Index: include/core/SkScalar.h |
diff --git a/include/core/SkScalar.h b/include/core/SkScalar.h |
index b37cf5c998fd4505f6dfd03b43ac39841827e91a..feea687d0a4d0bb6e05e04e7e89cbd4ea9cdcf1a 100644 |
--- a/include/core/SkScalar.h |
+++ b/include/core/SkScalar.h |
@@ -13,66 +13,29 @@ |
//#define SK_SUPPORT_DEPRECATED_SCALARROUND |
-typedef float SkScalar; |
+// TODO: move this sort of check into SkPostConfig.h |
+#define SK_SCALAR_IS_DOUBLE 0 |
+#undef SK_SCALAR_IS_FLOAT |
+#define SK_SCALAR_IS_FLOAT 1 |
-/** SK_Scalar1 is defined to be 1.0 represented as an SkScalar |
-*/ |
-#define SK_Scalar1 (1.0f) |
-/** SK_Scalar1 is defined to be 1/2 represented as an SkScalar |
-*/ |
-#define SK_ScalarHalf (0.5f) |
-/** SK_ScalarInfinity is defined to be infinity as an SkScalar |
-*/ |
-#define SK_ScalarInfinity SK_FloatInfinity |
-/** SK_ScalarNegativeInfinity is defined to be negative infinity as an SkScalar |
-*/ |
-#define SK_ScalarNegativeInfinity SK_FloatNegativeInfinity |
-/** SK_ScalarMax is defined to be the largest value representable as an SkScalar |
-*/ |
-#define SK_ScalarMax (3.402823466e+38f) |
-/** SK_ScalarMin is defined to be the smallest value representable as an SkScalar |
-*/ |
-#define SK_ScalarMin (-SK_ScalarMax) |
-/** SK_ScalarNaN is defined to be 'Not a Number' as an SkScalar |
-*/ |
-#define SK_ScalarNaN SK_FloatNaN |
-/** SkScalarIsNaN(n) returns true if argument is not a number |
-*/ |
-static inline bool SkScalarIsNaN(float x) { return x != x; } |
- |
-/** Returns true if x is not NaN and not infinite */ |
-static inline bool SkScalarIsFinite(float x) { |
- // We rely on the following behavior of infinities and nans |
- // 0 * finite --> 0 |
- // 0 * infinity --> NaN |
- // 0 * NaN --> NaN |
- float prod = x * 0; |
- // At this point, prod will either be NaN or 0 |
- // Therefore we can return (prod == prod) or (0 == prod). |
- return prod == prod; |
-} |
-/** SkIntToScalar(n) returns its integer argument as an SkScalar |
-*/ |
-#define SkIntToScalar(n) ((float)(n)) |
-/** SkFixedToScalar(n) returns its SkFixed argument as an SkScalar |
-*/ |
-#define SkFixedToScalar(x) SkFixedToFloat(x) |
-/** SkScalarToFixed(n) returns its SkScalar argument as an SkFixed |
-*/ |
-#define SkScalarToFixed(x) SkFloatToFixed(x) |
+#if SK_SCALAR_IS_FLOAT |
-#define SkScalarToFloat(n) (n) |
-#ifndef SK_SCALAR_TO_FLOAT_EXCLUDED |
-#define SkFloatToScalar(n) (n) |
-#endif |
+typedef float SkScalar; |
-#define SkScalarToDouble(n) (double)(n) |
-#define SkDoubleToScalar(n) (float)(n) |
+#define SK_Scalar1 1.0f |
+#define SK_ScalarHalf 0.5f |
+#define SK_ScalarSqrt2 1.41421356f |
+#define SK_ScalarPI 3.14159265f |
+#define SK_ScalarTanPIOver8 0.414213562f |
+#define SK_ScalarRoot2Over2 0.707106781f |
+#define SK_ScalarMax 3.402823466e+38f |
+#define SK_ScalarInfinity SK_FloatInfinity |
+#define SK_ScalarNegativeInfinity SK_FloatNegativeInfinity |
+#define SK_ScalarNaN SK_FloatNaN |
-/** SkScalarFraction(x) returns the signed fractional part of the argument |
-*/ |
-#define SkScalarFraction(x) sk_float_mod(x, 1.0f) |
+#define SkFixedToScalar(x) SkFixedToFloat(x) |
+#define SkScalarToFixed(x) SkFloatToFixed(x) |
#define SkScalarFloorToScalar(x) sk_float_floor(x) |
#define SkScalarCeilToScalar(x) sk_float_ceil(x) |
@@ -81,7 +44,93 @@ static inline bool SkScalarIsFinite(float x) { |
#define SkScalarFloorToInt(x) sk_float_floor2int(x) |
#define SkScalarCeilToInt(x) sk_float_ceil2int(x) |
#define SkScalarRoundToInt(x) sk_float_round2int(x) |
-#define SkScalarTruncToInt(x) static_cast<int>(x) |
+ |
+#define SkScalarAbs(x) sk_float_abs(x) |
