OLD | NEW |
(Empty) | |
| 1 // Copyright 2014 the V8 project authors. All rights reserved. |
| 2 // Use of this source code is governed by a BSD-style license that can be |
| 3 // found in the LICENSE file. |
| 4 |
| 5 #include "src/v8.h" |
| 6 |
| 7 #if V8_TARGET_ARCH_PPC |
| 8 |
| 9 #include "src/codegen.h" |
| 10 #include "src/macro-assembler.h" |
| 11 #include "src/ppc/simulator-ppc.h" |
| 12 |
| 13 namespace v8 { |
| 14 namespace internal { |
| 15 |
| 16 |
| 17 #define __ masm. |
| 18 |
| 19 |
| 20 #if defined(USE_SIMULATOR) |
| 21 byte* fast_exp_ppc_machine_code = NULL; |
| 22 double fast_exp_simulator(double x) { |
| 23 return Simulator::current(Isolate::Current()) |
| 24 ->CallFPReturnsDouble(fast_exp_ppc_machine_code, x, 0); |
| 25 } |
| 26 #endif |
| 27 |
| 28 |
| 29 UnaryMathFunction CreateExpFunction() { |
| 30 if (!FLAG_fast_math) return &std::exp; |
| 31 size_t actual_size; |
| 32 byte* buffer = |
| 33 static_cast<byte*>(base::OS::Allocate(1 * KB, &actual_size, true)); |
| 34 if (buffer == NULL) return &std::exp; |
| 35 ExternalReference::InitializeMathExpData(); |
| 36 |
| 37 MacroAssembler masm(NULL, buffer, static_cast<int>(actual_size)); |
| 38 |
| 39 { |
| 40 DoubleRegister input = d1; |
| 41 DoubleRegister result = d2; |
| 42 DoubleRegister double_scratch1 = d3; |
| 43 DoubleRegister double_scratch2 = d4; |
| 44 Register temp1 = r7; |
| 45 Register temp2 = r8; |
| 46 Register temp3 = r9; |
| 47 |
| 48 // Called from C |
| 49 #if ABI_USES_FUNCTION_DESCRIPTORS |
| 50 __ function_descriptor(); |
| 51 #endif |
| 52 |
| 53 __ Push(temp3, temp2, temp1); |
| 54 MathExpGenerator::EmitMathExp(&masm, input, result, double_scratch1, |
| 55 double_scratch2, temp1, temp2, temp3); |
| 56 __ Pop(temp3, temp2, temp1); |
| 57 __ fmr(d1, result); |
| 58 __ Ret(); |
| 59 } |
| 60 |
| 61 CodeDesc desc; |
| 62 masm.GetCode(&desc); |
| 63 #if !ABI_USES_FUNCTION_DESCRIPTORS |
| 64 DCHECK(!RelocInfo::RequiresRelocation(desc)); |
| 65 #endif |
| 66 |
| 67 CpuFeatures::FlushICache(buffer, actual_size); |
| 68 base::OS::ProtectCode(buffer, actual_size); |
| 69 |
| 70 #if !defined(USE_SIMULATOR) |
| 71 return FUNCTION_CAST<UnaryMathFunction>(buffer); |
| 72 #else |
| 73 fast_exp_ppc_machine_code = buffer; |
| 74 return &fast_exp_simulator; |
| 75 #endif |
| 76 } |
| 77 |
| 78 |
| 79 UnaryMathFunction CreateSqrtFunction() { |
| 80 #if defined(USE_SIMULATOR) |
| 81 return &std::sqrt; |
| 82 #else |
| 83 size_t actual_size; |
| 84 byte* buffer = |
| 85 static_cast<byte*>(base::OS::Allocate(1 * KB, &actual_size, true)); |
| 86 if (buffer == NULL) return &std::sqrt; |
| 87 |
| 88 MacroAssembler masm(NULL, buffer, static_cast<int>(actual_size)); |
| 89 |
| 90 // Called from C |
| 91 #if ABI_USES_FUNCTION_DESCRIPTORS |
| 92 __ function_descriptor(); |
| 93 #endif |
| 94 |
| 95 __ MovFromFloatParameter(d1); |
| 96 __ fsqrt(d1, d1); |
| 97 __ MovToFloatResult(d1); |
| 98 __ Ret(); |
| 99 |
| 100 CodeDesc desc; |
| 101 masm.GetCode(&desc); |
| 102 #if !ABI_USES_FUNCTION_DESCRIPTORS |
| 103 DCHECK(!RelocInfo::RequiresRelocation(desc)); |
| 104 #endif |
| 105 |
| 106 CpuFeatures::FlushICache(buffer, actual_size); |
| 107 base::OS::ProtectCode(buffer, actual_size); |
| 108 return FUNCTION_CAST<UnaryMathFunction>(buffer); |
| 109 #endif |
| 110 } |
| 111 |
| 112 #undef __ |
| 113 |
| 114 |
| 115 // ------------------------------------------------------------------------- |
| 116 // Platform-specific RuntimeCallHelper functions. |
| 117 |
| 118 void StubRuntimeCallHelper::BeforeCall(MacroAssembler* masm) const { |
