OLD | NEW |
(Empty) | |
| 1 // Copyright (c) 1994-2006 Sun Microsystems Inc. |
| 2 // All Rights Reserved. |
| 3 // |
| 4 // Redistribution and use in source and binary forms, with or without |
| 5 // modification, are permitted provided that the following conditions |
| 6 // are met: |
| 7 // |
| 8 // - Redistributions of source code must retain the above copyright notice, |
| 9 // this list of conditions and the following disclaimer. |
| 10 // |
| 11 // - Redistribution in binary form must reproduce the above copyright |
| 12 // notice, this list of conditions and the following disclaimer in the |
| 13 // documentation and/or other materials provided with the |
| 14 // distribution. |
| 15 // |
| 16 // - Neither the name of Sun Microsystems or the names of contributors may |
| 17 // be used to endorse or promote products derived from this software without |
| 18 // specific prior written permission. |
| 19 // |
| 20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 21 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 22 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
| 23 // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
| 24 // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
| 25 // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| 26 // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
| 27 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 28 // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| 29 // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 30 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| 31 // OF THE POSSIBILITY OF SUCH DAMAGE. |
| 32 |
| 33 // The original source code covered by the above license above has been modified |
| 34 // significantly by Google Inc. |
| 35 // Copyright 2014 the V8 project authors. All rights reserved. |
| 36 |
| 37 #ifndef V8_PPC_ASSEMBLER_PPC_INL_H_ |
| 38 #define V8_PPC_ASSEMBLER_PPC_INL_H_ |
| 39 |
| 40 #include "src/ppc/assembler-ppc.h" |
| 41 |
| 42 #include "src/assembler.h" |
| 43 #include "src/debug.h" |
| 44 |
| 45 |
| 46 namespace v8 { |
| 47 namespace internal { |
| 48 |
| 49 |
| 50 bool CpuFeatures::SupportsCrankshaft() { return true; } |
| 51 |
| 52 |
| 53 void RelocInfo::apply(intptr_t delta, ICacheFlushMode icache_flush_mode) { |
| 54 #if ABI_USES_FUNCTION_DESCRIPTORS || V8_OOL_CONSTANT_POOL |
| 55 if (RelocInfo::IsInternalReference(rmode_)) { |
| 56 // absolute code pointer inside code object moves with the code object. |
| 57 Assembler::RelocateInternalReference(pc_, delta, 0, icache_flush_mode); |
| 58 } |
| 59 #endif |
| 60 // We do not use pc relative addressing on PPC, so there is |
| 61 // nothing else to do. |
| 62 } |
| 63 |
| 64 |
| 65 Address RelocInfo::target_address() { |
| 66 DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)); |
| 67 return Assembler::target_address_at(pc_, host_); |
| 68 } |
| 69 |
| 70 |
| 71 Address RelocInfo::target_address_address() { |
| 72 DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) || |
| 73 rmode_ == EMBEDDED_OBJECT || rmode_ == EXTERNAL_REFERENCE); |
| 74 |
| 75 #if V8_OOL_CONSTANT_POOL |
| 76 if (Assembler::IsConstantPoolLoadStart(pc_)) { |
| 77 // We return the PC for ool constant pool since this function is used by the |