+#define SkScalarCopySign(x, y) sk_float_copysign(x, y) |
+#define SkScalarMod(x, y) sk_float_mod(x,y) |
+#define SkScalarFraction(x) sk_float_mod(x, 1.0f) |
+#define SkScalarSqrt(x) sk_float_sqrt(x) |
+#define SkScalarPow(b, e) sk_float_pow(b, e) |
+ |
+#define SkScalarSin(radians) (float)sk_float_sin(radians) |
+#define SkScalarCos(radians) (float)sk_float_cos(radians) |
+#define SkScalarTan(radians) (float)sk_float_tan(radians) |
+#define SkScalarASin(val) (float)sk_float_asin(val) |
+#define SkScalarACos(val) (float)sk_float_acos(val) |
+#define SkScalarATan2(y, x) (float)sk_float_atan2(y,x) |
+#define SkScalarExp(x) (float)sk_float_exp(x) |
+#define SkScalarLog(x) (float)sk_float_log(x) |
+ |
+#else // SK_SCALAR_IS_DOUBLE |
+ |
+typedef double SkScalar; |
+ |
+#define SK_Scalar1 1.0 |
+#define SK_ScalarHalf 0.5 |
+#define SK_ScalarSqrt2 1.414213562373095 |
+#define SK_ScalarPI 3.141592653589793 |
+#define SK_ScalarTanPIOver8 0.4142135623731 |
+#define SK_ScalarRoot2Over2 0.70710678118655 |
+#define SK_ScalarMax 1.7976931348623157+308 |
+#define SK_ScalarInfinity SK_DoubleInfinity |
+#define SK_ScalarNegativeInfinity SK_DoubleNegativeInfinity |
+#define SK_ScalarNaN SK_DoubleNaN |
+ |
+#define SkFixedToScalar(x) SkFixedToDouble(x) |
+#define SkScalarToFixed(x) SkDoubleToFixed(x) |
+ |
+#define SkScalarFloorToScalar(x) floor(x) |
+#define SkScalarCeilToScalar(x) ceil(x) |
+#define SkScalarRoundToScalar(x) floor((x) + 0.5) |
+ |
+#define SkScalarFloorToInt(x) (int)floor(x) |
+#define SkScalarCeilToInt(x) (int)ceil(x) |
+#define SkScalarRoundToInt(x) (int)floor((x) + 0.5) |
+ |
+#define SkScalarAbs(x) abs(x) |
+#define SkScalarCopySign(x, y) copysign(x, y) |
+#define SkScalarMod(x, y) fmod(x,y) |
+#define SkScalarFraction(x) fmod(x, 1.0) |
+#define SkScalarSqrt(x) sqrt(x) |
+#define SkScalarPow(b, e) pow(b, e) |
+ |
+#define SkScalarSin(radians) sin(radians) |
+#define SkScalarCos(radians) cos(radians) |
+#define SkScalarTan(radians) tan(radians) |
+#define SkScalarASin(val) asin(val) |
+#define SkScalarACos(val) acos(val) |
+#define SkScalarATan2(y, x) atan2(y,x) |
+#define SkScalarExp(x) exp(x) |
+#define SkScalarLog(x) log(x) |
+ |
+#endif |
+ |
+////////////////////////////////////////////////////////////////////////////////////////////////// |
+ |
+#define SkIntToScalar(x) static_cast<SkScalar>(x) |
+#define SkScalarTruncToInt(x) static_cast<int>(x) |
+ |
+#define SkScalarToFloat(x) static_cast<float>(x) |
+#define SkFloatToScalar(x) static_cast<SkScalar>(x) |
+#define SkScalarToDouble(x) static_cast<double>(x) |
+#define SkDoubleToScalar(x) static_cast<SkScalar>(x) |
+ |
+#define SK_ScalarMin (-SK_ScalarMax) |
+ |
+static inline bool SkScalarIsNaN(SkScalar x) { return x != x; } |
+ |
+/** Returns true if x is not NaN and not infinite |
+ */ |
+static inline bool SkScalarIsFinite(SkScalar x) { |
+ // We rely on the following behavior of infinities and nans |
+ // 0 * finite --> 0 |
+ // 0 * infinity --> NaN |
+ // 0 * NaN --> NaN |
+ SkScalar prod = x * 0; |
+ // At this point, prod will either be NaN or 0 |
+ // Therefore we can return (prod == prod) or (0 == prod). |
+ return prod == prod; |
+} |
/** |
* Variant of SkScalarRoundToInt, that performs the rounding step (adding 0.5) explicitly using |
@@ -103,79 +152,35 @@ static inline int SkDScalarRoundToInt(SkScalar x) { |
return (int)floor(xx); |
} |
-/** Returns the absolute value of the specified SkScalar |
-*/ |
-#define SkScalarAbs(x) sk_float_abs(x) |
-/** Return x with the sign of y |
- */ |
-#define SkScalarCopySign(x, y) sk_float_copysign(x, y) |