| 119 masm->EnterFrame(StackFrame::INTERNAL); |
| 120 DCHECK(!masm->has_frame()); |
| 121 masm->set_has_frame(true); |
| 122 } |
| 123 |
| 124 |
| 125 void StubRuntimeCallHelper::AfterCall(MacroAssembler* masm) const { |
| 126 masm->LeaveFrame(StackFrame::INTERNAL); |
| 127 DCHECK(masm->has_frame()); |
| 128 masm->set_has_frame(false); |
| 129 } |
| 130 |
| 131 |
| 132 // ------------------------------------------------------------------------- |
| 133 // Code generators |
| 134 |
| 135 #define __ ACCESS_MASM(masm) |
| 136 |
| 137 void ElementsTransitionGenerator::GenerateMapChangeElementsTransition( |
| 138 MacroAssembler* masm, Register receiver, Register key, Register value, |
| 139 Register target_map, AllocationSiteMode mode, |
| 140 Label* allocation_memento_found) { |
| 141 Register scratch_elements = r7; |
| 142 DCHECK(!AreAliased(receiver, key, value, target_map, scratch_elements)); |
| 143 |
| 144 if (mode == TRACK_ALLOCATION_SITE) { |
| 145 DCHECK(allocation_memento_found != NULL); |
| 146 __ JumpIfJSArrayHasAllocationMemento(receiver, scratch_elements, |
| 147 allocation_memento_found); |
| 148 } |
| 149 |
| 150 // Set transitioned map. |
| 151 __ StoreP(target_map, FieldMemOperand(receiver, HeapObject::kMapOffset), r0); |
| 152 __ RecordWriteField(receiver, HeapObject::kMapOffset, target_map, r11, |
| 153 kLRHasNotBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET, |
| 154 OMIT_SMI_CHECK); |
| 155 } |
| 156 |
| 157 |
| 158 void ElementsTransitionGenerator::GenerateSmiToDouble( |
| 159 MacroAssembler* masm, Register receiver, Register key, Register value, |
| 160 Register target_map, AllocationSiteMode mode, Label* fail) { |
| 161 // lr contains the return address |
| 162 Label loop, entry, convert_hole, gc_required, only_change_map, done; |
| 163 Register elements = r7; |
| 164 Register length = r8; |
| 165 Register array = r9; |
| 166 Register array_end = array; |
| 167 |
| 168 // target_map parameter can be clobbered. |
| 169 Register scratch1 = target_map; |
| 170 Register scratch2 = r11; |
| 171 |
| 172 // Verify input registers don't conflict with locals. |
| 173 DCHECK(!AreAliased(receiver, key, value, target_map, elements, length, array, |
| 174 scratch2)); |
| 175 |
| 176 if (mode == TRACK_ALLOCATION_SITE) { |
| 177 __ JumpIfJSArrayHasAllocationMemento(receiver, elements, fail); |
| 178 } |
| 179 |
| 180 // Check for empty arrays, which only require a map transition and no changes |
| 181 // to the backing store. |
| 182 __ LoadP(elements, FieldMemOperand(receiver, JSObject::kElementsOffset)); |
| 183 __ CompareRoot(elements, Heap::kEmptyFixedArrayRootIndex); |
| 184 __ beq(&only_change_map); |
| 185 |
| 186 // Preserve lr and use r17 as a temporary register. |
| 187 __ mflr(r0); |
| 188 __ Push(r0); |
| 189 |
| 190 __ LoadP(length, FieldMemOperand(elements, FixedArray::kLengthOffset)); |
| 191 // length: number of elements (smi-tagged) |
| 192 |
| 193 // Allocate new FixedDoubleArray. |
| 194 __ SmiToDoubleArrayOffset(r17, length); |
| 195 __ addi(r17, r17, Operand(FixedDoubleArray::kHeaderSize)); |
| 196 __ Allocate(r17, array, r10, scratch2, &gc_required, DOUBLE_ALIGNMENT); |
| 197 |
| 198 // Set destination FixedDoubleArray's length and map. |
| 199 __ LoadRoot(scratch2, Heap::kFixedDoubleArrayMapRootIndex); |
| 200 __ StoreP(length, MemOperand(array, FixedDoubleArray::kLengthOffset)); |
| 201 // Update receiver's map. |
| 202 __ StoreP(scratch2, MemOperand(array, HeapObject::kMapOffset)); |
| 203 |
