OLD | NEW |
| (Empty) |
1 // Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file | |
2 // for details. All rights reserved. Use of this source code is governed by a | |
3 // BSD-style license that can be found in the LICENSE file. | |
4 | |
5 part of ssa; | |
6 | |
7 abstract class OptimizationPhase { | |
8 String get name; | |
9 void visitGraph(HGraph graph); | |
10 } | |
11 | |
12 class SsaOptimizerTask extends CompilerTask { | |
13 final JavaScriptBackend backend; | |
14 SsaOptimizerTask(JavaScriptBackend backend) | |
15 : this.backend = backend, | |
16 super(backend.compiler); | |
17 String get name => 'SSA optimizer'; | |
18 Compiler get compiler => backend.compiler; | |
19 Map<HInstruction, Range> ranges = <HInstruction, Range>{}; | |
20 | |
21 void runPhases(HGraph graph, List<OptimizationPhase> phases) { | |
22 for (OptimizationPhase phase in phases) { | |
23 runPhase(graph, phase); | |
24 } | |
25 } | |
26 | |
27 void runPhase(HGraph graph, OptimizationPhase phase) { | |
28 phase.visitGraph(graph); | |
29 compiler.tracer.traceGraph(phase.name, graph); | |
30 assert(graph.isValid()); | |
31 } | |
32 | |
33 void optimize(CodegenWorkItem work, HGraph graph) { | |
34 ConstantSystem constantSystem = compiler.backend.constantSystem; | |
35 JavaScriptItemCompilationContext context = work.compilationContext; | |
36 measure(() { | |
37 SsaDeadCodeEliminator dce; | |
38 List<OptimizationPhase> phases = <OptimizationPhase>[ | |
39 // Run trivial instruction simplification first to optimize | |
40 // some patterns useful for type conversion. | |
41 new SsaInstructionSimplifier(constantSystem, backend, work), | |
42 new SsaTypeConversionInserter(compiler), | |
43 new SsaRedundantPhiEliminator(), | |
44 new SsaDeadPhiEliminator(), | |
45 new SsaTypePropagator(compiler), | |
46 // After type propagation, more instructions can be | |
47 // simplified. | |
48 new SsaInstructionSimplifier(constantSystem, backend, work), | |
49 new SsaCheckInserter(backend, work, context.boundsChecked), | |
50 new SsaInstructionSimplifier(constantSystem, backend, work), | |
51 new SsaCheckInserter(backend, work, context.boundsChecked), | |
52 new SsaTypePropagator(compiler), | |
53 // Run a dead code eliminator before LICM because dead | |
54 // interceptors are often in the way of LICM'able instructions. | |
55 new SsaDeadCodeEliminator(compiler), | |
56 new SsaGlobalValueNumberer(compiler), | |
57 // After GVN, some instructions might need their type to be | |
58 // updated because they now have different inputs. | |
59 new SsaTypePropagator(compiler), | |
60 new SsaCodeMotion(), | |
61 new SsaLoadElimination(compiler), | |
62 new SsaDeadPhiEliminator(), | |
63 new SsaTypePropagator(compiler), | |
64 new SsaValueRangeAnalyzer(compiler, constantSystem, work), | |
65 // Previous optimizations may have generated new | |
66 // opportunities for instruction simplification. | |
67 new SsaInstructionSimplifier(constantSystem, backend, work), | |
68 new SsaCheckInserter(backend, work, context.boundsChecked), | |
69 new SsaSimplifyInterceptors(compiler, constantSystem, work), | |
70 dce = new SsaDeadCodeEliminator(compiler), | |
71 new SsaTypePropagator(compiler)]; | |
72 runPhases(graph, phases); | |
73 if (dce.eliminatedSideEffects) { | |
74 phases = <OptimizationPhase>[ | |
75 new SsaGlobalValueNumberer(compiler), | |
76 new SsaCodeMotion(), | |
77 new SsaValueRangeAnalyzer(compiler, constantSystem, work), | |
78 new SsaInstructionSimplifier(constantSystem, backend, work), | |
79 new SsaCheckInserter(backend, work, context.boundsChecked), | |
80 new SsaSimplifyInterceptors(compiler, constantSystem, work), | |
81 new SsaDeadCodeEliminator(compiler)]; | |
82 } else { | |
83 phases = <OptimizationPhase>[ | |
84 // Run the simplifier to remove unneeded type checks inserted | |
85 // by type propagation. | |
86 new SsaInstructionSimplifier(constantSystem, backend, work)]; | |
87 } | |
88 runPhases(graph, phases); | |
89 }); | |
90 } | |
91 } | |
92 | |
93 bool isFixedLength(mask, Compiler compiler) { | |
94 ClassWorld classWorld = compiler.world; | |
95 JavaScriptBackend backend = compiler.backend; | |
96 if (mask.isContainer && mask.length != null) { | |
97 // A container on which we have inferred the length. | |
98 return true; | |
99 } else if (mask.containsOnly(backend.jsFixedArrayClass) | |
100 || mask.containsOnlyString(classWorld) | |
101 || backend.isTypedArray(mask)) { | |
102 return true; | |
103 } | |
104 return false; | |
105 } | |
106 | |
107 /** | |
108 * If both inputs to known operations are available execute the operation at | |
109 * compile-time. | |
110 */ | |
111 class SsaInstructionSimplifier extends HBaseVisitor | |
112 implements OptimizationPhase { | |
113 | |
114 // We don't produce constant-folded strings longer than this unless they have | |
115 // a single use. This protects against exponentially large constant folded | |
116 // strings. | |
117 static const MAX_SHARED_CONSTANT_FOLDED_STRING_LENGTH = 512; | |
118 | |
119 final String name = "SsaInstructionSimplifier"; | |
120 final JavaScriptBackend backend; | |
121 final CodegenWorkItem work; | |
122 final ConstantSystem constantSystem; | |
123 HGraph graph; | |
124 Compiler get compiler => backend.compiler; | |
125 | |
126 SsaInstructionSimplifier(this.constantSystem, this.backend, this.work); | |
127 | |
128 void visitGraph(HGraph visitee) { | |
129 graph = visitee; | |
130 visitDominatorTree(visitee); | |
131 } | |
132 | |
133 visitBasicBlock(HBasicBlock block) { | |
134 HInstruction instruction = block.first; | |
135 while (instruction != null) { | |
136 HInstruction next = instruction.next; | |
137 HInstruction replacement = instruction.accept(this); | |
138 if (replacement != instruction) { | |
139 block.rewrite(instruction, replacement); | |
140 | |
141 // The intersection of double and int return conflicting, and | |
142 // because of our number implementation for JavaScript, it | |
143 // might be that an operation thought to return double, can be | |
144 // simplified to an int. For example: | |
145 // `2.5 * 10`. | |
146 if (!(replacement.isNumberOrNull(compiler) | |
147 && instruction.isNumberOrNull(compiler))) { | |
148 // If we can replace [instruction] with [replacement], then | |
149 // [replacement]'s type can be narrowed. | |
150 TypeMask newType = replacement.instructionType.intersection( | |
151 instruction.instructionType, compiler.world); | |
152 replacement.instructionType = newType; | |
153 } | |
154 | |
155 // If the replacement instruction does not know its | |
156 // source element, use the source element of the | |
157 // instruction. | |
158 if (replacement.sourceElement == null) { | |
159 replacement.sourceElement = instruction.sourceElement; | |
160 } | |
161 if (replacement.sourcePosition == null) { | |
162 replacement.sourcePosition = instruction.sourcePosition; | |
163 } | |
164 if (!replacement.isInBasicBlock()) { | |
165 // The constant folding can return an instruction that is already | |
166 // part of the graph (like an input), so we only add the replacement | |
167 // if necessary. | |
168 block.addAfter(instruction, replacement); | |
169 // Visit the replacement as the next instruction in case it | |
170 // can also be constant folded away. | |
171 next = replacement; | |
172 } | |
173 block.remove(instruction); | |
174 } | |
175 instruction = next; | |
176 } | |
177 } | |
178 | |
179 HInstruction visitInstruction(HInstruction node) { | |
180 return node; | |
181 } | |
182 | |
183 HInstruction visitBoolify(HBoolify node) { | |
184 List<HInstruction> inputs = node.inputs; | |
185 assert(inputs.length == 1); | |
186 HInstruction input = inputs[0]; | |
187 if (input.isBoolean(compiler)) return input; | |
188 // All values that cannot be 'true' are boolified to false. | |
189 TypeMask mask = input.instructionType; | |
190 if (!mask.contains(backend.jsBoolClass, compiler.world)) { | |
191 return graph.addConstantBool(false, compiler); | |
192 } | |
193 return node; | |
194 } | |
195 | |
196 HInstruction visitNot(HNot node) { | |
197 List<HInstruction> inputs = node.inputs; | |
198 assert(inputs.length == 1); | |
199 HInstruction input = inputs[0]; | |
200 if (input is HConstant) { | |
201 HConstant constant = input; | |
202 bool isTrue = constant.constant.isTrue; | |
203 return graph.addConstantBool(!isTrue, compiler); | |
204 } else if (input is HNot) { | |
205 return input.inputs[0]; | |
206 } | |
207 return node; | |
208 } | |
209 | |
210 HInstruction visitInvokeUnary(HInvokeUnary node) { | |
211 HInstruction folded = | |
