| Index: include/core/SkScalar.h
|
| diff --git a/include/core/SkScalar.h b/include/core/SkScalar.h
|
| index b37cf5c998fd4505f6dfd03b43ac39841827e91a..feea687d0a4d0bb6e05e04e7e89cbd4ea9cdcf1a 100644
|
| --- a/include/core/SkScalar.h
|
| +++ b/include/core/SkScalar.h
|
| @@ -13,66 +13,29 @@
|
|
|
| //#define SK_SUPPORT_DEPRECATED_SCALARROUND
|
|
|
| -typedef float SkScalar;
|
| +// TODO: move this sort of check into SkPostConfig.h
|
| +#define SK_SCALAR_IS_DOUBLE 0
|
| +#undef SK_SCALAR_IS_FLOAT
|
| +#define SK_SCALAR_IS_FLOAT 1
|
|
|
| -/** SK_Scalar1 is defined to be 1.0 represented as an SkScalar
|
| -*/
|
| -#define SK_Scalar1 (1.0f)
|
| -/** SK_Scalar1 is defined to be 1/2 represented as an SkScalar
|
| -*/
|
| -#define SK_ScalarHalf (0.5f)
|
| -/** SK_ScalarInfinity is defined to be infinity as an SkScalar
|
| -*/
|
| -#define SK_ScalarInfinity SK_FloatInfinity
|
| -/** SK_ScalarNegativeInfinity is defined to be negative infinity as an SkScalar
|
| -*/
|
| -#define SK_ScalarNegativeInfinity SK_FloatNegativeInfinity
|
| -/** SK_ScalarMax is defined to be the largest value representable as an SkScalar
|
| -*/
|
| -#define SK_ScalarMax (3.402823466e+38f)
|
| -/** SK_ScalarMin is defined to be the smallest value representable as an SkScalar
|
| -*/
|
| -#define SK_ScalarMin (-SK_ScalarMax)
|
| -/** SK_ScalarNaN is defined to be 'Not a Number' as an SkScalar
|
| -*/
|
| -#define SK_ScalarNaN SK_FloatNaN
|
| -/** SkScalarIsNaN(n) returns true if argument is not a number
|
| -*/
|
| -static inline bool SkScalarIsNaN(float x) { return x != x; }
|
| -
|
| -/** Returns true if x is not NaN and not infinite */
|
| -static inline bool SkScalarIsFinite(float x) {
|
| - // We rely on the following behavior of infinities and nans
|
| - // 0 * finite --> 0
|
| - // 0 * infinity --> NaN
|
| - // 0 * NaN --> NaN
|
| - float prod = x * 0;
|
| - // At this point, prod will either be NaN or 0
|
| - // Therefore we can return (prod == prod) or (0 == prod).
|
| - return prod == prod;
|
| -}
|
|
|
| -/** SkIntToScalar(n) returns its integer argument as an SkScalar
|
| -*/
|
| -#define SkIntToScalar(n) ((float)(n))
|
| -/** SkFixedToScalar(n) returns its SkFixed argument as an SkScalar
|
| -*/
|
| -#define SkFixedToScalar(x) SkFixedToFloat(x)
|
| -/** SkScalarToFixed(n) returns its SkScalar argument as an SkFixed
|
| -*/
|
| -#define SkScalarToFixed(x) SkFloatToFixed(x)
|
| +#if SK_SCALAR_IS_FLOAT
|
|
|
| -#define SkScalarToFloat(n) (n)
|
| -#ifndef SK_SCALAR_TO_FLOAT_EXCLUDED
|
| -#define SkFloatToScalar(n) (n)
|
| -#endif
|
| +typedef float SkScalar;
|
|
|
| -#define SkScalarToDouble(n) (double)(n)
|
| -#define SkDoubleToScalar(n) (float)(n)
|
| +#define SK_Scalar1 1.0f
|
| +#define SK_ScalarHalf 0.5f
|
| +#define SK_ScalarSqrt2 1.41421356f
|
| +#define SK_ScalarPI 3.14159265f
|
| +#define SK_ScalarTanPIOver8 0.414213562f
