OLD | NEW |
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. | 1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. |
2 // Use of this source code is governed by a BSD-style license that can be | 2 // Use of this source code is governed by a BSD-style license that can be |
3 // found in the LICENSE file. | 3 // found in the LICENSE file. |
4 | 4 |
5 #include "net/quic/congestion_control/tcp_cubic_sender.h" | 5 #include "net/quic/congestion_control/tcp_cubic_sender.h" |
6 | 6 |
7 #include <algorithm> | 7 #include <algorithm> |
8 | 8 |
9 #include "base/metrics/histogram.h" | 9 #include "base/metrics/histogram.h" |
10 #include "net/quic/congestion_control/prr_sender.h" | 10 #include "net/quic/congestion_control/prr_sender.h" |
11 #include "net/quic/congestion_control/rtt_stats.h" | 11 #include "net/quic/congestion_control/rtt_stats.h" |
12 #include "net/quic/crypto/crypto_protocol.h" | 12 #include "net/quic/crypto/crypto_protocol.h" |
13 | 13 |
14 using std::max; | 14 using std::max; |
15 using std::min; | 15 using std::min; |
16 | 16 |
17 namespace net { | 17 namespace net { |
18 | 18 |
19 namespace { | 19 namespace { |
20 // Constants based on TCP defaults. | 20 // Constants based on TCP defaults. |
21 // The minimum cwnd based on RFC 3782 (TCP NewReno) for cwnd reductions on a | 21 // The minimum cwnd based on RFC 3782 (TCP NewReno) for cwnd reductions on a |
22 // fast retransmission. The cwnd after a timeout is still 1. | 22 // fast retransmission. The cwnd after a timeout is still 1. |
23 const QuicPacketCount kMinimumCongestionWindow = 2; | 23 const QuicPacketCount kMinimumCongestionWindow = 2; |
24 const QuicByteCount kMaxSegmentSize = kDefaultTCPMSS; | 24 const QuicByteCount kMaxSegmentSize = kDefaultTCPMSS; |
25 const int64 kInitialCongestionWindow = 10; | |
26 const int kMaxBurstLength = 3; | 25 const int kMaxBurstLength = 3; |
27 const float kRenoBeta = 0.7f; // Reno backoff factor. | 26 const float kRenoBeta = 0.7f; // Reno backoff factor. |
28 const uint32 kDefaultNumConnections = 2; // N-connection emulation. | 27 const uint32 kDefaultNumConnections = 2; // N-connection emulation. |
29 } // namespace | 28 } // namespace |
30 | 29 |
31 TcpCubicSender::TcpCubicSender( | 30 TcpCubicSender::TcpCubicSender( |
32 const QuicClock* clock, | 31 const QuicClock* clock, |
33 const RttStats* rtt_stats, | 32 const RttStats* rtt_stats, |
34 bool reno, | 33 bool reno, |
35 QuicPacketCount max_tcp_congestion_window, | 34 QuicPacketCount max_tcp_congestion_window, |
36 QuicConnectionStats* stats) | 35 QuicConnectionStats* stats) |
37 : hybrid_slow_start_(clock), | 36 : hybrid_slow_start_(clock), |
38 cubic_(clock, stats), | 37 cubic_(clock, stats), |
39 rtt_stats_(rtt_stats), | 38 rtt_stats_(rtt_stats), |
40 stats_(stats), | 39 stats_(stats), |
41 reno_(reno), | 40 reno_(reno), |
42 num_connections_(kDefaultNumConnections), | 41 num_connections_(kDefaultNumConnections), |
43 congestion_window_count_(0), | 42 congestion_window_count_(0), |
44 largest_sent_sequence_number_(0), | 43 largest_sent_sequence_number_(0), |
45 largest_acked_sequence_number_(0), | 44 largest_acked_sequence_number_(0), |
46 largest_sent_at_last_cutback_(0), | 45 largest_sent_at_last_cutback_(0), |
47 congestion_window_(kInitialCongestionWindow), | 46 congestion_window_(kDefaultInitialWindow), |
48 previous_congestion_window_(0), | 47 previous_congestion_window_(0), |
49 slowstart_threshold_(max_tcp_congestion_window), | 48 slowstart_threshold_(max_tcp_congestion_window), |