212 foldUnary(node.operation(constantSystem), node.operand); | |
213 return folded != null ? folded : node; | |
214 } | |
215 | |
216 HInstruction foldUnary(UnaryOperation operation, HInstruction operand) { | |
217 if (operand is HConstant) { | |
218 HConstant receiver = operand; | |
219 ConstantValue folded = operation.fold(receiver.constant); | |
220 if (folded != null) return graph.addConstant(folded, compiler); | |
221 } | |
222 return null; | |
223 } | |
224 | |
225 HInstruction tryOptimizeLengthInterceptedGetter(HInvokeDynamic node) { | |
226 HInstruction actualReceiver = node.inputs[1]; | |
227 if (actualReceiver.isIndexablePrimitive(compiler)) { | |
228 if (actualReceiver.isConstantString()) { | |
229 HConstant constantInput = actualReceiver; | |
230 StringConstantValue constant = constantInput.constant; | |
231 return graph.addConstantInt(constant.length, compiler); | |
232 } else if (actualReceiver.isConstantList()) { | |
233 HConstant constantInput = actualReceiver; | |
234 ListConstantValue constant = constantInput.constant; | |
235 return graph.addConstantInt(constant.length, compiler); | |
236 } | |
237 Element element = backend.jsIndexableLength; | |
238 bool isFixed = isFixedLength(actualReceiver.instructionType, compiler); | |
239 HFieldGet result = new HFieldGet( | |
240 element, actualReceiver, backend.positiveIntType, | |
241 isAssignable: !isFixed); | |
242 return result; | |
243 } else if (actualReceiver.isConstantMap()) { | |
244 HConstant constantInput = actualReceiver; | |
245 MapConstantValue constant = constantInput.constant; | |
246 return graph.addConstantInt(constant.length, compiler); | |
247 } | |
248 return null; | |
249 } | |
250 | |
251 HInstruction handleInterceptedCall(HInvokeDynamic node) { | |
252 // Try constant folding the instruction. | |
253 Operation operation = node.specializer.operation(constantSystem); | |
254 if (operation != null) { | |
255 HInstruction instruction = node.inputs.length == 2 | |
256 ? foldUnary(operation, node.inputs[1]) | |
257 : foldBinary(operation, node.inputs[1], node.inputs[2]); | |
258 if (instruction != null) return instruction; | |
259 } | |
260 | |
261 // Try converting the instruction to a builtin instruction. | |
262 HInstruction instruction = | |
263 node.specializer.tryConvertToBuiltin(node, compiler); | |
264 if (instruction != null) return instruction; | |
265 | |
266 Selector selector = node.selector; | |
267 HInstruction input = node.inputs[1]; | |
268 | |
269 World world = compiler.world; | |
270 if (selector.isCall || selector.isOperator) { | |
271 Element target; | |
272 if (input.isExtendableArray(compiler)) { | |
273 if (selector.applies(backend.jsArrayRemoveLast, world)) { | |
274 target = backend.jsArrayRemoveLast; | |
275 } else if (selector.applies(backend.jsArrayAdd, world)) { | |
276 // The codegen special cases array calls, but does not | |
277 // inline argument type checks. | |
278 if (!compiler.enableTypeAssertions) { | |
279 target = backend.jsArrayAdd; | |
280 } | |
281 } | |
282 } else if (input.isStringOrNull(compiler)) { | |
283 if (selector.applies(backend.jsStringSplit, world)) { | |
284 HInstruction argument = node.inputs[2]; | |
285 if (argument.isString(compiler)) { | |
286 target = backend.jsStringSplit; | |
287 } | |
288 } else if (selector.applies(backend.jsStringOperatorAdd, world)) { | |
289 // `operator+` is turned into a JavaScript '+' so we need to | |
290 // make sure the receiver and the argument are not null. | |
291 // TODO(sra): Do this via [node.specializer]. | |
292 HInstruction argument = node.inputs[2]; | |
293 if (argument.isString(compiler) | |
294 && !input.canBeNull()) { | |
295 return new HStringConcat(input, argument, null, | |
296 node.instructionType); | |
297 } | |
298 } else if (selector.applies(backend.jsStringToString, world) | |
299 && !input.canBeNull()) { | |
300 return input; | |
301 } | |
302 } | |
303 if (target != null) { | |
304 // TODO(ngeoffray): There is a strong dependency between codegen | |
305 // and this optimization that the dynamic invoke does not need an | |
306 // interceptor. We currently need to keep a | |
307 // HInvokeDynamicMethod and not create a HForeign because | |
308 // HForeign is too opaque for the SsaCheckInserter (that adds a | |
309 // bounds check on removeLast). Once we start inlining, the | |
310 // bounds check will become explicit, so we won't need this | |
311 // optimization. | |
312 HInvokeDynamicMethod result = new HInvokeDynamicMethod( | |
313 node.selector, node.inputs.sublist(1), node.instructionType); | |
314 result.element = target; | |
315 return result; | |
316 } | |
317 } else if (selector.isGetter) { | |
318 if (selector.asUntyped.applies(backend.jsIndexableLength, world)) { | |
319 HInstruction optimized = tryOptimizeLengthInterceptedGetter(node); | |
320 if (optimized != null) return optimized; | |
321 } | |
322 } | |
323 | |
324 return node; | |
325 } | |
326 | |
327 HInstruction visitInvokeDynamicMethod(HInvokeDynamicMethod node) { | |
328 if (node.isInterceptedCall) { | |
329 HInstruction folded = handleInterceptedCall(node); | |
330 if (folded != node) return folded; | |
331 } | |
332 | |
333 TypeMask receiverType = node.getDartReceiver(compiler).instructionType; | |
334 Selector selector = | |
335 new TypedSelector(receiverType, node.selector, compiler.world); | |
336 Element element = compiler.world.locateSingleElement(selector); | |
337 // TODO(ngeoffray): Also fold if it's a getter or variable. | |
338 if (element != null | |
339 && element.isFunction | |
340 // If we found out that the only target is a [:noSuchMethod:], | |
341 // we just ignore it. | |
342 && element.name == selector.name) { | |
343 FunctionElement method = element; | |
344 | |
345 if (method.isNative) { | |
346 HInstruction folded = tryInlineNativeMethod(node, method); | |
347 if (folded != null) return folded; | |
348 } else { | |
349 // TODO(ngeoffray): If the method has optional parameters, | |
350 // we should pass the default values. | |
351 FunctionSignature parameters = method.functionSignature; | |
352 if (parameters.optionalParameterCount == 0 | |
353 || parameters.parameterCount == node.selector.argumentCount) { | |
354 node.element = element; | |
355 } | |
356 } | |
357 } | |
358 return node; | |
359 } | |
360 | |
361 HInstruction tryInlineNativeMethod(HInvokeDynamicMethod node, | |
362 FunctionElement method) { | |
363 // Enable direct calls to a native method only if we don't run in checked | |
364 // mode, where the Dart version may have type annotations on parameters and | |
365 // return type that it should check. | |
366 // Also check that the parameters are not functions: it's the callee that | |
367 // will translate them to JS functions. | |
368 // | |
369 // TODO(ngeoffray): There are some cases where we could still inline in | |
370 // checked mode if we know the arguments have the right type. And we could | |
371 // do the closure conversion as well as the return type annotation check. | |
372 | |
373 if (!node.isInterceptedCall) return null; | |
374 | |
375 // TODO(sra): Check for legacy methods with bodies in the native strings. | |
376 // foo() native 'return something'; | |
377 // They should not be used. | |
378 | |
379 FunctionSignature signature = method.functionSignature; | |
380 if (signature.optionalParametersAreNamed) return null; | |
381 | |
382 // Return types on native methods don't need to be checked, since the | |
383 // declaration has to be truthful. | |
384 | |
385 // The call site might omit optional arguments. The inlined code must | |
386 // preserve the number of arguments, so check only the actual arguments. | |
387 | |
388 List<HInstruction> inputs = node.inputs.sublist(1); | |
389 int inputPosition = 1; // Skip receiver. | |
390 bool canInline = true; | |
391 signature.forEachParameter((ParameterElement element) { | |
392 if (inputPosition < inputs.length && canInline) { | |
393 HInstruction input = inputs[inputPosition++]; | |
394 DartType type = element.type.unalias(compiler); | |
395 if (type is FunctionType) { | |
396 canInline = false; | |
397 } | |
398 if (compiler.enableTypeAssertions) { | |
399 // TODO(sra): Check if [input] is guaranteed to pass the parameter | |
400 // type check. Consider using a strengthened type check to avoid | |
401 // passing `null` to primitive types since the native methods usually | |
402 // have non-nullable primitive parameter types. | |
403 canInline = false; | |
404 } | |
405 } | |
406 }); | |
407 | |
408 if (!canInline) return null; | |
409 | |