| 78 // serializerer and expects the address to reside within the code object. |
| 79 return reinterpret_cast<Address>(pc_); |
| 80 } |
| 81 #endif |
| 82 |
| 83 // Read the address of the word containing the target_address in an |
| 84 // instruction stream. |
| 85 // The only architecture-independent user of this function is the serializer. |
| 86 // The serializer uses it to find out how many raw bytes of instruction to |
| 87 // output before the next target. |
| 88 // For an instruction like LIS/ORI where the target bits are mixed into the |
| 89 // instruction bits, the size of the target will be zero, indicating that the |
| 90 // serializer should not step forward in memory after a target is resolved |
| 91 // and written. |
| 92 return reinterpret_cast<Address>(pc_); |
| 93 } |
| 94 |
| 95 |
| 96 Address RelocInfo::constant_pool_entry_address() { |
| 97 #if V8_OOL_CONSTANT_POOL |
| 98 return Assembler::target_constant_pool_address_at(pc_, |
| 99 host_->constant_pool()); |
| 100 #else |
| 101 UNREACHABLE(); |
| 102 return NULL; |
| 103 #endif |
| 104 } |
| 105 |
| 106 |
| 107 int RelocInfo::target_address_size() { return Assembler::kSpecialTargetSize; } |
| 108 |
| 109 |
| 110 void RelocInfo::set_target_address(Address target, |
| 111 WriteBarrierMode write_barrier_mode, |
| 112 ICacheFlushMode icache_flush_mode) { |
| 113 DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)); |
| 114 Assembler::set_target_address_at(pc_, host_, target, icache_flush_mode); |
| 115 if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL && |
| 116 IsCodeTarget(rmode_)) { |
| 117 Object* target_code = Code::GetCodeFromTargetAddress(target); |
| 118 host()->GetHeap()->incremental_marking()->RecordWriteIntoCode( |
| 119 host(), this, HeapObject::cast(target_code)); |
| 120 } |
| 121 } |
| 122 |
| 123 |
| 124 Address Assembler::break_address_from_return_address(Address pc) { |
| 125 return target_address_from_return_address(pc); |
| 126 } |
| 127 |
| 128 |
| 129 Address Assembler::target_address_from_return_address(Address pc) { |
| 130 // Returns the address of the call target from the return address that will |
| 131 // be returned to after a call. |
| 132 // Call sequence is : |
| 133 // mov ip, @ call address |
| 134 // mtlr ip |
| 135 // blrl |
| 136 // @ return address |
| 137 #if V8_OOL_CONSTANT_POOL |
| 138 if (IsConstantPoolLoadEnd(pc - 3 * kInstrSize)) { |
| 139 return pc - (kMovInstructionsConstantPool + 2) * kInstrSize; |
| 140 } |
| 141 #endif |
| 142 return pc - (kMovInstructionsNoConstantPool + 2) * kInstrSize; |
| 143 } |
| 144 |
| 145 |
| 146 Address Assembler::return_address_from_call_start(Address pc) { |
| 147 #if V8_OOL_CONSTANT_POOL |
| 148 Address load_address = pc + (kMovInstructionsConstantPool - 1) * kInstrSize; |
| 149 if (IsConstantPoolLoadEnd(load_address)) |
| 150 return pc + (kMovInstructionsConstantPool + 2) * kInstrSize; |
| 151 #endif |
| 152 return pc + (kMovInstructionsNoConstantPool + 2) * kInstrSize; |
| 153 } |
| 154 |
| 155 |
| 156 Object* RelocInfo::target_object() { |
| 157 DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT); |
| 158 return reinterpret_cast<Object*>(Assembler::target_address_at(pc_, host_)); |