| 204 __ StoreP(target_map, FieldMemOperand(receiver, HeapObject::kMapOffset), r0); |
| 205 __ RecordWriteField(receiver, HeapObject::kMapOffset, target_map, scratch2, |
| 206 kLRHasBeenSaved, kDontSaveFPRegs, OMIT_REMEMBERED_SET, |
| 207 OMIT_SMI_CHECK); |
| 208 // Replace receiver's backing store with newly created FixedDoubleArray. |
| 209 __ addi(scratch1, array, Operand(kHeapObjectTag)); |
| 210 __ StoreP(scratch1, FieldMemOperand(receiver, JSObject::kElementsOffset), r0); |
| 211 __ RecordWriteField(receiver, JSObject::kElementsOffset, scratch1, scratch2, |
| 212 kLRHasBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET, |
| 213 OMIT_SMI_CHECK); |
| 214 |
| 215 // Prepare for conversion loop. |
| 216 __ addi(target_map, elements, |
| 217 Operand(FixedArray::kHeaderSize - kHeapObjectTag)); |
| 218 __ addi(r10, array, Operand(FixedDoubleArray::kHeaderSize)); |
| 219 __ SmiToDoubleArrayOffset(array, length); |
| 220 __ add(array_end, r10, array); |
| 221 // Repurpose registers no longer in use. |
| 222 #if V8_TARGET_ARCH_PPC64 |
| 223 Register hole_int64 = elements; |
| 224 #else |
| 225 Register hole_lower = elements; |
| 226 Register hole_upper = length; |
| 227 #endif |
| 228 // scratch1: begin of source FixedArray element fields, not tagged |
| 229 // hole_lower: kHoleNanLower32 OR hol_int64 |
| 230 // hole_upper: kHoleNanUpper32 |
| 231 // array_end: end of destination FixedDoubleArray, not tagged |
| 232 // scratch2: begin of FixedDoubleArray element fields, not tagged |
| 233 |
| 234 __ b(&entry); |
| 235 |
| 236 __ bind(&only_change_map); |
| 237 __ StoreP(target_map, FieldMemOperand(receiver, HeapObject::kMapOffset), r0); |
| 238 __ RecordWriteField(receiver, HeapObject::kMapOffset, target_map, scratch2, |
| 239 kLRHasNotBeenSaved, kDontSaveFPRegs, OMIT_REMEMBERED_SET, |
| 240 OMIT_SMI_CHECK); |
| 241 __ b(&done); |
| 242 |
| 243 // Call into runtime if GC is required. |
| 244 __ bind(&gc_required); |
| 245 __ Pop(r0); |
| 246 __ mtlr(r0); |
| 247 __ b(fail); |
| 248 |
| 249 // Convert and copy elements. |
| 250 __ bind(&loop); |
| 251 __ LoadP(r11, MemOperand(scratch1)); |
| 252 __ addi(scratch1, scratch1, Operand(kPointerSize)); |
| 253 // r11: current element |
| 254 __ UntagAndJumpIfNotSmi(r11, r11, &convert_hole); |
| 255 |
| 256 // Normal smi, convert to double and store. |
| 257 __ ConvertIntToDouble(r11, d0); |
| 258 __ stfd(d0, MemOperand(scratch2, 0)); |
| 259 __ addi(r10, r10, Operand(8)); |
| 260 |
| 261 __ b(&entry); |
| 262 |
| 263 // Hole found, store the-hole NaN. |
| 264 __ bind(&convert_hole); |
| 265 if (FLAG_debug_code) { |
| 266 // Restore a "smi-untagged" heap object. |
| 267 __ LoadP(r11, MemOperand(r6, -kPointerSize)); |
| 268 __ CompareRoot(r11, Heap::kTheHoleValueRootIndex); |
| 269 __ Assert(eq, kObjectFoundInSmiOnlyArray); |
| 270 } |
| 271 #if V8_TARGET_ARCH_PPC64 |
| 272 __ std(hole_int64, MemOperand(r10, 0)); |
| 273 #else |
| 274 __ stw(hole_upper, MemOperand(r10, Register::kExponentOffset)); |
| 275 __ stw(hole_lower, MemOperand(r10, Register::kMantissaOffset)); |
| 276 #endif |
| 277 __ addi(r10, r10, Operand(8)); |
| 278 |
| 279 __ bind(&entry); |
| 280 __ cmp(r10, array_end); |
| 281 __ blt(&loop); |
| 282 |
| 283 __ Pop(r0); |
| 284 __ mtlr(r0); |
| 285 __ bind(&done); |
| 286 } |
| 287 |
| 288 |
| 289 void ElementsTransitionGenerator::GenerateDoubleToObject( |
| 290 MacroAssembler* masm, Register receiver, Register key, Register value, |
| 291 Register target_map, AllocationSiteMode mode, Label* fail) { |
| 292 // Register lr contains the return address. |