410 // Strengthen instruction type from annotations to help optimize | |
411 // dependent instructions. | |
412 native.NativeBehavior nativeBehavior = | |
413 native.NativeBehavior.ofMethod(method, compiler); | |
414 TypeMask returnType = | |
415 TypeMaskFactory.fromNativeBehavior(nativeBehavior, compiler); | |
416 HInvokeDynamicMethod result = | |
417 new HInvokeDynamicMethod(node.selector, inputs, returnType); | |
418 result.element = method; | |
419 return result; | |
420 } | |
421 | |
422 HInstruction visitBoundsCheck(HBoundsCheck node) { | |
423 HInstruction index = node.index; | |
424 if (index.isInteger(compiler)) return node; | |
425 if (index.isConstant()) { | |
426 HConstant constantInstruction = index; | |
427 assert(!constantInstruction.constant.isInt); | |
428 if (!constantSystem.isInt(constantInstruction.constant)) { | |
429 // -0.0 is a double but will pass the runtime integer check. | |
430 node.staticChecks = HBoundsCheck.ALWAYS_FALSE; | |
431 } | |
432 } | |
433 return node; | |
434 } | |
435 | |
436 HInstruction foldBinary(BinaryOperation operation, | |
437 HInstruction left, | |
438 HInstruction right) { | |
439 if (left is HConstant && right is HConstant) { | |
440 HConstant op1 = left; | |
441 HConstant op2 = right; | |
442 ConstantValue folded = operation.fold(op1.constant, op2.constant); | |
443 if (folded != null) return graph.addConstant(folded, compiler); | |
444 } | |
445 return null; | |
446 } | |
447 | |
448 HInstruction visitAdd(HAdd node) { | |
449 HInstruction left = node.left; | |
450 HInstruction right = node.right; | |
451 // We can only perform this rewriting on Integer, as it is not | |
452 // valid for -0.0. | |
453 if (left.isInteger(compiler) && right.isInteger(compiler)) { | |
454 if (left is HConstant && left.constant.isZero) return right; | |
455 if (right is HConstant && right.constant.isZero) return left; | |
456 } | |
457 return super.visitAdd(node); | |
458 } | |
459 | |
460 HInstruction visitMultiply(HMultiply node) { | |
461 HInstruction left = node.left; | |
462 HInstruction right = node.right; | |
463 if (left.isNumber(compiler) && right.isNumber(compiler)) { | |
464 if (left is HConstant && left.constant.isOne) return right; | |
465 if (right is HConstant && right.constant.isOne) return left; | |
466 } | |
467 return super.visitMultiply(node); | |
468 } | |
469 | |
470 HInstruction visitInvokeBinary(HInvokeBinary node) { | |
471 HInstruction left = node.left; | |
472 HInstruction right = node.right; | |
473 BinaryOperation operation = node.operation(constantSystem); | |
474 HConstant folded = foldBinary(operation, left, right); | |
475 if (folded != null) return folded; | |
476 return node; | |
477 } | |
478 | |
479 bool allUsersAreBoolifies(HInstruction instruction) { | |
480 List<HInstruction> users = instruction.usedBy; | |
481 int length = users.length; | |
482 for (int i = 0; i < length; i++) { | |
483 if (users[i] is! HBoolify) return false; | |
484 } | |
485 return true; | |
486 } | |
487 | |
488 HInstruction visitRelational(HRelational node) { | |
489 if (allUsersAreBoolifies(node)) { | |
490 // TODO(ngeoffray): Call a boolified selector. | |
491 // This node stays the same, but the Boolify node will go away. | |
492 } | |
493 // Note that we still have to call [super] to make sure that we end up | |
494 // in the remaining optimizations. | |
495 return super.visitRelational(node); | |
496 } | |
497 | |
498 HInstruction handleIdentityCheck(HRelational node) { | |
499 HInstruction left = node.left; | |
500 HInstruction right = node.right; | |
501 TypeMask leftType = left.instructionType; | |
502 TypeMask rightType = right.instructionType; | |
503 | |
504 // Intersection of int and double return conflicting, so | |
505 // we don't optimize on numbers to preserve the runtime semantics. | |
506 if (!(left.isNumberOrNull(compiler) && right.isNumberOrNull(compiler))) { | |
507 TypeMask intersection = leftType.intersection(rightType, compiler.world); | |
508 if (intersection.isEmpty && !intersection.isNullable) { | |
509 return graph.addConstantBool(false, compiler); | |
510 } | |
511 } | |
512 | |
513 if (left.isNull() && right.isNull()) { | |
514 return graph.addConstantBool(true, compiler); | |
515 } | |
516 | |
517 if (left.isConstantBoolean() && right.isBoolean(compiler)) { | |
518 HConstant constant = left; | |
519 if (constant.constant.isTrue) { | |
520 return right; | |
521 } else { | |
522 return new HNot(right, backend.boolType); | |
523 } | |
524 } | |
525 | |
526 if (right.isConstantBoolean() && left.isBoolean(compiler)) { | |
527 HConstant constant = right; | |
528 if (constant.constant.isTrue) { | |
529 return left; | |
530 } else { | |
531 return new HNot(left, backend.boolType); | |
532 } | |
533 } | |
534 | |
535 return null; | |
536 } | |
537 | |
538 HInstruction visitIdentity(HIdentity node) { | |
539 HInstruction newInstruction = handleIdentityCheck(node); | |
540 return newInstruction == null ? super.visitIdentity(node) : newInstruction; | |
541 } | |
542 | |
543 void simplifyCondition(HBasicBlock block, | |
544 HInstruction condition, | |
545 bool value) { | |
546 condition.dominatedUsers(block.first).forEach((user) { | |
547 HInstruction newCondition = graph.addConstantBool(value, compiler); | |
548 user.changeUse(condition, newCondition); | |
549 }); | |
550 } | |
551 | |
552 HInstruction visitIf(HIf node) { | |
553 HInstruction condition = node.condition; | |
554 if (condition.isConstant()) return node; | |
555 bool isNegated = condition is HNot; | |
556 | |
557 if (isNegated) { | |
558 condition = condition.inputs[0]; | |
559 } else { | |
560 // It is possible for LICM to move a negated version of the | |
561 // condition out of the loop where it used. We still want to | |
562 // simplify the nested use of the condition in that case, so | |
563 // we look for all dominating negated conditions and replace | |
564 // nested uses of them with true or false. | |
565 Iterable<HInstruction> dominating = condition.usedBy.where((user) => | |
566 user is HNot && user.dominates(node)); | |
567 dominating.forEach((hoisted) { | |
568 simplifyCondition(node.thenBlock, hoisted, false); | |
569 simplifyCondition(node.elseBlock, hoisted, true); | |
570 }); | |
571 } | |
572 simplifyCondition(node.thenBlock, condition, !isNegated); | |
573 simplifyCondition(node.elseBlock, condition, isNegated); | |
574 return node; | |
575 } | |
576 | |
577 HInstruction visitIs(HIs node) { | |
578 DartType type = node.typeExpression; | |
579 Element element = type.element; | |
580 | |
581 if (!node.isRawCheck) { | |
582 return node; | |
583 } else if (type.isTypedef) { | |
584 return node; | |
585 } else if (element == compiler.functionClass) { | |
586 return node; | |
587 } | |
588 | |
589 if (element == compiler.objectClass || type.treatAsDynamic) { | |
590 return graph.addConstantBool(true, compiler); | |
591 } | |
592 | |
593 ClassWorld classWorld = compiler.world; | |
594 HInstruction expression = node.expression; | |
595 if (expression.isInteger(compiler)) { | |
596 if (identical(element, compiler.intClass) | |
597 || identical(element, compiler.numClass) | |
598 || Elements.isNumberOrStringSupertype(element, compiler)) { | |
599 return graph.addConstantBool(true, compiler); | |
600 } else if (identical(element, compiler.doubleClass)) { | |
601 // We let the JS semantics decide for that check. Currently | |
602 // the code we emit will always return true. | |
603 return node; | |
604 } else { | |
605 return graph.addConstantBool(false, compiler); | |
606 } | |
607 } else if (expression.isDouble(compiler)) { | |
608 if (identical(element, compiler.doubleClass) | |
609 || identical(element, compiler.numClass) | |
610 || Elements.isNumberOrStringSupertype(element, compiler)) { | |
611 return graph.addConstantBool(true, compiler); | |
612 } else if (identical(element, compiler.intClass)) { | |
613 // We let the JS semantics decide for that check. Currently | |
614 // the code we emit will return true for a double that can be | |
615 // represented as a 31-bit integer and for -0.0. | |
616 return node; | |
617 } else { | |
618 return graph.addConstantBool(false, compiler); | |
619 } | |
620 } else if (expression.isNumber(compiler)) { | |
621 if (identical(element, compiler.numClass)) { | |
622 return graph.addConstantBool(true, compiler); | |
623 } else { | |
624 // We cannot just return false, because the expression may be of | |
625 // type int or double. | |
626 } | |
627 } else if (expression.canBePrimitiveNumber(compiler) | |
628 && identical(element, compiler.intClass)) { | |