| 159 } |
| 160 |
| 161 |
| 162 Handle<Object> RelocInfo::target_object_handle(Assembler* origin) { |
| 163 DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT); |
| 164 return Handle<Object>( |
| 165 reinterpret_cast<Object**>(Assembler::target_address_at(pc_, host_))); |
| 166 } |
| 167 |
| 168 |
| 169 void RelocInfo::set_target_object(Object* target, |
| 170 WriteBarrierMode write_barrier_mode, |
| 171 ICacheFlushMode icache_flush_mode) { |
| 172 DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT); |
| 173 Assembler::set_target_address_at( |
| 174 pc_, host_, reinterpret_cast<Address>(target), icache_flush_mode); |
| 175 if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL && |
| 176 target->IsHeapObject()) { |
| 177 host()->GetHeap()->incremental_marking()->RecordWrite( |
| 178 host(), &Memory::Object_at(pc_), HeapObject::cast(target)); |
| 179 } |
| 180 } |
| 181 |
| 182 |
| 183 Address RelocInfo::target_reference() { |
| 184 DCHECK(rmode_ == EXTERNAL_REFERENCE); |
| 185 return Assembler::target_address_at(pc_, host_); |
| 186 } |
| 187 |
| 188 |
| 189 Address RelocInfo::target_runtime_entry(Assembler* origin) { |
| 190 DCHECK(IsRuntimeEntry(rmode_)); |
| 191 return target_address(); |
| 192 } |
| 193 |
| 194 |
| 195 void RelocInfo::set_target_runtime_entry(Address target, |
| 196 WriteBarrierMode write_barrier_mode, |
| 197 ICacheFlushMode icache_flush_mode) { |
| 198 DCHECK(IsRuntimeEntry(rmode_)); |
| 199 if (target_address() != target) |
| 200 set_target_address(target, write_barrier_mode, icache_flush_mode); |
| 201 } |
| 202 |
| 203 |
| 204 Handle<Cell> RelocInfo::target_cell_handle() { |
| 205 DCHECK(rmode_ == RelocInfo::CELL); |
| 206 Address address = Memory::Address_at(pc_); |
| 207 return Handle<Cell>(reinterpret_cast<Cell**>(address)); |
| 208 } |
| 209 |
| 210 |
| 211 Cell* RelocInfo::target_cell() { |
| 212 DCHECK(rmode_ == RelocInfo::CELL); |
| 213 return Cell::FromValueAddress(Memory::Address_at(pc_)); |
| 214 } |
| 215 |
| 216 |
| 217 void RelocInfo::set_target_cell(Cell* cell, WriteBarrierMode write_barrier_mode, |
| 218 ICacheFlushMode icache_flush_mode) { |
| 219 DCHECK(rmode_ == RelocInfo::CELL); |
| 220 Address address = cell->address() + Cell::kValueOffset; |
| 221 Memory::Address_at(pc_) = address; |
| 222 if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL) { |
| 223 // TODO(1550) We are passing NULL as a slot because cell can never be on |
| 224 // evacuation candidate. |
| 225 host()->GetHeap()->incremental_marking()->RecordWrite(host(), NULL, cell); |
| 226 } |
| 227 } |
| 228 |
| 229 |
| 230 #if V8_OOL_CONSTANT_POOL |
| 231 static const int kNoCodeAgeInstructions = 7; |
| 232 #else |
| 233 static const int kNoCodeAgeInstructions = 6; |
| 234 #endif |
| 235 static const int kCodeAgingInstructions = |
| 236 Assembler::kMovInstructionsNoConstantPool + 3; |
| 237 static const int kNoCodeAgeSequenceInstructions = |
| 238 ((kNoCodeAgeInstructions >= kCodeAgingInstructions) |
| 239 ? kNoCodeAgeInstructions |
| 240 : kCodeAgingInstructions); |
| 241 static const int kNoCodeAgeSequenceNops = |
| 242 (kNoCodeAgeSequenceInstructions - kNoCodeAgeInstructions); |
| 243 static const int kCodeAgingSequenceNops = |