|
| +#define SK_ScalarRoot2Over2 0.707106781f
|
| +#define SK_ScalarMax 3.402823466e+38f
|
| +#define SK_ScalarInfinity SK_FloatInfinity
|
| +#define SK_ScalarNegativeInfinity SK_FloatNegativeInfinity
|
| +#define SK_ScalarNaN SK_FloatNaN
|
|
|
| -/** SkScalarFraction(x) returns the signed fractional part of the argument
|
| -*/
|
| -#define SkScalarFraction(x) sk_float_mod(x, 1.0f)
|
| +#define SkFixedToScalar(x) SkFixedToFloat(x)
|
| +#define SkScalarToFixed(x) SkFloatToFixed(x)
|
|
|
| #define SkScalarFloorToScalar(x) sk_float_floor(x)
|
| #define SkScalarCeilToScalar(x) sk_float_ceil(x)
|
| @@ -81,7 +44,93 @@ static inline bool SkScalarIsFinite(float x) {
|
| #define SkScalarFloorToInt(x) sk_float_floor2int(x)
|
| #define SkScalarCeilToInt(x) sk_float_ceil2int(x)
|
| #define SkScalarRoundToInt(x) sk_float_round2int(x)
|
| -#define SkScalarTruncToInt(x) static_cast<int>(x)
|
| +
|
| +#define SkScalarAbs(x) sk_float_abs(x)
|
| +#define SkScalarCopySign(x, y) sk_float_copysign(x, y)
|
| +#define SkScalarMod(x, y) sk_float_mod(x,y)
|
| +#define SkScalarFraction(x) sk_float_mod(x, 1.0f)
|
| +#define SkScalarSqrt(x) sk_float_sqrt(x)
|
| +#define SkScalarPow(b, e) sk_float_pow(b, e)
|
| +
|
| +#define SkScalarSin(radians) (float)sk_float_sin(radians)
|
| +#define SkScalarCos(radians) (float)sk_float_cos(radians)
|
| +#define SkScalarTan(radians) (float)sk_float_tan(radians)
|
| +#define SkScalarASin(val) (float)sk_float_asin(val)
|
| +#define SkScalarACos(val) (float)sk_float_acos(val)
|
| +#define SkScalarATan2(y, x) (float)sk_float_atan2(y,x)
|
| +#define SkScalarExp(x) (float)sk_float_exp(x)
|
| +#define SkScalarLog(x) (float)sk_float_log(x)
|
| +
|
| +#else // SK_SCALAR_IS_DOUBLE
|
| +
|
| +typedef double SkScalar;
|
| +
|
| +#define SK_Scalar1 1.0
|
| +#define SK_ScalarHalf 0.5
|
| +#define SK_ScalarSqrt2 1.414213562373095
|
| +#define SK_ScalarPI 3.141592653589793
|
| +#define SK_ScalarTanPIOver8 0.4142135623731
|
| +#define SK_ScalarRoot2Over2 0.70710678118655
|
| +#define SK_ScalarMax 1.7976931348623157+308
|
| +#define SK_ScalarInfinity SK_DoubleInfinity
|
| +#define SK_ScalarNegativeInfinity SK_DoubleNegativeInfinity
|
| +#define SK_ScalarNaN SK_DoubleNaN
|
| +
|
| +#define SkFixedToScalar(x) SkFixedToDouble(x)
|
| +#define SkScalarToFixed(x) SkDoubleToFixed(x)
|
| +
|
| +#define SkScalarFloorToScalar(x) floor(x)
|
| +#define SkScalarCeilToScalar(x) ceil(x)
|
| +#define SkScalarRoundToScalar(x) floor((x) + 0.5)
|
| +
|
| +#define SkScalarFloorToInt(x) (int)floor(x)
|
| +#define SkScalarCeilToInt(x) (int)ceil(x)
|
| +#define SkScalarRoundToInt(x) (int)floor((x) + 0.5)
|
| +
|
| +#define SkScalarAbs(x) abs(x)
|
| +#define SkScalarCopySign(x, y) copysign(x, y)
|
| +#define SkScalarMod(x, y) fmod(x,y)
|
| +#define SkScalarFraction(x) fmod(x, 1.0)
|
| +#define SkScalarSqrt(x) sqrt(x)