| 293 Label entry, loop, convert_hole, gc_required, only_change_map; |
| 294 Register elements = r7; |
| 295 Register array = r9; |
| 296 Register length = r8; |
| 297 Register scratch = r11; |
| 298 |
| 299 // Verify input registers don't conflict with locals. |
| 300 DCHECK(!AreAliased(receiver, key, value, target_map, elements, array, length, |
| 301 scratch)); |
| 302 |
| 303 if (mode == TRACK_ALLOCATION_SITE) { |
| 304 __ JumpIfJSArrayHasAllocationMemento(receiver, elements, fail); |
| 305 } |
| 306 |
| 307 // Check for empty arrays, which only require a map transition and no changes |
| 308 // to the backing store. |
| 309 __ LoadP(elements, FieldMemOperand(receiver, JSObject::kElementsOffset)); |
| 310 __ CompareRoot(elements, Heap::kEmptyFixedArrayRootIndex); |
| 311 __ beq(&only_change_map); |
| 312 |
| 313 __ Push(target_map, receiver, key, value); |
| 314 __ LoadP(length, FieldMemOperand(elements, FixedArray::kLengthOffset)); |
| 315 // elements: source FixedDoubleArray |
| 316 // length: number of elements (smi-tagged) |
| 317 |
| 318 // Allocate new FixedArray. |
| 319 // Re-use value and target_map registers, as they have been saved on the |
| 320 // stack. |
| 321 Register array_size = value; |
| 322 Register allocate_scratch = target_map; |
| 323 __ li(array_size, Operand(FixedDoubleArray::kHeaderSize)); |
| 324 __ SmiToPtrArrayOffset(r0, length); |
| 325 __ add(array_size, array_size, r0); |
| 326 __ Allocate(array_size, array, allocate_scratch, scratch, &gc_required, |
| 327 NO_ALLOCATION_FLAGS); |
| 328 // array: destination FixedArray, not tagged as heap object |
| 329 // Set destination FixedDoubleArray's length and map. |
| 330 __ LoadRoot(scratch, Heap::kFixedArrayMapRootIndex); |
| 331 __ StoreP(length, MemOperand(array, FixedDoubleArray::kLengthOffset)); |
| 332 __ StoreP(scratch, MemOperand(array, HeapObject::kMapOffset)); |
| 333 __ addi(array, array, Operand(kHeapObjectTag)); |
| 334 |
| 335 // Prepare for conversion loop. |
| 336 Register src_elements = elements; |
| 337 Register dst_elements = target_map; |
| 338 Register dst_end = length; |
| 339 Register heap_number_map = scratch; |
| 340 __ addi(src_elements, elements, |
| 341 Operand(FixedDoubleArray::kHeaderSize - kHeapObjectTag)); |
| 342 __ SmiToPtrArrayOffset(length, length); |
| 343 __ LoadRoot(r10, Heap::kTheHoleValueRootIndex); |
| 344 |
| 345 Label initialization_loop, loop_done; |
| 346 __ ShiftRightImm(r0, length, Operand(kPointerSizeLog2), SetRC); |
| 347 __ beq(&loop_done, cr0); |
| 348 |
| 349 // Allocating heap numbers in the loop below can fail and cause a jump to |
| 350 // gc_required. We can't leave a partly initialized FixedArray behind, |
| 351 // so pessimistically fill it with holes now. |
| 352 __ mtctr(r0); |
| 353 __ addi(dst_elements, array, |
| 354 Operand(FixedArray::kHeaderSize - kHeapObjectTag - kPointerSize)); |
| 355 __ bind(&initialization_loop); |
| 356 __ StorePU(r10, MemOperand(dst_elements, kPointerSize)); |
| 357 __ bdnz(&initialization_loop); |
| 358 |
| 359 __ addi(dst_elements, array, |
| 360 Operand(FixedArray::kHeaderSize - kHeapObjectTag)); |
| 361 __ add(dst_end, dst_elements, length); |
| 362 __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); |
| 363 // Using offsetted addresses in src_elements to fully take advantage of |
| 364 // post-indexing. |
| 365 // dst_elements: begin of destination FixedArray element fields, not tagged |
| 366 // src_elements: begin of source FixedDoubleArray element fields, |
| 367 // not tagged, +4 |