| 244 (kNoCodeAgeSequenceInstructions - kCodeAgingInstructions); |
| 245 static const int kCodeAgingTargetDelta = 1 * Assembler::kInstrSize; |
| 246 static const int kNoCodeAgeSequenceLength = |
| 247 (kNoCodeAgeSequenceInstructions * Assembler::kInstrSize); |
| 248 |
| 249 |
| 250 Handle<Object> RelocInfo::code_age_stub_handle(Assembler* origin) { |
| 251 UNREACHABLE(); // This should never be reached on PPC. |
| 252 return Handle<Object>(); |
| 253 } |
| 254 |
| 255 |
| 256 Code* RelocInfo::code_age_stub() { |
| 257 DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE); |
| 258 return Code::GetCodeFromTargetAddress( |
| 259 Assembler::target_address_at(pc_ + kCodeAgingTargetDelta, host_)); |
| 260 } |
| 261 |
| 262 |
| 263 void RelocInfo::set_code_age_stub(Code* stub, |
| 264 ICacheFlushMode icache_flush_mode) { |
| 265 DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE); |
| 266 Assembler::set_target_address_at(pc_ + kCodeAgingTargetDelta, host_, |
| 267 stub->instruction_start(), |
| 268 icache_flush_mode); |
| 269 } |
| 270 |
| 271 |
| 272 Address RelocInfo::call_address() { |
| 273 DCHECK((IsJSReturn(rmode()) && IsPatchedReturnSequence()) || |
| 274 (IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence())); |
| 275 // The pc_ offset of 0 assumes patched return sequence per |
| 276 // BreakLocationIterator::SetDebugBreakAtReturn(), or debug break |
| 277 // slot per BreakLocationIterator::SetDebugBreakAtSlot(). |
| 278 return Assembler::target_address_at(pc_, host_); |
| 279 } |
| 280 |
| 281 |
| 282 void RelocInfo::set_call_address(Address target) { |
| 283 DCHECK((IsJSReturn(rmode()) && IsPatchedReturnSequence()) || |
| 284 (IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence())); |
| 285 Assembler::set_target_address_at(pc_, host_, target); |
| 286 if (host() != NULL) { |
| 287 Object* target_code = Code::GetCodeFromTargetAddress(target); |
| 288 host()->GetHeap()->incremental_marking()->RecordWriteIntoCode( |
| 289 host(), this, HeapObject::cast(target_code)); |
| 290 } |
| 291 } |
| 292 |
| 293 |
| 294 Object* RelocInfo::call_object() { return *call_object_address(); } |
| 295 |
| 296 |
| 297 void RelocInfo::set_call_object(Object* target) { |
| 298 *call_object_address() = target; |
| 299 } |
| 300 |
| 301 |
| 302 Object** RelocInfo::call_object_address() { |
| 303 DCHECK((IsJSReturn(rmode()) && IsPatchedReturnSequence()) || |
| 304 (IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence())); |
| 305 return reinterpret_cast<Object**>(pc_ + 2 * Assembler::kInstrSize); |
| 306 } |
| 307 |
| 308 |
| 309 void RelocInfo::WipeOut() { |
| 310 DCHECK(IsEmbeddedObject(rmode_) || IsCodeTarget(rmode_) || |
| 311 IsRuntimeEntry(rmode_) || IsExternalReference(rmode_)); |
| 312 Assembler::set_target_address_at(pc_, host_, NULL); |
| 313 } |
| 314 |
| 315 |
| 316 bool RelocInfo::IsPatchedReturnSequence() { |
| 317 // |
| 318 // The patched return sequence is defined by |
| 319 // BreakLocationIterator::SetDebugBreakAtReturn() |
| 320 // FIXED_SEQUENCE |
| 321 |
| 322 Instr instr0 = Assembler::instr_at(pc_); |
| 323 Instr instr1 = Assembler::instr_at(pc_ + 1 * Assembler::kInstrSize); |
| 324 #if V8_TARGET_ARCH_PPC64 |