629 // We let the JS semantics decide for that check. | |
630 return node; | |
631 // We need the [:hasTypeArguments:] check because we don't have | |
632 // the notion of generics in the backend. For example, [:this:] in | |
633 // a class [:A<T>:], is currently always considered to have the | |
634 // raw type. | |
635 } else if (!RuntimeTypes.hasTypeArguments(type)) { | |
636 TypeMask expressionMask = expression.instructionType; | |
637 assert(TypeMask.assertIsNormalized(expressionMask, classWorld)); | |
638 TypeMask typeMask = (element == compiler.nullClass) | |
639 ? new TypeMask.subtype(element, classWorld) | |
640 : new TypeMask.nonNullSubtype(element, classWorld); | |
641 if (expressionMask.union(typeMask, classWorld) == typeMask) { | |
642 return graph.addConstantBool(true, compiler); | |
643 } else if (expressionMask.intersection(typeMask, | |
644 compiler.world).isEmpty) { | |
645 return graph.addConstantBool(false, compiler); | |
646 } | |
647 } | |
648 return node; | |
649 } | |
650 | |
651 HInstruction visitTypeConversion(HTypeConversion node) { | |
652 HInstruction value = node.inputs[0]; | |
653 DartType type = node.typeExpression; | |
654 if (type != null) { | |
655 if (type.isMalformed) { | |
656 // Malformed types are treated as dynamic statically, but should | |
657 // throw a type error at runtime. | |
658 return node; | |
659 } | |
660 if (!type.treatAsRaw || type.isTypeVariable) { | |
661 return node; | |
662 } | |
663 if (type.isFunctionType) { | |
664 // TODO(johnniwinther): Optimize function type conversions. | |
665 return node; | |
666 } | |
667 } | |
668 return removeIfCheckAlwaysSucceeds(node, node.checkedType); | |
669 } | |
670 | |
671 HInstruction visitTypeKnown(HTypeKnown node) { | |
672 return removeIfCheckAlwaysSucceeds(node, node.knownType); | |
673 } | |
674 | |
675 HInstruction removeIfCheckAlwaysSucceeds(HCheck node, TypeMask checkedType) { | |
676 ClassWorld classWorld = compiler.world; | |
677 if (checkedType.containsAll(classWorld)) return node; | |
678 HInstruction input = node.checkedInput; | |
679 TypeMask inputType = input.instructionType; | |
680 return inputType.isInMask(checkedType, classWorld) ? input : node; | |
681 } | |
682 | |
683 VariableElement findConcreteFieldForDynamicAccess(HInstruction receiver, | |
684 Selector selector) { | |
685 TypeMask receiverType = receiver.instructionType; | |
686 return compiler.world.locateSingleField( | |
687 new TypedSelector(receiverType, selector, compiler.world)); | |
688 } | |
689 | |
690 HInstruction visitFieldGet(HFieldGet node) { | |
691 if (node.isNullCheck) return node; | |
692 var receiver = node.receiver; | |
693 if (node.element == backend.jsIndexableLength) { | |
694 JavaScriptItemCompilationContext context = work.compilationContext; | |
695 if (context.allocatedFixedLists.contains(receiver)) { | |
696 // TODO(ngeoffray): checking if the second input is an integer | |
697 // should not be necessary but it currently makes it easier for | |
698 // other optimizations to reason about a fixed length constructor | |
699 // that we know takes an int. | |
700 if (receiver.inputs[0].isInteger(compiler)) { | |
701 return receiver.inputs[0]; | |
702 } | |
703 } else if (receiver.isConstantList() || receiver.isConstantString()) { | |
704 return graph.addConstantInt(receiver.constant.length, compiler); | |
705 } else { | |
706 var type = receiver.instructionType; | |
707 if (type.isContainer && type.length != null) { | |
708 HInstruction constant = graph.addConstantInt(type.length, compiler); | |
709 if (type.isNullable) { | |
710 // If the container can be null, we update all uses of the | |
711 // length access to use the constant instead, but keep the | |
712 // length access in the graph, to ensure we still have a | |
713 // null check. | |
714 node.block.rewrite(node, constant); | |
715 return node; | |
716 } else { | |
717 return constant; | |
718 } | |
719 } | |
720 } | |
721 } | |
722 | |
723 // HFieldGet of a constructed constant can be replaced with the constant's | |
724 // field. | |
725 if (receiver is HConstant) { | |
726 ConstantValue constant = receiver.constant; | |
727 if (constant.isConstructedObject) { | |
728 ConstructedConstantValue constructedConstant = constant; | |
729 Map<Element, ConstantValue> fields = constructedConstant.fieldElements; | |
730 ConstantValue value = fields[node.element]; | |
731 if (value != null) { | |
732 return graph.addConstant(value, compiler); | |
733 } | |
734 } | |
735 } | |
736 | |
737 return node; | |
738 } | |
739 | |
740 HInstruction visitIndex(HIndex node) { | |
741 if (node.receiver.isConstantList() && node.index.isConstantInteger()) { | |
742 var instruction = node.receiver; | |
743 List<ConstantValue> entries = instruction.constant.entries; | |
744 instruction = node.index; | |
745 int index = instruction.constant.primitiveValue; | |
746 if (index >= 0 && index < entries.length) { | |
747 return graph.addConstant(entries[index], compiler); | |
748 } | |
749 } | |
750 return node; | |
751 } | |
752 | |
753 HInstruction visitInvokeDynamicGetter(HInvokeDynamicGetter node) { | |
754 if (node.isInterceptedCall) { | |
755 HInstruction folded = handleInterceptedCall(node); | |
756 if (folded != node) return folded; | |
757 } | |
758 HInstruction receiver = node.getDartReceiver(compiler); | |
759 Element field = findConcreteFieldForDynamicAccess(receiver, node.selector); | |
760 if (field == null) return node; | |
761 return directFieldGet(receiver, field); | |
762 } | |
763 | |
764 HInstruction directFieldGet(HInstruction receiver, Element field) { | |
765 bool isAssignable = !compiler.world.fieldNeverChanges(field); | |
766 | |
767 TypeMask type; | |
768 if (field.enclosingClass.isNative) { | |
769 type = TypeMaskFactory.fromNativeBehavior( | |
770 native.NativeBehavior.ofFieldLoad(field, compiler), | |
771 compiler); | |
772 } else { | |
773 type = TypeMaskFactory.inferredTypeForElement(field, compiler); | |
774 } | |
775 | |
776 return new HFieldGet( | |
777 field, receiver, type, isAssignable: isAssignable); | |
778 } | |
779 | |
780 HInstruction visitInvokeDynamicSetter(HInvokeDynamicSetter node) { | |
781 if (node.isInterceptedCall) { | |
782 HInstruction folded = handleInterceptedCall(node); | |
783 if (folded != node) return folded; | |
784 } | |
785 | |
786 HInstruction receiver = node.getDartReceiver(compiler); | |
787 VariableElement field = | |
788 findConcreteFieldForDynamicAccess(receiver, node.selector); | |
789 if (field == null || !field.isAssignable) return node; | |
790 // Use [:node.inputs.last:] in case the call follows the | |
791 // interceptor calling convention, but is not a call on an | |
792 // interceptor. | |
793 HInstruction value = node.inputs.last; | |
794 if (compiler.enableTypeAssertions) { | |
795 DartType type = field.type; | |
796 if (!type.treatAsRaw || type.isTypeVariable) { | |
797 // We cannot generate the correct type representation here, so don't | |
798 // inline this access. | |
799 return node; | |
800 } | |
801 HInstruction other = value.convertType( | |
802 compiler, | |
803 type, | |
804 HTypeConversion.CHECKED_MODE_CHECK); | |
805 if (other != value) { | |
806 node.block.addBefore(node, other); | |
807 value = other; | |
808 } | |
809 } | |
810 return new HFieldSet(field, receiver, value); | |
811 } | |
812 | |
813 HInstruction visitStringConcat(HStringConcat node) { | |
814 // Simplify string concat: | |
815 // | |
816 // "" + R -> R | |
817 // L + "" -> L | |
818 // "L" + "R" -> "LR" | |
819 // (prefix + "L") + "R" -> prefix + "LR" | |
820 // | |
821 StringConstantValue getString(HInstruction instruction) { | |
822 if (!instruction.isConstantString()) return null; | |
823 HConstant constant = instruction; | |
824 return constant.constant; | |
825 } | |
826 | |
827 StringConstantValue leftString = getString(node.left); | |
828 if (leftString != null && leftString.primitiveValue.length == 0) { | |
829 return node.right; | |
830 } | |
831 | |
832 StringConstantValue rightString = getString(node.right); | |
833 if (rightString == null) return node; | |
834 if (rightString.primitiveValue.length == 0) return node.left; | |
835 | |
836 HInstruction prefix = null; | |
837 if (leftString == null) { | |
838 if (node.left is! HStringConcat) return node; | |
839 HStringConcat leftConcat = node.left; | |
840 // Don't undo CSE. | |
841 if (leftConcat.usedBy.length != 1) return node; | |
842 prefix = leftConcat.left; | |
843 leftString = getString(leftConcat.right); | |
844 if (leftString == null) return node; | |
845 } | |
846 | |