| 368 // dst_end: end of destination FixedArray, not tagged |
| 369 // array: destination FixedArray |
| 370 // r10: the-hole pointer |
| 371 // heap_number_map: heap number map |
| 372 __ b(&loop); |
| 373 |
| 374 // Call into runtime if GC is required. |
| 375 __ bind(&gc_required); |
| 376 __ Pop(target_map, receiver, key, value); |
| 377 __ b(fail); |
| 378 |
| 379 // Replace the-hole NaN with the-hole pointer. |
| 380 __ bind(&convert_hole); |
| 381 __ StoreP(r10, MemOperand(dst_elements)); |
| 382 __ addi(dst_elements, dst_elements, Operand(kPointerSize)); |
| 383 __ cmpl(dst_elements, dst_end); |
| 384 __ bge(&loop_done); |
| 385 |
| 386 __ bind(&loop); |
| 387 Register upper_bits = key; |
| 388 __ lwz(upper_bits, MemOperand(src_elements, Register::kExponentOffset)); |
| 389 __ addi(src_elements, src_elements, Operand(kDoubleSize)); |
| 390 // upper_bits: current element's upper 32 bit |
| 391 // src_elements: address of next element's upper 32 bit |
| 392 __ Cmpi(upper_bits, Operand(kHoleNanUpper32), r0); |
| 393 __ beq(&convert_hole); |
| 394 |
| 395 // Non-hole double, copy value into a heap number. |
| 396 Register heap_number = receiver; |
| 397 Register scratch2 = value; |
| 398 __ AllocateHeapNumber(heap_number, scratch2, r11, heap_number_map, |
| 399 &gc_required); |
| 400 // heap_number: new heap number |
| 401 #if V8_TARGET_ARCH_PPC64 |
| 402 __ ld(scratch2, MemOperand(src_elements, -kDoubleSize)); |
| 403 // subtract tag for std |
| 404 __ addi(upper_bits, heap_number, Operand(-kHeapObjectTag)); |
| 405 __ std(scratch2, MemOperand(upper_bits, HeapNumber::kValueOffset)); |
| 406 #else |
| 407 __ lwz(scratch2, |
| 408 MemOperand(src_elements, Register::kMantissaOffset - kDoubleSize)); |
| 409 __ lwz(upper_bits, |
| 410 MemOperand(src_elements, Register::kExponentOffset - kDoubleSize)); |
| 411 __ stw(scratch2, FieldMemOperand(heap_number, HeapNumber::kMantissaOffset)); |
| 412 __ stw(upper_bits, FieldMemOperand(heap_number, HeapNumber::kExponentOffset)); |
| 413 #endif |
| 414 __ mr(scratch2, dst_elements); |
| 415 __ StoreP(heap_number, MemOperand(dst_elements)); |
| 416 __ addi(dst_elements, dst_elements, Operand(kPointerSize)); |
| 417 __ RecordWrite(array, scratch2, heap_number, kLRHasNotBeenSaved, |
| 418 kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); |
| 419 __ b(&entry); |
| 420 |
| 421 // Replace the-hole NaN with the-hole pointer. |
| 422 __ bind(&convert_hole); |
| 423 __ StoreP(r10, MemOperand(dst_elements)); |
| 424 __ addi(dst_elements, dst_elements, Operand(kPointerSize)); |
| 425 |
| 426 __ bind(&entry); |
| 427 __ cmpl(dst_elements, dst_end); |
| 428 __ blt(&loop); |
| 429 __ bind(&loop_done); |
| 430 |
| 431 __ Pop(target_map, receiver, key, value); |
| 432 // Replace receiver's backing store with newly created and filled FixedArray. |
| 433 __ StoreP(array, FieldMemOperand(receiver, JSObject::kElementsOffset), r0); |
| 434 __ RecordWriteField(receiver, JSObject::kElementsOffset, array, scratch, |
| 435 kLRHasNotBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET, |
| 436 OMIT_SMI_CHECK); |
| 437 |
| 438 __ bind(&only_change_map); |
| 439 // Update receiver's map. |
| 440 __ StoreP(target_map, FieldMemOperand(receiver, HeapObject::kMapOffset), r0); |
| 441 __ RecordWriteField(receiver, HeapObject::kMapOffset, target_map, scratch, |
| 442 kLRHasNotBeenSaved, kDontSaveFPRegs, OMIT_REMEMBERED_SET, |
| 443 OMIT_SMI_CHECK); |
| 444 } |
| 445 |
| 446 |
| 447 // assume ip can be used as a scratch register below |
