| 545 } |
| 546 #endif |
| 547 mtlr(r0); |
| 548 } |
| 549 |
| 550 |
| 551 // Push and pop all registers that can hold pointers. |
| 552 void MacroAssembler::PushSafepointRegisters() { |
| 553 // Safepoints expect a block of kNumSafepointRegisters values on the |
| 554 // stack, so adjust the stack for unsaved registers. |
| 555 const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters; |
| 556 DCHECK(num_unsaved >= 0); |
| 557 if (num_unsaved > 0) { |
| 558 subi(sp, sp, Operand(num_unsaved * kPointerSize)); |
| 559 } |
| 560 MultiPush(kSafepointSavedRegisters); |
| 561 } |
| 562 |
| 563 |
| 564 void MacroAssembler::PopSafepointRegisters() { |
| 565 const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters; |
| 566 MultiPop(kSafepointSavedRegisters); |
| 567 if (num_unsaved > 0) { |
| 568 addi(sp, sp, Operand(num_unsaved * kPointerSize)); |
| 569 } |
| 570 } |
| 571 |
| 572 |
| 573 void MacroAssembler::StoreToSafepointRegisterSlot(Register src, Register dst) { |
| 574 StoreP(src, SafepointRegisterSlot(dst)); |
| 575 } |
| 576 |
| 577 |
| 578 void MacroAssembler::LoadFromSafepointRegisterSlot(Register dst, Register src) { |
| 579 LoadP(dst, SafepointRegisterSlot(src)); |
| 580 } |
| 581 |
| 582 |
| 583 int MacroAssembler::SafepointRegisterStackIndex(int reg_code) { |
| 584 // The registers are pushed starting with the highest encoding, |
| 585 // which means that lowest encodings are closest to the stack pointer. |
| 586 RegList regs = kSafepointSavedRegisters; |
| 587 int index = 0; |
| 588 |
| 589 DCHECK(reg_code >= 0 && reg_code < kNumRegisters); |
| 590 |
| 591 for (int16_t i = 0; i < reg_code; i++) { |
| 592 if ((regs & (1 << i)) != 0) { |
| 593 index++; |
| 594 } |
| 595 } |
| 596 |
| 597 return index; |
| 598 } |
| 599 |
| 600 |
| 601 MemOperand MacroAssembler::SafepointRegisterSlot(Register reg) { |
| 602 return MemOperand(sp, SafepointRegisterStackIndex(reg.code()) * kPointerSize); |
| 603 } |
| 604 |
| 605 |
| 606 MemOperand MacroAssembler::SafepointRegistersAndDoublesSlot(Register reg) { |
| 607 // General purpose registers are pushed last on the stack. |
| 608 int doubles_size = DoubleRegister::NumAllocatableRegisters() * kDoubleSize; |
| 609 int register_offset = SafepointRegisterStackIndex(reg.code()) * kPointerSize; |
| 610 return MemOperand(sp, doubles_size + register_offset); |
| 611 } |
| 612 |
| 613 |
| 614 void MacroAssembler::CanonicalizeNaN(const DoubleRegister dst, |
| 615 const DoubleRegister src) { |
| 616 Label done; |
| 617 |
| 618 // Test for NaN |
| 619 fcmpu(src, src); |
| 620 |
| 621 if (dst.is(src)) { |
| 622 bordered(&done); |
| 623 } else { |
| 624 Label is_nan; |
| 625 bunordered(&is_nan); |
| 626 fmr(dst, src); |
| 627 b(&done); |
| 628 bind(&is_nan); |
| 629 } |
| 630 |
| 631 // Replace with canonical NaN. |
| 632 double nan_value = FixedDoubleArray::canonical_not_the_hole_nan_as_double(); |
| 633 LoadDoubleLiteral(dst, nan_value, r0); |
| 634 |
| 635 bind(&done); |
| 636 } |
| 637 |
| 638 |
| 639 void MacroAssembler::ConvertIntToDouble(Register src, |
| 640 DoubleRegister double_dst) { |
| 641 MovIntToDouble(double_dst, src, r0); |
| 642 fcfid(double_dst, double_dst); |
| 643 } |
| 644 |
| 645 |
| 646 void MacroAssembler::ConvertUnsignedIntToDouble(Register src, |
| 647 DoubleRegister double_dst) { |
| 648 MovUnsignedIntToDouble(double_dst, src, r0); |
| 649 fcfid(double_dst, double_dst); |
| 650 } |
| 651 |
| 652 |
| 653 void MacroAssembler::ConvertIntToFloat(const DoubleRegister dst, |
| 654 const Register src, |
| 655 const Register int_scratch) { |
| 656 MovIntToDouble(dst, src, int_scratch); |
| 657 fcfid(dst, dst); |
| 658 frsp(dst, dst); |
| 659 } |
| 660 |
| 661 |
| 662 void MacroAssembler::ConvertDoubleToInt64(const DoubleRegister double_input, |
| 663 #if !V8_TARGET_ARCH_PPC64 |
| 664 const Register dst_hi, |
| 665 #endif |
| 666 const Register dst, |
| 667 const DoubleRegister double_dst, |
| 668 FPRoundingMode rounding_mode) { |
| 669 if (rounding_mode == kRoundToZero) { |
| 670 fctidz(double_dst, double_input); |
| 671 } else { |
| 672 SetRoundingMode(rounding_mode); |
| 673 fctid(double_dst, double_input); |
| 674 ResetRoundingMode(); |
| 675 } |
| 676 |
| 677 MovDoubleToInt64( |
| 678 #if !V8_TARGET_ARCH_PPC64 |
| 679 dst_hi, |
| 680 #endif |
| 681 dst, double_dst); |
| 682 } |
| 683 |
| 684 |
| 685 #if V8_OOL_CONSTANT_POOL |
| 686 void MacroAssembler::LoadConstantPoolPointerRegister( |
| 687 CodeObjectAccessMethod access_method, int ip_code_entry_delta) { |
| 688 Register base; |
| 689 int constant_pool_offset = Code::kConstantPoolOffset - Code::kHeaderSize; |
| 690 if (access_method == CAN_USE_IP) { |
| 691 base = ip; |
| 692 constant_pool_offset += ip_code_entry_delta; |
| 693 } else { |
| 694 DCHECK(access_method == CONSTRUCT_INTERNAL_REFERENCE); |
| 695 base = kConstantPoolRegister; |
| 696 ConstantPoolUnavailableScope constant_pool_unavailable(this); |
| 697 |
| 698 // CheckBuffer() is called too frequently. This will pre-grow |
| 699 // the buffer if needed to avoid spliting the relocation and instructions |
| 700 EnsureSpaceFor(kMovInstructionsNoConstantPool * kInstrSize); |
| 701 |
| 702 uintptr_t code_start = reinterpret_cast<uintptr_t>(pc_) - pc_offset(); |
| 703 mov(base, Operand(code_start, RelocInfo::INTERNAL_REFERENCE)); |
| 704 } |
| 705 LoadP(kConstantPoolRegister, MemOperand(base, constant_pool_offset)); |
| 706 } |
| 707 #endif |
| 708 |
| 709 |
| 710 void MacroAssembler::StubPrologue(int prologue_offset) { |
| 711 LoadSmiLiteral(r11, Smi::FromInt(StackFrame::STUB)); |
| 712 PushFixedFrame(r11); |
| 713 // Adjust FP to point to saved FP. |
| 714 addi(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp)); |
| 715 #if V8_OOL_CONSTANT_POOL |
| 716 // ip contains prologue address |
| 717 LoadConstantPoolPointerRegister(CAN_USE_IP, -prologue_offset); |
| 718 set_ool_constant_pool_available(true); |
| 719 #endif |
| 720 } |
| 721 |
| 722 |
| 723 void MacroAssembler::Prologue(bool code_pre_aging, int prologue_offset) { |
| 724 { |
| 725 PredictableCodeSizeScope predictible_code_size_scope( |
| 726 this, kNoCodeAgeSequenceLength); |
| 727 Assembler::BlockTrampolinePoolScope block_trampoline_pool(this); |
| 728 // The following instructions must remain together and unmodified |
| 729 // for code aging to work properly. |
| 730 if (code_pre_aging) { |
| 731 // Pre-age the code. |
| 732 // This matches the code found in PatchPlatformCodeAge() |
| 733 Code* stub = Code::GetPreAgedCodeAgeStub(isolate()); |
| 734 intptr_t target = reinterpret_cast<intptr_t>(stub->instruction_start()); |
| 735 // Don't use Call -- we need to preserve ip and lr |
| 736 nop(); // marker to detect sequence (see IsOld) |
| 737 mov(r3, Operand(target)); |
| 738 Jump(r3); |
| 739 for (int i = 0; i < kCodeAgingSequenceNops; i++) { |
| 740 nop(); |
| 741 } |
| 742 } else { |
| 743 // This matches the code found in GetNoCodeAgeSequence() |
| 744 PushFixedFrame(r4); |
| 745 // Adjust fp to point to saved fp. |
| 746 addi(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp)); |
| 747 for (int i = 0; i < kNoCodeAgeSequenceNops; i++) { |
| 748 nop(); |
| 749 } |
| 750 } |
| 751 } |
| 752 #if V8_OOL_CONSTANT_POOL |
| 753 // ip contains prologue address |
| 754 LoadConstantPoolPointerRegister(CAN_USE_IP, -prologue_offset); |
| 755 set_ool_constant_pool_available(true); |
| 756 #endif |
| 757 } |
| 758 |
| 759 |
| 760 void MacroAssembler::EnterFrame(StackFrame::Type type, |
| 761 bool load_constant_pool_pointer_reg) { |
| 762 if (FLAG_enable_ool_constant_pool && load_constant_pool_pointer_reg) { |
| 763 PushFixedFrame(); |
| 764 #if V8_OOL_CONSTANT_POOL |
| 765 // This path should not rely on ip containing code entry. |
| 766 LoadConstantPoolPointerRegister(CONSTRUCT_INTERNAL_REFERENCE); |
| 767 #endif |
| 768 LoadSmiLiteral(ip, Smi::FromInt(type)); |
| 769 push(ip); |
| 770 } else { |
| 771 LoadSmiLiteral(ip, Smi::FromInt(type)); |
| 772 PushFixedFrame(ip); |
| 773 } |
| 774 // Adjust FP to point to saved FP. |
| 775 addi(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp)); |
| 776 |
| 777 mov(r0, Operand(CodeObject())); |
| 778 push(r0); |
| 779 } |
| 780 |
| 781 |
| 782 int MacroAssembler::LeaveFrame(StackFrame::Type type, int stack_adjustment) { |
| 783 #if V8_OOL_CONSTANT_POOL |
| 784 ConstantPoolUnavailableScope constant_pool_unavailable(this); |
| 785 #endif |
| 786 // r3: preserved |
| 787 // r4: preserved |
| 788 // r5: preserved |
| 789 |
| 790 // Drop the execution stack down to the frame pointer and restore |
| 791 // the caller frame pointer, return address and constant pool pointer. |
| 792 int frame_ends; |
| 793 LoadP(r0, MemOperand(fp, StandardFrameConstants::kCallerPCOffset)); |
| 794 LoadP(ip, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
| 795 #if V8_OOL_CONSTANT_POOL |
| 796 const int exitOffset = ExitFrameConstants::kConstantPoolOffset; |
| 797 const int standardOffset = StandardFrameConstants::kConstantPoolOffset; |
| 798 const int offset = ((type == StackFrame::EXIT) ? exitOffset : standardOffset); |
| 799 LoadP(kConstantPoolRegister, MemOperand(fp, offset)); |
| 800 #endif |
| 801 mtlr(r0); |
| 802 frame_ends = pc_offset(); |
| 803 Add(sp, fp, StandardFrameConstants::kCallerSPOffset + stack_adjustment, r0); |
| 804 mr(fp, ip); |
| 805 return frame_ends; |
| 806 } |
| 807 |
| 808 |
| 809 // ExitFrame layout (probably wrongish.. needs updating) |
| 810 // |
| 811 // SP -> previousSP |
| 812 // LK reserved |
| 813 // code |
| 814 // sp_on_exit (for debug?) |
| 815 // oldSP->prev SP |
| 816 // LK |
| 817 // <parameters on stack> |
| 818 |
| 819 // Prior to calling EnterExitFrame, we've got a bunch of parameters |
| 820 // on the stack that we need to wrap a real frame around.. so first |
| 821 // we reserve a slot for LK and push the previous SP which is captured |
| 822 // in the fp register (r31) |
| 823 // Then - we buy a new frame |
| 824 |
| 825 void MacroAssembler::EnterExitFrame(bool save_doubles, int stack_space) { |
| 826 // Set up the frame structure on the stack. |
| 827 DCHECK_EQ(2 * kPointerSize, ExitFrameConstants::kCallerSPDisplacement); |
| 828 DCHECK_EQ(1 * kPointerSize, ExitFrameConstants::kCallerPCOffset); |
| 829 DCHECK_EQ(0 * kPointerSize, ExitFrameConstants::kCallerFPOffset); |
| 830 DCHECK(stack_space > 0); |
| 831 |
| 832 // This is an opportunity to build a frame to wrap |
| 833 // all of the pushes that have happened inside of V8 |
| 834 // since we were called from C code |
| 835 |
| 836 // replicate ARM frame - TODO make this more closely follow PPC ABI |
| 837 mflr(r0); |
| 838 Push(r0, fp); |
| 839 mr(fp, sp); |
| 840 // Reserve room for saved entry sp and code object. |
| 841 subi(sp, sp, Operand(ExitFrameConstants::kFrameSize)); |
| 842 |
| 843 if (emit_debug_code()) { |
| 844 li(r8, Operand::Zero()); |
| 845 StoreP(r8, MemOperand(fp, ExitFrameConstants::kSPOffset)); |
| 846 } |
| 847 #if V8_OOL_CONSTANT_POOL |
| 848 StoreP(kConstantPoolRegister, |
| 849 MemOperand(fp, ExitFrameConstants::kConstantPoolOffset)); |
| 850 #endif |
| 851 mov(r8, Operand(CodeObject())); |
| 852 StoreP(r8, MemOperand(fp, ExitFrameConstants::kCodeOffset)); |
| 853 |
| 854 // Save the frame pointer and the context in top. |
| 855 mov(r8, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate()))); |
| 856 StoreP(fp, MemOperand(r8)); |
| 857 mov(r8, Operand(ExternalReference(Isolate::kContextAddress, isolate()))); |
| 858 StoreP(cp, MemOperand(r8)); |
| 859 |
| 860 // Optionally save all volatile double registers. |
| 861 if (save_doubles) { |
| 862 SaveFPRegs(sp, 0, DoubleRegister::kNumVolatileRegisters); |
| 863 // Note that d0 will be accessible at |
| 864 // fp - ExitFrameConstants::kFrameSize - |
| 865 // kNumVolatileRegisters * kDoubleSize, |
| 866 // since the sp slot and code slot were pushed after the fp. |
| 867 } |
| 868 |
| 869 addi(sp, sp, Operand(-stack_space * kPointerSize)); |
| 870 |
| 871 // Allocate and align the frame preparing for calling the runtime |
| 872 // function. |
| 873 const int frame_alignment = ActivationFrameAlignment(); |
| 874 if (frame_alignment > kPointerSize) { |
| 875 DCHECK(base::bits::IsPowerOfTwo32(frame_alignment)); |
| 876 ClearRightImm(sp, sp, Operand(WhichPowerOf2(frame_alignment))); |
| 877 } |
| 878 li(r0, Operand::Zero()); |
| 879 StorePU(r0, MemOperand(sp, -kNumRequiredStackFrameSlots * kPointerSize)); |
| 880 |
| 881 // Set the exit frame sp value to point just before the return address |
| 882 // location. |
| 883 addi(r8, sp, Operand((kStackFrameExtraParamSlot + 1) * kPointerSize)); |
| 884 StoreP(r8, MemOperand(fp, ExitFrameConstants::kSPOffset)); |
| 885 } |
| 886 |
| 887 |
| 888 void MacroAssembler::InitializeNewString(Register string, Register length, |
| 889 Heap::RootListIndex map_index, |
| 890 Register scratch1, Register scratch2) { |
| 891 SmiTag(scratch1, length); |
| 892 LoadRoot(scratch2, map_index); |
| 893 StoreP(scratch1, FieldMemOperand(string, String::kLengthOffset), r0); |
| 894 li(scratch1, Operand(String::kEmptyHashField)); |
| 895 StoreP(scratch2, FieldMemOperand(string, HeapObject::kMapOffset), r0); |
| 896 StoreP(scratch1, FieldMemOperand(string, String::kHashFieldSlot), r0); |
| 897 } |
| 898 |
| 899 |
| 900 int MacroAssembler::ActivationFrameAlignment() { |
| 901 #if !defined(USE_SIMULATOR) |
| 902 // Running on the real platform. Use the alignment as mandated by the local |
| 903 // environment. |
| 904 // Note: This will break if we ever start generating snapshots on one PPC |
| 905 // platform for another PPC platform with a different alignment. |
| 906 return base::OS::ActivationFrameAlignment(); |
| 907 #else // Simulated |
| 908 // If we are using the simulator then we should always align to the expected |
| 909 // alignment. As the simulator is used to generate snapshots we do not know |
| 910 // if the target platform will need alignment, so this is controlled from a |
| 911 // flag. |
| 912 return FLAG_sim_stack_alignment; |
| 913 #endif |
| 914 } |
| 915 |
| 916 |
| 917 void MacroAssembler::LeaveExitFrame(bool save_doubles, Register argument_count, |
| 918 bool restore_context) { |
| 919 #if V8_OOL_CONSTANT_POOL |
| 920 ConstantPoolUnavailableScope constant_pool_unavailable(this); |
| 921 #endif |
| 922 // Optionally restore all double registers. |
| 923 if (save_doubles) { |
| 924 // Calculate the stack location of the saved doubles and restore them. |
| 925 const int kNumRegs = DoubleRegister::kNumVolatileRegisters; |
| 926 const int offset = |
| 927 (ExitFrameConstants::kFrameSize + kNumRegs * kDoubleSize); |
| 928 addi(r6, fp, Operand(-offset)); |
| 929 RestoreFPRegs(r6, 0, kNumRegs); |
| 930 } |
| 931 |
| 932 // Clear top frame. |
| 933 li(r6, Operand::Zero()); |
| 934 mov(ip, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate()))); |
| 935 StoreP(r6, MemOperand(ip)); |
| 936 |
| 937 // Restore current context from top and clear it in debug mode. |
| 938 if (restore_context) { |
| 939 mov(ip, Operand(ExternalReference(Isolate::kContextAddress, isolate()))); |
| 940 LoadP(cp, MemOperand(ip)); |
| 941 } |
| 942 #ifdef DEBUG |
| 943 mov(ip, Operand(ExternalReference(Isolate::kContextAddress, isolate()))); |
| 944 StoreP(r6, MemOperand(ip)); |
| 945 #endif |
| 946 |
| 947 // Tear down the exit frame, pop the arguments, and return. |
| 948 LeaveFrame(StackFrame::EXIT); |
| 949 |
| 950 if (argument_count.is_valid()) { |
| 951 ShiftLeftImm(argument_count, argument_count, Operand(kPointerSizeLog2)); |
| 952 add(sp, sp, argument_count); |
| 953 } |
| 954 } |
| 955 |
| 956 |
| 957 void MacroAssembler::MovFromFloatResult(const DoubleRegister dst) { |
| 958 Move(dst, d1); |
| 959 } |
| 960 |
| 961 |
| 962 void MacroAssembler::MovFromFloatParameter(const DoubleRegister dst) { |
| 963 Move(dst, d1); |
| 964 } |
| 965 |
| 966 |
| 967 void MacroAssembler::InvokePrologue(const ParameterCount& expected, |
| 968 const ParameterCount& actual, |
| 969 Handle<Code> code_constant, |
| 970 Register code_reg, Label* done, |
| 971 bool* definitely_mismatches, |
| 972 InvokeFlag flag, |
| 973 const CallWrapper& call_wrapper) { |
| 974 bool definitely_matches = false; |
| 975 *definitely_mismatches = false; |
| 976 Label regular_invoke; |
| 977 |
| 978 // Check whether the expected and actual arguments count match. If not, |
| 979 // setup registers according to contract with ArgumentsAdaptorTrampoline: |
| 980 // r3: actual arguments count |
| 981 // r4: function (passed through to callee) |
| 982 // r5: expected arguments count |
| 983 |
| 984 // The code below is made a lot easier because the calling code already sets |
| 985 // up actual and expected registers according to the contract if values are |
| 986 // passed in registers. |
| 987 |
| 988 // ARM has some sanity checks as per below, considering add them for PPC |
| 989 // DCHECK(actual.is_immediate() || actual.reg().is(r3)); |
| 990 // DCHECK(expected.is_immediate() || expected.reg().is(r5)); |
| 991 // DCHECK((!code_constant.is_null() && code_reg.is(no_reg)) |
| 992 // || code_reg.is(r6)); |
| 993 |
| 994 if (expected.is_immediate()) { |
| 995 DCHECK(actual.is_immediate()); |
| 996 if (expected.immediate() == actual.immediate()) { |
| 997 definitely_matches = true; |
| 998 } else { |
| 999 mov(r3, Operand(actual.immediate())); |
| 1000 const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel; |
| 1001 if (expected.immediate() == sentinel) { |
| 1002 // Don't worry about adapting arguments for builtins that |
| 1003 // don't want that done. Skip adaption code by making it look |
| 1004 // like we have a match between expected and actual number of |
| 1005 // arguments. |
| 1006 definitely_matches = true; |
| 1007 } else { |
| 1008 *definitely_mismatches = true; |
| 1009 mov(r5, Operand(expected.immediate())); |
| 1010 } |
| 1011 } |
| 1012 } else { |
| 1013 if (actual.is_immediate()) { |
| 1014 cmpi(expected.reg(), Operand(actual.immediate())); |
| 1015 beq(®ular_invoke); |
| 1016 mov(r3, Operand(actual.immediate())); |
| 1017 } else { |
| 1018 cmp(expected.reg(), actual.reg()); |
| 1019 beq(®ular_invoke); |
| 1020 } |
| 1021 } |
| 1022 |
| 1023 if (!definitely_matches) { |
| 1024 if (!code_constant.is_null()) { |
| 1025 mov(r6, Operand(code_constant)); |
| 1026 addi(r6, r6, Operand(Code::kHeaderSize - kHeapObjectTag)); |
| 1027 } |
| 1028 |
| 1029 Handle<Code> adaptor = isolate()->builtins()->ArgumentsAdaptorTrampoline(); |
| 1030 if (flag == CALL_FUNCTION) { |
| 1031 call_wrapper.BeforeCall(CallSize(adaptor)); |
| 1032 Call(adaptor); |
| 1033 call_wrapper.AfterCall(); |
| 1034 if (!*definitely_mismatches) { |
| 1035 b(done); |
| 1036 } |
| 1037 } else { |
| 1038 Jump(adaptor, RelocInfo::CODE_TARGET); |
| 1039 } |
| 1040 bind(®ular_invoke); |
| 1041 } |
| 1042 } |
| 1043 |
| 1044 |
| 1045 void MacroAssembler::InvokeCode(Register code, const ParameterCount& expected, |
| 1046 const ParameterCount& actual, InvokeFlag flag, |
| 1047 const CallWrapper& call_wrapper) { |
| 1048 // You can't call a function without a valid frame. |
| 1049 DCHECK(flag == JUMP_FUNCTION || has_frame()); |
| 1050 |
| 1051 Label done; |
| 1052 bool definitely_mismatches = false; |
| 1053 InvokePrologue(expected, actual, Handle<Code>::null(), code, &done, |
| 1054 &definitely_mismatches, flag, call_wrapper); |
| 1055 if (!definitely_mismatches) { |
| 1056 if (flag == CALL_FUNCTION) { |
| 1057 call_wrapper.BeforeCall(CallSize(code)); |
| 1058 CallJSEntry(code); |
| 1059 call_wrapper.AfterCall(); |
| 1060 } else { |
| 1061 DCHECK(flag == JUMP_FUNCTION); |
| 1062 JumpToJSEntry(code); |
| 1063 } |
| 1064 |
| 1065 // Continue here if InvokePrologue does handle the invocation due to |
| 1066 // mismatched parameter counts. |
| 1067 bind(&done); |
| 1068 } |
| 1069 } |
| 1070 |
| 1071 |
| 1072 void MacroAssembler::InvokeFunction(Register fun, const ParameterCount& actual, |
| 1073 InvokeFlag flag, |
| 1074 const CallWrapper& call_wrapper) { |
| 1075 // You can't call a function without a valid frame. |
| 1076 DCHECK(flag == JUMP_FUNCTION || has_frame()); |
| 1077 |
| 1078 // Contract with called JS functions requires that function is passed in r4. |