847 if (leftString.primitiveValue.length + rightString.primitiveValue.length > | |
848 MAX_SHARED_CONSTANT_FOLDED_STRING_LENGTH) { | |
849 if (node.usedBy.length > 1) return node; | |
850 } | |
851 | |
852 HInstruction folded = graph.addConstant( | |
853 constantSystem.createString(new ast.DartString.concat( | |
854 leftString.primitiveValue, rightString.primitiveValue)), | |
855 compiler); | |
856 if (prefix == null) return folded; | |
857 return new HStringConcat(prefix, folded, node.node, backend.stringType); | |
858 } | |
859 | |
860 HInstruction visitStringify(HStringify node) { | |
861 HInstruction input = node.inputs[0]; | |
862 if (input.isString(compiler)) return input; | |
863 if (input.isConstant()) { | |
864 HConstant constant = input; | |
865 if (!constant.constant.isPrimitive) return node; | |
866 if (constant.constant.isInt) { | |
867 // Only constant-fold int.toString() when Dart and JS results the same. | |
868 // TODO(18103): We should be able to remove this work-around when issue | |
869 // 18103 is resolved by providing the correct string. | |
870 IntConstantValue intConstant = constant.constant; | |
871 // Very conservative range. | |
872 if (!intConstant.isUInt32()) return node; | |
873 } | |
874 PrimitiveConstantValue primitive = constant.constant; | |
875 return graph.addConstant(constantSystem.createString( | |
876 primitive.toDartString()), compiler); | |
877 } | |
878 return node; | |
879 } | |
880 | |
881 HInstruction visitOneShotInterceptor(HOneShotInterceptor node) { | |
882 return handleInterceptedCall(node); | |
883 } | |
884 } | |
885 | |
886 class SsaCheckInserter extends HBaseVisitor implements OptimizationPhase { | |
887 final Set<HInstruction> boundsChecked; | |
888 final CodegenWorkItem work; | |
889 final JavaScriptBackend backend; | |
890 final String name = "SsaCheckInserter"; | |
891 HGraph graph; | |
892 | |
893 SsaCheckInserter(this.backend, | |
894 this.work, | |
895 this.boundsChecked); | |
896 | |
897 void visitGraph(HGraph graph) { | |
898 this.graph = graph; | |
899 visitDominatorTree(graph); | |
900 } | |
901 | |
902 void visitBasicBlock(HBasicBlock block) { | |
903 HInstruction instruction = block.first; | |
904 while (instruction != null) { | |
905 HInstruction next = instruction.next; | |
906 instruction = instruction.accept(this); | |
907 instruction = next; | |
908 } | |
909 } | |
910 | |
911 HBoundsCheck insertBoundsCheck(HInstruction indexNode, | |
912 HInstruction array, | |
913 HInstruction indexArgument) { | |
914 Compiler compiler = backend.compiler; | |
915 HFieldGet length = new HFieldGet( | |
916 backend.jsIndexableLength, array, backend.positiveIntType, | |
917 isAssignable: !isFixedLength(array.instructionType, compiler)); | |
918 indexNode.block.addBefore(indexNode, length); | |
919 | |
920 TypeMask type = indexArgument.isPositiveInteger(compiler) | |
921 ? indexArgument.instructionType | |
922 : backend.positiveIntType; | |
923 HBoundsCheck check = new HBoundsCheck( | |
924 indexArgument, length, array, type); | |
925 indexNode.block.addBefore(indexNode, check); | |
926 // If the index input to the bounds check was not known to be an integer | |
927 // then we replace its uses with the bounds check, which is known to be an | |
928 // integer. However, if the input was already an integer we don't do this | |
929 // because putting in a check instruction might obscure the real nature of | |
930 // the index eg. if it is a constant. The range information from the | |
931 // BoundsCheck instruction is attached to the input directly by | |
932 // visitBoundsCheck in the SsaValueRangeAnalyzer. | |
933 if (!indexArgument.isInteger(compiler)) { | |
934 indexArgument.replaceAllUsersDominatedBy(indexNode, check); | |
935 } | |
936 boundsChecked.add(indexNode); | |
937 return check; | |
938 } | |
939 | |
940 void visitIndex(HIndex node) { | |
941 if (boundsChecked.contains(node)) return; | |
942 HInstruction index = node.index; | |
943 index = insertBoundsCheck(node, node.receiver, index); | |
944 } | |
945 | |
946 void visitIndexAssign(HIndexAssign node) { | |
947 if (boundsChecked.contains(node)) return; | |
948 HInstruction index = node.index; | |
949 index = insertBoundsCheck(node, node.receiver, index); | |
950 } | |
951 | |
952 void visitInvokeDynamicMethod(HInvokeDynamicMethod node) { | |
953 Element element = node.element; | |
954 if (node.isInterceptedCall) return; | |
955 if (element != backend.jsArrayRemoveLast) return; | |
956 if (boundsChecked.contains(node)) return; | |
957 insertBoundsCheck( | |
958 node, node.receiver, graph.addConstantInt(0, backend.compiler)); | |
959 } | |
960 } | |
961 | |
962 class SsaDeadCodeEliminator extends HGraphVisitor implements OptimizationPhase { | |
963 final String name = "SsaDeadCodeEliminator"; | |
964 | |
965 final Compiler compiler; | |
966 SsaLiveBlockAnalyzer analyzer; | |
967 bool eliminatedSideEffects = false; | |
968 SsaDeadCodeEliminator(this.compiler); | |
969 | |
970 HInstruction zapInstructionCache; | |
971 HInstruction get zapInstruction { | |
972 if (zapInstructionCache == null) { | |
973 // A constant with no type does not pollute types at phi nodes. | |
974 ConstantValue constant = | |
975 new DummyConstantValue(const TypeMask.nonNullEmpty()); | |
976 zapInstructionCache = analyzer.graph.addConstant(constant, compiler); | |
977 } | |
978 return zapInstructionCache; | |
979 } | |
980 | |
981 /// Returns whether the next throwing instruction that may have side | |
982 /// effects after [instruction], throws [NoSuchMethodError] on the | |
983 /// same receiver of [instruction]. | |
984 bool hasFollowingThrowingNSM(HInstruction instruction) { | |
985 HInstruction receiver = instruction.getDartReceiver(compiler); | |
986 HInstruction current = instruction.next; | |
987 do { | |
988 if ((current.getDartReceiver(compiler) == receiver) | |
989 && current.canThrow()) { | |
990 return true; | |
991 } | |
992 if (current.canThrow() || current.sideEffects.hasSideEffects()) { | |
993 return false; | |
994 } | |
995 if (current.next == null && current is HGoto) { | |
996 // We do not merge blocks in our SSA graph, so if this block | |
997 // just jumps to a single predecessor, visit this predecessor. | |
998 assert(current.block.successors.length == 1); | |
999 current = current.block.successors[0].first; | |
1000 } else { | |
1001 current = current.next; | |
1002 } | |
1003 } while (current != null); | |
1004 return false; | |
1005 } | |
1006 | |
1007 bool isDeadCode(HInstruction instruction) { | |
1008 if (!instruction.usedBy.isEmpty) return false; | |
1009 if (instruction.sideEffects.hasSideEffects()) return false; | |
1010 if (instruction.canThrow() | |
1011 && instruction.onlyThrowsNSM() | |
1012 && hasFollowingThrowingNSM(instruction)) { | |
1013 return true; | |
1014 } | |
1015 return !instruction.canThrow() | |
1016 && instruction is !HParameterValue | |
1017 && instruction is !HLocalSet; | |
1018 } | |
1019 | |
1020 void visitGraph(HGraph graph) { | |
1021 analyzer = new SsaLiveBlockAnalyzer(graph, compiler); | |
1022 analyzer.analyze(); | |
1023 visitPostDominatorTree(graph); | |
1024 cleanPhis(graph); | |
1025 } | |
1026 | |
1027 void visitBasicBlock(HBasicBlock block) { | |
1028 bool isDeadBlock = analyzer.isDeadBlock(block); | |
1029 block.isLive = !isDeadBlock; | |
1030 // Start from the last non-control flow instruction in the block. | |
1031 HInstruction instruction = block.last.previous; | |
1032 while (instruction != null) { | |
1033 var previous = instruction.previous; | |
1034 if (isDeadBlock) { | |
1035 eliminatedSideEffects = eliminatedSideEffects || | |
1036 instruction.sideEffects.hasSideEffects(); | |
1037 removeUsers(instruction); | |
1038 block.remove(instruction); | |
1039 } else if (isDeadCode(instruction)) { | |
1040 block.remove(instruction); | |
1041 } | |
1042 instruction = previous; | |
1043 } | |
1044 } | |
1045 | |
1046 void cleanPhis(HGraph graph) { | |
1047 L: for (HBasicBlock block in graph.blocks) { | |
1048 List<HBasicBlock> predecessors = block.predecessors; | |
1049 // Zap all inputs to phis that correspond to dead blocks. | |
1050 block.forEachPhi((HPhi phi) { | |
1051 for (int i = 0; i < phi.inputs.length; ++i) { | |
1052 if (!predecessors[i].isLive && phi.inputs[i] != zapInstruction) { | |
1053 replaceInput(i, phi, zapInstruction); | |
1054 } | |
1055 } | |
1056 }); | |
1057 if (predecessors.length < 2) continue L; | |
1058 // Find the index of the single live predecessor if it exists. | |
1059 int indexOfLive = -1; | |
1060 for (int i = 0; i < predecessors.length; i++) { | |