| 448 void StringCharLoadGenerator::Generate(MacroAssembler* masm, Register string, |
| 449 Register index, Register result, |
| 450 Label* call_runtime) { |
| 451 // Fetch the instance type of the receiver into result register. |
| 452 __ LoadP(result, FieldMemOperand(string, HeapObject::kMapOffset)); |
| 453 __ lbz(result, FieldMemOperand(result, Map::kInstanceTypeOffset)); |
| 454 |
| 455 // We need special handling for indirect strings. |
| 456 Label check_sequential; |
| 457 __ andi(r0, result, Operand(kIsIndirectStringMask)); |
| 458 __ beq(&check_sequential, cr0); |
| 459 |
| 460 // Dispatch on the indirect string shape: slice or cons. |
| 461 Label cons_string; |
| 462 __ mov(ip, Operand(kSlicedNotConsMask)); |
| 463 __ and_(r0, result, ip, SetRC); |
| 464 __ beq(&cons_string, cr0); |
| 465 |
| 466 // Handle slices. |
| 467 Label indirect_string_loaded; |
| 468 __ LoadP(result, FieldMemOperand(string, SlicedString::kOffsetOffset)); |
| 469 __ LoadP(string, FieldMemOperand(string, SlicedString::kParentOffset)); |
| 470 __ SmiUntag(ip, result); |
| 471 __ add(index, index, ip); |
| 472 __ b(&indirect_string_loaded); |
| 473 |
| 474 // Handle cons strings. |
| 475 // Check whether the right hand side is the empty string (i.e. if |
| 476 // this is really a flat string in a cons string). If that is not |
| 477 // the case we would rather go to the runtime system now to flatten |
| 478 // the string. |
| 479 __ bind(&cons_string); |
| 480 __ LoadP(result, FieldMemOperand(string, ConsString::kSecondOffset)); |
| 481 __ CompareRoot(result, Heap::kempty_stringRootIndex); |
| 482 __ bne(call_runtime); |
| 483 // Get the first of the two strings and load its instance type. |
| 484 __ LoadP(string, FieldMemOperand(string, ConsString::kFirstOffset)); |
| 485 |
| 486 __ bind(&indirect_string_loaded); |
| 487 __ LoadP(result, FieldMemOperand(string, HeapObject::kMapOffset)); |
| 488 __ lbz(result, FieldMemOperand(result, Map::kInstanceTypeOffset)); |
| 489 |
| 490 // Distinguish sequential and external strings. Only these two string |
| 491 // representations can reach here (slices and flat cons strings have been |
| 492 // reduced to the underlying sequential or external string). |
| 493 Label external_string, check_encoding; |
| 494 __ bind(&check_sequential); |
| 495 STATIC_ASSERT(kSeqStringTag == 0); |
| 496 __ andi(r0, result, Operand(kStringRepresentationMask)); |
| 497 __ bne(&external_string, cr0); |
| 498 |
| 499 // Prepare sequential strings |
| 500 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize); |
| 501 __ addi(string, string, |
| 502 Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); |
| 503 __ b(&check_encoding); |
| 504 |
| 505 // Handle external strings. |
| 506 __ bind(&external_string); |
| 507 if (FLAG_debug_code) { |
| 508 // Assert that we do not have a cons or slice (indirect strings) here. |
| 509 // Sequential strings have already been ruled out. |
| 510 __ andi(r0, result, Operand(kIsIndirectStringMask)); |
| 511 __ Assert(eq, kExternalStringExpectedButNotFound, cr0); |
| 512 } |
| 513 // Rule out short external strings. |
| 514 STATIC_ASSERT(kShortExternalStringTag != 0); |
| 515 __ andi(r0, result, Operand(kShortExternalStringMask)); |
| 516 __ bne(call_runtime, cr0); |
| 517 __ LoadP(string, |
| 518 FieldMemOperand(string, ExternalString::kResourceDataOffset)); |
| 519 |
| 520 Label one_byte, done; |
| 521 __ bind(&check_encoding); |
| 522 STATIC_ASSERT(kTwoByteStringTag == 0); |
| 523 __ andi(r0, result, Operand(kStringEncodingMask)); |
| 524 __ bne(&one_byte, cr0); |