|
| +#define SkScalarPow(b, e) pow(b, e)
|
| +
|
| +#define SkScalarSin(radians) sin(radians)
|
| +#define SkScalarCos(radians) cos(radians)
|
| +#define SkScalarTan(radians) tan(radians)
|
| +#define SkScalarASin(val) asin(val)
|
| +#define SkScalarACos(val) acos(val)
|
| +#define SkScalarATan2(y, x) atan2(y,x)
|
| +#define SkScalarExp(x) exp(x)
|
| +#define SkScalarLog(x) log(x)
|
| +
|
| +#endif
|
| +
|
| +//////////////////////////////////////////////////////////////////////////////////////////////////
|
| +
|
| +#define SkIntToScalar(x) static_cast<SkScalar>(x)
|
| +#define SkScalarTruncToInt(x) static_cast<int>(x)
|
| +
|
| +#define SkScalarToFloat(x) static_cast<float>(x)
|
| +#define SkFloatToScalar(x) static_cast<SkScalar>(x)
|
| +#define SkScalarToDouble(x) static_cast<double>(x)
|
| +#define SkDoubleToScalar(x) static_cast<SkScalar>(x)
|
| +
|
| +#define SK_ScalarMin (-SK_ScalarMax)
|
| +
|
| +static inline bool SkScalarIsNaN(SkScalar x) { return x != x; }
|
| +
|
| +/** Returns true if x is not NaN and not infinite
|
| + */
|
| +static inline bool SkScalarIsFinite(SkScalar x) {
|
| + // We rely on the following behavior of infinities and nans
|
| + // 0 * finite --> 0
|
| + // 0 * infinity --> NaN
|
| + // 0 * NaN --> NaN
|
| + SkScalar prod = x * 0;
|
| + // At this point, prod will either be NaN or 0
|
| + // Therefore we can return (prod == prod) or (0 == prod).
|
| + return prod == prod;
|
| +}
|
|
|
| /**
|
| * Variant of SkScalarRoundToInt, that performs the rounding step (adding 0.5) explicitly using
|
| @@ -103,79 +152,35 @@ static inline int SkDScalarRoundToInt(SkScalar x) {
|
| return (int)floor(xx);
|
| }
|
|
|
| -/** Returns the absolute value of the specified SkScalar
|
| -*/
|
| -#define SkScalarAbs(x) sk_float_abs(x)
|
| -/** Return x with the sign of y
|
| - */
|
| -#define SkScalarCopySign(x, y) sk_float_copysign(x, y)
|
| -/** Returns the value pinned between 0 and max inclusive
|
| -*/
|
| -inline SkScalar SkScalarClampMax(SkScalar x, SkScalar max) {
|
| +static inline SkScalar SkScalarClampMax(SkScalar x, SkScalar max) {
|
| return x < 0 ? 0 : x > max ? max : x;
|
| }
|
| -/** Returns the value pinned between min and max inclusive
|
| -*/
|
| -inline SkScalar SkScalarPin(SkScalar x, SkScalar min, SkScalar max) {
|
| +
|
| +static inline SkScalar SkScalarPin(SkScalar x, SkScalar min, SkScalar max) {
|
| return x < min ? min : x > max ? max : x;
|
| }
|
| -/** Returns the specified SkScalar squared (x*x)
|
| -*/
|
| -inline SkScalar SkScalarSquare(SkScalar x) { return x * x; }
|
| -/** Returns the product of two SkScalars
|
| -*/
|
| -#define SkScalarMul(a, b) ((float)(a) * (b))
|
| -/** Returns the product of two SkScalars plus a third SkScalar
|
| -*/
|
| -#define SkScalarMulAdd(a, b, c) ((float)(a) * (b) + (c))
|
| -/** Returns the quotient of two SkScalars (a/b)