1061 if (predecessors[i].isLive) { | |
1062 if (indexOfLive >= 0) continue L; | |
1063 indexOfLive = i; | |
1064 } | |
1065 } | |
1066 // Run through the phis of the block and replace them with their input | |
1067 // that comes from the only live predecessor if that dominates the phi. | |
1068 block.forEachPhi((HPhi phi) { | |
1069 HInstruction replacement = (indexOfLive >= 0) | |
1070 ? phi.inputs[indexOfLive] : zapInstruction; | |
1071 if (replacement.dominates(phi)) { | |
1072 block.rewrite(phi, replacement); | |
1073 block.removePhi(phi); | |
1074 } | |
1075 }); | |
1076 } | |
1077 } | |
1078 | |
1079 void replaceInput(int i, HInstruction from, HInstruction by) { | |
1080 from.inputs[i].usedBy.remove(from); | |
1081 from.inputs[i] = by; | |
1082 by.usedBy.add(from); | |
1083 } | |
1084 | |
1085 void removeUsers(HInstruction instruction) { | |
1086 instruction.usedBy.forEach((user) { | |
1087 removeInput(user, instruction); | |
1088 }); | |
1089 instruction.usedBy.clear(); | |
1090 } | |
1091 | |
1092 void removeInput(HInstruction user, HInstruction input) { | |
1093 List<HInstruction> inputs = user.inputs; | |
1094 for (int i = 0, length = inputs.length; i < length; i++) { | |
1095 if (input == inputs[i]) { | |
1096 user.inputs[i] = zapInstruction; | |
1097 zapInstruction.usedBy.add(user); | |
1098 } | |
1099 } | |
1100 } | |
1101 } | |
1102 | |
1103 class SsaLiveBlockAnalyzer extends HBaseVisitor { | |
1104 final HGraph graph; | |
1105 final Compiler compiler; | |
1106 final Set<HBasicBlock> live = new Set<HBasicBlock>(); | |
1107 final List<HBasicBlock> worklist = <HBasicBlock>[]; | |
1108 | |
1109 SsaLiveBlockAnalyzer(this.graph, this.compiler); | |
1110 | |
1111 JavaScriptBackend get backend => compiler.backend; | |
1112 Map<HInstruction, Range> get ranges => backend.optimizer.ranges; | |
1113 | |
1114 bool isDeadBlock(HBasicBlock block) => !live.contains(block); | |
1115 | |
1116 void analyze() { | |
1117 markBlockLive(graph.entry); | |
1118 while (!worklist.isEmpty) { | |
1119 HBasicBlock live = worklist.removeLast(); | |
1120 live.last.accept(this); | |
1121 } | |
1122 } | |
1123 | |
1124 void markBlockLive(HBasicBlock block) { | |
1125 if (!live.contains(block)) { | |
1126 worklist.add(block); | |
1127 live.add(block); | |
1128 } | |
1129 } | |
1130 | |
1131 void visitControlFlow(HControlFlow instruction) { | |
1132 instruction.block.successors.forEach(markBlockLive); | |
1133 } | |
1134 | |
1135 void visitIf(HIf instruction) { | |
1136 HInstruction condition = instruction.condition; | |
1137 if (condition.isConstant()) { | |
1138 if (condition.isConstantTrue()) { | |
1139 markBlockLive(instruction.thenBlock); | |
1140 } else { | |
1141 markBlockLive(instruction.elseBlock); | |
1142 } | |
1143 } else { | |
1144 visitControlFlow(instruction); | |
1145 } | |
1146 } | |
1147 | |
1148 void visitSwitch(HSwitch node) { | |
1149 if (node.expression.isInteger(compiler)) { | |
1150 Range switchRange = ranges[node.expression]; | |
1151 if (switchRange != null && | |
1152 switchRange.lower is IntValue && | |
1153 switchRange.upper is IntValue) { | |
1154 IntValue lowerValue = switchRange.lower; | |
1155 IntValue upperValue = switchRange.upper; | |
1156 int lower = lowerValue.value; | |
1157 int upper = upperValue.value; | |
1158 Set<int> liveLabels = new Set<int>(); | |
1159 for (int pos = 1; pos < node.inputs.length; pos++) { | |
1160 HConstant input = node.inputs[pos]; | |
1161 if (!input.isConstantInteger()) continue; | |
1162 IntConstantValue constant = input.constant; | |
1163 int label = constant.primitiveValue; | |
1164 if (!liveLabels.contains(label) && | |
1165 label <= upper && | |
1166 label >= lower) { | |
1167 markBlockLive(node.block.successors[pos - 1]); | |
1168 liveLabels.add(label); | |
1169 } | |
1170 } | |
1171 if (liveLabels.length != upper - lower + 1) { | |
1172 markBlockLive(node.defaultTarget); | |
1173 } | |
1174 return; | |
1175 } | |
1176 } | |
1177 visitControlFlow(node); | |
1178 } | |
1179 } | |
1180 | |
1181 class SsaDeadPhiEliminator implements OptimizationPhase { | |
1182 final String name = "SsaDeadPhiEliminator"; | |
1183 | |
1184 void visitGraph(HGraph graph) { | |
1185 final List<HPhi> worklist = <HPhi>[]; | |
1186 // A set to keep track of the live phis that we found. | |
1187 final Set<HPhi> livePhis = new Set<HPhi>(); | |
1188 | |
1189 // Add to the worklist all live phis: phis referenced by non-phi | |
1190 // instructions. | |
1191 for (final block in graph.blocks) { | |
1192 block.forEachPhi((HPhi phi) { | |
1193 for (final user in phi.usedBy) { | |
1194 if (user is !HPhi) { | |
1195 worklist.add(phi); | |
1196 livePhis.add(phi); | |
1197 break; | |
1198 } | |
1199 } | |
1200 }); | |
1201 } | |
1202 | |
1203 // Process the worklist by propagating liveness to phi inputs. | |
1204 while (!worklist.isEmpty) { | |
1205 HPhi phi = worklist.removeLast(); | |
1206 for (final input in phi.inputs) { | |
1207 if (input is HPhi && !livePhis.contains(input)) { | |
1208 worklist.add(input); | |
1209 livePhis.add(input); | |
1210 } | |
1211 } | |
1212 } | |
1213 | |
1214 // Remove phis that are not live. | |
1215 // Traverse in reverse order to remove phis with no uses before the | |
1216 // phis that they might use. | |
1217 // NOTICE: Doesn't handle circular references, but we don't currently | |
1218 // create any. | |
1219 List<HBasicBlock> blocks = graph.blocks; | |
1220 for (int i = blocks.length - 1; i >= 0; i--) { | |
1221 HBasicBlock block = blocks[i]; | |
1222 HPhi current = block.phis.first; | |
1223 HPhi next = null; | |
1224 while (current != null) { | |
1225 next = current.next; | |
1226 if (!livePhis.contains(current) | |
1227 // TODO(ahe): Not sure the following is correct. | |
1228 && current.usedBy.isEmpty) { | |
1229 block.removePhi(current); | |
1230 } | |
1231 current = next; | |
1232 } | |
1233 } | |
1234 } | |
1235 } | |
1236 | |
1237 class SsaRedundantPhiEliminator implements OptimizationPhase { | |
1238 final String name = "SsaRedundantPhiEliminator"; | |
1239 | |
1240 void visitGraph(HGraph graph) { | |
1241 final List<HPhi> worklist = <HPhi>[]; | |
1242 | |
1243 // Add all phis in the worklist. | |
1244 for (final block in graph.blocks) { | |
1245 block.forEachPhi((HPhi phi) => worklist.add(phi)); | |
1246 } | |
1247 | |
1248 while (!worklist.isEmpty) { | |
1249 HPhi phi = worklist.removeLast(); | |
1250 | |
1251 // If the phi has already been processed, continue. | |
1252 if (!phi.isInBasicBlock()) continue; | |
1253 | |
1254 // Find if the inputs of the phi are the same instruction. | |
1255 // The builder ensures that phi.inputs[0] cannot be the phi | |
1256 // itself. | |
1257 assert(!identical(phi.inputs[0], phi)); | |
1258 HInstruction candidate = phi.inputs[0]; | |
1259 for (int i = 1; i < phi.inputs.length; i++) { | |
1260 HInstruction input = phi.inputs[i]; | |
1261 // If the input is the phi, the phi is still candidate for | |
1262 // elimination. | |
1263 if (!identical(input, candidate) && !identical(input, phi)) { | |
1264 candidate = null; | |
1265 break; | |
1266 } | |
1267 } | |
1268 | |
1269 // If the inputs are not the same, continue. | |
1270 if (candidate == null) continue; | |
1271 | |
1272 // Because we're updating the users of this phi, we may have new | |
1273 // phis candidate for elimination. Add phis that used this phi | |
1274 // to the worklist. | |
1275 for (final user in phi.usedBy) { | |
1276 if (user is HPhi) worklist.add(user); | |
1277 } | |
1278 phi.block.rewrite(phi, candidate); | |
1279 phi.block.removePhi(phi); | |
1280 } | |
1281 } | |
1282 } | |
1283 | |
1284 class GvnWorkItem { | |
1285 final HBasicBlock block; | |
1286 final ValueSet valueSet; | |
1287 GvnWorkItem(this.block, this.valueSet); | |
1288 } | |
1289 | |
1290 class SsaGlobalValueNumberer implements OptimizationPhase { | |
1291 final String name = "SsaGlobalValueNumberer"; | |
1292 final Compiler compiler; | |
1293 final Set<int> visited; | |
1294 | |
1295 List<int> blockChangesFlags; | |
1296 List<int> loopChangesFlags; | |
1297 | |
1298 SsaGlobalValueNumberer(this.compiler) : visited = new Set<int>(); | |
1299 | |
1300 void visitGraph(HGraph graph) { | |
1301 computeChangesFlags(graph); | |
1302 moveLoopInvariantCode(graph); | |
1303 List<GvnWorkItem> workQueue = | |
1304 <GvnWorkItem>[new GvnWorkItem(graph.entry, new ValueSet())]; | |
1305 do { | |
1306 GvnWorkItem item = workQueue.removeLast(); | |
1307 visitBasicBlock(item.block, item.valueSet, workQueue); | |
1308 } while (!workQueue.isEmpty); | |
1309 } | |
1310 | |