| 525 // Two-byte string. |
| 526 __ ShiftLeftImm(result, index, Operand(1)); |
| 527 __ lhzx(result, MemOperand(string, result)); |
| 528 __ b(&done); |
| 529 __ bind(&one_byte); |
| 530 // One-byte string. |
| 531 __ lbzx(result, MemOperand(string, index)); |
| 532 __ bind(&done); |
| 533 } |
| 534 |
| 535 |
| 536 static MemOperand ExpConstant(int index, Register base) { |
| 537 return MemOperand(base, index * kDoubleSize); |
| 538 } |
| 539 |
| 540 |
| 541 void MathExpGenerator::EmitMathExp(MacroAssembler* masm, DoubleRegister input, |
| 542 DoubleRegister result, |
| 543 DoubleRegister double_scratch1, |
| 544 DoubleRegister double_scratch2, |
| 545 Register temp1, Register temp2, |
| 546 Register temp3) { |
| 547 DCHECK(!input.is(result)); |
| 548 DCHECK(!input.is(double_scratch1)); |
| 549 DCHECK(!input.is(double_scratch2)); |
| 550 DCHECK(!result.is(double_scratch1)); |
| 551 DCHECK(!result.is(double_scratch2)); |
| 552 DCHECK(!double_scratch1.is(double_scratch2)); |
| 553 DCHECK(!temp1.is(temp2)); |
| 554 DCHECK(!temp1.is(temp3)); |
| 555 DCHECK(!temp2.is(temp3)); |
| 556 DCHECK(ExternalReference::math_exp_constants(0).address() != NULL); |
| 557 DCHECK(!masm->serializer_enabled()); // External references not serializable. |
| 558 |
| 559 Label zero, infinity, done; |
| 560 |
| 561 __ mov(temp3, Operand(ExternalReference::math_exp_constants(0))); |
| 562 |
| 563 __ lfd(double_scratch1, ExpConstant(0, temp3)); |
| 564 __ fcmpu(double_scratch1, input); |
| 565 __ fmr(result, input); |
| 566 __ bunordered(&done); |
| 567 __ bge(&zero); |
| 568 |
| 569 __ lfd(double_scratch2, ExpConstant(1, temp3)); |
| 570 __ fcmpu(input, double_scratch2); |
| 571 __ bge(&infinity); |
| 572 |
| 573 __ lfd(double_scratch1, ExpConstant(3, temp3)); |
| 574 __ lfd(result, ExpConstant(4, temp3)); |
| 575 __ fmul(double_scratch1, double_scratch1, input); |
| 576 __ fadd(double_scratch1, double_scratch1, result); |
| 577 __ MovDoubleLowToInt(temp2, double_scratch1); |
| 578 __ fsub(double_scratch1, double_scratch1, result); |
| 579 __ lfd(result, ExpConstant(6, temp3)); |
| 580 __ lfd(double_scratch2, ExpConstant(5, temp3)); |
| 581 __ fmul(double_scratch1, double_scratch1, double_scratch2); |
| 582 __ fsub(double_scratch1, double_scratch1, input); |
| 583 __ fsub(result, result, double_scratch1); |
| 584 __ fmul(double_scratch2, double_scratch1, double_scratch1); |
| 585 __ fmul(result, result, double_scratch2); |
| 586 __ lfd(double_scratch2, ExpConstant(7, temp3)); |
| 587 __ fmul(result, result, double_scratch2); |
| 588 __ fsub(result, result, double_scratch1); |
| 589 __ lfd(double_scratch2, ExpConstant(8, temp3)); |
| 590 __ fadd(result, result, double_scratch2); |
| 591 __ srwi(temp1, temp2, Operand(11)); |
| 592 __ andi(temp2, temp2, Operand(0x7ff)); |
| 593 __ addi(temp1, temp1, Operand(0x3ff)); |
| 594 |
| 595 // Must not call ExpConstant() after overwriting temp3! |
| 596 __ mov(temp3, Operand(ExternalReference::math_exp_log_table())); |
| 597 __ slwi(temp2, temp2, Operand(3)); |
| 598 #if V8_TARGET_ARCH_PPC64 |
| 599 __ ldx(temp2, MemOperand(temp3, temp2)); |
| 600 __ sldi(temp1, temp1, Operand(52)); |
| 601 __ orx(temp2, temp1, temp2); |
| 602 __ MovInt64ToDouble(double_scratch1, temp2); |
| 603 #else |
| 604 __ add(ip, temp3, temp2); |
| 605 __ lwz(temp3, MemOperand(ip, Register::kExponentOffset)); |
| 606 __ lwz(temp2, MemOperand(ip, Register::kMantissaOffset)); |
| 607 __ slwi(temp1, temp1, Operand(20)); |
| 608 __ orx(temp3, temp1, temp3); |
| 609 __ MovInt64ToDouble(double_scratch1, temp3, temp2); |