50 previous_slowstart_threshold_(0), | 49 previous_slowstart_threshold_(0), |
51 last_cutback_exited_slowstart_(false), | 50 last_cutback_exited_slowstart_(false), |
52 max_tcp_congestion_window_(max_tcp_congestion_window) { | 51 max_tcp_congestion_window_(max_tcp_congestion_window) { |
53 } | 52 } |
54 | 53 |
55 TcpCubicSender::~TcpCubicSender() { | 54 TcpCubicSender::~TcpCubicSender() { |
56 UMA_HISTOGRAM_COUNTS("Net.QuicSession.FinalTcpCwnd", congestion_window_); | 55 UMA_HISTOGRAM_COUNTS("Net.QuicSession.FinalTcpCwnd", congestion_window_); |
57 } | 56 } |
58 | 57 |
59 void TcpCubicSender::SetFromConfig(const QuicConfig& config, bool is_server) { | 58 void TcpCubicSender::SetFromConfig(const QuicConfig& config, bool is_server) { |
60 if (is_server) { | 59 if (is_server) { |
61 if (config.HasReceivedConnectionOptions() && | 60 if (config.HasReceivedConnectionOptions() && |
62 ContainsQuicTag(config.ReceivedConnectionOptions(), kIW10)) { | 61 ContainsQuicTag(config.ReceivedConnectionOptions(), kIW10)) { |
63 // Initial window experiment. Ignore the initial congestion | 62 // Initial window experiment. Ignore the initial congestion |
64 // window suggested by the client and use the default ICWND of | 63 // window suggested by the client and use the default ICWND of |
65 // 10 instead. | 64 // 10 instead. |
66 congestion_window_ = kInitialCongestionWindow; | 65 congestion_window_ = kDefaultInitialWindow; |
67 } else if (config.HasReceivedInitialCongestionWindow()) { | 66 } else if (config.HasReceivedInitialCongestionWindow()) { |
68 // Set the initial window size. | 67 // Set the initial window size. |
69 congestion_window_ = min(kMaxInitialWindow, | 68 congestion_window_ = max(kMinimumCongestionWindow, |
70 config.ReceivedInitialCongestionWindow()); | 69 min(kMaxInitialWindow, |
| 70 static_cast<QuicPacketCount>( |
| 71 config.ReceivedInitialCongestionWindow()))); |
71 } | 72 } |
72 } | 73 } |
73 } | 74 } |
74 | 75 |
75 void TcpCubicSender::SetNumEmulatedConnections(int num_connections) { | 76 void TcpCubicSender::SetNumEmulatedConnections(int num_connections) { |
76 num_connections_ = max(1, num_connections); | 77 num_connections_ = max(1, num_connections); |
77 cubic_.SetNumConnections(num_connections_); | 78 cubic_.SetNumConnections(num_connections_); |
78 } | 79 } |
79 | 80 |
80 float TcpCubicSender::RenoBeta() const { | 81 float TcpCubicSender::RenoBeta() const { |
81 // kNConnectionBeta is the backoff factor after loss for our N-connection | 82 // kNConnectionBeta is the backoff factor after loss for our N-connection |
82 // emulation, which emulates the effective backoff of an ensemble of N | 83 // emulation, which emulates the effective backoff of an ensemble of N |
83 // TCP-Reno connections on a single loss event. The effective multiplier is | 84 // TCP-Reno connections on a single loss event. The effective multiplier is |
84 // computed as: | 85 // computed as: |
85 return (num_connections_ - 1 + kRenoBeta) / num_connections_; | 86 return (num_connections_ - 1 + kRenoBeta) / num_connections_; |
86 } | 87 } |
87 | 88 |
88 void TcpCubicSender::OnCongestionEvent( | 89 void TcpCubicSender::OnCongestionEvent( |
89 bool rtt_updated, | 90 bool rtt_updated, |
90 QuicByteCount bytes_in_flight, | 91 QuicByteCount bytes_in_flight, |
91 const CongestionVector& acked_packets, | 92 const CongestionVector& acked_packets, |