1311 void moveLoopInvariantCode(HGraph graph) { | |
1312 for (int i = graph.blocks.length - 1; i >= 0; i--) { | |
1313 HBasicBlock block = graph.blocks[i]; | |
1314 if (block.isLoopHeader()) { | |
1315 int changesFlags = loopChangesFlags[block.id]; | |
1316 HLoopInformation info = block.loopInformation; | |
1317 // Iterate over all blocks of this loop. Note that blocks in | |
1318 // inner loops are not visited here, but we know they | |
1319 // were visited before because we are iterating in post-order. | |
1320 // So instructions that are GVN'ed in an inner loop are in their | |
1321 // loop entry, and [info.blocks] contains this loop entry. | |
1322 moveLoopInvariantCodeFromBlock(block, block, changesFlags); | |
1323 for (HBasicBlock other in info.blocks) { | |
1324 moveLoopInvariantCodeFromBlock(other, block, changesFlags); | |
1325 } | |
1326 } | |
1327 } | |
1328 } | |
1329 | |
1330 void moveLoopInvariantCodeFromBlock(HBasicBlock block, | |
1331 HBasicBlock loopHeader, | |
1332 int changesFlags) { | |
1333 assert(block.parentLoopHeader == loopHeader || block == loopHeader); | |
1334 HBasicBlock preheader = loopHeader.predecessors[0]; | |
1335 int dependsFlags = SideEffects.computeDependsOnFlags(changesFlags); | |
1336 HInstruction instruction = block.first; | |
1337 bool isLoopAlwaysTaken() { | |
1338 HInstruction instruction = loopHeader.last; | |
1339 assert(instruction is HGoto || instruction is HLoopBranch); | |
1340 return instruction is HGoto | |
1341 || instruction.inputs[0].isConstantTrue(); | |
1342 } | |
1343 bool firstInstructionInLoop = block == loopHeader | |
1344 // Compensate for lack of code motion. | |
1345 || (blockChangesFlags[loopHeader.id] == 0 | |
1346 && isLoopAlwaysTaken() | |
1347 && loopHeader.successors[0] == block); | |
1348 while (instruction != null) { | |
1349 HInstruction next = instruction.next; | |
1350 if (instruction.useGvn() && instruction.isMovable | |
1351 && (!instruction.canThrow() || firstInstructionInLoop) | |
1352 && !instruction.sideEffects.dependsOn(dependsFlags)) { | |
1353 bool loopInvariantInputs = true; | |
1354 List<HInstruction> inputs = instruction.inputs; | |
1355 for (int i = 0, length = inputs.length; i < length; i++) { | |
1356 if (isInputDefinedAfterDominator(inputs[i], preheader)) { | |
1357 loopInvariantInputs = false; | |
1358 break; | |
1359 } | |
1360 } | |
1361 | |
1362 // If the inputs are loop invariant, we can move the | |
1363 // instruction from the current block to the pre-header block. | |
1364 if (loopInvariantInputs) { | |
1365 block.detach(instruction); | |
1366 preheader.moveAtExit(instruction); | |
1367 } else { | |
1368 firstInstructionInLoop = false; | |
1369 } | |
1370 } | |
1371 int oldChangesFlags = changesFlags; | |
1372 changesFlags |= instruction.sideEffects.getChangesFlags(); | |
1373 if (oldChangesFlags != changesFlags) { | |
1374 dependsFlags = SideEffects.computeDependsOnFlags(changesFlags); | |
1375 } | |
1376 instruction = next; | |
1377 } | |
1378 } | |
1379 | |
1380 bool isInputDefinedAfterDominator(HInstruction input, | |
1381 HBasicBlock dominator) { | |
1382 return input.block.id > dominator.id; | |
1383 } | |
1384 | |
1385 void visitBasicBlock( | |
1386 HBasicBlock block, ValueSet values, List<GvnWorkItem> workQueue) { | |
1387 HInstruction instruction = block.first; | |
1388 if (block.isLoopHeader()) { | |
1389 int flags = loopChangesFlags[block.id]; | |
1390 values.kill(flags); | |
1391 } | |
1392 while (instruction != null) { | |
1393 HInstruction next = instruction.next; | |
1394 int flags = instruction.sideEffects.getChangesFlags(); | |
1395 assert(flags == 0 || !instruction.useGvn()); | |
1396 values.kill(flags); | |
1397 if (instruction.useGvn()) { | |
1398 HInstruction other = values.lookup(instruction); | |
1399 if (other != null) { | |
1400 assert(other.gvnEquals(instruction) && instruction.gvnEquals(other)); | |
1401 block.rewriteWithBetterUser(instruction, other); | |
1402 block.remove(instruction); | |
1403 } else { | |
1404 values.add(instruction); | |
1405 } | |
1406 } | |
1407 instruction = next; | |
1408 } | |
1409 | |
1410 List<HBasicBlock> dominatedBlocks = block.dominatedBlocks; | |
1411 for (int i = 0, length = dominatedBlocks.length; i < length; i++) { | |
1412 HBasicBlock dominated = dominatedBlocks[i]; | |
1413 // No need to copy the value set for the last child. | |
1414 ValueSet successorValues = (i == length - 1) ? values : values.copy(); | |
1415 // If we have no values in our set, we do not have to kill | |
1416 // anything. Also, if the range of block ids from the current | |
1417 // block to the dominated block is empty, there is no blocks on | |
1418 // any path from the current block to the dominated block so we | |
1419 // don't have to do anything either. | |
1420 assert(block.id < dominated.id); | |
1421 if (!successorValues.isEmpty && block.id + 1 < dominated.id) { | |
1422 visited.clear(); | |
1423 List<HBasicBlock> workQueue = <HBasicBlock>[dominated]; | |
1424 int changesFlags = 0; | |
1425 do { | |
1426 HBasicBlock current = workQueue.removeLast(); | |
1427 changesFlags |= | |
1428 getChangesFlagsForDominatedBlock(block, current, workQueue); | |
1429 } while (!workQueue.isEmpty); | |
1430 successorValues.kill(changesFlags); | |
1431 } | |
1432 workQueue.add(new GvnWorkItem(dominated, successorValues)); | |
1433 } | |
1434 } | |
1435 | |
1436 void computeChangesFlags(HGraph graph) { | |
1437 // Create the changes flags lists. Make sure to initialize the | |
1438 // loop changes flags list to zero so we can use bitwise or when | |
1439 // propagating loop changes upwards. | |
1440 final int length = graph.blocks.length; | |
1441 blockChangesFlags = new List<int>(length); | |
1442 loopChangesFlags = new List<int>(length); | |
1443 for (int i = 0; i < length; i++) loopChangesFlags[i] = 0; | |
1444 | |
1445 // Run through all the basic blocks in the graph and fill in the | |
1446 // changes flags lists. | |
1447 for (int i = length - 1; i >= 0; i--) { | |
1448 final HBasicBlock block = graph.blocks[i]; | |
1449 final int id = block.id; | |
1450 | |
1451 // Compute block changes flags for the block. | |
1452 int changesFlags = 0; | |
1453 HInstruction instruction = block.first; | |
1454 while (instruction != null) { | |
1455 changesFlags |= instruction.sideEffects.getChangesFlags(); | |
1456 instruction = instruction.next; | |
1457 } | |
1458 assert(blockChangesFlags[id] == null); | |
1459 blockChangesFlags[id] = changesFlags; | |
1460 | |
1461 // Loop headers are part of their loop, so update the loop | |
1462 // changes flags accordingly. | |
1463 if (block.isLoopHeader()) { | |
1464 loopChangesFlags[id] |= changesFlags; | |
1465 } | |
1466 | |
1467 // Propagate loop changes flags upwards. | |
1468 HBasicBlock parentLoopHeader = block.parentLoopHeader; | |
1469 if (parentLoopHeader != null) { | |
1470 loopChangesFlags[parentLoopHeader.id] |= (block.isLoopHeader()) | |
1471 ? loopChangesFlags[id] | |
1472 : changesFlags; | |
1473 } | |
1474 } | |
1475 } | |
1476 | |
1477 int getChangesFlagsForDominatedBlock(HBasicBlock dominator, | |
1478 HBasicBlock dominated, | |
1479 List<HBasicBlock> workQueue) { | |
1480 int changesFlags = 0; | |
1481 List<HBasicBlock> predecessors = dominated.predecessors; | |
1482 for (int i = 0, length = predecessors.length; i < length; i++) { | |
1483 HBasicBlock block = predecessors[i]; | |
1484 int id = block.id; | |
1485 // If the current predecessor block is on the path from the | |
1486 // dominator to the dominated, it must have an id that is in the | |
1487 // range from the dominator to the dominated. | |
1488 if (dominator.id < id && id < dominated.id && !visited.contains(id)) { | |
1489 visited.add(id); | |
1490 changesFlags |= blockChangesFlags[id]; | |
1491 // Loop bodies might not be on the path from dominator to dominated, | |
1492 // but they can invalidate values. | |
1493 changesFlags |= loopChangesFlags[id]; | |
1494 workQueue.add(block); | |
1495 } | |
1496 } | |
1497 return changesFlags; | |
1498 } | |
1499 } | |
1500 | |
1501 // This phase merges equivalent instructions on different paths into | |
1502 // one instruction in a dominator block. It runs through the graph | |
1503 // post dominator order and computes a ValueSet for each block of | |
1504 // instructions that can be moved to a dominator block. These | |
1505 // instructions are the ones that: | |
1506 // 1) can be used for GVN, and | |
1507 // 2) do not use definitions of their own block. | |
1508 // | |
1509 // A basic block looks at its sucessors and finds the intersection of | |