| 1079 DCHECK(fun.is(r4)); |
| 1080 |
| 1081 Register expected_reg = r5; |
| 1082 Register code_reg = ip; |
| 1083 |
| 1084 LoadP(code_reg, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset)); |
| 1085 LoadP(cp, FieldMemOperand(r4, JSFunction::kContextOffset)); |
| 1086 LoadWordArith(expected_reg, |
| 1087 FieldMemOperand( |
| 1088 code_reg, SharedFunctionInfo::kFormalParameterCountOffset)); |
| 1089 #if !defined(V8_TARGET_ARCH_PPC64) |
| 1090 SmiUntag(expected_reg); |
| 1091 #endif |
| 1092 LoadP(code_reg, FieldMemOperand(r4, JSFunction::kCodeEntryOffset)); |
| 1093 |
| 1094 ParameterCount expected(expected_reg); |
| 1095 InvokeCode(code_reg, expected, actual, flag, call_wrapper); |
| 1096 } |
| 1097 |
| 1098 |
| 1099 void MacroAssembler::InvokeFunction(Register function, |
| 1100 const ParameterCount& expected, |
| 1101 const ParameterCount& actual, |
| 1102 InvokeFlag flag, |
| 1103 const CallWrapper& call_wrapper) { |
| 1104 // You can't call a function without a valid frame. |
| 1105 DCHECK(flag == JUMP_FUNCTION || has_frame()); |
| 1106 |
| 1107 // Contract with called JS functions requires that function is passed in r4. |
| 1108 DCHECK(function.is(r4)); |
| 1109 |
| 1110 // Get the function and setup the context. |
| 1111 LoadP(cp, FieldMemOperand(r4, JSFunction::kContextOffset)); |
| 1112 |
| 1113 // We call indirectly through the code field in the function to |
| 1114 // allow recompilation to take effect without changing any of the |
| 1115 // call sites. |
| 1116 LoadP(ip, FieldMemOperand(r4, JSFunction::kCodeEntryOffset)); |
| 1117 InvokeCode(ip, expected, actual, flag, call_wrapper); |
| 1118 } |
| 1119 |
| 1120 |
| 1121 void MacroAssembler::InvokeFunction(Handle<JSFunction> function, |
| 1122 const ParameterCount& expected, |
| 1123 const ParameterCount& actual, |
| 1124 InvokeFlag flag, |
| 1125 const CallWrapper& call_wrapper) { |
| 1126 Move(r4, function); |
| 1127 InvokeFunction(r4, expected, actual, flag, call_wrapper); |
| 1128 } |
| 1129 |
| 1130 |
| 1131 void MacroAssembler::IsObjectJSObjectType(Register heap_object, Register map, |
| 1132 Register scratch, Label* fail) { |
| 1133 LoadP(map, FieldMemOperand(heap_object, HeapObject::kMapOffset)); |
| 1134 IsInstanceJSObjectType(map, scratch, fail); |
| 1135 } |
| 1136 |
| 1137 |
| 1138 void MacroAssembler::IsInstanceJSObjectType(Register map, Register scratch, |
| 1139 Label* fail) { |
| 1140 lbz(scratch, FieldMemOperand(map, Map::kInstanceTypeOffset)); |
| 1141 cmpi(scratch, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE)); |
| 1142 blt(fail); |
| 1143 cmpi(scratch, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE)); |
| 1144 bgt(fail); |
| 1145 } |
| 1146 |
| 1147 |
| 1148 void MacroAssembler::IsObjectJSStringType(Register object, Register scratch, |
| 1149 Label* fail) { |
| 1150 DCHECK(kNotStringTag != 0); |
| 1151 |
| 1152 LoadP(scratch, FieldMemOperand(object, HeapObject::kMapOffset)); |
| 1153 lbz(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); |
| 1154 andi(r0, scratch, Operand(kIsNotStringMask)); |
| 1155 bne(fail, cr0); |
| 1156 } |
| 1157 |
| 1158 |
| 1159 void MacroAssembler::IsObjectNameType(Register object, Register scratch, |
| 1160 Label* fail) { |
| 1161 LoadP(scratch, FieldMemOperand(object, HeapObject::kMapOffset)); |
| 1162 lbz(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); |
| 1163 cmpi(scratch, Operand(LAST_NAME_TYPE)); |
| 1164 bgt(fail); |
| 1165 } |
| 1166 |
| 1167 |
| 1168 void MacroAssembler::DebugBreak() { |
| 1169 li(r3, Operand::Zero()); |
| 1170 mov(r4, Operand(ExternalReference(Runtime::kDebugBreak, isolate()))); |
| 1171 CEntryStub ces(isolate(), 1); |
| 1172 DCHECK(AllowThisStubCall(&ces)); |
| 1173 Call(ces.GetCode(), RelocInfo::DEBUG_BREAK); |
| 1174 } |
| 1175 |
| 1176 |
| 1177 void MacroAssembler::PushTryHandler(StackHandler::Kind kind, |
| 1178 int handler_index) { |
| 1179 // Adjust this code if not the case. |
| 1180 STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize); |
| 1181 STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize); |
| 1182 STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize); |
| 1183 STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize); |
| 1184 STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize); |
| 1185 STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize); |
| 1186 |
| 1187 // For the JSEntry handler, we must preserve r1-r7, r0,r8-r15 are available. |
| 1188 // We want the stack to look like |
| 1189 // sp -> NextOffset |
| 1190 // CodeObject |
| 1191 // state |
| 1192 // context |
| 1193 // frame pointer |
| 1194 |
| 1195 // Link the current handler as the next handler. |
| 1196 mov(r8, Operand(ExternalReference(Isolate::kHandlerAddress, isolate()))); |
| 1197 LoadP(r0, MemOperand(r8)); |
| 1198 StorePU(r0, MemOperand(sp, -StackHandlerConstants::kSize)); |
| 1199 // Set this new handler as the current one. |
| 1200 StoreP(sp, MemOperand(r8)); |
| 1201 |
| 1202 if (kind == StackHandler::JS_ENTRY) { |
| 1203 li(r8, Operand::Zero()); // NULL frame pointer. |
| 1204 StoreP(r8, MemOperand(sp, StackHandlerConstants::kFPOffset)); |
| 1205 LoadSmiLiteral(r8, Smi::FromInt(0)); // Indicates no context. |
| 1206 StoreP(r8, MemOperand(sp, StackHandlerConstants::kContextOffset)); |
| 1207 } else { |
| 1208 // still not sure if fp is right |
| 1209 StoreP(fp, MemOperand(sp, StackHandlerConstants::kFPOffset)); |
| 1210 StoreP(cp, MemOperand(sp, StackHandlerConstants::kContextOffset)); |
| 1211 } |
| 1212 unsigned state = StackHandler::IndexField::encode(handler_index) | |
| 1213 StackHandler::KindField::encode(kind); |
| 1214 LoadIntLiteral(r8, state); |
| 1215 StoreP(r8, MemOperand(sp, StackHandlerConstants::kStateOffset)); |
| 1216 mov(r8, Operand(CodeObject())); |
| 1217 StoreP(r8, MemOperand(sp, StackHandlerConstants::kCodeOffset)); |
| 1218 } |
| 1219 |
| 1220 |
| 1221 void MacroAssembler::PopTryHandler() { |
| 1222 STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); |
| 1223 pop(r4); |
| 1224 mov(ip, Operand(ExternalReference(Isolate::kHandlerAddress, isolate()))); |
| 1225 addi(sp, sp, Operand(StackHandlerConstants::kSize - kPointerSize)); |
| 1226 StoreP(r4, MemOperand(ip)); |
| 1227 } |
| 1228 |
| 1229 |
| 1230 // PPC - make use of ip as a temporary register |
| 1231 void MacroAssembler::JumpToHandlerEntry() { |
| 1232 // Compute the handler entry address and jump to it. The handler table is |
| 1233 // a fixed array of (smi-tagged) code offsets. |
| 1234 // r3 = exception, r4 = code object, r5 = state. |
| 1235 #if V8_OOL_CONSTANT_POOL |
| 1236 ConstantPoolUnavailableScope constant_pool_unavailable(this); |
| 1237 LoadP(kConstantPoolRegister, FieldMemOperand(r4, Code::kConstantPoolOffset)); |
| 1238 #endif |
| 1239 LoadP(r6, FieldMemOperand(r4, Code::kHandlerTableOffset)); // Handler table. |
| 1240 addi(r6, r6, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); |
| 1241 srwi(r5, r5, Operand(StackHandler::kKindWidth)); // Handler index. |
| 1242 slwi(ip, r5, Operand(kPointerSizeLog2)); |
| 1243 add(ip, r6, ip); |
| 1244 LoadP(r5, MemOperand(ip)); // Smi-tagged offset. |
| 1245 addi(r4, r4, Operand(Code::kHeaderSize - kHeapObjectTag)); // Code start. |
| 1246 SmiUntag(ip, r5); |
| 1247 add(r0, r4, ip); |
| 1248 mtctr(r0); |
| 1249 bctr(); |
| 1250 } |
| 1251 |
| 1252 |
| 1253 void MacroAssembler::Throw(Register value) { |
| 1254 // Adjust this code if not the case. |
| 1255 STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize); |
| 1256 STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); |
| 1257 STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize); |
| 1258 STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize); |
| 1259 STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize); |
| 1260 STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize); |
| 1261 Label skip; |
| 1262 |
| 1263 // The exception is expected in r3. |
| 1264 if (!value.is(r3)) { |
| 1265 mr(r3, value); |
| 1266 } |
| 1267 // Drop the stack pointer to the top of the top handler. |
| 1268 mov(r6, Operand(ExternalReference(Isolate::kHandlerAddress, isolate()))); |
| 1269 LoadP(sp, MemOperand(r6)); |
| 1270 // Restore the next handler. |
| 1271 pop(r5); |
| 1272 StoreP(r5, MemOperand(r6)); |
| 1273 |
| 1274 // Get the code object (r4) and state (r5). Restore the context and frame |
| 1275 // pointer. |
| 1276 pop(r4); |
| 1277 pop(r5); |
| 1278 pop(cp); |
| 1279 pop(fp); |
| 1280 |
| 1281 // If the handler is a JS frame, restore the context to the frame. |
| 1282 // (kind == ENTRY) == (fp == 0) == (cp == 0), so we could test either fp |
| 1283 // or cp. |
| 1284 cmpi(cp, Operand::Zero()); |
| 1285 beq(&skip); |
| 1286 StoreP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); |
| 1287 bind(&skip); |
| 1288 |
| 1289 JumpToHandlerEntry(); |
| 1290 } |
| 1291 |
| 1292 |
| 1293 void MacroAssembler::ThrowUncatchable(Register value) { |
| 1294 // Adjust this code if not the case. |
| 1295 STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize); |
| 1296 STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize); |
| 1297 STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize); |
| 1298 STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize); |
| 1299 STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize); |
| 1300 STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize); |
| 1301 |
| 1302 // The exception is expected in r3. |
| 1303 if (!value.is(r3)) { |
| 1304 mr(r3, value); |
| 1305 } |
| 1306 // Drop the stack pointer to the top of the top stack handler. |
| 1307 mov(r6, Operand(ExternalReference(Isolate::kHandlerAddress, isolate()))); |
| 1308 LoadP(sp, MemOperand(r6)); |
| 1309 |
| 1310 // Unwind the handlers until the ENTRY handler is found. |
| 1311 Label fetch_next, check_kind; |
| 1312 b(&check_kind); |
| 1313 bind(&fetch_next); |
| 1314 LoadP(sp, MemOperand(sp, StackHandlerConstants::kNextOffset)); |
| 1315 |
| 1316 bind(&check_kind); |
| 1317 STATIC_ASSERT(StackHandler::JS_ENTRY == 0); |
| 1318 LoadP(r5, MemOperand(sp, StackHandlerConstants::kStateOffset)); |
| 1319 andi(r0, r5, Operand(StackHandler::KindField::kMask)); |
| 1320 bne(&fetch_next, cr0); |
| 1321 |
| 1322 // Set the top handler address to next handler past the top ENTRY handler. |
| 1323 pop(r5); |
| 1324 StoreP(r5, MemOperand(r6)); |
| 1325 // Get the code object (r4) and state (r5). Clear the context and frame |
| 1326 // pointer (0 was saved in the handler). |
| 1327 pop(r4); |
| 1328 pop(r5); |
| 1329 pop(cp); |
| 1330 pop(fp); |
| 1331 |
| 1332 JumpToHandlerEntry(); |
| 1333 } |
| 1334 |
| 1335 |
| 1336 void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg, |
| 1337 Register scratch, Label* miss) { |
| 1338 Label same_contexts; |
| 1339 |
| 1340 DCHECK(!holder_reg.is(scratch)); |
| 1341 DCHECK(!holder_reg.is(ip)); |
| 1342 DCHECK(!scratch.is(ip)); |
| 1343 |
| 1344 // Load current lexical context from the stack frame. |
| 1345 LoadP(scratch, MemOperand(fp, StandardFrameConstants::kContextOffset)); |
| 1346 // In debug mode, make sure the lexical context is set. |
| 1347 #ifdef DEBUG |
| 1348 cmpi(scratch, Operand::Zero()); |
| 1349 Check(ne, kWeShouldNotHaveAnEmptyLexicalContext); |
| 1350 #endif |
| 1351 |
| 1352 // Load the native context of the current context. |
| 1353 int offset = |
| 1354 Context::kHeaderSize + Context::GLOBAL_OBJECT_INDEX * kPointerSize; |
| 1355 LoadP(scratch, FieldMemOperand(scratch, offset)); |
| 1356 LoadP(scratch, FieldMemOperand(scratch, GlobalObject::kNativeContextOffset)); |
| 1357 |
| 1358 // Check the context is a native context. |
| 1359 if (emit_debug_code()) { |
| 1360 // Cannot use ip as a temporary in this verification code. Due to the fact |
| 1361 // that ip is clobbered as part of cmp with an object Operand. |
| 1362 push(holder_reg); // Temporarily save holder on the stack. |
| 1363 // Read the first word and compare to the native_context_map. |
| 1364 LoadP(holder_reg, FieldMemOperand(scratch, HeapObject::kMapOffset)); |
| 1365 LoadRoot(ip, Heap::kNativeContextMapRootIndex); |
| 1366 cmp(holder_reg, ip); |
| 1367 Check(eq, kJSGlobalObjectNativeContextShouldBeANativeContext); |
| 1368 pop(holder_reg); // Restore holder. |
| 1369 } |
| 1370 |
| 1371 // Check if both contexts are the same. |
| 1372 LoadP(ip, FieldMemOperand(holder_reg, JSGlobalProxy::kNativeContextOffset)); |
| 1373 cmp(scratch, ip); |
| 1374 beq(&same_contexts); |
| 1375 |
| 1376 // Check the context is a native context. |
| 1377 if (emit_debug_code()) { |
| 1378 // Cannot use ip as a temporary in this verification code. Due to the fact |
| 1379 // that ip is clobbered as part of cmp with an object Operand. |
| 1380 push(holder_reg); // Temporarily save holder on the stack. |
| 1381 mr(holder_reg, ip); // Move ip to its holding place. |
| 1382 LoadRoot(ip, Heap::kNullValueRootIndex); |
| 1383 cmp(holder_reg, ip); |
| 1384 Check(ne, kJSGlobalProxyContextShouldNotBeNull); |
| 1385 |
| 1386 LoadP(holder_reg, FieldMemOperand(holder_reg, HeapObject::kMapOffset)); |
| 1387 LoadRoot(ip, Heap::kNativeContextMapRootIndex); |
| 1388 cmp(holder_reg, ip); |
| 1389 Check(eq, kJSGlobalObjectNativeContextShouldBeANativeContext); |
| 1390 // Restore ip is not needed. ip is reloaded below. |
| 1391 pop(holder_reg); // Restore holder. |
| 1392 // Restore ip to holder's context. |
| 1393 LoadP(ip, FieldMemOperand(holder_reg, JSGlobalProxy::kNativeContextOffset)); |
| 1394 } |
| 1395 |
| 1396 // Check that the security token in the calling global object is |
| 1397 // compatible with the security token in the receiving global |
| 1398 // object. |
| 1399 int token_offset = |
| 1400 Context::kHeaderSize + Context::SECURITY_TOKEN_INDEX * kPointerSize; |
| 1401 |
| 1402 LoadP(scratch, FieldMemOperand(scratch, token_offset)); |
| 1403 LoadP(ip, FieldMemOperand(ip, token_offset)); |
| 1404 cmp(scratch, ip); |
| 1405 bne(miss); |
| 1406 |
| 1407 bind(&same_contexts); |
| 1408 } |
| 1409 |
| 1410 |
| 1411 // Compute the hash code from the untagged key. This must be kept in sync with |
| 1412 // ComputeIntegerHash in utils.h and KeyedLoadGenericStub in |
| 1413 // code-stub-hydrogen.cc |
| 1414 void MacroAssembler::GetNumberHash(Register t0, Register scratch) { |
| 1415 // First of all we assign the hash seed to scratch. |
| 1416 LoadRoot(scratch, Heap::kHashSeedRootIndex); |
| 1417 SmiUntag(scratch); |
| 1418 |
| 1419 // Xor original key with a seed. |
| 1420 xor_(t0, t0, scratch); |
| 1421 |
| 1422 // Compute the hash code from the untagged key. This must be kept in sync |
| 1423 // with ComputeIntegerHash in utils.h. |
| 1424 // |
| 1425 // hash = ~hash + (hash << 15); |
| 1426 notx(scratch, t0); |
| 1427 slwi(t0, t0, Operand(15)); |
| 1428 add(t0, scratch, t0); |
| 1429 // hash = hash ^ (hash >> 12); |
| 1430 srwi(scratch, t0, Operand(12)); |
| 1431 xor_(t0, t0, scratch); |
| 1432 // hash = hash + (hash << 2); |
| 1433 slwi(scratch, t0, Operand(2)); |
| 1434 add(t0, t0, scratch); |
| 1435 // hash = hash ^ (hash >> 4); |
| 1436 srwi(scratch, t0, Operand(4)); |
| 1437 xor_(t0, t0, scratch); |
| 1438 // hash = hash * 2057; |
| 1439 mr(r0, t0); |
| 1440 slwi(scratch, t0, Operand(3)); |
| 1441 add(t0, t0, scratch); |
| 1442 slwi(scratch, r0, Operand(11)); |
| 1443 add(t0, t0, scratch); |
| 1444 // hash = hash ^ (hash >> 16); |
| 1445 srwi(scratch, t0, Operand(16)); |
| 1446 xor_(t0, t0, scratch); |
| 1447 } |
| 1448 |
| 1449 |
| 1450 void MacroAssembler::LoadFromNumberDictionary(Label* miss, Register elements, |
| 1451 Register key, Register result, |
| 1452 Register t0, Register t1, |
| 1453 Register t2) { |
| 1454 // Register use: |
| 1455 // |
| 1456 // elements - holds the slow-case elements of the receiver on entry. |
| 1457 // Unchanged unless 'result' is the same register. |
| 1458 // |
| 1459 // key - holds the smi key on entry. |
| 1460 // Unchanged unless 'result' is the same register. |
| 1461 // |
| 1462 // result - holds the result on exit if the load succeeded. |
| 1463 // Allowed to be the same as 'key' or 'result'. |
| 1464 // Unchanged on bailout so 'key' or 'result' can be used |
| 1465 // in further computation. |
| 1466 // |
| 1467 // Scratch registers: |
| 1468 // |
| 1469 // t0 - holds the untagged key on entry and holds the hash once computed. |
| 1470 // |
| 1471 // t1 - used to hold the capacity mask of the dictionary |
| 1472 // |
| 1473 // t2 - used for the index into the dictionary. |
| 1474 Label done; |
| 1475 |
| 1476 GetNumberHash(t0, t1); |
| 1477 |
| 1478 // Compute the capacity mask. |
| 1479 LoadP(t1, FieldMemOperand(elements, SeededNumberDictionary::kCapacityOffset)); |
| 1480 SmiUntag(t1); |
| 1481 subi(t1, t1, Operand(1)); |
| 1482 |
| 1483 // Generate an unrolled loop that performs a few probes before giving up. |
| 1484 for (int i = 0; i < kNumberDictionaryProbes; i++) { |
| 1485 // Use t2 for index calculations and keep the hash intact in t0. |
| 1486 mr(t2, t0); |
| 1487 // Compute the masked index: (hash + i + i * i) & mask. |
| 1488 if (i > 0) { |
| 1489 addi(t2, t2, Operand(SeededNumberDictionary::GetProbeOffset(i))); |
| 1490 } |
| 1491 and_(t2, t2, t1); |
| 1492 |
| 1493 // Scale the index by multiplying by the element size. |
| 1494 DCHECK(SeededNumberDictionary::kEntrySize == 3); |
| 1495 slwi(ip, t2, Operand(1)); |
| 1496 add(t2, t2, ip); // t2 = t2 * 3 |
| 1497 |
| 1498 // Check if the key is identical to the name. |
| 1499 slwi(t2, t2, Operand(kPointerSizeLog2)); |
| 1500 add(t2, elements, t2); |
| 1501 LoadP(ip, |
| 1502 FieldMemOperand(t2, SeededNumberDictionary::kElementsStartOffset)); |
| 1503 cmp(key, ip); |
| 1504 if (i != kNumberDictionaryProbes - 1) { |
| 1505 beq(&done); |
| 1506 } else { |
| 1507 bne(miss); |
| 1508 } |
| 1509 } |
| 1510 |
| 1511 bind(&done); |
| 1512 // Check that the value is a normal property. |
| 1513 // t2: elements + (index * kPointerSize) |
| 1514 const int kDetailsOffset = |
| 1515 SeededNumberDictionary::kElementsStartOffset + 2 * kPointerSize; |
| 1516 LoadP(t1, FieldMemOperand(t2, kDetailsOffset)); |
| 1517 LoadSmiLiteral(ip, Smi::FromInt(PropertyDetails::TypeField::kMask)); |
| 1518 and_(r0, t1, ip, SetRC); |
| 1519 bne(miss, cr0); |
| 1520 |
| 1521 // Get the value at the masked, scaled index and return. |
| 1522 const int kValueOffset = |
| 1523 SeededNumberDictionary::kElementsStartOffset + kPointerSize; |
| 1524 LoadP(result, FieldMemOperand(t2, kValueOffset)); |
| 1525 } |
| 1526 |
| 1527 |
| 1528 void MacroAssembler::Allocate(int object_size, Register result, |
| 1529 Register scratch1, Register scratch2, |
| 1530 Label* gc_required, AllocationFlags flags) { |
| 1531 DCHECK(object_size <= Page::kMaxRegularHeapObjectSize); |
| 1532 if (!FLAG_inline_new) { |
| 1533 if (emit_debug_code()) { |
| 1534 // Trash the registers to simulate an allocation failure. |
| 1535 li(result, Operand(0x7091)); |
| 1536 li(scratch1, Operand(0x7191)); |
| 1537 li(scratch2, Operand(0x7291)); |
| 1538 } |
| 1539 b(gc_required); |
| 1540 return; |
| 1541 } |
| 1542 |
| 1543 DCHECK(!result.is(scratch1)); |
| 1544 DCHECK(!result.is(scratch2)); |
| 1545 DCHECK(!scratch1.is(scratch2)); |
| 1546 DCHECK(!scratch1.is(ip)); |
| 1547 DCHECK(!scratch2.is(ip)); |
| 1548 |
| 1549 // Make object size into bytes. |
| 1550 if ((flags & SIZE_IN_WORDS) != 0) { |
| 1551 object_size *= kPointerSize; |
| 1552 } |
| 1553 DCHECK_EQ(0, static_cast<int>(object_size & kObjectAlignmentMask)); |
| 1554 |
| 1555 // Check relative positions of allocation top and limit addresses. |
| 1556 ExternalReference allocation_top = |
| 1557 AllocationUtils::GetAllocationTopReference(isolate(), flags); |
| 1558 ExternalReference allocation_limit = |
| 1559 AllocationUtils::GetAllocationLimitReference(isolate(), flags); |
| 1560 |
| 1561 intptr_t top = reinterpret_cast<intptr_t>(allocation_top.address()); |
| 1562 intptr_t limit = reinterpret_cast<intptr_t>(allocation_limit.address()); |
| 1563 DCHECK((limit - top) == kPointerSize); |
| 1564 |
| 1565 // Set up allocation top address register. |
| 1566 Register topaddr = scratch1; |
| 1567 mov(topaddr, Operand(allocation_top)); |
| 1568 |