|
| -*/
|
| -#define SkScalarDiv(a, b) ((float)(a) / (b))
|
| -/** Returns the mod of two SkScalars (a mod b)
|
| -*/
|
| -#define SkScalarMod(x,y) sk_float_mod(x,y)
|
| -/** Returns the product of the first two arguments, divided by the third argument
|
| -*/
|
| -#define SkScalarMulDiv(a, b, c) ((float)(a) * (b) / (c))
|
| -/** Returns the multiplicative inverse of the SkScalar (1/x)
|
| -*/
|
| +
|
| +SkScalar SkScalarSinCos(SkScalar radians, SkScalar* cosValue);
|
| +
|
| +static inline SkScalar SkScalarSquare(SkScalar x) { return x * x; }
|
| +
|
| +#define SkScalarMul(a, b) ((SkScalar)(a) * (b))
|
| +#define SkScalarMulAdd(a, b, c) ((SkScalar)(a) * (b) + (c))
|
| +#define SkScalarDiv(a, b) ((SkScalar)(a) / (b))
|
| +#define SkScalarMulDiv(a, b, c) ((SkScalar)(a) * (b) / (c))
|
| #define SkScalarInvert(x) (SK_Scalar1 / (x))
|
| #define SkScalarFastInvert(x) (SK_Scalar1 / (x))
|
| -/** Returns the square root of the SkScalar
|
| -*/
|
| -#define SkScalarSqrt(x) sk_float_sqrt(x)
|
| -/** Returns b to the e
|
| -*/
|
| -#define SkScalarPow(b, e) sk_float_pow(b, e)
|
| -/** Returns the average of two SkScalars (a+b)/2
|
| -*/
|
| -#define SkScalarAve(a, b) (((a) + (b)) * 0.5f)
|
| -/** Returns one half of the specified SkScalar
|
| -*/
|
| -#define SkScalarHalf(a) ((a) * 0.5f)
|
| -
|
| -#define SK_ScalarSqrt2 1.41421356f
|
| -#define SK_ScalarPI 3.14159265f
|
| -#define SK_ScalarTanPIOver8 0.414213562f
|
| -#define SK_ScalarRoot2Over2 0.707106781f
|
| +#define SkScalarAve(a, b) (((a) + (b)) * SK_ScalarHalf)
|
| +#define SkScalarHalf(a) ((a) * SK_ScalarHalf)
|
|
|
| #define SkDegreesToRadians(degrees) ((degrees) * (SK_ScalarPI / 180))
|
| #define SkRadiansToDegrees(radians) ((radians) * (180 / SK_ScalarPI))
|
| -float SkScalarSinCos(SkScalar radians, SkScalar* cosValue);
|
| -#define SkScalarSin(radians) (float)sk_float_sin(radians)
|
| -#define SkScalarCos(radians) (float)sk_float_cos(radians)
|
| -#define SkScalarTan(radians) (float)sk_float_tan(radians)
|
| -#define SkScalarASin(val) (float)sk_float_asin(val)
|
| -#define SkScalarACos(val) (float)sk_float_acos(val)
|
| -#define SkScalarATan2(y, x) (float)sk_float_atan2(y,x)
|
| -#define SkScalarExp(x) (float)sk_float_exp(x)
|
| -#define SkScalarLog(x) (float)sk_float_log(x)
|
| -
|
| -inline SkScalar SkMaxScalar(SkScalar a, SkScalar b) { return a > b ? a : b; }
|
| -inline SkScalar SkMinScalar(SkScalar a, SkScalar b) { return a < b ? a : b; }
|
| +
|
| +static inline SkScalar SkMaxScalar(SkScalar a, SkScalar b) { return a > b ? a : b; }
|
| +static inline SkScalar SkMinScalar(SkScalar a, SkScalar b) { return a < b ? a : b; }
|
|
|
| static inline bool SkScalarIsInt(SkScalar x) {
|
| - return x == (float)(int)x;
|
| + return x == (SkScalar)(int)x;
|
| }
|
|
|
| // DEPRECATED : use ToInt or ToScalar variant
|
|
|