92 const CongestionVector& lost_packets) { | 93 const CongestionVector& lost_packets) { |
93 if (rtt_updated && InSlowStart() && | 94 if (rtt_updated && InSlowStart() && |
94 hybrid_slow_start_.ShouldExitSlowStart(rtt_stats_->latest_rtt(), | 95 hybrid_slow_start_.ShouldExitSlowStart(rtt_stats_->latest_rtt(), |
95 rtt_stats_->MinRtt(), | 96 rtt_stats_->min_rtt(), |
96 congestion_window_)) { | 97 congestion_window_)) { |
97 slowstart_threshold_ = congestion_window_; | 98 slowstart_threshold_ = congestion_window_; |
98 } | 99 } |
99 for (CongestionVector::const_iterator it = lost_packets.begin(); | 100 for (CongestionVector::const_iterator it = lost_packets.begin(); |
100 it != lost_packets.end(); ++it) { | 101 it != lost_packets.end(); ++it) { |
101 OnPacketLost(it->first, bytes_in_flight); | 102 OnPacketLost(it->first, bytes_in_flight); |
102 } | 103 } |
103 for (CongestionVector::const_iterator it = acked_packets.begin(); | 104 for (CongestionVector::const_iterator it = acked_packets.begin(); |
104 it != acked_packets.end(); ++it) { | 105 it != acked_packets.end(); ++it) { |
105 OnPacketAcked(it->first, it->second.bytes_sent, bytes_in_flight); | 106 OnPacketAcked(it->first, it->second.bytes_sent, bytes_in_flight); |
(...skipping 90 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
196 if (GetCongestionWindow() > bytes_in_flight) { | 197 if (GetCongestionWindow() > bytes_in_flight) { |
197 return QuicTime::Delta::Zero(); | 198 return QuicTime::Delta::Zero(); |
198 } | 199 } |
199 return QuicTime::Delta::Infinite(); | 200 return QuicTime::Delta::Infinite(); |
200 } | 201 } |
201 | 202 |
202 QuicBandwidth TcpCubicSender::PacingRate() const { | 203 QuicBandwidth TcpCubicSender::PacingRate() const { |
203 // We pace at twice the rate of the underlying sender's bandwidth estimate | 204 // We pace at twice the rate of the underlying sender's bandwidth estimate |
204 // during slow start and 1.25x during congestion avoidance to ensure pacing | 205 // during slow start and 1.25x during congestion avoidance to ensure pacing |
205 // doesn't prevent us from filling the window. | 206 // doesn't prevent us from filling the window. |
206 return BandwidthEstimate().Scale(InSlowStart() ? 2 : 1.25); | 207 QuicTime::Delta srtt = rtt_stats_->smoothed_rtt(); |
| 208 if (srtt.IsZero()) { |
| 209 srtt = QuicTime::Delta::FromMicroseconds(rtt_stats_->initial_rtt_us()); |
| 210 } |
| 211 const QuicBandwidth bandwidth = |
| 212 QuicBandwidth::FromBytesAndTimeDelta(GetCongestionWindow(), srtt); |
| 213 return bandwidth.Scale(InSlowStart() ? 2 : 1.25); |
207 } | 214 } |
208 | 215 |
209 QuicBandwidth TcpCubicSender::BandwidthEstimate() const { | 216 QuicBandwidth TcpCubicSender::BandwidthEstimate() const { |
210 if (rtt_stats_->SmoothedRtt().IsZero()) { | 217 QuicTime::Delta srtt = rtt_stats_->smoothed_rtt(); |
211 LOG(DFATAL) << "In BandwidthEstimate(), smoothed RTT is zero!"; | 218 if (srtt.IsZero()) { |
| 219 // If we haven't measured an rtt, the bandwidth estimate is unknown. |
212 return QuicBandwidth::Zero(); | 220 return QuicBandwidth::Zero(); |
213 } | 221 } |
214 return QuicBandwidth::FromBytesAndTimeDelta(GetCongestionWindow(), | 222 return QuicBandwidth::FromBytesAndTimeDelta(GetCongestionWindow(), srtt); |
215 rtt_stats_->SmoothedRtt()); | |
216 } | 223 } |
217 | 224 |
218 bool TcpCubicSender::HasReliableBandwidthEstimate() const { | 225 bool TcpCubicSender::HasReliableBandwidthEstimate() const { |