| 1569 // This code stores a temporary value in ip. This is OK, as the code below |
| 1570 // does not need ip for implicit literal generation. |
| 1571 if ((flags & RESULT_CONTAINS_TOP) == 0) { |
| 1572 // Load allocation top into result and allocation limit into ip. |
| 1573 LoadP(result, MemOperand(topaddr)); |
| 1574 LoadP(ip, MemOperand(topaddr, kPointerSize)); |
| 1575 } else { |
| 1576 if (emit_debug_code()) { |
| 1577 // Assert that result actually contains top on entry. ip is used |
| 1578 // immediately below so this use of ip does not cause difference with |
| 1579 // respect to register content between debug and release mode. |
| 1580 LoadP(ip, MemOperand(topaddr)); |
| 1581 cmp(result, ip); |
| 1582 Check(eq, kUnexpectedAllocationTop); |
| 1583 } |
| 1584 // Load allocation limit into ip. Result already contains allocation top. |
| 1585 LoadP(ip, MemOperand(topaddr, limit - top), r0); |
| 1586 } |
| 1587 |
| 1588 if ((flags & DOUBLE_ALIGNMENT) != 0) { |
| 1589 // Align the next allocation. Storing the filler map without checking top is |
| 1590 // safe in new-space because the limit of the heap is aligned there. |
| 1591 DCHECK((flags & PRETENURE_OLD_POINTER_SPACE) == 0); |
| 1592 #if V8_TARGET_ARCH_PPC64 |
| 1593 STATIC_ASSERT(kPointerAlignment == kDoubleAlignment); |
| 1594 #else |
| 1595 STATIC_ASSERT(kPointerAlignment * 2 == kDoubleAlignment); |
| 1596 andi(scratch2, result, Operand(kDoubleAlignmentMask)); |
| 1597 Label aligned; |
| 1598 beq(&aligned, cr0); |
| 1599 if ((flags & PRETENURE_OLD_DATA_SPACE) != 0) { |
| 1600 cmpl(result, ip); |
| 1601 bge(gc_required); |
| 1602 } |
| 1603 mov(scratch2, Operand(isolate()->factory()->one_pointer_filler_map())); |
| 1604 stw(scratch2, MemOperand(result)); |
| 1605 addi(result, result, Operand(kDoubleSize / 2)); |
| 1606 bind(&aligned); |
| 1607 #endif |
| 1608 } |
| 1609 |
| 1610 // Calculate new top and bail out if new space is exhausted. Use result |
| 1611 // to calculate the new top. |
| 1612 sub(r0, ip, result); |
| 1613 if (is_int16(object_size)) { |
| 1614 cmpi(r0, Operand(object_size)); |
| 1615 blt(gc_required); |
| 1616 addi(scratch2, result, Operand(object_size)); |
| 1617 } else { |
| 1618 Cmpi(r0, Operand(object_size), scratch2); |
| 1619 blt(gc_required); |
| 1620 add(scratch2, result, scratch2); |
| 1621 } |
| 1622 StoreP(scratch2, MemOperand(topaddr)); |
| 1623 |
| 1624 // Tag object if requested. |
| 1625 if ((flags & TAG_OBJECT) != 0) { |
| 1626 addi(result, result, Operand(kHeapObjectTag)); |
| 1627 } |
| 1628 } |
| 1629 |
| 1630 |
| 1631 void MacroAssembler::Allocate(Register object_size, Register result, |
| 1632 Register scratch1, Register scratch2, |
| 1633 Label* gc_required, AllocationFlags flags) { |
| 1634 if (!FLAG_inline_new) { |
| 1635 if (emit_debug_code()) { |
| 1636 // Trash the registers to simulate an allocation failure. |
| 1637 li(result, Operand(0x7091)); |
| 1638 li(scratch1, Operand(0x7191)); |
| 1639 li(scratch2, Operand(0x7291)); |
| 1640 } |
| 1641 b(gc_required); |
| 1642 return; |
| 1643 } |
| 1644 |
| 1645 // Assert that the register arguments are different and that none of |
| 1646 // them are ip. ip is used explicitly in the code generated below. |
| 1647 DCHECK(!result.is(scratch1)); |
| 1648 DCHECK(!result.is(scratch2)); |
| 1649 DCHECK(!scratch1.is(scratch2)); |
| 1650 DCHECK(!object_size.is(ip)); |
| 1651 DCHECK(!result.is(ip)); |
| 1652 DCHECK(!scratch1.is(ip)); |
| 1653 DCHECK(!scratch2.is(ip)); |
| 1654 |
| 1655 // Check relative positions of allocation top and limit addresses. |
| 1656 ExternalReference allocation_top = |
| 1657 AllocationUtils::GetAllocationTopReference(isolate(), flags); |
| 1658 ExternalReference allocation_limit = |
| 1659 AllocationUtils::GetAllocationLimitReference(isolate(), flags); |
| 1660 intptr_t top = reinterpret_cast<intptr_t>(allocation_top.address()); |
| 1661 intptr_t limit = reinterpret_cast<intptr_t>(allocation_limit.address()); |
| 1662 DCHECK((limit - top) == kPointerSize); |
| 1663 |
| 1664 // Set up allocation top address. |
| 1665 Register topaddr = scratch1; |
| 1666 mov(topaddr, Operand(allocation_top)); |
| 1667 |
| 1668 // This code stores a temporary value in ip. This is OK, as the code below |
| 1669 // does not need ip for implicit literal generation. |
| 1670 if ((flags & RESULT_CONTAINS_TOP) == 0) { |
| 1671 // Load allocation top into result and allocation limit into ip. |
| 1672 LoadP(result, MemOperand(topaddr)); |
| 1673 LoadP(ip, MemOperand(topaddr, kPointerSize)); |
| 1674 } else { |
| 1675 if (emit_debug_code()) { |
| 1676 // Assert that result actually contains top on entry. ip is used |
| 1677 // immediately below so this use of ip does not cause difference with |
| 1678 // respect to register content between debug and release mode. |
| 1679 LoadP(ip, MemOperand(topaddr)); |
| 1680 cmp(result, ip); |
| 1681 Check(eq, kUnexpectedAllocationTop); |
| 1682 } |
| 1683 // Load allocation limit into ip. Result already contains allocation top. |
| 1684 LoadP(ip, MemOperand(topaddr, limit - top)); |
| 1685 } |
| 1686 |
| 1687 if ((flags & DOUBLE_ALIGNMENT) != 0) { |
| 1688 // Align the next allocation. Storing the filler map without checking top is |
| 1689 // safe in new-space because the limit of the heap is aligned there. |
| 1690 DCHECK((flags & PRETENURE_OLD_POINTER_SPACE) == 0); |
| 1691 #if V8_TARGET_ARCH_PPC64 |
| 1692 STATIC_ASSERT(kPointerAlignment == kDoubleAlignment); |
| 1693 #else |
| 1694 STATIC_ASSERT(kPointerAlignment * 2 == kDoubleAlignment); |
| 1695 andi(scratch2, result, Operand(kDoubleAlignmentMask)); |
| 1696 Label aligned; |
| 1697 beq(&aligned, cr0); |
| 1698 if ((flags & PRETENURE_OLD_DATA_SPACE) != 0) { |
| 1699 cmpl(result, ip); |
| 1700 bge(gc_required); |
| 1701 } |
| 1702 mov(scratch2, Operand(isolate()->factory()->one_pointer_filler_map())); |
| 1703 stw(scratch2, MemOperand(result)); |
| 1704 addi(result, result, Operand(kDoubleSize / 2)); |
| 1705 bind(&aligned); |
| 1706 #endif |
| 1707 } |
| 1708 |
| 1709 // Calculate new top and bail out if new space is exhausted. Use result |
| 1710 // to calculate the new top. Object size may be in words so a shift is |
| 1711 // required to get the number of bytes. |
| 1712 sub(r0, ip, result); |
| 1713 if ((flags & SIZE_IN_WORDS) != 0) { |
| 1714 ShiftLeftImm(scratch2, object_size, Operand(kPointerSizeLog2)); |
| 1715 cmp(r0, scratch2); |
| 1716 blt(gc_required); |
| 1717 add(scratch2, result, scratch2); |
| 1718 } else { |
| 1719 cmp(r0, object_size); |
| 1720 blt(gc_required); |
| 1721 add(scratch2, result, object_size); |
| 1722 } |
| 1723 |
| 1724 // Update allocation top. result temporarily holds the new top. |
| 1725 if (emit_debug_code()) { |
| 1726 andi(r0, scratch2, Operand(kObjectAlignmentMask)); |
| 1727 Check(eq, kUnalignedAllocationInNewSpace, cr0); |
| 1728 } |
| 1729 StoreP(scratch2, MemOperand(topaddr)); |
| 1730 |
| 1731 // Tag object if requested. |
| 1732 if ((flags & TAG_OBJECT) != 0) { |
| 1733 addi(result, result, Operand(kHeapObjectTag)); |
| 1734 } |
| 1735 } |
| 1736 |
| 1737 |
| 1738 void MacroAssembler::UndoAllocationInNewSpace(Register object, |
| 1739 Register scratch) { |
| 1740 ExternalReference new_space_allocation_top = |
| 1741 ExternalReference::new_space_allocation_top_address(isolate()); |
| 1742 |
| 1743 // Make sure the object has no tag before resetting top. |
| 1744 mov(r0, Operand(~kHeapObjectTagMask)); |
| 1745 and_(object, object, r0); |
| 1746 // was.. and_(object, object, Operand(~kHeapObjectTagMask)); |
| 1747 #ifdef DEBUG |
| 1748 // Check that the object un-allocated is below the current top. |
| 1749 mov(scratch, Operand(new_space_allocation_top)); |
| 1750 LoadP(scratch, MemOperand(scratch)); |
| 1751 cmp(object, scratch); |
| 1752 Check(lt, kUndoAllocationOfNonAllocatedMemory); |
| 1753 #endif |
| 1754 // Write the address of the object to un-allocate as the current top. |
| 1755 mov(scratch, Operand(new_space_allocation_top)); |
| 1756 StoreP(object, MemOperand(scratch)); |
| 1757 } |
| 1758 |
| 1759 |
| 1760 void MacroAssembler::AllocateTwoByteString(Register result, Register length, |
| 1761 Register scratch1, Register scratch2, |
| 1762 Register scratch3, |
| 1763 Label* gc_required) { |
| 1764 // Calculate the number of bytes needed for the characters in the string while |
| 1765 // observing object alignment. |
| 1766 DCHECK((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0); |
| 1767 slwi(scratch1, length, Operand(1)); // Length in bytes, not chars. |
| 1768 addi(scratch1, scratch1, |
| 1769 Operand(kObjectAlignmentMask + SeqTwoByteString::kHeaderSize)); |
| 1770 mov(r0, Operand(~kObjectAlignmentMask)); |
| 1771 and_(scratch1, scratch1, r0); |
| 1772 |
| 1773 // Allocate two-byte string in new space. |
| 1774 Allocate(scratch1, result, scratch2, scratch3, gc_required, TAG_OBJECT); |
| 1775 |
| 1776 // Set the map, length and hash field. |
| 1777 InitializeNewString(result, length, Heap::kStringMapRootIndex, scratch1, |
| 1778 scratch2); |
| 1779 } |
| 1780 |
| 1781 |
| 1782 void MacroAssembler::AllocateOneByteString(Register result, Register length, |
| 1783 Register scratch1, Register scratch2, |
| 1784 Register scratch3, |
| 1785 Label* gc_required) { |
| 1786 // Calculate the number of bytes needed for the characters in the string while |
| 1787 // observing object alignment. |
| 1788 DCHECK((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0); |
| 1789 DCHECK(kCharSize == 1); |
| 1790 addi(scratch1, length, |
| 1791 Operand(kObjectAlignmentMask + SeqOneByteString::kHeaderSize)); |
| 1792 li(r0, Operand(~kObjectAlignmentMask)); |
| 1793 and_(scratch1, scratch1, r0); |
| 1794 |
| 1795 // Allocate one-byte string in new space. |
| 1796 Allocate(scratch1, result, scratch2, scratch3, gc_required, TAG_OBJECT); |
| 1797 |
| 1798 // Set the map, length and hash field. |
| 1799 InitializeNewString(result, length, Heap::kOneByteStringMapRootIndex, |
| 1800 scratch1, scratch2); |
| 1801 } |
| 1802 |
| 1803 |
| 1804 void MacroAssembler::AllocateTwoByteConsString(Register result, Register length, |
| 1805 Register scratch1, |
| 1806 Register scratch2, |
| 1807 Label* gc_required) { |
| 1808 Allocate(ConsString::kSize, result, scratch1, scratch2, gc_required, |
| 1809 TAG_OBJECT); |
| 1810 |
| 1811 InitializeNewString(result, length, Heap::kConsStringMapRootIndex, scratch1, |
| 1812 scratch2); |
| 1813 } |
| 1814 |
| 1815 |
| 1816 void MacroAssembler::AllocateOneByteConsString(Register result, Register length, |
| 1817 Register scratch1, |
| 1818 Register scratch2, |
| 1819 Label* gc_required) { |
| 1820 Allocate(ConsString::kSize, result, scratch1, scratch2, gc_required, |
| 1821 TAG_OBJECT); |
| 1822 |
| 1823 InitializeNewString(result, length, Heap::kConsOneByteStringMapRootIndex, |
| 1824 scratch1, scratch2); |
| 1825 } |
| 1826 |
| 1827 |
| 1828 void MacroAssembler::AllocateTwoByteSlicedString(Register result, |
| 1829 Register length, |
| 1830 Register scratch1, |
| 1831 Register scratch2, |
| 1832 Label* gc_required) { |
| 1833 Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required, |
| 1834 TAG_OBJECT); |
| 1835 |
| 1836 InitializeNewString(result, length, Heap::kSlicedStringMapRootIndex, scratch1, |
| 1837 scratch2); |
| 1838 } |
| 1839 |
| 1840 |
| 1841 void MacroAssembler::AllocateOneByteSlicedString(Register result, |
| 1842 Register length, |
| 1843 Register scratch1, |
| 1844 Register scratch2, |
| 1845 Label* gc_required) { |
| 1846 Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required, |
| 1847 TAG_OBJECT); |
| 1848 |
| 1849 InitializeNewString(result, length, Heap::kSlicedOneByteStringMapRootIndex, |
| 1850 scratch1, scratch2); |
| 1851 } |
| 1852 |
| 1853 |
| 1854 void MacroAssembler::CompareObjectType(Register object, Register map, |
| 1855 Register type_reg, InstanceType type) { |
| 1856 const Register temp = type_reg.is(no_reg) ? r0 : type_reg; |
| 1857 |
| 1858 LoadP(map, FieldMemOperand(object, HeapObject::kMapOffset)); |
| 1859 CompareInstanceType(map, temp, type); |
| 1860 } |
| 1861 |
| 1862 |
| 1863 void MacroAssembler::CheckObjectTypeRange(Register object, Register map, |
| 1864 InstanceType min_type, |
| 1865 InstanceType max_type, |
| 1866 Label* false_label) { |
| 1867 STATIC_ASSERT(Map::kInstanceTypeOffset < 4096); |
| 1868 STATIC_ASSERT(LAST_TYPE < 256); |
| 1869 LoadP(map, FieldMemOperand(object, HeapObject::kMapOffset)); |
| 1870 lbz(ip, FieldMemOperand(map, Map::kInstanceTypeOffset)); |
| 1871 subi(ip, ip, Operand(min_type)); |
| 1872 cmpli(ip, Operand(max_type - min_type)); |
| 1873 bgt(false_label); |
| 1874 } |
| 1875 |
| 1876 |
| 1877 void MacroAssembler::CompareInstanceType(Register map, Register type_reg, |
| 1878 InstanceType type) { |
| 1879 STATIC_ASSERT(Map::kInstanceTypeOffset < 4096); |
| 1880 STATIC_ASSERT(LAST_TYPE < 256); |
| 1881 lbz(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset)); |
| 1882 cmpi(type_reg, Operand(type)); |
| 1883 } |
| 1884 |
| 1885 |
| 1886 void MacroAssembler::CompareRoot(Register obj, Heap::RootListIndex index) { |
| 1887 DCHECK(!obj.is(r0)); |
| 1888 LoadRoot(r0, index); |
| 1889 cmp(obj, r0); |
| 1890 } |
| 1891 |
| 1892 |
| 1893 void MacroAssembler::CheckFastElements(Register map, Register scratch, |
| 1894 Label* fail) { |
| 1895 STATIC_ASSERT(FAST_SMI_ELEMENTS == 0); |
| 1896 STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1); |
| 1897 STATIC_ASSERT(FAST_ELEMENTS == 2); |
| 1898 STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3); |
| 1899 lbz(scratch, FieldMemOperand(map, Map::kBitField2Offset)); |
| 1900 STATIC_ASSERT(Map::kMaximumBitField2FastHoleyElementValue < 0x8000); |
| 1901 cmpli(scratch, Operand(Map::kMaximumBitField2FastHoleyElementValue)); |
| 1902 bgt(fail); |
| 1903 } |
| 1904 |
| 1905 |
| 1906 void MacroAssembler::CheckFastObjectElements(Register map, Register scratch, |
| 1907 Label* fail) { |
| 1908 STATIC_ASSERT(FAST_SMI_ELEMENTS == 0); |
| 1909 STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1); |
| 1910 STATIC_ASSERT(FAST_ELEMENTS == 2); |
| 1911 STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3); |
| 1912 lbz(scratch, FieldMemOperand(map, Map::kBitField2Offset)); |
| 1913 cmpli(scratch, Operand(Map::kMaximumBitField2FastHoleySmiElementValue)); |
| 1914 ble(fail); |
| 1915 cmpli(scratch, Operand(Map::kMaximumBitField2FastHoleyElementValue)); |
| 1916 bgt(fail); |
| 1917 } |
| 1918 |
| 1919 |
| 1920 void MacroAssembler::CheckFastSmiElements(Register map, Register scratch, |
| 1921 Label* fail) { |
| 1922 STATIC_ASSERT(FAST_SMI_ELEMENTS == 0); |
| 1923 STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1); |
| 1924 lbz(scratch, FieldMemOperand(map, Map::kBitField2Offset)); |
| 1925 cmpli(scratch, Operand(Map::kMaximumBitField2FastHoleySmiElementValue)); |
| 1926 bgt(fail); |
| 1927 } |
| 1928 |
| 1929 |
| 1930 void MacroAssembler::StoreNumberToDoubleElements( |
| 1931 Register value_reg, Register key_reg, Register elements_reg, |
| 1932 Register scratch1, DoubleRegister double_scratch, Label* fail, |
| 1933 int elements_offset) { |
| 1934 Label smi_value, store; |
| 1935 |
| 1936 // Handle smi values specially. |
| 1937 JumpIfSmi(value_reg, &smi_value); |
| 1938 |
| 1939 // Ensure that the object is a heap number |
| 1940 CheckMap(value_reg, scratch1, isolate()->factory()->heap_number_map(), fail, |
| 1941 DONT_DO_SMI_CHECK); |
| 1942 |
| 1943 lfd(double_scratch, FieldMemOperand(value_reg, HeapNumber::kValueOffset)); |
| 1944 // Force a canonical NaN. |
| 1945 CanonicalizeNaN(double_scratch); |
| 1946 b(&store); |
| 1947 |
| 1948 bind(&smi_value); |
| 1949 SmiToDouble(double_scratch, value_reg); |
| 1950 |
| 1951 bind(&store); |
| 1952 SmiToDoubleArrayOffset(scratch1, key_reg); |
| 1953 add(scratch1, elements_reg, scratch1); |
| 1954 stfd(double_scratch, FieldMemOperand(scratch1, FixedDoubleArray::kHeaderSize - |
| 1955 elements_offset)); |
| 1956 } |
| 1957 |
| 1958 |
| 1959 void MacroAssembler::AddAndCheckForOverflow(Register dst, Register left, |
| 1960 Register right, |
| 1961 Register overflow_dst, |
| 1962 Register scratch) { |
| 1963 DCHECK(!dst.is(overflow_dst)); |
| 1964 DCHECK(!dst.is(scratch)); |
| 1965 DCHECK(!overflow_dst.is(scratch)); |
| 1966 DCHECK(!overflow_dst.is(left)); |
| 1967 DCHECK(!overflow_dst.is(right)); |
| 1968 |
| 1969 // C = A+B; C overflows if A/B have same sign and C has diff sign than A |
| 1970 if (dst.is(left)) { |
| 1971 mr(scratch, left); // Preserve left. |
| 1972 add(dst, left, right); // Left is overwritten. |
| 1973 xor_(scratch, dst, scratch); // Original left. |
| 1974 xor_(overflow_dst, dst, right); |
| 1975 } else if (dst.is(right)) { |
| 1976 mr(scratch, right); // Preserve right. |
| 1977 add(dst, left, right); // Right is overwritten. |
| 1978 xor_(scratch, dst, scratch); // Original right. |
| 1979 xor_(overflow_dst, dst, left); |
| 1980 } else { |
| 1981 add(dst, left, right); |
| 1982 xor_(overflow_dst, dst, left); |
| 1983 xor_(scratch, dst, right); |
| 1984 } |
| 1985 and_(overflow_dst, scratch, overflow_dst, SetRC); |
| 1986 } |
| 1987 |
| 1988 |
| 1989 void MacroAssembler::AddAndCheckForOverflow(Register dst, Register left, |
| 1990 intptr_t right, |
| 1991 Register overflow_dst, |
| 1992 Register scratch) { |
| 1993 Register original_left = left; |
| 1994 DCHECK(!dst.is(overflow_dst)); |
| 1995 DCHECK(!dst.is(scratch)); |
| 1996 DCHECK(!overflow_dst.is(scratch)); |
| 1997 DCHECK(!overflow_dst.is(left)); |
| 1998 |
| 1999 // C = A+B; C overflows if A/B have same sign and C has diff sign than A |
| 2000 if (dst.is(left)) { |
| 2001 // Preserve left. |
| 2002 original_left = overflow_dst; |
| 2003 mr(original_left, left); |
| 2004 } |
| 2005 Add(dst, left, right, scratch); |
| 2006 xor_(overflow_dst, dst, original_left); |
| 2007 if (right >= 0) { |
| 2008 and_(overflow_dst, overflow_dst, dst, SetRC); |
| 2009 } else { |
| 2010 andc(overflow_dst, overflow_dst, dst, SetRC); |
| 2011 } |
| 2012 } |
| 2013 |
| 2014 |
| 2015 void MacroAssembler::SubAndCheckForOverflow(Register dst, Register left, |
| 2016 Register right, |
| 2017 Register overflow_dst, |
| 2018 Register scratch) { |
| 2019 DCHECK(!dst.is(overflow_dst)); |
| 2020 DCHECK(!dst.is(scratch)); |
| 2021 DCHECK(!overflow_dst.is(scratch)); |
| 2022 DCHECK(!overflow_dst.is(left)); |
| 2023 DCHECK(!overflow_dst.is(right)); |
| 2024 |
| 2025 // C = A-B; C overflows if A/B have diff signs and C has diff sign than A |
| 2026 if (dst.is(left)) { |
| 2027 mr(scratch, left); // Preserve left. |
| 2028 sub(dst, left, right); // Left is overwritten. |
| 2029 xor_(overflow_dst, dst, scratch); |
| 2030 xor_(scratch, scratch, right); |
| 2031 and_(overflow_dst, overflow_dst, scratch, SetRC); |
| 2032 } else if (dst.is(right)) { |
| 2033 mr(scratch, right); // Preserve right. |
| 2034 sub(dst, left, right); // Right is overwritten. |
| 2035 xor_(overflow_dst, dst, left); |
| 2036 xor_(scratch, left, scratch); |
| 2037 and_(overflow_dst, overflow_dst, scratch, SetRC); |
| 2038 } else { |
| 2039 sub(dst, left, right); |
| 2040 xor_(overflow_dst, dst, left); |
| 2041 xor_(scratch, left, right); |
| 2042 and_(overflow_dst, scratch, overflow_dst, SetRC); |
| 2043 } |
| 2044 } |
| 2045 |
| 2046 |
| 2047 void MacroAssembler::CompareMap(Register obj, Register scratch, Handle<Map> map, |
| 2048 Label* early_success) { |
| 2049 LoadP(scratch, FieldMemOperand(obj, HeapObject::kMapOffset)); |
| 2050 CompareMap(scratch, map, early_success); |
| 2051 } |
| 2052 |
| 2053 |
| 2054 void MacroAssembler::CompareMap(Register obj_map, Handle<Map> map, |
| 2055 Label* early_success) { |
| 2056 mov(r0, Operand(map)); |
| 2057 cmp(obj_map, r0); |
| 2058 } |
| 2059 |
| 2060 |
| 2061 void MacroAssembler::CheckMap(Register obj, Register scratch, Handle<Map> map, |
| 2062 Label* fail, SmiCheckType smi_check_type) { |
| 2063 if (smi_check_type == DO_SMI_CHECK) { |
| 2064 JumpIfSmi(obj, fail); |
| 2065 } |
| 2066 |
| 2067 Label success; |
| 2068 CompareMap(obj, scratch, map, &success); |
| 2069 bne(fail); |
| 2070 bind(&success); |
| 2071 } |
| 2072 |
| 2073 |
| 2074 void MacroAssembler::CheckMap(Register obj, Register scratch, |