-/** Returns the value pinned between 0 and max inclusive |
-*/ |
-inline SkScalar SkScalarClampMax(SkScalar x, SkScalar max) { |
+static inline SkScalar SkScalarClampMax(SkScalar x, SkScalar max) { |
return x < 0 ? 0 : x > max ? max : x; |
} |
-/** Returns the value pinned between min and max inclusive |
-*/ |
-inline SkScalar SkScalarPin(SkScalar x, SkScalar min, SkScalar max) { |
+ |
+static inline SkScalar SkScalarPin(SkScalar x, SkScalar min, SkScalar max) { |
return x < min ? min : x > max ? max : x; |
} |
-/** Returns the specified SkScalar squared (x*x) |
-*/ |
-inline SkScalar SkScalarSquare(SkScalar x) { return x * x; } |
-/** Returns the product of two SkScalars |
-*/ |
-#define SkScalarMul(a, b) ((float)(a) * (b)) |
-/** Returns the product of two SkScalars plus a third SkScalar |
-*/ |
-#define SkScalarMulAdd(a, b, c) ((float)(a) * (b) + (c)) |
-/** Returns the quotient of two SkScalars (a/b) |
-*/ |
-#define SkScalarDiv(a, b) ((float)(a) / (b)) |
-/** Returns the mod of two SkScalars (a mod b) |
-*/ |
-#define SkScalarMod(x,y) sk_float_mod(x,y) |
-/** Returns the product of the first two arguments, divided by the third argument |
-*/ |
-#define SkScalarMulDiv(a, b, c) ((float)(a) * (b) / (c)) |
-/** Returns the multiplicative inverse of the SkScalar (1/x) |
-*/ |
+ |
+SkScalar SkScalarSinCos(SkScalar radians, SkScalar* cosValue); |
+ |
+static inline SkScalar SkScalarSquare(SkScalar x) { return x * x; } |
+ |
+#define SkScalarMul(a, b) ((SkScalar)(a) * (b)) |
+#define SkScalarMulAdd(a, b, c) ((SkScalar)(a) * (b) + (c)) |
+#define SkScalarDiv(a, b) ((SkScalar)(a) / (b)) |
+#define SkScalarMulDiv(a, b, c) ((SkScalar)(a) * (b) / (c)) |
#define SkScalarInvert(x) (SK_Scalar1 / (x)) |
#define SkScalarFastInvert(x) (SK_Scalar1 / (x)) |
-/** Returns the square root of the SkScalar |
-*/ |
-#define SkScalarSqrt(x) sk_float_sqrt(x) |
-/** Returns b to the e |
-*/ |
-#define SkScalarPow(b, e) sk_float_pow(b, e) |
-/** Returns the average of two SkScalars (a+b)/2 |
-*/ |
-#define SkScalarAve(a, b) (((a) + (b)) * 0.5f) |
-/** Returns one half of the specified SkScalar |
-*/ |
-#define SkScalarHalf(a) ((a) * 0.5f) |
- |
-#define SK_ScalarSqrt2 1.41421356f |
-#define SK_ScalarPI 3.14159265f |
-#define SK_ScalarTanPIOver8 0.414213562f |
-#define SK_ScalarRoot2Over2 0.707106781f |
+#define SkScalarAve(a, b) (((a) + (b)) * SK_ScalarHalf) |
+#define SkScalarHalf(a) ((a) * SK_ScalarHalf) |
#define SkDegreesToRadians(degrees) ((degrees) * (SK_ScalarPI / 180)) |
#define SkRadiansToDegrees(radians) ((radians) * (180 / SK_ScalarPI)) |
-float SkScalarSinCos(SkScalar radians, SkScalar* cosValue); |
-#define SkScalarSin(radians) (float)sk_float_sin(radians) |
-#define SkScalarCos(radians) (float)sk_float_cos(radians) |
-#define SkScalarTan(radians) (float)sk_float_tan(radians) |
-#define SkScalarASin(val) (float)sk_float_asin(val) |
-#define SkScalarACos(val) (float)sk_float_acos(val) |
-#define SkScalarATan2(y, x) (float)sk_float_atan2(y,x) |
-#define SkScalarExp(x) (float)sk_float_exp(x) |
-#define SkScalarLog(x) (float)sk_float_log(x) |
- |
-inline SkScalar SkMaxScalar(SkScalar a, SkScalar b) { return a > b ? a : b; } |
-inline SkScalar SkMinScalar(SkScalar a, SkScalar b) { return a < b ? a : b; } |
+ |
+static inline SkScalar SkMaxScalar(SkScalar a, SkScalar b) { return a > b ? a : b; } |
+static inline SkScalar SkMinScalar(SkScalar a, SkScalar b) { return a < b ? a : b; } |
static inline bool SkScalarIsInt(SkScalar x) { |
- return x == (float)(int)x; |
+ return x == (SkScalar)(int)x; |
} |
// DEPRECATED : use ToInt or ToScalar variant |