219 return !InSlowStart() && !InRecovery(); | 226 return !InSlowStart() && !InRecovery() && |
| 227 !rtt_stats_->smoothed_rtt().IsZero();; |
220 } | 228 } |
221 | 229 |
222 QuicTime::Delta TcpCubicSender::RetransmissionDelay() const { | 230 QuicTime::Delta TcpCubicSender::RetransmissionDelay() const { |
223 if (!rtt_stats_->HasUpdates()) { | 231 if (rtt_stats_->smoothed_rtt().IsZero()) { |
224 return QuicTime::Delta::Zero(); | 232 return QuicTime::Delta::Zero(); |
225 } | 233 } |
226 return rtt_stats_->SmoothedRtt().Add( | 234 return rtt_stats_->smoothed_rtt().Add( |
227 rtt_stats_->mean_deviation().Multiply(4)); | 235 rtt_stats_->mean_deviation().Multiply(4)); |
228 } | 236 } |
229 | 237 |
230 QuicByteCount TcpCubicSender::GetCongestionWindow() const { | 238 QuicByteCount TcpCubicSender::GetCongestionWindow() const { |
231 return congestion_window_ * kMaxSegmentSize; | 239 return congestion_window_ * kMaxSegmentSize; |
232 } | 240 } |
233 | 241 |
234 bool TcpCubicSender::InSlowStart() const { | 242 bool TcpCubicSender::InSlowStart() const { |
235 return congestion_window_ < slowstart_threshold_; | 243 return congestion_window_ < slowstart_threshold_; |
236 } | 244 } |
(...skipping 55 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
292 ++congestion_window_; | 300 ++congestion_window_; |
293 congestion_window_count_ = 0; | 301 congestion_window_count_ = 0; |
294 } | 302 } |
295 | 303 |
296 DVLOG(1) << "Reno; congestion window: " << congestion_window_ | 304 DVLOG(1) << "Reno; congestion window: " << congestion_window_ |
297 << " slowstart threshold: " << slowstart_threshold_ | 305 << " slowstart threshold: " << slowstart_threshold_ |
298 << " congestion window count: " << congestion_window_count_; | 306 << " congestion window count: " << congestion_window_count_; |
299 } else { | 307 } else { |
300 congestion_window_ = min(max_tcp_congestion_window_, | 308 congestion_window_ = min(max_tcp_congestion_window_, |
301 cubic_.CongestionWindowAfterAck( | 309 cubic_.CongestionWindowAfterAck( |
302 congestion_window_, rtt_stats_->MinRtt())); | 310 congestion_window_, rtt_stats_->min_rtt())); |
303 DVLOG(1) << "Cubic; congestion window: " << congestion_window_ | 311 DVLOG(1) << "Cubic; congestion window: " << congestion_window_ |
304 << " slowstart threshold: " << slowstart_threshold_; | 312 << " slowstart threshold: " << slowstart_threshold_; |
305 } | 313 } |
306 } | 314 } |
307 | 315 |
308 void TcpCubicSender::OnRetransmissionTimeout(bool packets_retransmitted) { | 316 void TcpCubicSender::OnRetransmissionTimeout(bool packets_retransmitted) { |
309 largest_sent_at_last_cutback_ = 0; | 317 largest_sent_at_last_cutback_ = 0; |
310 if (!packets_retransmitted) { | 318 if (!packets_retransmitted) { |
311 return; | 319 return; |
312 } | 320 } |
(...skipping 13 matching lines...) Expand all Loading... |
326 congestion_window_ = previous_congestion_window_; | 334 congestion_window_ = previous_congestion_window_; |
327 slowstart_threshold_ = previous_slowstart_threshold_; | 335 slowstart_threshold_ = previous_slowstart_threshold_; |
328 previous_congestion_window_ = 0; | 336 previous_congestion_window_ = 0; |
329 } | 337 } |
330 | 338 |
331 CongestionControlType TcpCubicSender::GetCongestionControlType() const { | 339 CongestionControlType TcpCubicSender::GetCongestionControlType() const { |
332 return reno_ ? kReno : kCubic; | 340 return reno_ ? kReno : kCubic; |
333 } | 341 } |
334 | 342 |
335 } // namespace net | 343 } // namespace net |
OLD | NEW |