| 2075 Heap::RootListIndex index, Label* fail, |
| 2076 SmiCheckType smi_check_type) { |
| 2077 if (smi_check_type == DO_SMI_CHECK) { |
| 2078 JumpIfSmi(obj, fail); |
| 2079 } |
| 2080 LoadP(scratch, FieldMemOperand(obj, HeapObject::kMapOffset)); |
| 2081 LoadRoot(r0, index); |
| 2082 cmp(scratch, r0); |
| 2083 bne(fail); |
| 2084 } |
| 2085 |
| 2086 |
| 2087 void MacroAssembler::DispatchMap(Register obj, Register scratch, |
| 2088 Handle<Map> map, Handle<Code> success, |
| 2089 SmiCheckType smi_check_type) { |
| 2090 Label fail; |
| 2091 if (smi_check_type == DO_SMI_CHECK) { |
| 2092 JumpIfSmi(obj, &fail); |
| 2093 } |
| 2094 LoadP(scratch, FieldMemOperand(obj, HeapObject::kMapOffset)); |
| 2095 mov(r0, Operand(map)); |
| 2096 cmp(scratch, r0); |
| 2097 bne(&fail); |
| 2098 Jump(success, RelocInfo::CODE_TARGET, al); |
| 2099 bind(&fail); |
| 2100 } |
| 2101 |
| 2102 |
| 2103 void MacroAssembler::TryGetFunctionPrototype(Register function, Register result, |
| 2104 Register scratch, Label* miss, |
| 2105 bool miss_on_bound_function) { |
| 2106 Label non_instance; |
| 2107 if (miss_on_bound_function) { |
| 2108 // Check that the receiver isn't a smi. |
| 2109 JumpIfSmi(function, miss); |
| 2110 |
| 2111 // Check that the function really is a function. Load map into result reg. |
| 2112 CompareObjectType(function, result, scratch, JS_FUNCTION_TYPE); |
| 2113 bne(miss); |
| 2114 |
| 2115 LoadP(scratch, |
| 2116 FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset)); |
| 2117 lwz(scratch, |
| 2118 FieldMemOperand(scratch, SharedFunctionInfo::kCompilerHintsOffset)); |
| 2119 TestBit(scratch, |
| 2120 #if V8_TARGET_ARCH_PPC64 |
| 2121 SharedFunctionInfo::kBoundFunction, |
| 2122 #else |
| 2123 SharedFunctionInfo::kBoundFunction + kSmiTagSize, |
| 2124 #endif |
| 2125 r0); |
| 2126 bne(miss, cr0); |
| 2127 |
| 2128 // Make sure that the function has an instance prototype. |
| 2129 lbz(scratch, FieldMemOperand(result, Map::kBitFieldOffset)); |
| 2130 andi(r0, scratch, Operand(1 << Map::kHasNonInstancePrototype)); |
| 2131 bne(&non_instance, cr0); |
| 2132 } |
| 2133 |
| 2134 // Get the prototype or initial map from the function. |
| 2135 LoadP(result, |
| 2136 FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); |
| 2137 |
| 2138 // If the prototype or initial map is the hole, don't return it and |
| 2139 // simply miss the cache instead. This will allow us to allocate a |
| 2140 // prototype object on-demand in the runtime system. |
| 2141 LoadRoot(r0, Heap::kTheHoleValueRootIndex); |
| 2142 cmp(result, r0); |
| 2143 beq(miss); |
| 2144 |
| 2145 // If the function does not have an initial map, we're done. |
| 2146 Label done; |
| 2147 CompareObjectType(result, scratch, scratch, MAP_TYPE); |
| 2148 bne(&done); |
| 2149 |
| 2150 // Get the prototype from the initial map. |
| 2151 LoadP(result, FieldMemOperand(result, Map::kPrototypeOffset)); |
| 2152 |
| 2153 if (miss_on_bound_function) { |
| 2154 b(&done); |
| 2155 |
| 2156 // Non-instance prototype: Fetch prototype from constructor field |
| 2157 // in initial map. |
| 2158 bind(&non_instance); |
| 2159 LoadP(result, FieldMemOperand(result, Map::kConstructorOffset)); |
| 2160 } |
| 2161 |
| 2162 // All done. |
| 2163 bind(&done); |
| 2164 } |
| 2165 |
| 2166 |
| 2167 void MacroAssembler::CallStub(CodeStub* stub, TypeFeedbackId ast_id, |
| 2168 Condition cond) { |
| 2169 DCHECK(AllowThisStubCall(stub)); // Stub calls are not allowed in some stubs. |
| 2170 Call(stub->GetCode(), RelocInfo::CODE_TARGET, ast_id, cond); |
| 2171 } |
| 2172 |
| 2173 |
| 2174 void MacroAssembler::TailCallStub(CodeStub* stub, Condition cond) { |
| 2175 Jump(stub->GetCode(), RelocInfo::CODE_TARGET, cond); |
| 2176 } |
| 2177 |
| 2178 |
| 2179 static int AddressOffset(ExternalReference ref0, ExternalReference ref1) { |
| 2180 return ref0.address() - ref1.address(); |
| 2181 } |
| 2182 |
| 2183 |
| 2184 void MacroAssembler::CallApiFunctionAndReturn( |
| 2185 Register function_address, ExternalReference thunk_ref, int stack_space, |
| 2186 MemOperand return_value_operand, MemOperand* context_restore_operand) { |
| 2187 ExternalReference next_address = |
| 2188 ExternalReference::handle_scope_next_address(isolate()); |
| 2189 const int kNextOffset = 0; |
| 2190 const int kLimitOffset = AddressOffset( |
| 2191 ExternalReference::handle_scope_limit_address(isolate()), next_address); |
| 2192 const int kLevelOffset = AddressOffset( |
| 2193 ExternalReference::handle_scope_level_address(isolate()), next_address); |
| 2194 |
| 2195 DCHECK(function_address.is(r4) || function_address.is(r5)); |
| 2196 Register scratch = r6; |
| 2197 |
| 2198 Label profiler_disabled; |
| 2199 Label end_profiler_check; |
| 2200 mov(scratch, Operand(ExternalReference::is_profiling_address(isolate()))); |
| 2201 lbz(scratch, MemOperand(scratch, 0)); |
| 2202 cmpi(scratch, Operand::Zero()); |
| 2203 beq(&profiler_disabled); |
| 2204 |
| 2205 // Additional parameter is the address of the actual callback. |
| 2206 mov(scratch, Operand(thunk_ref)); |
| 2207 jmp(&end_profiler_check); |
| 2208 |
| 2209 bind(&profiler_disabled); |
| 2210 mr(scratch, function_address); |
| 2211 bind(&end_profiler_check); |
| 2212 |
| 2213 // Allocate HandleScope in callee-save registers. |
| 2214 // r17 - next_address |
| 2215 // r14 - next_address->kNextOffset |
| 2216 // r15 - next_address->kLimitOffset |
| 2217 // r16 - next_address->kLevelOffset |
| 2218 mov(r17, Operand(next_address)); |
| 2219 LoadP(r14, MemOperand(r17, kNextOffset)); |
| 2220 LoadP(r15, MemOperand(r17, kLimitOffset)); |
| 2221 lwz(r16, MemOperand(r17, kLevelOffset)); |
| 2222 addi(r16, r16, Operand(1)); |
| 2223 stw(r16, MemOperand(r17, kLevelOffset)); |
| 2224 |
| 2225 if (FLAG_log_timer_events) { |
| 2226 FrameScope frame(this, StackFrame::MANUAL); |
| 2227 PushSafepointRegisters(); |
| 2228 PrepareCallCFunction(1, r3); |
| 2229 mov(r3, Operand(ExternalReference::isolate_address(isolate()))); |
| 2230 CallCFunction(ExternalReference::log_enter_external_function(isolate()), 1); |
| 2231 PopSafepointRegisters(); |
| 2232 } |
| 2233 |
| 2234 // Native call returns to the DirectCEntry stub which redirects to the |
| 2235 // return address pushed on stack (could have moved after GC). |
| 2236 // DirectCEntry stub itself is generated early and never moves. |
| 2237 DirectCEntryStub stub(isolate()); |
| 2238 stub.GenerateCall(this, scratch); |
| 2239 |
| 2240 if (FLAG_log_timer_events) { |
| 2241 FrameScope frame(this, StackFrame::MANUAL); |
| 2242 PushSafepointRegisters(); |
| 2243 PrepareCallCFunction(1, r3); |
| 2244 mov(r3, Operand(ExternalReference::isolate_address(isolate()))); |
| 2245 CallCFunction(ExternalReference::log_leave_external_function(isolate()), 1); |
| 2246 PopSafepointRegisters(); |
| 2247 } |
| 2248 |
| 2249 Label promote_scheduled_exception; |
| 2250 Label exception_handled; |
| 2251 Label delete_allocated_handles; |
| 2252 Label leave_exit_frame; |
| 2253 Label return_value_loaded; |
| 2254 |
| 2255 // load value from ReturnValue |
| 2256 LoadP(r3, return_value_operand); |
| 2257 bind(&return_value_loaded); |
| 2258 // No more valid handles (the result handle was the last one). Restore |
| 2259 // previous handle scope. |
| 2260 StoreP(r14, MemOperand(r17, kNextOffset)); |
| 2261 if (emit_debug_code()) { |
| 2262 lwz(r4, MemOperand(r17, kLevelOffset)); |
| 2263 cmp(r4, r16); |
| 2264 Check(eq, kUnexpectedLevelAfterReturnFromApiCall); |
| 2265 } |
| 2266 subi(r16, r16, Operand(1)); |
| 2267 stw(r16, MemOperand(r17, kLevelOffset)); |
| 2268 LoadP(r0, MemOperand(r17, kLimitOffset)); |
| 2269 cmp(r15, r0); |
| 2270 bne(&delete_allocated_handles); |
| 2271 |
| 2272 // Check if the function scheduled an exception. |
| 2273 bind(&leave_exit_frame); |
| 2274 LoadRoot(r14, Heap::kTheHoleValueRootIndex); |
| 2275 mov(r15, Operand(ExternalReference::scheduled_exception_address(isolate()))); |
| 2276 LoadP(r15, MemOperand(r15)); |
| 2277 cmp(r14, r15); |
| 2278 bne(&promote_scheduled_exception); |
| 2279 bind(&exception_handled); |
| 2280 |
| 2281 bool restore_context = context_restore_operand != NULL; |
| 2282 if (restore_context) { |
| 2283 LoadP(cp, *context_restore_operand); |
| 2284 } |
| 2285 // LeaveExitFrame expects unwind space to be in a register. |
| 2286 mov(r14, Operand(stack_space)); |
| 2287 LeaveExitFrame(false, r14, !restore_context); |
| 2288 blr(); |
| 2289 |
| 2290 bind(&promote_scheduled_exception); |
| 2291 { |
| 2292 FrameScope frame(this, StackFrame::INTERNAL); |
| 2293 CallExternalReference( |
| 2294 ExternalReference(Runtime::kPromoteScheduledException, isolate()), 0); |
| 2295 } |
| 2296 jmp(&exception_handled); |
| 2297 |
| 2298 // HandleScope limit has changed. Delete allocated extensions. |
| 2299 bind(&delete_allocated_handles); |
| 2300 StoreP(r15, MemOperand(r17, kLimitOffset)); |
| 2301 mr(r14, r3); |
| 2302 PrepareCallCFunction(1, r15); |
| 2303 mov(r3, Operand(ExternalReference::isolate_address(isolate()))); |
| 2304 CallCFunction(ExternalReference::delete_handle_scope_extensions(isolate()), |
| 2305 1); |
| 2306 mr(r3, r14); |
| 2307 b(&leave_exit_frame); |
| 2308 } |
| 2309 |
| 2310 |
| 2311 bool MacroAssembler::AllowThisStubCall(CodeStub* stub) { |
| 2312 return has_frame_ || !stub->SometimesSetsUpAFrame(); |
| 2313 } |
| 2314 |
| 2315 |
| 2316 void MacroAssembler::IndexFromHash(Register hash, Register index) { |
| 2317 // If the hash field contains an array index pick it out. The assert checks |
| 2318 // that the constants for the maximum number of digits for an array index |
| 2319 // cached in the hash field and the number of bits reserved for it does not |
| 2320 // conflict. |
| 2321 DCHECK(TenToThe(String::kMaxCachedArrayIndexLength) < |
| 2322 (1 << String::kArrayIndexValueBits)); |
| 2323 DecodeFieldToSmi<String::ArrayIndexValueBits>(index, hash); |
| 2324 } |
| 2325 |
| 2326 |
| 2327 void MacroAssembler::SmiToDouble(DoubleRegister value, Register smi) { |
| 2328 SmiUntag(ip, smi); |
| 2329 ConvertIntToDouble(ip, value); |
| 2330 } |
| 2331 |
| 2332 |
| 2333 void MacroAssembler::TestDoubleIsInt32(DoubleRegister double_input, |
| 2334 Register scratch1, Register scratch2, |
| 2335 DoubleRegister double_scratch) { |
| 2336 TryDoubleToInt32Exact(scratch1, double_input, scratch2, double_scratch); |
| 2337 } |
| 2338 |
| 2339 |
| 2340 void MacroAssembler::TryDoubleToInt32Exact(Register result, |
| 2341 DoubleRegister double_input, |
| 2342 Register scratch, |
| 2343 DoubleRegister double_scratch) { |
| 2344 Label done; |
| 2345 DCHECK(!double_input.is(double_scratch)); |
| 2346 |
| 2347 ConvertDoubleToInt64(double_input, |
| 2348 #if !V8_TARGET_ARCH_PPC64 |
| 2349 scratch, |
| 2350 #endif |
| 2351 result, double_scratch); |
| 2352 |
| 2353 #if V8_TARGET_ARCH_PPC64 |
| 2354 TestIfInt32(result, scratch, r0); |
| 2355 #else |
| 2356 TestIfInt32(scratch, result, r0); |
| 2357 #endif |
| 2358 bne(&done); |
| 2359 |
| 2360 // convert back and compare |
| 2361 fcfid(double_scratch, double_scratch); |
| 2362 fcmpu(double_scratch, double_input); |
| 2363 bind(&done); |
| 2364 } |
| 2365 |
| 2366 |
| 2367 void MacroAssembler::TryInt32Floor(Register result, DoubleRegister double_input, |
| 2368 Register input_high, Register scratch, |
| 2369 DoubleRegister double_scratch, Label* done, |
| 2370 Label* exact) { |
| 2371 DCHECK(!result.is(input_high)); |
| 2372 DCHECK(!double_input.is(double_scratch)); |
| 2373 Label exception; |
| 2374 |
| 2375 MovDoubleHighToInt(input_high, double_input); |
| 2376 |
| 2377 // Test for NaN/Inf |
| 2378 ExtractBitMask(result, input_high, HeapNumber::kExponentMask); |
| 2379 cmpli(result, Operand(0x7ff)); |
| 2380 beq(&exception); |
| 2381 |
| 2382 // Convert (rounding to -Inf) |
| 2383 ConvertDoubleToInt64(double_input, |
| 2384 #if !V8_TARGET_ARCH_PPC64 |
| 2385 scratch, |
| 2386 #endif |
| 2387 result, double_scratch, kRoundToMinusInf); |
| 2388 |
| 2389 // Test for overflow |
| 2390 #if V8_TARGET_ARCH_PPC64 |
| 2391 TestIfInt32(result, scratch, r0); |
| 2392 #else |
| 2393 TestIfInt32(scratch, result, r0); |
| 2394 #endif |
| 2395 bne(&exception); |
| 2396 |
| 2397 // Test for exactness |
| 2398 fcfid(double_scratch, double_scratch); |
| 2399 fcmpu(double_scratch, double_input); |
| 2400 beq(exact); |
| 2401 b(done); |
| 2402 |
| 2403 bind(&exception); |
| 2404 } |
| 2405 |
| 2406 |
| 2407 void MacroAssembler::TryInlineTruncateDoubleToI(Register result, |
| 2408 DoubleRegister double_input, |
| 2409 Label* done) { |
| 2410 DoubleRegister double_scratch = kScratchDoubleReg; |
| 2411 Register scratch = ip; |
| 2412 |
| 2413 ConvertDoubleToInt64(double_input, |
| 2414 #if !V8_TARGET_ARCH_PPC64 |
| 2415 scratch, |
| 2416 #endif |
| 2417 result, double_scratch); |
| 2418 |
| 2419 // Test for overflow |
| 2420 #if V8_TARGET_ARCH_PPC64 |
| 2421 TestIfInt32(result, scratch, r0); |
| 2422 #else |
| 2423 TestIfInt32(scratch, result, r0); |
| 2424 #endif |
| 2425 beq(done); |
| 2426 } |
| 2427 |
| 2428 |
| 2429 void MacroAssembler::TruncateDoubleToI(Register result, |
| 2430 DoubleRegister double_input) { |
| 2431 Label done; |
| 2432 |
| 2433 TryInlineTruncateDoubleToI(result, double_input, &done); |
| 2434 |
| 2435 // If we fell through then inline version didn't succeed - call stub instead. |
| 2436 mflr(r0); |
| 2437 push(r0); |
| 2438 // Put input on stack. |
| 2439 stfdu(double_input, MemOperand(sp, -kDoubleSize)); |
| 2440 |
| 2441 DoubleToIStub stub(isolate(), sp, result, 0, true, true); |
| 2442 CallStub(&stub); |
| 2443 |
| 2444 addi(sp, sp, Operand(kDoubleSize)); |
| 2445 pop(r0); |
| 2446 mtlr(r0); |
| 2447 |
| 2448 bind(&done); |
| 2449 } |
| 2450 |
| 2451 |
| 2452 void MacroAssembler::TruncateHeapNumberToI(Register result, Register object) { |
| 2453 Label done; |
| 2454 DoubleRegister double_scratch = kScratchDoubleReg; |
| 2455 DCHECK(!result.is(object)); |
| 2456 |
| 2457 lfd(double_scratch, FieldMemOperand(object, HeapNumber::kValueOffset)); |
| 2458 TryInlineTruncateDoubleToI(result, double_scratch, &done); |
| 2459 |
| 2460 // If we fell through then inline version didn't succeed - call stub instead. |
| 2461 mflr(r0); |
| 2462 push(r0); |
| 2463 DoubleToIStub stub(isolate(), object, result, |
| 2464 HeapNumber::kValueOffset - kHeapObjectTag, true, true); |
| 2465 CallStub(&stub); |
| 2466 pop(r0); |
| 2467 mtlr(r0); |
| 2468 |
| 2469 bind(&done); |
| 2470 } |
| 2471 |
| 2472 |
| 2473 void MacroAssembler::TruncateNumberToI(Register object, Register result, |
| 2474 Register heap_number_map, |
| 2475 Register scratch1, Label* not_number) { |
| 2476 Label done; |
| 2477 DCHECK(!result.is(object)); |
| 2478 |
| 2479 UntagAndJumpIfSmi(result, object, &done); |
| 2480 JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_number); |
| 2481 TruncateHeapNumberToI(result, object); |
| 2482 |
| 2483 bind(&done); |
| 2484 } |
| 2485 |
| 2486 |
| 2487 void MacroAssembler::GetLeastBitsFromSmi(Register dst, Register src, |
| 2488 int num_least_bits) { |
| 2489 #if V8_TARGET_ARCH_PPC64 |
| 2490 rldicl(dst, src, kBitsPerPointer - kSmiShift, |
| 2491 kBitsPerPointer - num_least_bits); |
| 2492 #else |
| 2493 rlwinm(dst, src, kBitsPerPointer - kSmiShift, |
| 2494 kBitsPerPointer - num_least_bits, 31); |
| 2495 #endif |
| 2496 } |
| 2497 |
| 2498 |
| 2499 void MacroAssembler::GetLeastBitsFromInt32(Register dst, Register src, |
| 2500 int num_least_bits) { |
| 2501 rlwinm(dst, src, 0, 32 - num_least_bits, 31); |
| 2502 } |
| 2503 |
| 2504 |
| 2505 void MacroAssembler::CallRuntime(const Runtime::Function* f, int num_arguments, |
| 2506 SaveFPRegsMode save_doubles) { |
| 2507 // All parameters are on the stack. r3 has the return value after call. |
| 2508 |
| 2509 // If the expected number of arguments of the runtime function is |
| 2510 // constant, we check that the actual number of arguments match the |
| 2511 // expectation. |
| 2512 CHECK(f->nargs < 0 || f->nargs == num_arguments); |
| 2513 |
| 2514 // TODO(1236192): Most runtime routines don't need the number of |
| 2515 // arguments passed in because it is constant. At some point we |
| 2516 // should remove this need and make the runtime routine entry code |
| 2517 // smarter. |
| 2518 mov(r3, Operand(num_arguments)); |
| 2519 mov(r4, Operand(ExternalReference(f, isolate()))); |
| 2520 CEntryStub stub(isolate(), |
| 2521 #if V8_TARGET_ARCH_PPC64 |
| 2522 f->result_size, |
| 2523 #else |
| 2524 1, |
| 2525 #endif |
| 2526 save_doubles); |
| 2527 CallStub(&stub); |
| 2528 } |
| 2529 |
| 2530 |
| 2531 void MacroAssembler::CallExternalReference(const ExternalReference& ext, |
| 2532 int num_arguments) { |
| 2533 mov(r3, Operand(num_arguments)); |
| 2534 mov(r4, Operand(ext)); |
| 2535 |
| 2536 CEntryStub stub(isolate(), 1); |
| 2537 CallStub(&stub); |
| 2538 } |
| 2539 |
| 2540 |
| 2541 void MacroAssembler::TailCallExternalReference(const ExternalReference& ext, |
| 2542 int num_arguments, |
| 2543 int result_size) { |
| 2544 // TODO(1236192): Most runtime routines don't need the number of |
| 2545 // arguments passed in because it is constant. At some point we |
| 2546 // should remove this need and make the runtime routine entry code |
| 2547 // smarter. |
| 2548 mov(r3, Operand(num_arguments)); |
| 2549 JumpToExternalReference(ext); |
| 2550 } |
| 2551 |
| 2552 |
| 2553 void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid, int num_arguments, |
| 2554 int result_size) { |
| 2555 TailCallExternalReference(ExternalReference(fid, isolate()), num_arguments, |
| 2556 result_size); |
| 2557 } |
| 2558 |
| 2559 |
| 2560 void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin) { |
| 2561 mov(r4, Operand(builtin)); |
| 2562 CEntryStub stub(isolate(), 1); |
| 2563 Jump(stub.GetCode(), RelocInfo::CODE_TARGET); |
| 2564 } |
| 2565 |
| 2566 |
| 2567 void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id, InvokeFlag flag, |
| 2568 const CallWrapper& call_wrapper) { |
| 2569 // You can't call a builtin without a valid frame. |
| 2570 DCHECK(flag == JUMP_FUNCTION || has_frame()); |
| 2571 |
| 2572 GetBuiltinEntry(ip, id); |
| 2573 if (flag == CALL_FUNCTION) { |
| 2574 call_wrapper.BeforeCall(CallSize(ip)); |
| 2575 CallJSEntry(ip); |
| 2576 call_wrapper.AfterCall(); |
| 2577 } else { |
| 2578 DCHECK(flag == JUMP_FUNCTION); |
| 2579 JumpToJSEntry(ip); |
| 2580 } |
| 2581 } |
| 2582 |
| 2583 |
| 2584 void MacroAssembler::GetBuiltinFunction(Register target, |
| 2585 Builtins::JavaScript id) { |
| 2586 // Load the builtins object into target register. |
| 2587 LoadP(target, |
| 2588 MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX))); |
| 2589 LoadP(target, FieldMemOperand(target, GlobalObject::kBuiltinsOffset)); |
| 2590 // Load the JavaScript builtin function from the builtins object. |
| 2591 LoadP(target, |
| 2592 FieldMemOperand(target, JSBuiltinsObject::OffsetOfFunctionWithId(id)), |
| 2593 r0); |
| 2594 } |
| 2595 |
| 2596 |
| 2597 void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) { |
| 2598 DCHECK(!target.is(r4)); |
| 2599 GetBuiltinFunction(r4, id); |
| 2600 // Load the code entry point from the builtins object. |
| 2601 LoadP(target, FieldMemOperand(r4, JSFunction::kCodeEntryOffset)); |
| 2602 } |
| 2603 |
| 2604 |
| 2605 void MacroAssembler::SetCounter(StatsCounter* counter, int value, |
| 2606 Register scratch1, Register scratch2) { |
| 2607 if (FLAG_native_code_counters && counter->Enabled()) { |
| 2608 mov(scratch1, Operand(value)); |
| 2609 mov(scratch2, Operand(ExternalReference(counter))); |
| 2610 stw(scratch1, MemOperand(scratch2)); |
| 2611 } |
| 2612 } |
| 2613 |
| 2614 |
| 2615 void MacroAssembler::IncrementCounter(StatsCounter* counter, int value, |
| 2616 Register scratch1, Register scratch2) { |
| 2617 DCHECK(value > 0); |
| 2618 if (FLAG_native_code_counters && counter->Enabled()) { |
| 2619 mov(scratch2, Operand(ExternalReference(counter))); |
| 2620 lwz(scratch1, MemOperand(scratch2)); |
| 2621 addi(scratch1, scratch1, Operand(value)); |
| 2622 stw(scratch1, MemOperand(scratch2)); |
| 2623 } |
| 2624 } |
| 2625 |
| 2626 |
| 2627 void MacroAssembler::DecrementCounter(StatsCounter* counter, int value, |