| 610 #endif |
| 611 |
| 612 __ fmul(result, result, double_scratch1); |
| 613 __ b(&done); |
| 614 |
| 615 __ bind(&zero); |
| 616 __ fmr(result, kDoubleRegZero); |
| 617 __ b(&done); |
| 618 |
| 619 __ bind(&infinity); |
| 620 __ lfd(result, ExpConstant(2, temp3)); |
| 621 |
| 622 __ bind(&done); |
| 623 } |
| 624 |
| 625 #undef __ |
| 626 |
| 627 CodeAgingHelper::CodeAgingHelper() { |
| 628 DCHECK(young_sequence_.length() == kNoCodeAgeSequenceLength); |
| 629 // Since patcher is a large object, allocate it dynamically when needed, |
| 630 // to avoid overloading the stack in stress conditions. |
| 631 // DONT_FLUSH is used because the CodeAgingHelper is initialized early in |
| 632 // the process, before ARM simulator ICache is setup. |
| 633 SmartPointer<CodePatcher> patcher(new CodePatcher( |
| 634 young_sequence_.start(), young_sequence_.length() / Assembler::kInstrSize, |
| 635 CodePatcher::DONT_FLUSH)); |
| 636 PredictableCodeSizeScope scope(patcher->masm(), young_sequence_.length()); |
| 637 patcher->masm()->PushFixedFrame(r4); |
| 638 patcher->masm()->addi(fp, sp, |
| 639 Operand(StandardFrameConstants::kFixedFrameSizeFromFp)); |
| 640 for (int i = 0; i < kNoCodeAgeSequenceNops; i++) { |
| 641 patcher->masm()->nop(); |
| 642 } |
| 643 } |
| 644 |
| 645 |
| 646 #ifdef DEBUG |
| 647 bool CodeAgingHelper::IsOld(byte* candidate) const { |
| 648 return Assembler::IsNop(Assembler::instr_at(candidate)); |
| 649 } |
| 650 #endif |
| 651 |
| 652 |
| 653 bool Code::IsYoungSequence(Isolate* isolate, byte* sequence) { |
| 654 bool result = isolate->code_aging_helper()->IsYoung(sequence); |
| 655 DCHECK(result || isolate->code_aging_helper()->IsOld(sequence)); |
| 656 return result; |
| 657 } |
| 658 |
| 659 |
| 660 void Code::GetCodeAgeAndParity(Isolate* isolate, byte* sequence, Age* age, |
| 661 MarkingParity* parity) { |
| 662 if (IsYoungSequence(isolate, sequence)) { |
| 663 *age = kNoAgeCodeAge; |
| 664 *parity = NO_MARKING_PARITY; |
| 665 } else { |
| 666 ConstantPoolArray* constant_pool = NULL; |
| 667 Address target_address = Assembler::target_address_at( |
| 668 sequence + kCodeAgingTargetDelta, constant_pool); |
| 669 Code* stub = GetCodeFromTargetAddress(target_address); |
| 670 GetCodeAgeAndParity(stub, age, parity); |
| 671 } |
| 672 } |
| 673 |
| 674 |
| 675 void Code::PatchPlatformCodeAge(Isolate* isolate, byte* sequence, Code::Age age, |
| 676 MarkingParity parity) { |
| 677 uint32_t young_length = isolate->code_aging_helper()->young_sequence_length(); |
| 678 if (age == kNoAgeCodeAge) { |
| 679 isolate->code_aging_helper()->CopyYoungSequenceTo(sequence); |
| 680 CpuFeatures::FlushICache(sequence, young_length); |
| 681 } else { |
| 682 // FIXED_SEQUENCE |
| 683 Code* stub = GetCodeAgeStub(isolate, age, parity); |
| 684 CodePatcher patcher(sequence, young_length / Assembler::kInstrSize); |
| 685 Assembler::BlockTrampolinePoolScope block_trampoline_pool(patcher.masm()); |
| 686 intptr_t target = reinterpret_cast<intptr_t>(stub->instruction_start()); |
| 687 // Don't use Call -- we need to preserve ip and lr. |
| 688 // GenerateMakeCodeYoungAgainCommon for the stub code. |
| 689 patcher.masm()->nop(); // marker to detect sequence (see IsOld) |
| 690 patcher.masm()->mov(r3, Operand(target)); |
| 691 patcher.masm()->Jump(r3); |
| 692 for (int i = 0; i < kCodeAgingSequenceNops; i++) { |
| 693 patcher.masm()->nop(); |
| 694 } |
| 695 } |
| 696 } |
| 697 } |
| 698 } // namespace v8::internal |
| 699 |
| 700 #endif // V8_TARGET_ARCH_PPC |
OLD | NEW |