| 325 Instr instr3 = Assembler::instr_at(pc_ + (3 * Assembler::kInstrSize)); |
| 326 Instr instr4 = Assembler::instr_at(pc_ + (4 * Assembler::kInstrSize)); |
| 327 Instr binstr = Assembler::instr_at(pc_ + (7 * Assembler::kInstrSize)); |
| 328 #else |
| 329 Instr binstr = Assembler::instr_at(pc_ + 4 * Assembler::kInstrSize); |
| 330 #endif |
| 331 bool patched_return = |
| 332 ((instr0 & kOpcodeMask) == ADDIS && (instr1 & kOpcodeMask) == ORI && |
| 333 #if V8_TARGET_ARCH_PPC64 |
| 334 (instr3 & kOpcodeMask) == ORIS && (instr4 & kOpcodeMask) == ORI && |
| 335 #endif |
| 336 (binstr == 0x7d821008)); // twge r2, r2 |
| 337 |
| 338 // printf("IsPatchedReturnSequence: %d\n", patched_return); |
| 339 return patched_return; |
| 340 } |
| 341 |
| 342 |
| 343 bool RelocInfo::IsPatchedDebugBreakSlotSequence() { |
| 344 Instr current_instr = Assembler::instr_at(pc_); |
| 345 return !Assembler::IsNop(current_instr, Assembler::DEBUG_BREAK_NOP); |
| 346 } |
| 347 |
| 348 |
| 349 void RelocInfo::Visit(Isolate* isolate, ObjectVisitor* visitor) { |
| 350 RelocInfo::Mode mode = rmode(); |
| 351 if (mode == RelocInfo::EMBEDDED_OBJECT) { |
| 352 visitor->VisitEmbeddedPointer(this); |
| 353 } else if (RelocInfo::IsCodeTarget(mode)) { |
| 354 visitor->VisitCodeTarget(this); |
| 355 } else if (mode == RelocInfo::CELL) { |
| 356 visitor->VisitCell(this); |
| 357 } else if (mode == RelocInfo::EXTERNAL_REFERENCE) { |
| 358 visitor->VisitExternalReference(this); |
| 359 } else if (RelocInfo::IsCodeAgeSequence(mode)) { |
| 360 visitor->VisitCodeAgeSequence(this); |
| 361 } else if (((RelocInfo::IsJSReturn(mode) && IsPatchedReturnSequence()) || |
| 362 (RelocInfo::IsDebugBreakSlot(mode) && |
| 363 IsPatchedDebugBreakSlotSequence())) && |
| 364 isolate->debug()->has_break_points()) { |
| 365 visitor->VisitDebugTarget(this); |
| 366 } else if (IsRuntimeEntry(mode)) { |
| 367 visitor->VisitRuntimeEntry(this); |
| 368 } |
| 369 } |
| 370 |
| 371 |
| 372 template <typename StaticVisitor> |
| 373 void RelocInfo::Visit(Heap* heap) { |
| 374 RelocInfo::Mode mode = rmode(); |
| 375 if (mode == RelocInfo::EMBEDDED_OBJECT) { |
| 376 StaticVisitor::VisitEmbeddedPointer(heap, this); |
| 377 } else if (RelocInfo::IsCodeTarget(mode)) { |
| 378 StaticVisitor::VisitCodeTarget(heap, this); |
| 379 } else if (mode == RelocInfo::CELL) { |
| 380 StaticVisitor::VisitCell(heap, this); |
| 381 } else if (mode == RelocInfo::EXTERNAL_REFERENCE) { |
| 382 StaticVisitor::VisitExternalReference(this); |
| 383 } else if (RelocInfo::IsCodeAgeSequence(mode)) { |
| 384 StaticVisitor::VisitCodeAgeSequence(heap, this); |
| 385 } else if (heap->isolate()->debug()->has_break_points() && |
| 386 ((RelocInfo::IsJSReturn(mode) && IsPatchedReturnSequence()) || |
| 387 (RelocInfo::IsDebugBreakSlot(mode) && |
| 388 IsPatchedDebugBreakSlotSequence()))) { |
| 389 StaticVisitor::VisitDebugTarget(heap, this); |
| 390 } else if (IsRuntimeEntry(mode)) { |
| 391 StaticVisitor::VisitRuntimeEntry(this); |
| 392 } |
| 393 } |
| 394 |
| 395 Operand::Operand(intptr_t immediate, RelocInfo::Mode rmode) { |
| 396 rm_ = no_reg; |
| 397 imm_ = immediate; |
| 398 rmode_ = rmode; |
| 399 } |
| 400 |
| 401 Operand::Operand(const ExternalReference& f) { |