| 2628 Register scratch1, Register scratch2) { |
| 2629 DCHECK(value > 0); |
| 2630 if (FLAG_native_code_counters && counter->Enabled()) { |
| 2631 mov(scratch2, Operand(ExternalReference(counter))); |
| 2632 lwz(scratch1, MemOperand(scratch2)); |
| 2633 subi(scratch1, scratch1, Operand(value)); |
| 2634 stw(scratch1, MemOperand(scratch2)); |
| 2635 } |
| 2636 } |
| 2637 |
| 2638 |
| 2639 void MacroAssembler::Assert(Condition cond, BailoutReason reason, |
| 2640 CRegister cr) { |
| 2641 if (emit_debug_code()) Check(cond, reason, cr); |
| 2642 } |
| 2643 |
| 2644 |
| 2645 void MacroAssembler::AssertFastElements(Register elements) { |
| 2646 if (emit_debug_code()) { |
| 2647 DCHECK(!elements.is(r0)); |
| 2648 Label ok; |
| 2649 push(elements); |
| 2650 LoadP(elements, FieldMemOperand(elements, HeapObject::kMapOffset)); |
| 2651 LoadRoot(r0, Heap::kFixedArrayMapRootIndex); |
| 2652 cmp(elements, r0); |
| 2653 beq(&ok); |
| 2654 LoadRoot(r0, Heap::kFixedDoubleArrayMapRootIndex); |
| 2655 cmp(elements, r0); |
| 2656 beq(&ok); |
| 2657 LoadRoot(r0, Heap::kFixedCOWArrayMapRootIndex); |
| 2658 cmp(elements, r0); |
| 2659 beq(&ok); |
| 2660 Abort(kJSObjectWithFastElementsMapHasSlowElements); |
| 2661 bind(&ok); |
| 2662 pop(elements); |
| 2663 } |
| 2664 } |
| 2665 |
| 2666 |
| 2667 void MacroAssembler::Check(Condition cond, BailoutReason reason, CRegister cr) { |
| 2668 Label L; |
| 2669 b(cond, &L, cr); |
| 2670 Abort(reason); |
| 2671 // will not return here |
| 2672 bind(&L); |
| 2673 } |
| 2674 |
| 2675 |
| 2676 void MacroAssembler::Abort(BailoutReason reason) { |
| 2677 Label abort_start; |
| 2678 bind(&abort_start); |
| 2679 #ifdef DEBUG |
| 2680 const char* msg = GetBailoutReason(reason); |
| 2681 if (msg != NULL) { |
| 2682 RecordComment("Abort message: "); |
| 2683 RecordComment(msg); |
| 2684 } |
| 2685 |
| 2686 if (FLAG_trap_on_abort) { |
| 2687 stop(msg); |
| 2688 return; |
| 2689 } |
| 2690 #endif |
| 2691 |
| 2692 LoadSmiLiteral(r0, Smi::FromInt(reason)); |
| 2693 push(r0); |
| 2694 // Disable stub call restrictions to always allow calls to abort. |
| 2695 if (!has_frame_) { |
| 2696 // We don't actually want to generate a pile of code for this, so just |
| 2697 // claim there is a stack frame, without generating one. |
| 2698 FrameScope scope(this, StackFrame::NONE); |
| 2699 CallRuntime(Runtime::kAbort, 1); |
| 2700 } else { |
| 2701 CallRuntime(Runtime::kAbort, 1); |
| 2702 } |
| 2703 // will not return here |
| 2704 } |
| 2705 |
| 2706 |
| 2707 void MacroAssembler::LoadContext(Register dst, int context_chain_length) { |
| 2708 if (context_chain_length > 0) { |
| 2709 // Move up the chain of contexts to the context containing the slot. |
| 2710 LoadP(dst, MemOperand(cp, Context::SlotOffset(Context::PREVIOUS_INDEX))); |
| 2711 for (int i = 1; i < context_chain_length; i++) { |
| 2712 LoadP(dst, MemOperand(dst, Context::SlotOffset(Context::PREVIOUS_INDEX))); |
| 2713 } |
| 2714 } else { |
| 2715 // Slot is in the current function context. Move it into the |
| 2716 // destination register in case we store into it (the write barrier |
| 2717 // cannot be allowed to destroy the context in esi). |
| 2718 mr(dst, cp); |
| 2719 } |
| 2720 } |
| 2721 |
| 2722 |
| 2723 void MacroAssembler::LoadTransitionedArrayMapConditional( |
| 2724 ElementsKind expected_kind, ElementsKind transitioned_kind, |
| 2725 Register map_in_out, Register scratch, Label* no_map_match) { |
| 2726 // Load the global or builtins object from the current context. |
| 2727 LoadP(scratch, |
| 2728 MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX))); |
| 2729 LoadP(scratch, FieldMemOperand(scratch, GlobalObject::kNativeContextOffset)); |
| 2730 |
| 2731 // Check that the function's map is the same as the expected cached map. |
| 2732 LoadP(scratch, |
| 2733 MemOperand(scratch, Context::SlotOffset(Context::JS_ARRAY_MAPS_INDEX))); |
| 2734 size_t offset = expected_kind * kPointerSize + FixedArrayBase::kHeaderSize; |
| 2735 LoadP(scratch, FieldMemOperand(scratch, offset)); |
| 2736 cmp(map_in_out, scratch); |
| 2737 bne(no_map_match); |
| 2738 |
| 2739 // Use the transitioned cached map. |
| 2740 offset = transitioned_kind * kPointerSize + FixedArrayBase::kHeaderSize; |
| 2741 LoadP(map_in_out, FieldMemOperand(scratch, offset)); |
| 2742 } |
| 2743 |
| 2744 |
| 2745 void MacroAssembler::LoadGlobalFunction(int index, Register function) { |
| 2746 // Load the global or builtins object from the current context. |
| 2747 LoadP(function, |
| 2748 MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX))); |
| 2749 // Load the native context from the global or builtins object. |
| 2750 LoadP(function, |
| 2751 FieldMemOperand(function, GlobalObject::kNativeContextOffset)); |
| 2752 // Load the function from the native context. |
| 2753 LoadP(function, MemOperand(function, Context::SlotOffset(index)), r0); |
| 2754 } |
| 2755 |
| 2756 |
| 2757 void MacroAssembler::LoadGlobalFunctionInitialMap(Register function, |
| 2758 Register map, |
| 2759 Register scratch) { |
| 2760 // Load the initial map. The global functions all have initial maps. |
| 2761 LoadP(map, |
| 2762 FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); |
| 2763 if (emit_debug_code()) { |
| 2764 Label ok, fail; |
| 2765 CheckMap(map, scratch, Heap::kMetaMapRootIndex, &fail, DO_SMI_CHECK); |
| 2766 b(&ok); |
| 2767 bind(&fail); |
| 2768 Abort(kGlobalFunctionsMustHaveInitialMap); |
| 2769 bind(&ok); |
| 2770 } |
| 2771 } |
| 2772 |
| 2773 |
| 2774 void MacroAssembler::JumpIfNotPowerOfTwoOrZero( |
| 2775 Register reg, Register scratch, Label* not_power_of_two_or_zero) { |
| 2776 subi(scratch, reg, Operand(1)); |
| 2777 cmpi(scratch, Operand::Zero()); |
| 2778 blt(not_power_of_two_or_zero); |
| 2779 and_(r0, scratch, reg, SetRC); |
| 2780 bne(not_power_of_two_or_zero, cr0); |
| 2781 } |
| 2782 |
| 2783 |
| 2784 void MacroAssembler::JumpIfNotPowerOfTwoOrZeroAndNeg(Register reg, |
| 2785 Register scratch, |
| 2786 Label* zero_and_neg, |
| 2787 Label* not_power_of_two) { |
| 2788 subi(scratch, reg, Operand(1)); |
| 2789 cmpi(scratch, Operand::Zero()); |
| 2790 blt(zero_and_neg); |
| 2791 and_(r0, scratch, reg, SetRC); |
| 2792 bne(not_power_of_two, cr0); |
| 2793 } |
| 2794 |
| 2795 #if !V8_TARGET_ARCH_PPC64 |
| 2796 void MacroAssembler::SmiTagCheckOverflow(Register reg, Register overflow) { |
| 2797 DCHECK(!reg.is(overflow)); |
| 2798 mr(overflow, reg); // Save original value. |
| 2799 SmiTag(reg); |
| 2800 xor_(overflow, overflow, reg, SetRC); // Overflow if (value ^ 2 * value) < 0. |
| 2801 } |
| 2802 |
| 2803 |
| 2804 void MacroAssembler::SmiTagCheckOverflow(Register dst, Register src, |
| 2805 Register overflow) { |
| 2806 if (dst.is(src)) { |
| 2807 // Fall back to slower case. |
| 2808 SmiTagCheckOverflow(dst, overflow); |
| 2809 } else { |
| 2810 DCHECK(!dst.is(src)); |
| 2811 DCHECK(!dst.is(overflow)); |
| 2812 DCHECK(!src.is(overflow)); |
| 2813 SmiTag(dst, src); |
| 2814 xor_(overflow, dst, src, SetRC); // Overflow if (value ^ 2 * value) < 0. |
| 2815 } |
| 2816 } |
| 2817 #endif |
| 2818 |
| 2819 void MacroAssembler::JumpIfNotBothSmi(Register reg1, Register reg2, |
| 2820 Label* on_not_both_smi) { |
| 2821 STATIC_ASSERT(kSmiTag == 0); |
| 2822 DCHECK_EQ(1, static_cast<int>(kSmiTagMask)); |
| 2823 orx(r0, reg1, reg2, LeaveRC); |
| 2824 JumpIfNotSmi(r0, on_not_both_smi); |
| 2825 } |
| 2826 |
| 2827 |
| 2828 void MacroAssembler::UntagAndJumpIfSmi(Register dst, Register src, |
| 2829 Label* smi_case) { |
| 2830 STATIC_ASSERT(kSmiTag == 0); |
| 2831 STATIC_ASSERT(kSmiTagSize == 1); |
| 2832 TestBit(src, 0, r0); |
| 2833 SmiUntag(dst, src); |
| 2834 beq(smi_case, cr0); |
| 2835 } |
| 2836 |
| 2837 |
| 2838 void MacroAssembler::UntagAndJumpIfNotSmi(Register dst, Register src, |
| 2839 Label* non_smi_case) { |
| 2840 STATIC_ASSERT(kSmiTag == 0); |
| 2841 STATIC_ASSERT(kSmiTagSize == 1); |
| 2842 TestBit(src, 0, r0); |
| 2843 SmiUntag(dst, src); |
| 2844 bne(non_smi_case, cr0); |
| 2845 } |
| 2846 |
| 2847 |
| 2848 void MacroAssembler::JumpIfEitherSmi(Register reg1, Register reg2, |
| 2849 Label* on_either_smi) { |
| 2850 STATIC_ASSERT(kSmiTag == 0); |
| 2851 JumpIfSmi(reg1, on_either_smi); |
| 2852 JumpIfSmi(reg2, on_either_smi); |
| 2853 } |
| 2854 |
| 2855 |
| 2856 void MacroAssembler::AssertNotSmi(Register object) { |
| 2857 if (emit_debug_code()) { |
| 2858 STATIC_ASSERT(kSmiTag == 0); |
| 2859 TestIfSmi(object, r0); |
| 2860 Check(ne, kOperandIsASmi, cr0); |
| 2861 } |
| 2862 } |
| 2863 |
| 2864 |
| 2865 void MacroAssembler::AssertSmi(Register object) { |
| 2866 if (emit_debug_code()) { |
| 2867 STATIC_ASSERT(kSmiTag == 0); |
| 2868 TestIfSmi(object, r0); |
| 2869 Check(eq, kOperandIsNotSmi, cr0); |
| 2870 } |
| 2871 } |
| 2872 |
| 2873 |
| 2874 void MacroAssembler::AssertString(Register object) { |
| 2875 if (emit_debug_code()) { |
| 2876 STATIC_ASSERT(kSmiTag == 0); |
| 2877 TestIfSmi(object, r0); |
| 2878 Check(ne, kOperandIsASmiAndNotAString, cr0); |
| 2879 push(object); |
| 2880 LoadP(object, FieldMemOperand(object, HeapObject::kMapOffset)); |
| 2881 CompareInstanceType(object, object, FIRST_NONSTRING_TYPE); |
| 2882 pop(object); |
| 2883 Check(lt, kOperandIsNotAString); |
| 2884 } |
| 2885 } |
| 2886 |
| 2887 |
| 2888 void MacroAssembler::AssertName(Register object) { |
| 2889 if (emit_debug_code()) { |
| 2890 STATIC_ASSERT(kSmiTag == 0); |
| 2891 TestIfSmi(object, r0); |
| 2892 Check(ne, kOperandIsASmiAndNotAName, cr0); |
| 2893 push(object); |
| 2894 LoadP(object, FieldMemOperand(object, HeapObject::kMapOffset)); |
| 2895 CompareInstanceType(object, object, LAST_NAME_TYPE); |
| 2896 pop(object); |
| 2897 Check(le, kOperandIsNotAName); |
| 2898 } |
| 2899 } |
| 2900 |
| 2901 |
| 2902 void MacroAssembler::AssertUndefinedOrAllocationSite(Register object, |
| 2903 Register scratch) { |
| 2904 if (emit_debug_code()) { |
| 2905 Label done_checking; |
| 2906 AssertNotSmi(object); |
| 2907 CompareRoot(object, Heap::kUndefinedValueRootIndex); |
| 2908 beq(&done_checking); |
| 2909 LoadP(scratch, FieldMemOperand(object, HeapObject::kMapOffset)); |
| 2910 CompareRoot(scratch, Heap::kAllocationSiteMapRootIndex); |
| 2911 Assert(eq, kExpectedUndefinedOrCell); |
| 2912 bind(&done_checking); |
| 2913 } |
| 2914 } |
| 2915 |
| 2916 |
| 2917 void MacroAssembler::AssertIsRoot(Register reg, Heap::RootListIndex index) { |
| 2918 if (emit_debug_code()) { |
| 2919 CompareRoot(reg, index); |
| 2920 Check(eq, kHeapNumberMapRegisterClobbered); |
| 2921 } |
| 2922 } |
| 2923 |
| 2924 |
| 2925 void MacroAssembler::JumpIfNotHeapNumber(Register object, |
| 2926 Register heap_number_map, |
| 2927 Register scratch, |
| 2928 Label* on_not_heap_number) { |
| 2929 LoadP(scratch, FieldMemOperand(object, HeapObject::kMapOffset)); |
| 2930 AssertIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); |
| 2931 cmp(scratch, heap_number_map); |
| 2932 bne(on_not_heap_number); |
| 2933 } |
| 2934 |
| 2935 |
| 2936 void MacroAssembler::LookupNumberStringCache(Register object, Register result, |
| 2937 Register scratch1, |
| 2938 Register scratch2, |
| 2939 Register scratch3, |
| 2940 Label* not_found) { |
| 2941 // Use of registers. Register result is used as a temporary. |
| 2942 Register number_string_cache = result; |
| 2943 Register mask = scratch3; |
| 2944 |
| 2945 // Load the number string cache. |
| 2946 LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex); |
| 2947 |
| 2948 // Make the hash mask from the length of the number string cache. It |
| 2949 // contains two elements (number and string) for each cache entry. |
| 2950 LoadP(mask, FieldMemOperand(number_string_cache, FixedArray::kLengthOffset)); |
| 2951 // Divide length by two (length is a smi). |
| 2952 ShiftRightArithImm(mask, mask, kSmiTagSize + kSmiShiftSize + 1); |
| 2953 subi(mask, mask, Operand(1)); // Make mask. |
| 2954 |
| 2955 // Calculate the entry in the number string cache. The hash value in the |
| 2956 // number string cache for smis is just the smi value, and the hash for |
| 2957 // doubles is the xor of the upper and lower words. See |
| 2958 // Heap::GetNumberStringCache. |
| 2959 Label is_smi; |
| 2960 Label load_result_from_cache; |
| 2961 JumpIfSmi(object, &is_smi); |
| 2962 CheckMap(object, scratch1, Heap::kHeapNumberMapRootIndex, not_found, |
| 2963 DONT_DO_SMI_CHECK); |
| 2964 |
| 2965 STATIC_ASSERT(8 == kDoubleSize); |
| 2966 lwz(scratch1, FieldMemOperand(object, HeapNumber::kExponentOffset)); |
| 2967 lwz(scratch2, FieldMemOperand(object, HeapNumber::kMantissaOffset)); |
| 2968 xor_(scratch1, scratch1, scratch2); |
| 2969 and_(scratch1, scratch1, mask); |
| 2970 |
| 2971 // Calculate address of entry in string cache: each entry consists |
| 2972 // of two pointer sized fields. |
| 2973 ShiftLeftImm(scratch1, scratch1, Operand(kPointerSizeLog2 + 1)); |
| 2974 add(scratch1, number_string_cache, scratch1); |
| 2975 |
| 2976 Register probe = mask; |
| 2977 LoadP(probe, FieldMemOperand(scratch1, FixedArray::kHeaderSize)); |
| 2978 JumpIfSmi(probe, not_found); |
| 2979 lfd(d0, FieldMemOperand(object, HeapNumber::kValueOffset)); |
| 2980 lfd(d1, FieldMemOperand(probe, HeapNumber::kValueOffset)); |
| 2981 fcmpu(d0, d1); |
| 2982 bne(not_found); // The cache did not contain this value. |
| 2983 b(&load_result_from_cache); |
| 2984 |
| 2985 bind(&is_smi); |
| 2986 Register scratch = scratch1; |
| 2987 SmiUntag(scratch, object); |
| 2988 and_(scratch, mask, scratch); |
| 2989 // Calculate address of entry in string cache: each entry consists |
| 2990 // of two pointer sized fields. |
| 2991 ShiftLeftImm(scratch, scratch, Operand(kPointerSizeLog2 + 1)); |
| 2992 add(scratch, number_string_cache, scratch); |
| 2993 |
| 2994 // Check if the entry is the smi we are looking for. |
| 2995 LoadP(probe, FieldMemOperand(scratch, FixedArray::kHeaderSize)); |
| 2996 cmp(object, probe); |
| 2997 bne(not_found); |
| 2998 |
| 2999 // Get the result from the cache. |
| 3000 bind(&load_result_from_cache); |
| 3001 LoadP(result, |
| 3002 FieldMemOperand(scratch, FixedArray::kHeaderSize + kPointerSize)); |
| 3003 IncrementCounter(isolate()->counters()->number_to_string_native(), 1, |
| 3004 scratch1, scratch2); |
| 3005 } |
| 3006 |
| 3007 |
| 3008 void MacroAssembler::JumpIfNonSmisNotBothSequentialOneByteStrings( |
| 3009 Register first, Register second, Register scratch1, Register scratch2, |
| 3010 Label* failure) { |
| 3011 // Test that both first and second are sequential one-byte strings. |
| 3012 // Assume that they are non-smis. |
| 3013 LoadP(scratch1, FieldMemOperand(first, HeapObject::kMapOffset)); |
| 3014 LoadP(scratch2, FieldMemOperand(second, HeapObject::kMapOffset)); |
| 3015 lbz(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset)); |
| 3016 lbz(scratch2, FieldMemOperand(scratch2, Map::kInstanceTypeOffset)); |
| 3017 |
| 3018 JumpIfBothInstanceTypesAreNotSequentialOneByte(scratch1, scratch2, scratch1, |
| 3019 scratch2, failure); |
| 3020 } |
| 3021 |
| 3022 void MacroAssembler::JumpIfNotBothSequentialOneByteStrings(Register first, |
| 3023 Register second, |
| 3024 Register scratch1, |
| 3025 Register scratch2, |
| 3026 Label* failure) { |
| 3027 // Check that neither is a smi. |
| 3028 and_(scratch1, first, second); |
| 3029 JumpIfSmi(scratch1, failure); |
| 3030 JumpIfNonSmisNotBothSequentialOneByteStrings(first, second, scratch1, |
| 3031 scratch2, failure); |
| 3032 } |
| 3033 |
| 3034 |
| 3035 void MacroAssembler::JumpIfNotUniqueNameInstanceType(Register reg, |
| 3036 Label* not_unique_name) { |
| 3037 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0); |
| 3038 Label succeed; |
| 3039 andi(r0, reg, Operand(kIsNotStringMask | kIsNotInternalizedMask)); |
| 3040 beq(&succeed, cr0); |
| 3041 cmpi(reg, Operand(SYMBOL_TYPE)); |
| 3042 bne(not_unique_name); |
| 3043 |
| 3044 bind(&succeed); |
| 3045 } |
| 3046 |
| 3047 |
| 3048 // Allocates a heap number or jumps to the need_gc label if the young space |
| 3049 // is full and a scavenge is needed. |
| 3050 void MacroAssembler::AllocateHeapNumber(Register result, Register scratch1, |
| 3051 Register scratch2, |
| 3052 Register heap_number_map, |
| 3053 Label* gc_required, |
| 3054 TaggingMode tagging_mode, |
| 3055 MutableMode mode) { |
| 3056 // Allocate an object in the heap for the heap number and tag it as a heap |
| 3057 // object. |
| 3058 Allocate(HeapNumber::kSize, result, scratch1, scratch2, gc_required, |
| 3059 tagging_mode == TAG_RESULT ? TAG_OBJECT : NO_ALLOCATION_FLAGS); |
| 3060 |
| 3061 Heap::RootListIndex map_index = mode == MUTABLE |
| 3062 ? Heap::kMutableHeapNumberMapRootIndex |
| 3063 : Heap::kHeapNumberMapRootIndex; |
| 3064 AssertIsRoot(heap_number_map, map_index); |
| 3065 |
| 3066 // Store heap number map in the allocated object. |
| 3067 if (tagging_mode == TAG_RESULT) { |
| 3068 StoreP(heap_number_map, FieldMemOperand(result, HeapObject::kMapOffset), |
| 3069 r0); |
| 3070 } else { |
| 3071 StoreP(heap_number_map, MemOperand(result, HeapObject::kMapOffset)); |
| 3072 } |
| 3073 } |
| 3074 |
| 3075 |
| 3076 void MacroAssembler::AllocateHeapNumberWithValue( |
| 3077 Register result, DoubleRegister value, Register scratch1, Register scratch2, |
| 3078 Register heap_number_map, Label* gc_required) { |
| 3079 AllocateHeapNumber(result, scratch1, scratch2, heap_number_map, gc_required); |
| 3080 stfd(value, FieldMemOperand(result, HeapNumber::kValueOffset)); |
| 3081 } |
| 3082 |
| 3083 |
| 3084 // Copies a fixed number of fields of heap objects from src to dst. |
| 3085 void MacroAssembler::CopyFields(Register dst, Register src, RegList temps, |
| 3086 int field_count) { |
| 3087 // At least one bit set in the first 15 registers. |
| 3088 DCHECK((temps & ((1 << 15) - 1)) != 0); |
| 3089 DCHECK((temps & dst.bit()) == 0); |
| 3090 DCHECK((temps & src.bit()) == 0); |
| 3091 // Primitive implementation using only one temporary register. |
| 3092 |
| 3093 Register tmp = no_reg; |
| 3094 // Find a temp register in temps list. |
| 3095 for (int i = 0; i < 15; i++) { |
| 3096 if ((temps & (1 << i)) != 0) { |
| 3097 tmp.set_code(i); |
| 3098 break; |
| 3099 } |
| 3100 } |
| 3101 DCHECK(!tmp.is(no_reg)); |
| 3102 |
| 3103 for (int i = 0; i < field_count; i++) { |
| 3104 LoadP(tmp, FieldMemOperand(src, i * kPointerSize), r0); |
| 3105 StoreP(tmp, FieldMemOperand(dst, i * kPointerSize), r0); |
| 3106 } |
| 3107 } |
| 3108 |
| 3109 |
| 3110 void MacroAssembler::CopyBytes(Register src, Register dst, Register length, |
| 3111 Register scratch) { |
| 3112 Label align_loop, aligned, word_loop, byte_loop, byte_loop_1, done; |
| 3113 |
| 3114 DCHECK(!scratch.is(r0)); |
| 3115 |
| 3116 cmpi(length, Operand::Zero()); |
| 3117 beq(&done); |
| 3118 |
| 3119 // Check src alignment and length to see whether word_loop is possible |
| 3120 andi(scratch, src, Operand(kPointerSize - 1)); |
| 3121 beq(&aligned, cr0); |
| 3122 subfic(scratch, scratch, Operand(kPointerSize * 2)); |
| 3123 cmp(length, scratch); |
| 3124 blt(&byte_loop); |
| 3125 |
| 3126 // Align src before copying in word size chunks. |
| 3127 subi(scratch, scratch, Operand(kPointerSize)); |
| 3128 mtctr(scratch); |
| 3129 bind(&align_loop); |
| 3130 lbz(scratch, MemOperand(src)); |
| 3131 addi(src, src, Operand(1)); |
| 3132 subi(length, length, Operand(1)); |
| 3133 stb(scratch, MemOperand(dst)); |
| 3134 addi(dst, dst, Operand(1)); |
| 3135 bdnz(&align_loop); |
| 3136 |
| 3137 bind(&aligned); |
| 3138 |
| 3139 // Copy bytes in word size chunks. |
| 3140 if (emit_debug_code()) { |
| 3141 andi(r0, src, Operand(kPointerSize - 1)); |
| 3142 Assert(eq, kExpectingAlignmentForCopyBytes, cr0); |
| 3143 } |
| 3144 |
| 3145 ShiftRightImm(scratch, length, Operand(kPointerSizeLog2)); |
| 3146 cmpi(scratch, Operand::Zero()); |
| 3147 beq(&byte_loop); |
| 3148 |
| 3149 mtctr(scratch); |
| 3150 bind(&word_loop); |
| 3151 LoadP(scratch, MemOperand(src)); |
| 3152 addi(src, src, Operand(kPointerSize)); |
| 3153 subi(length, length, Operand(kPointerSize)); |
| 3154 if (CpuFeatures::IsSupported(UNALIGNED_ACCESSES)) { |
| 3155 // currently false for PPC - but possible future opt |
| 3156 StoreP(scratch, MemOperand(dst)); |
| 3157 addi(dst, dst, Operand(kPointerSize)); |
| 3158 } else { |
| 3159 #if V8_TARGET_LITTLE_ENDIAN |
| 3160 stb(scratch, MemOperand(dst, 0)); |
| 3161 ShiftRightImm(scratch, scratch, Operand(8)); |
| 3162 stb(scratch, MemOperand(dst, 1)); |
| 3163 ShiftRightImm(scratch, scratch, Operand(8)); |
| 3164 stb(scratch, MemOperand(dst, 2)); |
| 3165 ShiftRightImm(scratch, scratch, Operand(8)); |
| 3166 stb(scratch, MemOperand(dst, 3)); |
| 3167 #if V8_TARGET_ARCH_PPC64 |
| 3168 ShiftRightImm(scratch, scratch, Operand(8)); |
| 3169 stb(scratch, MemOperand(dst, 4)); |
| 3170 ShiftRightImm(scratch, scratch, Operand(8)); |
| 3171 stb(scratch, MemOperand(dst, 5)); |
| 3172 ShiftRightImm(scratch, scratch, Operand(8)); |
| 3173 stb(scratch, MemOperand(dst, 6)); |
| 3174 ShiftRightImm(scratch, scratch, Operand(8)); |
| 3175 stb(scratch, MemOperand(dst, 7)); |
| 3176 #endif |
| 3177 #else |
| 3178 #if V8_TARGET_ARCH_PPC64 |
| 3179 stb(scratch, MemOperand(dst, 7)); |
| 3180 ShiftRightImm(scratch, scratch, Operand(8)); |
| 3181 stb(scratch, MemOperand(dst, 6)); |
| 3182 ShiftRightImm(scratch, scratch, Operand(8)); |
| 3183 stb(scratch, MemOperand(dst, 5)); |
| 3184 ShiftRightImm(scratch, scratch, Operand(8)); |
| 3185 stb(scratch, MemOperand(dst, 4)); |
| 3186 ShiftRightImm(scratch, scratch, Operand(8)); |
| 3187 #endif |
| 3188 stb(scratch, MemOperand(dst, 3)); |
| 3189 ShiftRightImm(scratch, scratch, Operand(8)); |
| 3190 stb(scratch, MemOperand(dst, 2)); |
| 3191 ShiftRightImm(scratch, scratch, Operand(8)); |
| 3192 stb(scratch, MemOperand(dst, 1)); |
| 3193 ShiftRightImm(scratch, scratch, Operand(8)); |
| 3194 stb(scratch, MemOperand(dst, 0)); |
| 3195 #endif |
| 3196 addi(dst, dst, Operand(kPointerSize)); |
| 3197 } |
| 3198 bdnz(&word_loop); |
| 3199 |
| 3200 // Copy the last bytes if any left. |
| 3201 cmpi(length, Operand::Zero()); |
| 3202 beq(&done); |
| 3203 |
| 3204 bind(&byte_loop); |
| 3205 mtctr(length); |
| 3206 bind(&byte_loop_1); |
| 3207 lbz(scratch, MemOperand(src)); |
| 3208 addi(src, src, Operand(1)); |
| 3209 stb(scratch, MemOperand(dst)); |
| 3210 addi(dst, dst, Operand(1)); |
| 3211 bdnz(&byte_loop_1); |
| 3212 |
| 3213 bind(&done); |
| 3214 } |
| 3215 |
| 3216 |
| 3217 void MacroAssembler::InitializeNFieldsWithFiller(Register start_offset, |
| 3218 Register count, |
| 3219 Register filler) { |
| 3220 Label loop; |
| 3221 mtctr(count); |
| 3222 bind(&loop); |
| 3223 StoreP(filler, MemOperand(start_offset)); |
| 3224 addi(start_offset, start_offset, Operand(kPointerSize)); |
| 3225 bdnz(&loop); |
| 3226 } |
| 3227 |
| 3228 void MacroAssembler::InitializeFieldsWithFiller(Register start_offset, |
| 3229 Register end_offset, |
| 3230 Register filler) { |
| 3231 Label done; |
| 3232 sub(r0, end_offset, start_offset, LeaveOE, SetRC); |
| 3233 beq(&done, cr0); |
| 3234 ShiftRightImm(r0, r0, Operand(kPointerSizeLog2)); |
| 3235 InitializeNFieldsWithFiller(start_offset, r0, filler); |
| 3236 bind(&done); |
| 3237 } |
| 3238 |
| 3239 |
| 3240 void MacroAssembler::SaveFPRegs(Register location, int first, int count) { |
| 3241 DCHECK(count > 0); |
| 3242 int cur = first; |
| 3243 subi(location, location, Operand(count * kDoubleSize)); |
| 3244 for (int i = 0; i < count; i++) { |
| 3245 DoubleRegister reg = DoubleRegister::from_code(cur++); |
| 3246 stfd(reg, MemOperand(location, i * kDoubleSize)); |
| 3247 } |
| 3248 } |
| 3249 |
| 3250 |
| 3251 void MacroAssembler::RestoreFPRegs(Register location, int first, int count) { |
| 3252 DCHECK(count > 0); |
| 3253 int cur = first + count - 1; |
| 3254 for (int i = count - 1; i >= 0; i--) { |
| 3255 DoubleRegister reg = DoubleRegister::from_code(cur--); |
| 3256 lfd(reg, MemOperand(location, i * kDoubleSize)); |
| 3257 } |
| 3258 addi(location, location, Operand(count * kDoubleSize)); |
| 3259 } |
| 3260 |
| 3261 |
| 3262 void MacroAssembler::JumpIfBothInstanceTypesAreNotSequentialOneByte( |
| 3263 Register first, Register second, Register scratch1, Register scratch2, |
| 3264 Label* failure) { |
| 3265 const int kFlatOneByteStringMask = |
| 3266 kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask; |
| 3267 const int kFlatOneByteStringTag = |
| 3268 kStringTag | kOneByteStringTag | kSeqStringTag; |
| 3269 andi(scratch1, first, Operand(kFlatOneByteStringMask)); |
| 3270 andi(scratch2, second, Operand(kFlatOneByteStringMask)); |
| 3271 cmpi(scratch1, Operand(kFlatOneByteStringTag)); |
| 3272 bne(failure); |
| 3273 cmpi(scratch2, Operand(kFlatOneByteStringTag)); |
| 3274 bne(failure); |
| 3275 } |
| 3276 |
| 3277 |
| 3278 void MacroAssembler::JumpIfInstanceTypeIsNotSequentialOneByte(Register type, |
| 3279 Register scratch, |
| 3280 Label* failure) { |
| 3281 const int kFlatOneByteStringMask = |
| 3282 kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask; |
| 3283 const int kFlatOneByteStringTag = |
| 3284 kStringTag | kOneByteStringTag | kSeqStringTag; |
| 3285 andi(scratch, type, Operand(kFlatOneByteStringMask)); |
| 3286 cmpi(scratch, Operand(kFlatOneByteStringTag)); |
| 3287 bne(failure); |
| 3288 } |
| 3289 |
| 3290 static const int kRegisterPassedArguments = 8; |
| 3291 |
| 3292 |
| 3293 int MacroAssembler::CalculateStackPassedWords(int num_reg_arguments, |
| 3294 int num_double_arguments) { |
| 3295 int stack_passed_words = 0; |
| 3296 if (num_double_arguments > DoubleRegister::kNumRegisters) { |
| 3297 stack_passed_words += |
| 3298 2 * (num_double_arguments - DoubleRegister::kNumRegisters); |
| 3299 } |
| 3300 // Up to 8 simple arguments are passed in registers r3..r10. |
| 3301 if (num_reg_arguments > kRegisterPassedArguments) { |
| 3302 stack_passed_words += num_reg_arguments - kRegisterPassedArguments; |
| 3303 } |
| 3304 return stack_passed_words; |
| 3305 } |
| 3306 |
| 3307 |
| 3308 void MacroAssembler::EmitSeqStringSetCharCheck(Register string, Register index, |
| 3309 Register value, |
| 3310 uint32_t encoding_mask) { |
| 3311 Label is_object; |
| 3312 TestIfSmi(string, r0); |
| 3313 Check(ne, kNonObject, cr0); |
| 3314 |
| 3315 LoadP(ip, FieldMemOperand(string, HeapObject::kMapOffset)); |
| 3316 lbz(ip, FieldMemOperand(ip, Map::kInstanceTypeOffset)); |
| 3317 |
| 3318 andi(ip, ip, Operand(kStringRepresentationMask | kStringEncodingMask)); |
| 3319 cmpi(ip, Operand(encoding_mask)); |
| 3320 Check(eq, kUnexpectedStringType); |
| 3321 |
| 3322 // The index is assumed to be untagged coming in, tag it to compare with the |
| 3323 // string length without using a temp register, it is restored at the end of |
| 3324 // this function. |
| 3325 #if !V8_TARGET_ARCH_PPC64 |
| 3326 Label index_tag_ok, index_tag_bad; |
| 3327 JumpIfNotSmiCandidate(index, r0, &index_tag_bad); |
| 3328 #endif |
| 3329 SmiTag(index, index); |
| 3330 #if !V8_TARGET_ARCH_PPC64 |
| 3331 b(&index_tag_ok); |
| 3332 bind(&index_tag_bad); |
| 3333 Abort(kIndexIsTooLarge); |
| 3334 bind(&index_tag_ok); |
| 3335 #endif |
| 3336 |
| 3337 LoadP(ip, FieldMemOperand(string, String::kLengthOffset)); |
| 3338 cmp(index, ip); |
| 3339 Check(lt, kIndexIsTooLarge); |
| 3340 |
| 3341 DCHECK(Smi::FromInt(0) == 0); |
| 3342 cmpi(index, Operand::Zero()); |
| 3343 Check(ge, kIndexIsNegative); |
| 3344 |
| 3345 SmiUntag(index, index); |
| 3346 } |
| 3347 |
| 3348 |
| 3349 void MacroAssembler::PrepareCallCFunction(int num_reg_arguments, |
| 3350 int num_double_arguments, |
| 3351 Register scratch) { |
| 3352 int frame_alignment = ActivationFrameAlignment(); |
| 3353 int stack_passed_arguments = |
| 3354 CalculateStackPassedWords(num_reg_arguments, num_double_arguments); |
| 3355 int stack_space = kNumRequiredStackFrameSlots; |
| 3356 |
| 3357 if (frame_alignment > kPointerSize) { |
| 3358 // Make stack end at alignment and make room for stack arguments |
| 3359 // -- preserving original value of sp. |
| 3360 mr(scratch, sp); |
| 3361 addi(sp, sp, Operand(-(stack_passed_arguments + 1) * kPointerSize)); |
| 3362 DCHECK(base::bits::IsPowerOfTwo32(frame_alignment)); |
| 3363 ClearRightImm(sp, sp, Operand(WhichPowerOf2(frame_alignment))); |
| 3364 StoreP(scratch, MemOperand(sp, stack_passed_arguments * kPointerSize)); |
| 3365 } else { |
| 3366 // Make room for stack arguments |
| 3367 stack_space += stack_passed_arguments; |
| 3368 } |
| 3369 |
| 3370 // Allocate frame with required slots to make ABI work. |
| 3371 li(r0, Operand::Zero()); |
| 3372 StorePU(r0, MemOperand(sp, -stack_space * kPointerSize)); |
| 3373 } |
| 3374 |
| 3375 |
| 3376 void MacroAssembler::PrepareCallCFunction(int num_reg_arguments, |
| 3377 Register scratch) { |
| 3378 PrepareCallCFunction(num_reg_arguments, 0, scratch); |
| 3379 } |
| 3380 |
| 3381 |
| 3382 void MacroAssembler::MovToFloatParameter(DoubleRegister src) { Move(d1, src); } |
| 3383 |
| 3384 |
| 3385 void MacroAssembler::MovToFloatResult(DoubleRegister src) { Move(d1, src); } |
| 3386 |
| 3387 |
| 3388 void MacroAssembler::MovToFloatParameters(DoubleRegister src1, |
| 3389 DoubleRegister src2) { |
| 3390 if (src2.is(d1)) { |
| 3391 DCHECK(!src1.is(d2)); |
| 3392 Move(d2, src2); |
| 3393 Move(d1, src1); |
| 3394 } else { |
| 3395 Move(d1, src1); |
| 3396 Move(d2, src2); |
| 3397 } |
| 3398 } |
| 3399 |
| 3400 |
| 3401 void MacroAssembler::CallCFunction(ExternalReference function, |
| 3402 int num_reg_arguments, |
| 3403 int num_double_arguments) { |
| 3404 mov(ip, Operand(function)); |
| 3405 CallCFunctionHelper(ip, num_reg_arguments, num_double_arguments); |
| 3406 } |
| 3407 |
| 3408 |
| 3409 void MacroAssembler::CallCFunction(Register function, int num_reg_arguments, |
| 3410 int num_double_arguments) { |
| 3411 CallCFunctionHelper(function, num_reg_arguments, num_double_arguments); |
| 3412 } |
| 3413 |
| 3414 |
| 3415 void MacroAssembler::CallCFunction(ExternalReference function, |
| 3416 int num_arguments) { |
| 3417 CallCFunction(function, num_arguments, 0); |
| 3418 } |
| 3419 |
| 3420 |
| 3421 void MacroAssembler::CallCFunction(Register function, int num_arguments) { |
| 3422 CallCFunction(function, num_arguments, 0); |
| 3423 } |
| 3424 |
| 3425 |
| 3426 void MacroAssembler::CallCFunctionHelper(Register function, |
| 3427 int num_reg_arguments, |
| 3428 int num_double_arguments) { |
| 3429 DCHECK(has_frame()); |
| 3430 // Just call directly. The function called cannot cause a GC, or |
| 3431 // allow preemption, so the return address in the link register |
| 3432 // stays correct. |
| 3433 #if ABI_USES_FUNCTION_DESCRIPTORS && !defined(USE_SIMULATOR) |
| 3434 // AIX uses a function descriptor. When calling C code be aware |
| 3435 // of this descriptor and pick up values from it |
| 3436 LoadP(ToRegister(ABI_TOC_REGISTER), MemOperand(function, kPointerSize)); |
| 3437 LoadP(ip, MemOperand(function, 0)); |
| 3438 Register dest = ip; |
| 3439 #elif ABI_TOC_ADDRESSABILITY_VIA_IP |
| 3440 Move(ip, function); |
| 3441 Register dest = ip; |
| 3442 #else |
| 3443 Register dest = function; |
| 3444 #endif |
| 3445 |
| 3446 Call(dest); |
| 3447 |
| 3448 // Remove frame bought in PrepareCallCFunction |
| 3449 int stack_passed_arguments = |
| 3450 CalculateStackPassedWords(num_reg_arguments, num_double_arguments); |
| 3451 int stack_space = kNumRequiredStackFrameSlots + stack_passed_arguments; |
| 3452 if (ActivationFrameAlignment() > kPointerSize) { |
| 3453 LoadP(sp, MemOperand(sp, stack_space * kPointerSize)); |
| 3454 } else { |
| 3455 addi(sp, sp, Operand(stack_space * kPointerSize)); |
| 3456 } |
| 3457 } |
| 3458 |
| 3459 |
| 3460 void MacroAssembler::FlushICache(Register address, size_t size, |
| 3461 Register scratch) { |
| 3462 if (CpuFeatures::IsSupported(INSTR_AND_DATA_CACHE_COHERENCY)) { |
| 3463 sync(); |
| 3464 icbi(r0, address); |
| 3465 isync(); |
| 3466 return; |
| 3467 } |
| 3468 |
| 3469 Label done; |
| 3470 |
| 3471 dcbf(r0, address); |
| 3472 sync(); |
| 3473 icbi(r0, address); |
| 3474 isync(); |
| 3475 |
| 3476 // This code handles ranges which cross a single cacheline boundary. |
| 3477 // scratch is last cacheline which intersects range. |
| 3478 const int kCacheLineSizeLog2 = WhichPowerOf2(CpuFeatures::cache_line_size()); |
| 3479 |
| 3480 DCHECK(size > 0 && size <= (size_t)(1 << kCacheLineSizeLog2)); |
| 3481 addi(scratch, address, Operand(size - 1)); |
| 3482 ClearRightImm(scratch, scratch, Operand(kCacheLineSizeLog2)); |
| 3483 cmpl(scratch, address); |
| 3484 ble(&done); |
| 3485 |
| 3486 dcbf(r0, scratch); |
| 3487 sync(); |
| 3488 icbi(r0, scratch); |
| 3489 isync(); |
| 3490 |
| 3491 bind(&done); |
| 3492 } |
| 3493 |
| 3494 |
| 3495 void MacroAssembler::SetRelocatedValue(Register location, Register scratch, |
| 3496 Register new_value) { |
| 3497 lwz(scratch, MemOperand(location)); |
| 3498 |
| 3499 #if V8_OOL_CONSTANT_POOL |
| 3500 if (emit_debug_code()) { |
| 3501 // Check that the instruction sequence is a load from the constant pool |
| 3502 #if V8_TARGET_ARCH_PPC64 |
| 3503 And(scratch, scratch, Operand(kOpcodeMask | (0x1f * B16))); |
| 3504 Cmpi(scratch, Operand(ADDI), r0); |
| 3505 Check(eq, kTheInstructionShouldBeALi); |
| 3506 lwz(scratch, MemOperand(location, kInstrSize)); |
| 3507 #endif |
| 3508 ExtractBitMask(scratch, scratch, 0x1f * B16); |
| 3509 cmpi(scratch, Operand(kConstantPoolRegister.code())); |
| 3510 Check(eq, kTheInstructionToPatchShouldBeALoadFromConstantPool); |
| 3511 // Scratch was clobbered. Restore it. |
| 3512 lwz(scratch, MemOperand(location)); |
| 3513 } |
| 3514 // Get the address of the constant and patch it. |
| 3515 andi(scratch, scratch, Operand(kImm16Mask)); |
| 3516 StorePX(new_value, MemOperand(kConstantPoolRegister, scratch)); |
| 3517 #else |
| 3518 // This code assumes a FIXED_SEQUENCE for lis/ori |
| 3519 |
| 3520 // At this point scratch is a lis instruction. |
| 3521 if (emit_debug_code()) { |
| 3522 And(scratch, scratch, Operand(kOpcodeMask | (0x1f * B16))); |
| 3523 Cmpi(scratch, Operand(ADDIS), r0); |
| 3524 Check(eq, kTheInstructionToPatchShouldBeALis); |
| 3525 lwz(scratch, MemOperand(location)); |
| 3526 } |
| 3527 |
| 3528 // insert new high word into lis instruction |
| 3529 #if V8_TARGET_ARCH_PPC64 |
| 3530 srdi(ip, new_value, Operand(32)); |
| 3531 rlwimi(scratch, ip, 16, 16, 31); |
| 3532 #else |
| 3533 rlwimi(scratch, new_value, 16, 16, 31); |
| 3534 #endif |
| 3535 |
| 3536 stw(scratch, MemOperand(location)); |
| 3537 |
| 3538 lwz(scratch, MemOperand(location, kInstrSize)); |
| 3539 // scratch is now ori. |
| 3540 if (emit_debug_code()) { |
| 3541 And(scratch, scratch, Operand(kOpcodeMask)); |
| 3542 Cmpi(scratch, Operand(ORI), r0); |
| 3543 Check(eq, kTheInstructionShouldBeAnOri); |
| 3544 lwz(scratch, MemOperand(location, kInstrSize)); |
| 3545 } |
| 3546 |
| 3547 // insert new low word into ori instruction |
| 3548 #if V8_TARGET_ARCH_PPC64 |
| 3549 rlwimi(scratch, ip, 0, 16, 31); |
| 3550 #else |
| 3551 rlwimi(scratch, new_value, 0, 16, 31); |
| 3552 #endif |
| 3553 stw(scratch, MemOperand(location, kInstrSize)); |
| 3554 |
| 3555 #if V8_TARGET_ARCH_PPC64 |
| 3556 if (emit_debug_code()) { |
| 3557 lwz(scratch, MemOperand(location, 2 * kInstrSize)); |
| 3558 // scratch is now sldi. |
| 3559 And(scratch, scratch, Operand(kOpcodeMask | kExt5OpcodeMask)); |
| 3560 Cmpi(scratch, Operand(EXT5 | RLDICR), r0); |
| 3561 Check(eq, kTheInstructionShouldBeASldi); |
| 3562 } |
| 3563 |
| 3564 lwz(scratch, MemOperand(location, 3 * kInstrSize)); |
| 3565 // scratch is now ori. |
| 3566 if (emit_debug_code()) { |
| 3567 And(scratch, scratch, Operand(kOpcodeMask)); |
| 3568 Cmpi(scratch, Operand(ORIS), r0); |
| 3569 Check(eq, kTheInstructionShouldBeAnOris); |
| 3570 lwz(scratch, MemOperand(location, 3 * kInstrSize)); |
| 3571 } |
| 3572 |
| 3573 rlwimi(scratch, new_value, 16, 16, 31); |
| 3574 stw(scratch, MemOperand(location, 3 * kInstrSize)); |
| 3575 |
| 3576 lwz(scratch, MemOperand(location, 4 * kInstrSize)); |
| 3577 // scratch is now ori. |
| 3578 if (emit_debug_code()) { |
| 3579 And(scratch, scratch, Operand(kOpcodeMask)); |
| 3580 Cmpi(scratch, Operand(ORI), r0); |
| 3581 Check(eq, kTheInstructionShouldBeAnOri); |
| 3582 lwz(scratch, MemOperand(location, 4 * kInstrSize)); |
| 3583 } |
| 3584 rlwimi(scratch, new_value, 0, 16, 31); |
| 3585 stw(scratch, MemOperand(location, 4 * kInstrSize)); |
| 3586 #endif |
| 3587 |
| 3588 // Update the I-cache so the new lis and addic can be executed. |
| 3589 #if V8_TARGET_ARCH_PPC64 |
| 3590 FlushICache(location, 5 * kInstrSize, scratch); |
| 3591 #else |
| 3592 FlushICache(location, 2 * kInstrSize, scratch); |
| 3593 #endif |
| 3594 #endif |
| 3595 } |
| 3596 |
| 3597 |
| 3598 void MacroAssembler::GetRelocatedValue(Register location, Register result, |
| 3599 Register scratch) { |
| 3600 lwz(result, MemOperand(location)); |
| 3601 |
| 3602 #if V8_OOL_CONSTANT_POOL |
| 3603 if (emit_debug_code()) { |
| 3604 // Check that the instruction sequence is a load from the constant pool |
| 3605 #if V8_TARGET_ARCH_PPC64 |
| 3606 And(result, result, Operand(kOpcodeMask | (0x1f * B16))); |
| 3607 Cmpi(result, Operand(ADDI), r0); |
| 3608 Check(eq, kTheInstructionShouldBeALi); |
| 3609 lwz(result, MemOperand(location, kInstrSize)); |
| 3610 #endif |
| 3611 ExtractBitMask(result, result, 0x1f * B16); |
| 3612 cmpi(result, Operand(kConstantPoolRegister.code())); |
| 3613 Check(eq, kTheInstructionToPatchShouldBeALoadFromConstantPool); |
| 3614 lwz(result, MemOperand(location)); |
| 3615 } |
| 3616 // Get the address of the constant and retrieve it. |
| 3617 andi(result, result, Operand(kImm16Mask)); |
| 3618 LoadPX(result, MemOperand(kConstantPoolRegister, result)); |
| 3619 #else |
| 3620 // This code assumes a FIXED_SEQUENCE for lis/ori |
| 3621 if (emit_debug_code()) { |
| 3622 And(result, result, Operand(kOpcodeMask | (0x1f * B16))); |
| 3623 Cmpi(result, Operand(ADDIS), r0); |
| 3624 Check(eq, kTheInstructionShouldBeALis); |
| 3625 lwz(result, MemOperand(location)); |
| 3626 } |
| 3627 |
| 3628 // result now holds a lis instruction. Extract the immediate. |
| 3629 slwi(result, result, Operand(16)); |
| 3630 |
| 3631 lwz(scratch, MemOperand(location, kInstrSize)); |
| 3632 if (emit_debug_code()) { |
| 3633 And(scratch, scratch, Operand(kOpcodeMask)); |
| 3634 Cmpi(scratch, Operand(ORI), r0); |
| 3635 Check(eq, kTheInstructionShouldBeAnOri); |
| 3636 lwz(scratch, MemOperand(location, kInstrSize)); |
| 3637 } |
| 3638 // Copy the low 16bits from ori instruction into result |
| 3639 rlwimi(result, scratch, 0, 16, 31); |
| 3640 |
| 3641 #if V8_TARGET_ARCH_PPC64 |
| 3642 if (emit_debug_code()) { |
| 3643 lwz(scratch, MemOperand(location, 2 * kInstrSize)); |
| 3644 // scratch is now sldi. |
| 3645 And(scratch, scratch, Operand(kOpcodeMask | kExt5OpcodeMask)); |
| 3646 Cmpi(scratch, Operand(EXT5 | RLDICR), r0); |
| 3647 Check(eq, kTheInstructionShouldBeASldi); |
| 3648 } |
| 3649 |
| 3650 lwz(scratch, MemOperand(location, 3 * kInstrSize)); |
| 3651 // scratch is now ori. |
| 3652 if (emit_debug_code()) { |
| 3653 And(scratch, scratch, Operand(kOpcodeMask)); |
| 3654 Cmpi(scratch, Operand(ORIS), r0); |
| 3655 Check(eq, kTheInstructionShouldBeAnOris); |
| 3656 lwz(scratch, MemOperand(location, 3 * kInstrSize)); |
| 3657 } |
| 3658 sldi(result, result, Operand(16)); |
| 3659 rldimi(result, scratch, 0, 48); |
| 3660 |
| 3661 lwz(scratch, MemOperand(location, 4 * kInstrSize)); |
| 3662 // scratch is now ori. |
| 3663 if (emit_debug_code()) { |
| 3664 And(scratch, scratch, Operand(kOpcodeMask)); |
| 3665 Cmpi(scratch, Operand(ORI), r0); |
| 3666 Check(eq, kTheInstructionShouldBeAnOri); |
| 3667 lwz(scratch, MemOperand(location, 4 * kInstrSize)); |
| 3668 } |
| 3669 sldi(result, result, Operand(16)); |
| 3670 rldimi(result, scratch, 0, 48); |
| 3671 #endif |
| 3672 #endif |
| 3673 } |
| 3674 |
| 3675 |
| 3676 void MacroAssembler::CheckPageFlag( |
| 3677 Register object, |
| 3678 Register scratch, // scratch may be same register as object |
| 3679 int mask, Condition cc, Label* condition_met) { |
| 3680 DCHECK(cc == ne || cc == eq); |
| 3681 ClearRightImm(scratch, object, Operand(kPageSizeBits)); |
| 3682 LoadP(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset)); |
| 3683 |
| 3684 And(r0, scratch, Operand(mask), SetRC); |
| 3685 |
| 3686 if (cc == ne) { |