| 402 rm_ = no_reg; |
| 403 imm_ = reinterpret_cast<intptr_t>(f.address()); |
| 404 rmode_ = RelocInfo::EXTERNAL_REFERENCE; |
| 405 } |
| 406 |
| 407 Operand::Operand(Smi* value) { |
| 408 rm_ = no_reg; |
| 409 imm_ = reinterpret_cast<intptr_t>(value); |
| 410 rmode_ = kRelocInfo_NONEPTR; |
| 411 } |
| 412 |
| 413 Operand::Operand(Register rm) { |
| 414 rm_ = rm; |
| 415 rmode_ = kRelocInfo_NONEPTR; // PPC -why doesn't ARM do this? |
| 416 } |
| 417 |
| 418 void Assembler::CheckBuffer() { |
| 419 if (buffer_space() <= kGap) { |
| 420 GrowBuffer(); |
| 421 } |
| 422 } |
| 423 |
| 424 void Assembler::CheckTrampolinePoolQuick() { |
| 425 if (pc_offset() >= next_buffer_check_) { |
| 426 CheckTrampolinePool(); |
| 427 } |
| 428 } |
| 429 |
| 430 void Assembler::emit(Instr x) { |
| 431 CheckBuffer(); |
| 432 *reinterpret_cast<Instr*>(pc_) = x; |
| 433 pc_ += kInstrSize; |
| 434 CheckTrampolinePoolQuick(); |
| 435 } |
| 436 |
| 437 bool Operand::is_reg() const { return rm_.is_valid(); } |
| 438 |
| 439 |
| 440 // Fetch the 32bit value from the FIXED_SEQUENCE lis/ori |
| 441 Address Assembler::target_address_at(Address pc, |
| 442 ConstantPoolArray* constant_pool) { |
| 443 Instr instr1 = instr_at(pc); |
| 444 Instr instr2 = instr_at(pc + kInstrSize); |
| 445 // Interpret 2 instructions generated by lis/ori |
| 446 if (IsLis(instr1) && IsOri(instr2)) { |
| 447 #if V8_TARGET_ARCH_PPC64 |
| 448 Instr instr4 = instr_at(pc + (3 * kInstrSize)); |
| 449 Instr instr5 = instr_at(pc + (4 * kInstrSize)); |
| 450 // Assemble the 64 bit value. |
| 451 uint64_t hi = (static_cast<uint32_t>((instr1 & kImm16Mask) << 16) | |
| 452 static_cast<uint32_t>(instr2 & kImm16Mask)); |
| 453 uint64_t lo = (static_cast<uint32_t>((instr4 & kImm16Mask) << 16) | |
| 454 static_cast<uint32_t>(instr5 & kImm16Mask)); |
| 455 return reinterpret_cast<Address>((hi << 32) | lo); |
| 456 #else |
| 457 // Assemble the 32 bit value. |
| 458 return reinterpret_cast<Address>(((instr1 & kImm16Mask) << 16) | |
| 459 (instr2 & kImm16Mask)); |
| 460 #endif |
| 461 } |
| 462 #if V8_OOL_CONSTANT_POOL |
| 463 return Memory::Address_at(target_constant_pool_address_at(pc, constant_pool)); |
| 464 #else |
| 465 DCHECK(false); |
| 466 return (Address)0; |
| 467 #endif |
| 468 } |
| 469 |
| 470 |
| 471 #if V8_OOL_CONSTANT_POOL |
| 472 bool Assembler::IsConstantPoolLoadStart(Address pc) { |
| 473 #if V8_TARGET_ARCH_PPC64 |
| 474 if (!IsLi(instr_at(pc))) return false; |
| 475 pc += kInstrSize; |
| 476 #endif |
| 477 return GetRA(instr_at(pc)).is(kConstantPoolRegister); |
| 478 } |
| 479 |
| 480 |
| 481 bool Assembler::IsConstantPoolLoadEnd(Address pc) { |
| 482 #if V8_TARGET_ARCH_PPC64 |
| 483 pc -= kInstrSize; |
| 484 #endif |
| 485 return IsConstantPoolLoadStart(pc); |
| 486 } |
| 487 |
| 488 |
| 489 int Assembler::GetConstantPoolOffset(Address pc) { |
| 490 DCHECK(IsConstantPoolLoadStart(pc)); |
| 491 Instr instr = instr_at(pc); |
| 492 int offset = SIGN_EXT_IMM16((instr & kImm16Mask)); |
| 493 return offset; |
| 494 } |
| 495 |
| 496 |
| 497 void Assembler::SetConstantPoolOffset(Address pc, int offset) { |
| 498 DCHECK(IsConstantPoolLoadStart(pc)); |
| 499 DCHECK(is_int16(offset)); |
| 500 Instr instr = instr_at(pc); |