| 3687 bne(condition_met, cr0); |
| 3688 } |
| 3689 if (cc == eq) { |
| 3690 beq(condition_met, cr0); |
| 3691 } |
| 3692 } |
| 3693 |
| 3694 |
| 3695 void MacroAssembler::CheckMapDeprecated(Handle<Map> map, Register scratch, |
| 3696 Label* if_deprecated) { |
| 3697 if (map->CanBeDeprecated()) { |
| 3698 mov(scratch, Operand(map)); |
| 3699 lwz(scratch, FieldMemOperand(scratch, Map::kBitField3Offset)); |
| 3700 ExtractBitMask(scratch, scratch, Map::Deprecated::kMask, SetRC); |
| 3701 bne(if_deprecated, cr0); |
| 3702 } |
| 3703 } |
| 3704 |
| 3705 |
| 3706 void MacroAssembler::JumpIfBlack(Register object, Register scratch0, |
| 3707 Register scratch1, Label* on_black) { |
| 3708 HasColor(object, scratch0, scratch1, on_black, 1, 0); // kBlackBitPattern. |
| 3709 DCHECK(strcmp(Marking::kBlackBitPattern, "10") == 0); |
| 3710 } |
| 3711 |
| 3712 |
| 3713 void MacroAssembler::HasColor(Register object, Register bitmap_scratch, |
| 3714 Register mask_scratch, Label* has_color, |
| 3715 int first_bit, int second_bit) { |
| 3716 DCHECK(!AreAliased(object, bitmap_scratch, mask_scratch, no_reg)); |
| 3717 |
| 3718 GetMarkBits(object, bitmap_scratch, mask_scratch); |
| 3719 |
| 3720 Label other_color, word_boundary; |
| 3721 lwz(ip, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize)); |
| 3722 // Test the first bit |
| 3723 and_(r0, ip, mask_scratch, SetRC); |
| 3724 b(first_bit == 1 ? eq : ne, &other_color, cr0); |
| 3725 // Shift left 1 |
| 3726 // May need to load the next cell |
| 3727 slwi(mask_scratch, mask_scratch, Operand(1), SetRC); |
| 3728 beq(&word_boundary, cr0); |
| 3729 // Test the second bit |
| 3730 and_(r0, ip, mask_scratch, SetRC); |
| 3731 b(second_bit == 1 ? ne : eq, has_color, cr0); |
| 3732 b(&other_color); |
| 3733 |
| 3734 bind(&word_boundary); |
| 3735 lwz(ip, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize + kIntSize)); |
| 3736 andi(r0, ip, Operand(1)); |
| 3737 b(second_bit == 1 ? ne : eq, has_color, cr0); |
| 3738 bind(&other_color); |
| 3739 } |
| 3740 |
| 3741 |
| 3742 // Detect some, but not all, common pointer-free objects. This is used by the |
| 3743 // incremental write barrier which doesn't care about oddballs (they are always |
| 3744 // marked black immediately so this code is not hit). |
| 3745 void MacroAssembler::JumpIfDataObject(Register value, Register scratch, |
| 3746 Label* not_data_object) { |
| 3747 Label is_data_object; |
| 3748 LoadP(scratch, FieldMemOperand(value, HeapObject::kMapOffset)); |
| 3749 CompareRoot(scratch, Heap::kHeapNumberMapRootIndex); |
| 3750 beq(&is_data_object); |
| 3751 DCHECK(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1); |
| 3752 DCHECK(kNotStringTag == 0x80 && kIsNotStringMask == 0x80); |
| 3753 // If it's a string and it's not a cons string then it's an object containing |
| 3754 // no GC pointers. |
| 3755 lbz(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); |
| 3756 STATIC_ASSERT((kIsIndirectStringMask | kIsNotStringMask) == 0x81); |
| 3757 andi(scratch, scratch, Operand(kIsIndirectStringMask | kIsNotStringMask)); |
| 3758 bne(not_data_object, cr0); |
| 3759 bind(&is_data_object); |
| 3760 } |
| 3761 |
| 3762 |
| 3763 void MacroAssembler::GetMarkBits(Register addr_reg, Register bitmap_reg, |
| 3764 Register mask_reg) { |
| 3765 DCHECK(!AreAliased(addr_reg, bitmap_reg, mask_reg, no_reg)); |
| 3766 DCHECK((~Page::kPageAlignmentMask & 0xffff) == 0); |
| 3767 lis(r0, Operand((~Page::kPageAlignmentMask >> 16))); |
| 3768 and_(bitmap_reg, addr_reg, r0); |
| 3769 const int kLowBits = kPointerSizeLog2 + Bitmap::kBitsPerCellLog2; |
| 3770 ExtractBitRange(mask_reg, addr_reg, kLowBits - 1, kPointerSizeLog2); |
| 3771 ExtractBitRange(ip, addr_reg, kPageSizeBits - 1, kLowBits); |
| 3772 ShiftLeftImm(ip, ip, Operand(Bitmap::kBytesPerCellLog2)); |
| 3773 add(bitmap_reg, bitmap_reg, ip); |
| 3774 li(ip, Operand(1)); |
| 3775 slw(mask_reg, ip, mask_reg); |
| 3776 } |
| 3777 |
| 3778 |
| 3779 void MacroAssembler::EnsureNotWhite(Register value, Register bitmap_scratch, |
| 3780 Register mask_scratch, |
| 3781 Register load_scratch, |
| 3782 Label* value_is_white_and_not_data) { |
| 3783 DCHECK(!AreAliased(value, bitmap_scratch, mask_scratch, ip)); |
| 3784 GetMarkBits(value, bitmap_scratch, mask_scratch); |
| 3785 |
| 3786 // If the value is black or grey we don't need to do anything. |
| 3787 DCHECK(strcmp(Marking::kWhiteBitPattern, "00") == 0); |
| 3788 DCHECK(strcmp(Marking::kBlackBitPattern, "10") == 0); |
| 3789 DCHECK(strcmp(Marking::kGreyBitPattern, "11") == 0); |
| 3790 DCHECK(strcmp(Marking::kImpossibleBitPattern, "01") == 0); |
| 3791 |
| 3792 Label done; |
| 3793 |
| 3794 // Since both black and grey have a 1 in the first position and white does |
| 3795 // not have a 1 there we only need to check one bit. |
| 3796 lwz(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize)); |
| 3797 and_(r0, mask_scratch, load_scratch, SetRC); |
| 3798 bne(&done, cr0); |
| 3799 |
| 3800 if (emit_debug_code()) { |
| 3801 // Check for impossible bit pattern. |
| 3802 Label ok; |
| 3803 // LSL may overflow, making the check conservative. |
| 3804 slwi(r0, mask_scratch, Operand(1)); |
| 3805 and_(r0, load_scratch, r0, SetRC); |
| 3806 beq(&ok, cr0); |
| 3807 stop("Impossible marking bit pattern"); |
| 3808 bind(&ok); |
| 3809 } |
| 3810 |
| 3811 // Value is white. We check whether it is data that doesn't need scanning. |
| 3812 // Currently only checks for HeapNumber and non-cons strings. |
| 3813 Register map = load_scratch; // Holds map while checking type. |
| 3814 Register length = load_scratch; // Holds length of object after testing type. |
| 3815 Label is_data_object, maybe_string_object, is_string_object, is_encoded; |
| 3816 #if V8_TARGET_ARCH_PPC64 |
| 3817 Label length_computed; |
| 3818 #endif |
| 3819 |
| 3820 |
| 3821 // Check for heap-number |
| 3822 LoadP(map, FieldMemOperand(value, HeapObject::kMapOffset)); |
| 3823 CompareRoot(map, Heap::kHeapNumberMapRootIndex); |
| 3824 bne(&maybe_string_object); |
| 3825 li(length, Operand(HeapNumber::kSize)); |
| 3826 b(&is_data_object); |
| 3827 bind(&maybe_string_object); |
| 3828 |
| 3829 // Check for strings. |
| 3830 DCHECK(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1); |
| 3831 DCHECK(kNotStringTag == 0x80 && kIsNotStringMask == 0x80); |
| 3832 // If it's a string and it's not a cons string then it's an object containing |
| 3833 // no GC pointers. |
| 3834 Register instance_type = load_scratch; |
| 3835 lbz(instance_type, FieldMemOperand(map, Map::kInstanceTypeOffset)); |
| 3836 andi(r0, instance_type, Operand(kIsIndirectStringMask | kIsNotStringMask)); |
| 3837 bne(value_is_white_and_not_data, cr0); |
| 3838 // It's a non-indirect (non-cons and non-slice) string. |
| 3839 // If it's external, the length is just ExternalString::kSize. |
| 3840 // Otherwise it's String::kHeaderSize + string->length() * (1 or 2). |
| 3841 // External strings are the only ones with the kExternalStringTag bit |
| 3842 // set. |
| 3843 DCHECK_EQ(0, kSeqStringTag & kExternalStringTag); |
| 3844 DCHECK_EQ(0, kConsStringTag & kExternalStringTag); |
| 3845 andi(r0, instance_type, Operand(kExternalStringTag)); |
| 3846 beq(&is_string_object, cr0); |
| 3847 li(length, Operand(ExternalString::kSize)); |
| 3848 b(&is_data_object); |
| 3849 bind(&is_string_object); |
| 3850 |
| 3851 // Sequential string, either Latin1 or UC16. |
| 3852 // For Latin1 (char-size of 1) we untag the smi to get the length. |
| 3853 // For UC16 (char-size of 2): |
| 3854 // - (32-bit) we just leave the smi tag in place, thereby getting |
| 3855 // the length multiplied by 2. |
| 3856 // - (64-bit) we compute the offset in the 2-byte array |
| 3857 DCHECK(kOneByteStringTag == 4 && kStringEncodingMask == 4); |
| 3858 LoadP(ip, FieldMemOperand(value, String::kLengthOffset)); |
| 3859 andi(r0, instance_type, Operand(kStringEncodingMask)); |
| 3860 beq(&is_encoded, cr0); |
| 3861 SmiUntag(ip); |
| 3862 #if V8_TARGET_ARCH_PPC64 |
| 3863 b(&length_computed); |
| 3864 #endif |
| 3865 bind(&is_encoded); |
| 3866 #if V8_TARGET_ARCH_PPC64 |
| 3867 SmiToShortArrayOffset(ip, ip); |
| 3868 bind(&length_computed); |
| 3869 #else |
| 3870 DCHECK(kSmiShift == 1); |
| 3871 #endif |
| 3872 addi(length, ip, Operand(SeqString::kHeaderSize + kObjectAlignmentMask)); |
| 3873 li(r0, Operand(~kObjectAlignmentMask)); |
| 3874 and_(length, length, r0); |
| 3875 |
| 3876 bind(&is_data_object); |
| 3877 // Value is a data object, and it is white. Mark it black. Since we know |
| 3878 // that the object is white we can make it black by flipping one bit. |
| 3879 lwz(ip, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize)); |
| 3880 orx(ip, ip, mask_scratch); |
| 3881 stw(ip, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize)); |
| 3882 |
| 3883 mov(ip, Operand(~Page::kPageAlignmentMask)); |
| 3884 and_(bitmap_scratch, bitmap_scratch, ip); |
| 3885 lwz(ip, MemOperand(bitmap_scratch, MemoryChunk::kLiveBytesOffset)); |
| 3886 add(ip, ip, length); |
| 3887 stw(ip, MemOperand(bitmap_scratch, MemoryChunk::kLiveBytesOffset)); |
| 3888 |
| 3889 bind(&done); |
| 3890 } |
| 3891 |
| 3892 |
| 3893 // Saturate a value into 8-bit unsigned integer |
| 3894 // if input_value < 0, output_value is 0 |
| 3895 // if input_value > 255, output_value is 255 |
| 3896 // otherwise output_value is the input_value |
| 3897 void MacroAssembler::ClampUint8(Register output_reg, Register input_reg) { |
| 3898 Label done, negative_label, overflow_label; |
| 3899 int satval = (1 << 8) - 1; |
| 3900 |
| 3901 cmpi(input_reg, Operand::Zero()); |
| 3902 blt(&negative_label); |
| 3903 |
| 3904 cmpi(input_reg, Operand(satval)); |
| 3905 bgt(&overflow_label); |
| 3906 if (!output_reg.is(input_reg)) { |
| 3907 mr(output_reg, input_reg); |
| 3908 } |
| 3909 b(&done); |
| 3910 |
| 3911 bind(&negative_label); |
| 3912 li(output_reg, Operand::Zero()); // set to 0 if negative |
| 3913 b(&done); |
| 3914 |
| 3915 |
| 3916 bind(&overflow_label); // set to satval if > satval |
| 3917 li(output_reg, Operand(satval)); |
| 3918 |
| 3919 bind(&done); |
| 3920 } |
| 3921 |
| 3922 |
| 3923 void MacroAssembler::SetRoundingMode(FPRoundingMode RN) { mtfsfi(7, RN); } |
| 3924 |
| 3925 |
| 3926 void MacroAssembler::ResetRoundingMode() { |
| 3927 mtfsfi(7, kRoundToNearest); // reset (default is kRoundToNearest) |
| 3928 } |
| 3929 |
| 3930 |
| 3931 void MacroAssembler::ClampDoubleToUint8(Register result_reg, |
| 3932 DoubleRegister input_reg, |
| 3933 DoubleRegister double_scratch) { |
| 3934 Label above_zero; |
| 3935 Label done; |
| 3936 Label in_bounds; |
| 3937 |
| 3938 LoadDoubleLiteral(double_scratch, 0.0, result_reg); |
| 3939 fcmpu(input_reg, double_scratch); |
| 3940 bgt(&above_zero); |
| 3941 |
| 3942 // Double value is less than zero, NaN or Inf, return 0. |
| 3943 LoadIntLiteral(result_reg, 0); |
| 3944 b(&done); |
| 3945 |
| 3946 // Double value is >= 255, return 255. |
| 3947 bind(&above_zero); |
| 3948 LoadDoubleLiteral(double_scratch, 255.0, result_reg); |
| 3949 fcmpu(input_reg, double_scratch); |
| 3950 ble(&in_bounds); |
| 3951 LoadIntLiteral(result_reg, 255); |
| 3952 b(&done); |
| 3953 |
| 3954 // In 0-255 range, round and truncate. |
| 3955 bind(&in_bounds); |
| 3956 |
| 3957 // round to nearest (default rounding mode) |
| 3958 fctiw(double_scratch, input_reg); |
| 3959 MovDoubleLowToInt(result_reg, double_scratch); |
| 3960 bind(&done); |
| 3961 } |
| 3962 |
| 3963 |
| 3964 void MacroAssembler::LoadInstanceDescriptors(Register map, |
| 3965 Register descriptors) { |
| 3966 LoadP(descriptors, FieldMemOperand(map, Map::kDescriptorsOffset)); |
| 3967 } |
| 3968 |
| 3969 |
| 3970 void MacroAssembler::NumberOfOwnDescriptors(Register dst, Register map) { |
| 3971 lwz(dst, FieldMemOperand(map, Map::kBitField3Offset)); |
| 3972 DecodeField<Map::NumberOfOwnDescriptorsBits>(dst); |
| 3973 } |
| 3974 |
| 3975 |
| 3976 void MacroAssembler::EnumLength(Register dst, Register map) { |
| 3977 STATIC_ASSERT(Map::EnumLengthBits::kShift == 0); |
| 3978 lwz(dst, FieldMemOperand(map, Map::kBitField3Offset)); |
| 3979 ExtractBitMask(dst, dst, Map::EnumLengthBits::kMask); |
| 3980 SmiTag(dst); |
| 3981 } |
| 3982 |
| 3983 |
| 3984 void MacroAssembler::CheckEnumCache(Register null_value, Label* call_runtime) { |
| 3985 Register empty_fixed_array_value = r9; |
| 3986 LoadRoot(empty_fixed_array_value, Heap::kEmptyFixedArrayRootIndex); |
| 3987 Label next, start; |
| 3988 mr(r5, r3); |
| 3989 |
| 3990 // Check if the enum length field is properly initialized, indicating that |
| 3991 // there is an enum cache. |
| 3992 LoadP(r4, FieldMemOperand(r5, HeapObject::kMapOffset)); |
| 3993 |
| 3994 EnumLength(r6, r4); |
| 3995 CmpSmiLiteral(r6, Smi::FromInt(kInvalidEnumCacheSentinel), r0); |
| 3996 beq(call_runtime); |
| 3997 |
| 3998 b(&start); |
| 3999 |
| 4000 bind(&next); |
| 4001 LoadP(r4, FieldMemOperand(r5, HeapObject::kMapOffset)); |
| 4002 |
| 4003 // For all objects but the receiver, check that the cache is empty. |
| 4004 EnumLength(r6, r4); |
| 4005 CmpSmiLiteral(r6, Smi::FromInt(0), r0); |
| 4006 bne(call_runtime); |
| 4007 |
| 4008 bind(&start); |
| 4009 |
| 4010 // Check that there are no elements. Register r5 contains the current JS |
| 4011 // object we've reached through the prototype chain. |
| 4012 Label no_elements; |
| 4013 LoadP(r5, FieldMemOperand(r5, JSObject::kElementsOffset)); |
| 4014 cmp(r5, empty_fixed_array_value); |
| 4015 beq(&no_elements); |
| 4016 |
| 4017 // Second chance, the object may be using the empty slow element dictionary. |
| 4018 CompareRoot(r5, Heap::kEmptySlowElementDictionaryRootIndex); |
| 4019 bne(call_runtime); |
| 4020 |
| 4021 bind(&no_elements); |
| 4022 LoadP(r5, FieldMemOperand(r4, Map::kPrototypeOffset)); |
| 4023 cmp(r5, null_value); |
| 4024 bne(&next); |
| 4025 } |
| 4026 |
| 4027 |
| 4028 //////////////////////////////////////////////////////////////////////////////// |
| 4029 // |
| 4030 // New MacroAssembler Interfaces added for PPC |
| 4031 // |
| 4032 //////////////////////////////////////////////////////////////////////////////// |
| 4033 void MacroAssembler::LoadIntLiteral(Register dst, int value) { |
| 4034 mov(dst, Operand(value)); |
| 4035 } |
| 4036 |
| 4037 |
| 4038 void MacroAssembler::LoadSmiLiteral(Register dst, Smi* smi) { |
| 4039 mov(dst, Operand(smi)); |
| 4040 } |
| 4041 |
| 4042 |
| 4043 void MacroAssembler::LoadDoubleLiteral(DoubleRegister result, double value, |
| 4044 Register scratch) { |
| 4045 #if V8_OOL_CONSTANT_POOL |
| 4046 // TODO(mbrandy): enable extended constant pool usage for doubles. |
| 4047 // See ARM commit e27ab337 for a reference. |
| 4048 if (is_ool_constant_pool_available() && !is_constant_pool_full()) { |
| 4049 RelocInfo rinfo(pc_, value); |
| 4050 ConstantPoolAddEntry(rinfo); |
| 4051 #if V8_TARGET_ARCH_PPC64 |
| 4052 // We use 2 instruction sequence here for consistency with mov. |
| 4053 li(scratch, Operand::Zero()); |
| 4054 lfdx(result, MemOperand(kConstantPoolRegister, scratch)); |
| 4055 #else |
| 4056 lfd(result, MemOperand(kConstantPoolRegister, 0)); |
| 4057 #endif |
| 4058 return; |
| 4059 } |
| 4060 #endif |
| 4061 |
| 4062 // avoid gcc strict aliasing error using union cast |
| 4063 union { |
| 4064 double dval; |
| 4065 #if V8_TARGET_ARCH_PPC64 |
| 4066 intptr_t ival; |
| 4067 #else |
| 4068 intptr_t ival[2]; |
| 4069 #endif |
| 4070 } litVal; |
| 4071 |
| 4072 litVal.dval = value; |
| 4073 |
| 4074 #if V8_TARGET_ARCH_PPC64 |
| 4075 if (CpuFeatures::IsSupported(FPR_GPR_MOV)) { |
| 4076 mov(scratch, Operand(litVal.ival)); |
| 4077 mtfprd(result, scratch); |
| 4078 return; |
| 4079 } |
| 4080 #endif |
| 4081 |
| 4082 addi(sp, sp, Operand(-kDoubleSize)); |
| 4083 #if V8_TARGET_ARCH_PPC64 |
| 4084 mov(scratch, Operand(litVal.ival)); |
| 4085 std(scratch, MemOperand(sp)); |
| 4086 #else |
| 4087 LoadIntLiteral(scratch, litVal.ival[0]); |
| 4088 stw(scratch, MemOperand(sp, 0)); |
| 4089 LoadIntLiteral(scratch, litVal.ival[1]); |
| 4090 stw(scratch, MemOperand(sp, 4)); |
| 4091 #endif |
| 4092 nop(GROUP_ENDING_NOP); // LHS/RAW optimization |
| 4093 lfd(result, MemOperand(sp, 0)); |
| 4094 addi(sp, sp, Operand(kDoubleSize)); |
| 4095 } |
| 4096 |
| 4097 |
| 4098 void MacroAssembler::MovIntToDouble(DoubleRegister dst, Register src, |
| 4099 Register scratch) { |
| 4100 // sign-extend src to 64-bit |
| 4101 #if V8_TARGET_ARCH_PPC64 |
| 4102 if (CpuFeatures::IsSupported(FPR_GPR_MOV)) { |
| 4103 mtfprwa(dst, src); |
| 4104 return; |
| 4105 } |
| 4106 #endif |
| 4107 |
| 4108 DCHECK(!src.is(scratch)); |
| 4109 subi(sp, sp, Operand(kDoubleSize)); |
| 4110 #if V8_TARGET_ARCH_PPC64 |
| 4111 extsw(scratch, src); |
| 4112 std(scratch, MemOperand(sp, 0)); |
| 4113 #else |
| 4114 srawi(scratch, src, 31); |
| 4115 stw(scratch, MemOperand(sp, Register::kExponentOffset)); |
| 4116 stw(src, MemOperand(sp, Register::kMantissaOffset)); |
| 4117 #endif |
| 4118 nop(GROUP_ENDING_NOP); // LHS/RAW optimization |
| 4119 lfd(dst, MemOperand(sp, 0)); |
| 4120 addi(sp, sp, Operand(kDoubleSize)); |
| 4121 } |
| 4122 |
| 4123 |
| 4124 void MacroAssembler::MovUnsignedIntToDouble(DoubleRegister dst, Register src, |
| 4125 Register scratch) { |
| 4126 // zero-extend src to 64-bit |
| 4127 #if V8_TARGET_ARCH_PPC64 |
| 4128 if (CpuFeatures::IsSupported(FPR_GPR_MOV)) { |
| 4129 mtfprwz(dst, src); |
| 4130 return; |
| 4131 } |
| 4132 #endif |
| 4133 |
| 4134 DCHECK(!src.is(scratch)); |
| 4135 subi(sp, sp, Operand(kDoubleSize)); |
| 4136 #if V8_TARGET_ARCH_PPC64 |
| 4137 clrldi(scratch, src, Operand(32)); |
| 4138 std(scratch, MemOperand(sp, 0)); |
| 4139 #else |
| 4140 li(scratch, Operand::Zero()); |
| 4141 stw(scratch, MemOperand(sp, Register::kExponentOffset)); |
| 4142 stw(src, MemOperand(sp, Register::kMantissaOffset)); |
| 4143 #endif |
| 4144 nop(GROUP_ENDING_NOP); // LHS/RAW optimization |
| 4145 lfd(dst, MemOperand(sp, 0)); |
| 4146 addi(sp, sp, Operand(kDoubleSize)); |
| 4147 } |
| 4148 |
| 4149 |
| 4150 void MacroAssembler::MovInt64ToDouble(DoubleRegister dst, |
| 4151 #if !V8_TARGET_ARCH_PPC64 |
| 4152 Register src_hi, |
| 4153 #endif |
| 4154 Register src) { |
| 4155 #if V8_TARGET_ARCH_PPC64 |
| 4156 if (CpuFeatures::IsSupported(FPR_GPR_MOV)) { |
| 4157 mtfprd(dst, src); |
| 4158 return; |
| 4159 } |
| 4160 #endif |
| 4161 |
| 4162 subi(sp, sp, Operand(kDoubleSize)); |
| 4163 #if V8_TARGET_ARCH_PPC64 |
| 4164 std(src, MemOperand(sp, 0)); |
| 4165 #else |
| 4166 stw(src_hi, MemOperand(sp, Register::kExponentOffset)); |
| 4167 stw(src, MemOperand(sp, Register::kMantissaOffset)); |
| 4168 #endif |
| 4169 nop(GROUP_ENDING_NOP); // LHS/RAW optimization |
| 4170 lfd(dst, MemOperand(sp, 0)); |
| 4171 addi(sp, sp, Operand(kDoubleSize)); |
| 4172 } |
| 4173 |
| 4174 |
| 4175 #if V8_TARGET_ARCH_PPC64 |
| 4176 void MacroAssembler::MovInt64ComponentsToDouble(DoubleRegister dst, |
| 4177 Register src_hi, |
| 4178 Register src_lo, |
| 4179 Register scratch) { |
| 4180 if (CpuFeatures::IsSupported(FPR_GPR_MOV)) { |
| 4181 sldi(scratch, src_hi, Operand(32)); |
| 4182 rldimi(scratch, src_lo, 0, 32); |
| 4183 mtfprd(dst, scratch); |
| 4184 return; |
| 4185 } |
| 4186 |
| 4187 subi(sp, sp, Operand(kDoubleSize)); |
| 4188 stw(src_hi, MemOperand(sp, Register::kExponentOffset)); |
| 4189 stw(src_lo, MemOperand(sp, Register::kMantissaOffset)); |
| 4190 nop(GROUP_ENDING_NOP); // LHS/RAW optimization |
| 4191 lfd(dst, MemOperand(sp)); |
| 4192 addi(sp, sp, Operand(kDoubleSize)); |
| 4193 } |
| 4194 #endif |
| 4195 |
| 4196 |
| 4197 void MacroAssembler::MovDoubleLowToInt(Register dst, DoubleRegister src) { |
| 4198 #if V8_TARGET_ARCH_PPC64 |
| 4199 if (CpuFeatures::IsSupported(FPR_GPR_MOV)) { |
| 4200 mffprwz(dst, src); |
| 4201 return; |
| 4202 } |
| 4203 #endif |
| 4204 |
| 4205 subi(sp, sp, Operand(kDoubleSize)); |
| 4206 stfd(src, MemOperand(sp)); |
| 4207 nop(GROUP_ENDING_NOP); // LHS/RAW optimization |
| 4208 lwz(dst, MemOperand(sp, Register::kMantissaOffset)); |
| 4209 addi(sp, sp, Operand(kDoubleSize)); |
| 4210 } |
| 4211 |
| 4212 |
| 4213 void MacroAssembler::MovDoubleHighToInt(Register dst, DoubleRegister src) { |
| 4214 #if V8_TARGET_ARCH_PPC64 |