| 501 instr &= ~kImm16Mask; |
| 502 instr |= (offset & kImm16Mask); |
| 503 instr_at_put(pc, instr); |
| 504 } |
| 505 |
| 506 |
| 507 Address Assembler::target_constant_pool_address_at( |
| 508 Address pc, ConstantPoolArray* constant_pool) { |
| 509 Address addr = reinterpret_cast<Address>(constant_pool); |
| 510 DCHECK(addr); |
| 511 addr += GetConstantPoolOffset(pc); |
| 512 return addr; |
| 513 } |
| 514 #endif |
| 515 |
| 516 |
| 517 // This sets the branch destination (which gets loaded at the call address). |
| 518 // This is for calls and branches within generated code. The serializer |
| 519 // has already deserialized the mov instructions etc. |
| 520 // There is a FIXED_SEQUENCE assumption here |
| 521 void Assembler::deserialization_set_special_target_at( |
| 522 Address instruction_payload, Code* code, Address target) { |
| 523 set_target_address_at(instruction_payload, code, target); |
| 524 } |
| 525 |
| 526 // This code assumes the FIXED_SEQUENCE of lis/ori |
| 527 void Assembler::set_target_address_at(Address pc, |
| 528 ConstantPoolArray* constant_pool, |
| 529 Address target, |
| 530 ICacheFlushMode icache_flush_mode) { |
| 531 Instr instr1 = instr_at(pc); |
| 532 Instr instr2 = instr_at(pc + kInstrSize); |
| 533 // Interpret 2 instructions generated by lis/ori |
| 534 if (IsLis(instr1) && IsOri(instr2)) { |
| 535 #if V8_TARGET_ARCH_PPC64 |
| 536 Instr instr4 = instr_at(pc + (3 * kInstrSize)); |
| 537 Instr instr5 = instr_at(pc + (4 * kInstrSize)); |
| 538 // Needs to be fixed up when mov changes to handle 64-bit values. |
| 539 uint32_t* p = reinterpret_cast<uint32_t*>(pc); |
| 540 uintptr_t itarget = reinterpret_cast<uintptr_t>(target); |
| 541 |
| 542 instr5 &= ~kImm16Mask; |
| 543 instr5 |= itarget & kImm16Mask; |
| 544 itarget = itarget >> 16; |
| 545 |
| 546 instr4 &= ~kImm16Mask; |
| 547 instr4 |= itarget & kImm16Mask; |
| 548 itarget = itarget >> 16; |
| 549 |
| 550 instr2 &= ~kImm16Mask; |
| 551 instr2 |= itarget & kImm16Mask; |
| 552 itarget = itarget >> 16; |
| 553 |
| 554 instr1 &= ~kImm16Mask; |
| 555 instr1 |= itarget & kImm16Mask; |
| 556 itarget = itarget >> 16; |
| 557 |
| 558 *p = instr1; |
| 559 *(p + 1) = instr2; |
| 560 *(p + 3) = instr4; |
| 561 *(p + 4) = instr5; |
| 562 if (icache_flush_mode != SKIP_ICACHE_FLUSH) { |
| 563 CpuFeatures::FlushICache(p, 5 * kInstrSize); |
| 564 } |
| 565 #else |
| 566 uint32_t* p = reinterpret_cast<uint32_t*>(pc); |
| 567 uint32_t itarget = reinterpret_cast<uint32_t>(target); |
| 568 int lo_word = itarget & kImm16Mask; |
| 569 int hi_word = itarget >> 16; |
| 570 instr1 &= ~kImm16Mask; |
| 571 instr1 |= hi_word; |
| 572 instr2 &= ~kImm16Mask; |
| 573 instr2 |= lo_word; |
| 574 |
| 575 *p = instr1; |
| 576 *(p + 1) = instr2; |
| 577 if (icache_flush_mode != SKIP_ICACHE_FLUSH) { |
| 578 CpuFeatures::FlushICache(p, 2 * kInstrSize); |
| 579 } |
| 580 #endif |
| 581 } else { |
| 582 #if V8_OOL_CONSTANT_POOL |
| 583 Memory::Address_at(target_constant_pool_address_at(pc, constant_pool)) = |
| 584 target; |
| 585 #else |
| 586 UNREACHABLE(); |
| 587 #endif |
| 588 } |
| 589 } |
| 590 } |
| 591 } // namespace v8::internal |
| 592 |
| 593 #endif // V8_PPC_ASSEMBLER_PPC_INL_H_ |
OLD | NEW |