| 4215 if (CpuFeatures::IsSupported(FPR_GPR_MOV)) { |
| 4216 mffprd(dst, src); |
| 4217 srdi(dst, dst, Operand(32)); |
| 4218 return; |
| 4219 } |
| 4220 #endif |
| 4221 |
| 4222 subi(sp, sp, Operand(kDoubleSize)); |
| 4223 stfd(src, MemOperand(sp)); |
| 4224 nop(GROUP_ENDING_NOP); // LHS/RAW optimization |
| 4225 lwz(dst, MemOperand(sp, Register::kExponentOffset)); |
| 4226 addi(sp, sp, Operand(kDoubleSize)); |
| 4227 } |
| 4228 |
| 4229 |
| 4230 void MacroAssembler::MovDoubleToInt64( |
| 4231 #if !V8_TARGET_ARCH_PPC64 |
| 4232 Register dst_hi, |
| 4233 #endif |
| 4234 Register dst, DoubleRegister src) { |
| 4235 #if V8_TARGET_ARCH_PPC64 |
| 4236 if (CpuFeatures::IsSupported(FPR_GPR_MOV)) { |
| 4237 mffprd(dst, src); |
| 4238 return; |
| 4239 } |
| 4240 #endif |
| 4241 |
| 4242 subi(sp, sp, Operand(kDoubleSize)); |
| 4243 stfd(src, MemOperand(sp)); |
| 4244 nop(GROUP_ENDING_NOP); // LHS/RAW optimization |
| 4245 #if V8_TARGET_ARCH_PPC64 |
| 4246 ld(dst, MemOperand(sp, 0)); |
| 4247 #else |
| 4248 lwz(dst_hi, MemOperand(sp, Register::kExponentOffset)); |
| 4249 lwz(dst, MemOperand(sp, Register::kMantissaOffset)); |
| 4250 #endif |
| 4251 addi(sp, sp, Operand(kDoubleSize)); |
| 4252 } |
| 4253 |
| 4254 |
| 4255 void MacroAssembler::Add(Register dst, Register src, intptr_t value, |
| 4256 Register scratch) { |
| 4257 if (is_int16(value)) { |
| 4258 addi(dst, src, Operand(value)); |
| 4259 } else { |
| 4260 mov(scratch, Operand(value)); |
| 4261 add(dst, src, scratch); |
| 4262 } |
| 4263 } |
| 4264 |
| 4265 |
| 4266 void MacroAssembler::Cmpi(Register src1, const Operand& src2, Register scratch, |
| 4267 CRegister cr) { |
| 4268 intptr_t value = src2.immediate(); |
| 4269 if (is_int16(value)) { |
| 4270 cmpi(src1, src2, cr); |
| 4271 } else { |
| 4272 mov(scratch, src2); |
| 4273 cmp(src1, scratch, cr); |
| 4274 } |
| 4275 } |
| 4276 |
| 4277 |
| 4278 void MacroAssembler::Cmpli(Register src1, const Operand& src2, Register scratch, |
| 4279 CRegister cr) { |
| 4280 intptr_t value = src2.immediate(); |
| 4281 if (is_uint16(value)) { |
| 4282 cmpli(src1, src2, cr); |
| 4283 } else { |
| 4284 mov(scratch, src2); |
| 4285 cmpl(src1, scratch, cr); |
| 4286 } |
| 4287 } |
| 4288 |
| 4289 |
| 4290 void MacroAssembler::Cmpwi(Register src1, const Operand& src2, Register scratch, |
| 4291 CRegister cr) { |
| 4292 intptr_t value = src2.immediate(); |
| 4293 if (is_int16(value)) { |
| 4294 cmpwi(src1, src2, cr); |
| 4295 } else { |
| 4296 mov(scratch, src2); |
| 4297 cmpw(src1, scratch, cr); |
| 4298 } |
| 4299 } |
| 4300 |
| 4301 |
| 4302 void MacroAssembler::Cmplwi(Register src1, const Operand& src2, |
| 4303 Register scratch, CRegister cr) { |
| 4304 intptr_t value = src2.immediate(); |
| 4305 if (is_uint16(value)) { |
| 4306 cmplwi(src1, src2, cr); |
| 4307 } else { |
| 4308 mov(scratch, src2); |
| 4309 cmplw(src1, scratch, cr); |
| 4310 } |
| 4311 } |
| 4312 |
| 4313 |
| 4314 void MacroAssembler::And(Register ra, Register rs, const Operand& rb, |
| 4315 RCBit rc) { |
| 4316 if (rb.is_reg()) { |
| 4317 and_(ra, rs, rb.rm(), rc); |
| 4318 } else { |
| 4319 if (is_uint16(rb.imm_) && RelocInfo::IsNone(rb.rmode_) && rc == SetRC) { |
| 4320 andi(ra, rs, rb); |
| 4321 } else { |
| 4322 // mov handles the relocation. |
| 4323 DCHECK(!rs.is(r0)); |
| 4324 mov(r0, rb); |
| 4325 and_(ra, rs, r0, rc); |
| 4326 } |
| 4327 } |
| 4328 } |
| 4329 |
| 4330 |
| 4331 void MacroAssembler::Or(Register ra, Register rs, const Operand& rb, RCBit rc) { |
| 4332 if (rb.is_reg()) { |
| 4333 orx(ra, rs, rb.rm(), rc); |
| 4334 } else { |
| 4335 if (is_uint16(rb.imm_) && RelocInfo::IsNone(rb.rmode_) && rc == LeaveRC) { |
| 4336 ori(ra, rs, rb); |
| 4337 } else { |
| 4338 // mov handles the relocation. |
| 4339 DCHECK(!rs.is(r0)); |
| 4340 mov(r0, rb); |
| 4341 orx(ra, rs, r0, rc); |
| 4342 } |
| 4343 } |
| 4344 } |
| 4345 |
| 4346 |
| 4347 void MacroAssembler::Xor(Register ra, Register rs, const Operand& rb, |
| 4348 RCBit rc) { |
| 4349 if (rb.is_reg()) { |
| 4350 xor_(ra, rs, rb.rm(), rc); |
| 4351 } else { |
| 4352 if (is_uint16(rb.imm_) && RelocInfo::IsNone(rb.rmode_) && rc == LeaveRC) { |
| 4353 xori(ra, rs, rb); |
| 4354 } else { |
| 4355 // mov handles the relocation. |
| 4356 DCHECK(!rs.is(r0)); |
| 4357 mov(r0, rb); |
| 4358 xor_(ra, rs, r0, rc); |
| 4359 } |
| 4360 } |
| 4361 } |
| 4362 |
| 4363 |
| 4364 void MacroAssembler::CmpSmiLiteral(Register src1, Smi* smi, Register scratch, |
| 4365 CRegister cr) { |
| 4366 #if V8_TARGET_ARCH_PPC64 |
| 4367 LoadSmiLiteral(scratch, smi); |
| 4368 cmp(src1, scratch, cr); |
| 4369 #else |
| 4370 Cmpi(src1, Operand(smi), scratch, cr); |
| 4371 #endif |
| 4372 } |
| 4373 |
| 4374 |
| 4375 void MacroAssembler::CmplSmiLiteral(Register src1, Smi* smi, Register scratch, |
| 4376 CRegister cr) { |
| 4377 #if V8_TARGET_ARCH_PPC64 |
| 4378 LoadSmiLiteral(scratch, smi); |
| 4379 cmpl(src1, scratch, cr); |
| 4380 #else |
| 4381 Cmpli(src1, Operand(smi), scratch, cr); |
| 4382 #endif |
| 4383 } |
| 4384 |
| 4385 |
| 4386 void MacroAssembler::AddSmiLiteral(Register dst, Register src, Smi* smi, |
| 4387 Register scratch) { |
| 4388 #if V8_TARGET_ARCH_PPC64 |
| 4389 LoadSmiLiteral(scratch, smi); |
| 4390 add(dst, src, scratch); |
| 4391 #else |
| 4392 Add(dst, src, reinterpret_cast<intptr_t>(smi), scratch); |
| 4393 #endif |
| 4394 } |
| 4395 |
| 4396 |
| 4397 void MacroAssembler::SubSmiLiteral(Register dst, Register src, Smi* smi, |
| 4398 Register scratch) { |
| 4399 #if V8_TARGET_ARCH_PPC64 |
| 4400 LoadSmiLiteral(scratch, smi); |
| 4401 sub(dst, src, scratch); |
| 4402 #else |
| 4403 Add(dst, src, -(reinterpret_cast<intptr_t>(smi)), scratch); |
| 4404 #endif |
| 4405 } |
| 4406 |
| 4407 |
| 4408 void MacroAssembler::AndSmiLiteral(Register dst, Register src, Smi* smi, |
| 4409 Register scratch, RCBit rc) { |
| 4410 #if V8_TARGET_ARCH_PPC64 |
| 4411 LoadSmiLiteral(scratch, smi); |
| 4412 and_(dst, src, scratch, rc); |
| 4413 #else |
| 4414 And(dst, src, Operand(smi), rc); |
| 4415 #endif |
| 4416 } |
| 4417 |
| 4418 |
| 4419 // Load a "pointer" sized value from the memory location |
| 4420 void MacroAssembler::LoadP(Register dst, const MemOperand& mem, |
| 4421 Register scratch) { |
| 4422 int offset = mem.offset(); |
| 4423 |
| 4424 if (!scratch.is(no_reg) && !is_int16(offset)) { |
| 4425 /* cannot use d-form */ |
| 4426 LoadIntLiteral(scratch, offset); |
| 4427 #if V8_TARGET_ARCH_PPC64 |
| 4428 ldx(dst, MemOperand(mem.ra(), scratch)); |
| 4429 #else |
| 4430 lwzx(dst, MemOperand(mem.ra(), scratch)); |
| 4431 #endif |
| 4432 } else { |
| 4433 #if V8_TARGET_ARCH_PPC64 |
| 4434 int misaligned = (offset & 3); |
| 4435 if (misaligned) { |
| 4436 // adjust base to conform to offset alignment requirements |
| 4437 // Todo: enhance to use scratch if dst is unsuitable |
| 4438 DCHECK(!dst.is(r0)); |
| 4439 addi(dst, mem.ra(), Operand((offset & 3) - 4)); |
| 4440 ld(dst, MemOperand(dst, (offset & ~3) + 4)); |
| 4441 } else { |
| 4442 ld(dst, mem); |
| 4443 } |
| 4444 #else |
| 4445 lwz(dst, mem); |
| 4446 #endif |
| 4447 } |
| 4448 } |
| 4449 |
| 4450 |
| 4451 // Store a "pointer" sized value to the memory location |
| 4452 void MacroAssembler::StoreP(Register src, const MemOperand& mem, |
| 4453 Register scratch) { |
| 4454 int offset = mem.offset(); |
| 4455 |
| 4456 if (!scratch.is(no_reg) && !is_int16(offset)) { |
| 4457 /* cannot use d-form */ |
| 4458 LoadIntLiteral(scratch, offset); |
| 4459 #if V8_TARGET_ARCH_PPC64 |
| 4460 stdx(src, MemOperand(mem.ra(), scratch)); |
| 4461 #else |
| 4462 stwx(src, MemOperand(mem.ra(), scratch)); |
| 4463 #endif |
| 4464 } else { |
| 4465 #if V8_TARGET_ARCH_PPC64 |
| 4466 int misaligned = (offset & 3); |
| 4467 if (misaligned) { |
| 4468 // adjust base to conform to offset alignment requirements |
| 4469 // a suitable scratch is required here |
| 4470 DCHECK(!scratch.is(no_reg)); |
| 4471 if (scratch.is(r0)) { |
| 4472 LoadIntLiteral(scratch, offset); |
| 4473 stdx(src, MemOperand(mem.ra(), scratch)); |
| 4474 } else { |
| 4475 addi(scratch, mem.ra(), Operand((offset & 3) - 4)); |
| 4476 std(src, MemOperand(scratch, (offset & ~3) + 4)); |
| 4477 } |
| 4478 } else { |
| 4479 std(src, mem); |
| 4480 } |
| 4481 #else |
| 4482 stw(src, mem); |
| 4483 #endif |
| 4484 } |
| 4485 } |
| 4486 |
| 4487 void MacroAssembler::LoadWordArith(Register dst, const MemOperand& mem, |
| 4488 Register scratch) { |
| 4489 int offset = mem.offset(); |
| 4490 |
| 4491 if (!scratch.is(no_reg) && !is_int16(offset)) { |
| 4492 /* cannot use d-form */ |
| 4493 LoadIntLiteral(scratch, offset); |
| 4494 #if V8_TARGET_ARCH_PPC64 |
| 4495 // lwax(dst, MemOperand(mem.ra(), scratch)); |
| 4496 DCHECK(0); // lwax not yet implemented |
| 4497 #else |
| 4498 lwzx(dst, MemOperand(mem.ra(), scratch)); |
| 4499 #endif |
| 4500 } else { |
| 4501 #if V8_TARGET_ARCH_PPC64 |
| 4502 int misaligned = (offset & 3); |
| 4503 if (misaligned) { |
| 4504 // adjust base to conform to offset alignment requirements |
| 4505 // Todo: enhance to use scratch if dst is unsuitable |
| 4506 DCHECK(!dst.is(r0)); |
| 4507 addi(dst, mem.ra(), Operand((offset & 3) - 4)); |
| 4508 lwa(dst, MemOperand(dst, (offset & ~3) + 4)); |
| 4509 } else { |
| 4510 lwa(dst, mem); |
| 4511 } |
| 4512 #else |
| 4513 lwz(dst, mem); |
| 4514 #endif |
| 4515 } |
| 4516 } |
| 4517 |
| 4518 |
| 4519 // Variable length depending on whether offset fits into immediate field |
| 4520 // MemOperand currently only supports d-form |
| 4521 void MacroAssembler::LoadWord(Register dst, const MemOperand& mem, |
| 4522 Register scratch) { |
| 4523 Register base = mem.ra(); |
| 4524 int offset = mem.offset(); |
| 4525 |
| 4526 if (!is_int16(offset)) { |
| 4527 LoadIntLiteral(scratch, offset); |
| 4528 lwzx(dst, MemOperand(base, scratch)); |
| 4529 } else { |
| 4530 lwz(dst, mem); |
| 4531 } |
| 4532 } |
| 4533 |
| 4534 |
| 4535 // Variable length depending on whether offset fits into immediate field |
| 4536 // MemOperand current only supports d-form |
| 4537 void MacroAssembler::StoreWord(Register src, const MemOperand& mem, |
| 4538 Register scratch) { |
| 4539 Register base = mem.ra(); |
| 4540 int offset = mem.offset(); |
| 4541 |
| 4542 if (!is_int16(offset)) { |
| 4543 LoadIntLiteral(scratch, offset); |
| 4544 stwx(src, MemOperand(base, scratch)); |
| 4545 } else { |
| 4546 stw(src, mem); |
| 4547 } |
| 4548 } |
| 4549 |
| 4550 |
| 4551 // Variable length depending on whether offset fits into immediate field |
| 4552 // MemOperand currently only supports d-form |
| 4553 void MacroAssembler::LoadHalfWord(Register dst, const MemOperand& mem, |
| 4554 Register scratch) { |
| 4555 Register base = mem.ra(); |
| 4556 int offset = mem.offset(); |
| 4557 |
| 4558 if (!is_int16(offset)) { |
| 4559 LoadIntLiteral(scratch, offset); |
| 4560 lhzx(dst, MemOperand(base, scratch)); |
| 4561 } else { |
| 4562 lhz(dst, mem); |
| 4563 } |
| 4564 } |
| 4565 |
| 4566 |
| 4567 // Variable length depending on whether offset fits into immediate field |
| 4568 // MemOperand current only supports d-form |
| 4569 void MacroAssembler::StoreHalfWord(Register src, const MemOperand& mem, |
| 4570 Register scratch) { |
| 4571 Register base = mem.ra(); |
| 4572 int offset = mem.offset(); |
| 4573 |
| 4574 if (!is_int16(offset)) { |
| 4575 LoadIntLiteral(scratch, offset); |
| 4576 sthx(src, MemOperand(base, scratch)); |
| 4577 } else { |
| 4578 sth(src, mem); |
| 4579 } |
| 4580 } |
| 4581 |
| 4582 |
| 4583 // Variable length depending on whether offset fits into immediate field |
| 4584 // MemOperand currently only supports d-form |
| 4585 void MacroAssembler::LoadByte(Register dst, const MemOperand& mem, |
| 4586 Register scratch) { |
| 4587 Register base = mem.ra(); |
| 4588 int offset = mem.offset(); |
| 4589 |
| 4590 if (!is_int16(offset)) { |
| 4591 LoadIntLiteral(scratch, offset); |
| 4592 lbzx(dst, MemOperand(base, scratch)); |
| 4593 } else { |
| 4594 lbz(dst, mem); |
| 4595 } |
| 4596 } |
| 4597 |
| 4598 |
| 4599 // Variable length depending on whether offset fits into immediate field |
| 4600 // MemOperand current only supports d-form |
| 4601 void MacroAssembler::StoreByte(Register src, const MemOperand& mem, |
| 4602 Register scratch) { |
| 4603 Register base = mem.ra(); |
| 4604 int offset = mem.offset(); |
| 4605 |
| 4606 if (!is_int16(offset)) { |
| 4607 LoadIntLiteral(scratch, offset); |
| 4608 stbx(src, MemOperand(base, scratch)); |
| 4609 } else { |
| 4610 stb(src, mem); |
| 4611 } |
| 4612 } |
| 4613 |
| 4614 |
| 4615 void MacroAssembler::LoadRepresentation(Register dst, const MemOperand& mem, |
| 4616 Representation r, Register scratch) { |
| 4617 DCHECK(!r.IsDouble()); |
| 4618 if (r.IsInteger8()) { |
| 4619 LoadByte(dst, mem, scratch); |
| 4620 extsb(dst, dst); |
| 4621 } else if (r.IsUInteger8()) { |
| 4622 LoadByte(dst, mem, scratch); |
| 4623 } else if (r.IsInteger16()) { |
| 4624 LoadHalfWord(dst, mem, scratch); |
| 4625 extsh(dst, dst); |
| 4626 } else if (r.IsUInteger16()) { |
| 4627 LoadHalfWord(dst, mem, scratch); |
| 4628 #if V8_TARGET_ARCH_PPC64 |
| 4629 } else if (r.IsInteger32()) { |
| 4630 LoadWord(dst, mem, scratch); |
| 4631 #endif |
| 4632 } else { |
| 4633 LoadP(dst, mem, scratch); |
| 4634 } |
| 4635 } |
| 4636 |
| 4637 |
| 4638 void MacroAssembler::StoreRepresentation(Register src, const MemOperand& mem, |
| 4639 Representation r, Register scratch) { |
| 4640 DCHECK(!r.IsDouble()); |
| 4641 if (r.IsInteger8() || r.IsUInteger8()) { |
| 4642 StoreByte(src, mem, scratch); |
| 4643 } else if (r.IsInteger16() || r.IsUInteger16()) { |
| 4644 StoreHalfWord(src, mem, scratch); |
| 4645 #if V8_TARGET_ARCH_PPC64 |
| 4646 } else if (r.IsInteger32()) { |
| 4647 StoreWord(src, mem, scratch); |
| 4648 #endif |
| 4649 } else { |
| 4650 if (r.IsHeapObject()) { |
| 4651 AssertNotSmi(src); |
| 4652 } else if (r.IsSmi()) { |
| 4653 AssertSmi(src); |
| 4654 } |
| 4655 StoreP(src, mem, scratch); |
| 4656 } |
| 4657 } |
| 4658 |
| 4659 |
| 4660 void MacroAssembler::TestJSArrayForAllocationMemento(Register receiver_reg, |
| 4661 Register scratch_reg, |
| 4662 Label* no_memento_found) { |
| 4663 ExternalReference new_space_start = |
| 4664 ExternalReference::new_space_start(isolate()); |
| 4665 ExternalReference new_space_allocation_top = |
| 4666 ExternalReference::new_space_allocation_top_address(isolate()); |
| 4667 addi(scratch_reg, receiver_reg, |
| 4668 Operand(JSArray::kSize + AllocationMemento::kSize - kHeapObjectTag)); |
| 4669 Cmpi(scratch_reg, Operand(new_space_start), r0); |
| 4670 blt(no_memento_found); |
| 4671 mov(ip, Operand(new_space_allocation_top)); |
| 4672 LoadP(ip, MemOperand(ip)); |
| 4673 cmp(scratch_reg, ip); |
| 4674 bgt(no_memento_found); |
| 4675 LoadP(scratch_reg, MemOperand(scratch_reg, -AllocationMemento::kSize)); |
| 4676 Cmpi(scratch_reg, Operand(isolate()->factory()->allocation_memento_map()), |
| 4677 r0); |
| 4678 } |
| 4679 |
| 4680 |
| 4681 Register GetRegisterThatIsNotOneOf(Register reg1, Register reg2, Register reg3, |
| 4682 Register reg4, Register reg5, |
| 4683 Register reg6) { |
| 4684 RegList regs = 0; |
| 4685 if (reg1.is_valid()) regs |= reg1.bit(); |
| 4686 if (reg2.is_valid()) regs |= reg2.bit(); |
| 4687 if (reg3.is_valid()) regs |= reg3.bit(); |
| 4688 if (reg4.is_valid()) regs |= reg4.bit(); |
| 4689 if (reg5.is_valid()) regs |= reg5.bit(); |
| 4690 if (reg6.is_valid()) regs |= reg6.bit(); |
| 4691 |
| 4692 for (int i = 0; i < Register::NumAllocatableRegisters(); i++) { |
| 4693 Register candidate = Register::FromAllocationIndex(i); |
| 4694 if (regs & candidate.bit()) continue; |
| 4695 return candidate; |
| 4696 } |
| 4697 UNREACHABLE(); |
| 4698 return no_reg; |
| 4699 } |
| 4700 |
| 4701 |
| 4702 void MacroAssembler::JumpIfDictionaryInPrototypeChain(Register object, |
| 4703 Register scratch0, |
| 4704 Register scratch1, |
| 4705 Label* found) { |
| 4706 DCHECK(!scratch1.is(scratch0)); |
| 4707 Factory* factory = isolate()->factory(); |
| 4708 Register current = scratch0; |
| 4709 Label loop_again; |
| 4710 |
| 4711 // scratch contained elements pointer. |
| 4712 mr(current, object); |
| 4713 |
| 4714 // Loop based on the map going up the prototype chain. |
| 4715 bind(&loop_again); |
| 4716 LoadP(current, FieldMemOperand(current, HeapObject::kMapOffset)); |
| 4717 lbz(scratch1, FieldMemOperand(current, Map::kBitField2Offset)); |
| 4718 DecodeField<Map::ElementsKindBits>(scratch1); |
| 4719 cmpi(scratch1, Operand(DICTIONARY_ELEMENTS)); |
| 4720 beq(found); |
| 4721 LoadP(current, FieldMemOperand(current, Map::kPrototypeOffset)); |
| 4722 Cmpi(current, Operand(factory->null_value()), r0); |
| 4723 bne(&loop_again); |
| 4724 } |
| 4725 |
| 4726 |
| 4727 #ifdef DEBUG |
| 4728 bool AreAliased(Register reg1, Register reg2, Register reg3, Register reg4, |
| 4729 Register reg5, Register reg6, Register reg7, Register reg8) { |
| 4730 int n_of_valid_regs = reg1.is_valid() + reg2.is_valid() + reg3.is_valid() + |
| 4731 reg4.is_valid() + reg5.is_valid() + reg6.is_valid() + |
| 4732 reg7.is_valid() + reg8.is_valid(); |
| 4733 |
| 4734 RegList regs = 0; |
| 4735 if (reg1.is_valid()) regs |= reg1.bit(); |
| 4736 if (reg2.is_valid()) regs |= reg2.bit(); |
| 4737 if (reg3.is_valid()) regs |= reg3.bit(); |
| 4738 if (reg4.is_valid()) regs |= reg4.bit(); |
| 4739 if (reg5.is_valid()) regs |= reg5.bit(); |
| 4740 if (reg6.is_valid()) regs |= reg6.bit(); |
| 4741 if (reg7.is_valid()) regs |= reg7.bit(); |
| 4742 if (reg8.is_valid()) regs |= reg8.bit(); |
| 4743 int n_of_non_aliasing_regs = NumRegs(regs); |
| 4744 |
| 4745 return n_of_valid_regs != n_of_non_aliasing_regs; |
| 4746 } |
| 4747 #endif |
| 4748 |
| 4749 |
| 4750 CodePatcher::CodePatcher(byte* address, int instructions, |
| 4751 FlushICache flush_cache) |
| 4752 : address_(address), |
| 4753 size_(instructions * Assembler::kInstrSize), |
| 4754 masm_(NULL, address, size_ + Assembler::kGap), |
| 4755 flush_cache_(flush_cache) { |
| 4756 // Create a new macro assembler pointing to the address of the code to patch. |
| 4757 // The size is adjusted with kGap on order for the assembler to generate size |
| 4758 // bytes of instructions without failing with buffer size constraints. |
| 4759 DCHECK(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap); |
| 4760 } |
| 4761 |
| 4762 |
| 4763 CodePatcher::~CodePatcher() { |
| 4764 // Indicate that code has changed. |
| 4765 if (flush_cache_ == FLUSH) { |
| 4766 CpuFeatures::FlushICache(address_, size_); |
| 4767 } |
| 4768 |
| 4769 // Check that the code was patched as expected. |
| 4770 DCHECK(masm_.pc_ == address_ + size_); |
| 4771 DCHECK(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap); |
| 4772 } |
| 4773 |
| 4774 |
| 4775 void CodePatcher::Emit(Instr instr) { masm()->emit(instr); } |
| 4776 |
| 4777 |
| 4778 void CodePatcher::EmitCondition(Condition cond) { |
| 4779 Instr instr = Assembler::instr_at(masm_.pc_); |
| 4780 switch (cond) { |
| 4781 case eq: |
| 4782 instr = (instr & ~kCondMask) | BT; |
| 4783 break; |
| 4784 case ne: |
| 4785 instr = (instr & ~kCondMask) | BF; |
| 4786 break; |
| 4787 default: |
| 4788 UNIMPLEMENTED(); |
| 4789 } |
| 4790 masm_.emit(instr); |
| 4791 } |
| 4792 |
| 4793 |
| 4794 void MacroAssembler::TruncatingDiv(Register result, Register dividend, |
| 4795 int32_t divisor) { |
| 4796 DCHECK(!dividend.is(result)); |
| 4797 DCHECK(!dividend.is(r0)); |
| 4798 DCHECK(!result.is(r0)); |
| 4799 base::MagicNumbersForDivision<uint32_t> mag = |
| 4800 base::SignedDivisionByConstant(static_cast<uint32_t>(divisor)); |
| 4801 mov(r0, Operand(mag.multiplier)); |
| 4802 mulhw(result, dividend, r0); |
| 4803 bool neg = (mag.multiplier & (static_cast<uint32_t>(1) << 31)) != 0; |
| 4804 if (divisor > 0 && neg) { |
| 4805 add(result, result, dividend); |
| 4806 } |
| 4807 if (divisor < 0 && !neg && mag.multiplier > 0) { |
| 4808 sub(result, result, dividend); |
| 4809 } |
| 4810 if (mag.shift > 0) srawi(result, result, mag.shift); |
| 4811 ExtractBit(r0, dividend, 31); |
| 4812 add(result, result, r0); |
| 4813 } |
| 4814 |
| 4815 } // namespace internal |
| 4816 } // namespace v8 |
| 4817 |
| 4818 #endif // V8_TARGET_ARCH_PPC |
OLD | NEW |