1510 // these computed ValueSet. It moves all instructions of the | |
1511 // intersection into its own list of instructions. | |
1512 class SsaCodeMotion extends HBaseVisitor implements OptimizationPhase { | |
1513 final String name = "SsaCodeMotion"; | |
1514 | |
1515 List<ValueSet> values; | |
1516 | |
1517 void visitGraph(HGraph graph) { | |
1518 values = new List<ValueSet>(graph.blocks.length); | |
1519 for (int i = 0; i < graph.blocks.length; i++) { | |
1520 values[graph.blocks[i].id] = new ValueSet(); | |
1521 } | |
1522 visitPostDominatorTree(graph); | |
1523 } | |
1524 | |
1525 void visitBasicBlock(HBasicBlock block) { | |
1526 List<HBasicBlock> successors = block.successors; | |
1527 | |
1528 // Phase 1: get the ValueSet of all successors (if there are more than one), | |
1529 // compute the intersection and move the instructions of the intersection | |
1530 // into this block. | |
1531 if (successors.length > 1) { | |
1532 ValueSet instructions = values[successors[0].id]; | |
1533 for (int i = 1; i < successors.length; i++) { | |
1534 ValueSet other = values[successors[i].id]; | |
1535 instructions = instructions.intersection(other); | |
1536 } | |
1537 | |
1538 if (!instructions.isEmpty) { | |
1539 List<HInstruction> list = instructions.toList(); | |
1540 for (HInstruction instruction in list) { | |
1541 // Move the instruction to the current block. | |
1542 instruction.block.detach(instruction); | |
1543 block.moveAtExit(instruction); | |
1544 // Go through all successors and rewrite their instruction | |
1545 // to the shared one. | |
1546 for (final successor in successors) { | |
1547 HInstruction toRewrite = values[successor.id].lookup(instruction); | |
1548 if (toRewrite != instruction) { | |
1549 successor.rewriteWithBetterUser(toRewrite, instruction); | |
1550 successor.remove(toRewrite); | |
1551 } | |
1552 } | |
1553 } | |
1554 } | |
1555 } | |
1556 | |
1557 // Don't try to merge instructions to a dominator if we have | |
1558 // multiple predecessors. | |
1559 if (block.predecessors.length != 1) return; | |
1560 | |
1561 // Phase 2: Go through all instructions of this block and find | |
1562 // which instructions can be moved to a dominator block. | |
1563 ValueSet set_ = values[block.id]; | |
1564 HInstruction instruction = block.first; | |
1565 int flags = 0; | |
1566 while (instruction != null) { | |
1567 int dependsFlags = SideEffects.computeDependsOnFlags(flags); | |
1568 flags |= instruction.sideEffects.getChangesFlags(); | |
1569 | |
1570 HInstruction current = instruction; | |
1571 instruction = instruction.next; | |
1572 if (!current.useGvn() || !current.isMovable) continue; | |
1573 // TODO(sra): We could move throwing instructions provided we keep the | |
1574 // exceptions in the same order. This requires they are in the same order | |
1575 // in all successors, which is not tracked by the ValueSet. | |
1576 if (current.canThrow()) continue; | |
1577 if (current.sideEffects.dependsOn(dependsFlags)) continue; | |
1578 | |
1579 bool canBeMoved = true; | |
1580 for (final HInstruction input in current.inputs) { | |
1581 if (input.block == block) { | |
1582 canBeMoved = false; | |
1583 break; | |
1584 } | |
1585 } | |
1586 if (!canBeMoved) continue; | |
1587 | |
1588 HInstruction existing = set_.lookup(current); | |
1589 if (existing == null) { | |
1590 set_.add(current); | |
1591 } else { | |
1592 block.rewriteWithBetterUser(current, existing); | |
1593 block.remove(current); | |
1594 } | |
1595 } | |
1596 } | |
1597 } | |
1598 | |
1599 class SsaTypeConversionInserter extends HBaseVisitor | |
1600 implements OptimizationPhase { | |
1601 final String name = "SsaTypeconversionInserter"; | |
1602 final Compiler compiler; | |
1603 | |
1604 SsaTypeConversionInserter(this.compiler); | |
1605 | |
1606 void visitGraph(HGraph graph) { | |
1607 visitDominatorTree(graph); | |
1608 } | |
1609 | |
1610 // Update users of [input] that are dominated by [:dominator.first:] | |
1611 // to use [TypeKnown] of [input] instead. As the type information depends | |
1612 // on the control flow, we mark the inserted [HTypeKnown] nodes as | |
1613 // non-movable. | |
1614 void insertTypePropagationForDominatedUsers(HBasicBlock dominator, | |
1615 HInstruction input, | |
1616 TypeMask convertedType) { | |
1617 Setlet<HInstruction> dominatedUsers = input.dominatedUsers(dominator.first); | |
1618 if (dominatedUsers.isEmpty) return; | |
1619 | |
1620 HTypeKnown newInput = new HTypeKnown.pinned(convertedType, input); | |
1621 dominator.addBefore(dominator.first, newInput); | |
1622 dominatedUsers.forEach((HInstruction user) { | |
1623 user.changeUse(input, newInput); | |
1624 }); | |
1625 } | |
1626 | |
1627 void visitIs(HIs instruction) { | |
1628 DartType type = instruction.typeExpression; | |
1629 Element element = type.element; | |
1630 if (!instruction.isRawCheck) { | |
1631 return; | |
1632 } else if (element.isTypedef) { | |
1633 return; | |
1634 } | |
1635 | |
1636 List<HInstruction> ifUsers = <HInstruction>[]; | |
1637 List<HInstruction> notIfUsers = <HInstruction>[]; | |
1638 | |
1639 collectIfUsers(instruction, ifUsers, notIfUsers); | |
1640 | |
1641 if (ifUsers.isEmpty && notIfUsers.isEmpty) return; | |
1642 | |
1643 TypeMask convertedType = | |
1644 new TypeMask.nonNullSubtype(element, compiler.world); | |
1645 HInstruction input = instruction.expression; | |
1646 | |
1647 for (HIf ifUser in ifUsers) { | |
1648 insertTypePropagationForDominatedUsers(ifUser.thenBlock, input, | |
1649 convertedType); | |
1650 // TODO(ngeoffray): Also change uses for the else block on a type | |
1651 // that knows it is not of a specific type. | |
1652 } | |
1653 for (HIf ifUser in notIfUsers) { | |
1654 insertTypePropagationForDominatedUsers(ifUser.elseBlock, input, | |
1655 convertedType); | |
1656 // TODO(ngeoffray): Also change uses for the then block on a type | |
1657 // that knows it is not of a specific type. | |
1658 } | |
1659 } | |
1660 | |
1661 void visitIdentity(HIdentity instruction) { | |
1662 // At HIf(HIdentity(x, null)) strengthens x to non-null on else branch. | |
1663 HInstruction left = instruction.left; | |
1664 HInstruction right = instruction.right; | |
1665 HInstruction input; | |
1666 | |
1667 if (left.isConstantNull()) { | |
1668 input = right; | |
1669 } else if (right.isConstantNull()) { | |
1670 input = left; | |
1671 } else { | |
1672 return; | |
1673 } | |
1674 | |
1675 if (!input.instructionType.isNullable) return; | |
1676 | |
1677 List<HInstruction> ifUsers = <HInstruction>[]; | |
1678 List<HInstruction> notIfUsers = <HInstruction>[]; | |
1679 | |
1680 collectIfUsers(instruction, ifUsers, notIfUsers); | |
1681 | |
1682 if (ifUsers.isEmpty && notIfUsers.isEmpty) return; | |
1683 | |
1684 TypeMask nonNullType = input.instructionType.nonNullable(); | |
1685 | |
1686 for (HIf ifUser in ifUsers) { | |
1687 insertTypePropagationForDominatedUsers(ifUser.elseBlock, input, | |
1688 nonNullType); | |
1689 // Uses in thenBlock are `null`, but probably not common. | |
1690 } | |
1691 for (HIf ifUser in notIfUsers) { | |
1692 insertTypePropagationForDominatedUsers(ifUser.thenBlock, input, | |
1693 nonNullType); | |
1694 // Uses in elseBlock are `null`, but probably not common. | |
1695 } | |
1696 } | |
1697 | |
1698 collectIfUsers(HInstruction instruction, | |
1699 List<HInstruction> ifUsers, | |
1700 List<HInstruction> notIfUsers) { | |
1701 for (HInstruction user in instruction.usedBy) { | |
1702 if (user is HIf) { | |
1703 ifUsers.add(user); | |
1704 } else if (user is HNot) { | |
1705 collectIfUsers(user, notIfUsers, ifUsers); | |
1706 } | |
1707 } | |
1708 } | |
1709 } | |
1710 | |
1711 /** | |
1712 * Optimization phase that tries to eliminate memory loads (for | |
1713 * example [HFieldGet]), when it knows the value stored in that memory | |
1714 * location. | |
1715 */ | |
1716 class SsaLoadElimination extends HBaseVisitor implements OptimizationPhase { | |
1717 final Compiler compiler; | |
1718 final String name = "SsaLoadElimination"; | |
1719 MemorySet memorySet; | |
1720 List<MemorySet> memories; | |
1721 | |
1722 SsaLoadElimination(this.compiler); | |
1723 | |
1724 void visitGraph(HGraph graph) { | |
1725 memories = new List<MemorySet>(graph.blocks.length); | |
1726 List<HBasicBlock> blocks = graph.blocks; | |
1727 for (int i = 0; i < blocks.length; i++) { | |
1728 HBasicBlock block = blocks[i]; | |
1729 visitBasicBlock(block); | |
1730 if (block.successors.isNotEmpty && block.successors[0].isLoopHeader()) { | |
1731 // We've reached the ending block of a loop. Iterate over the | |
1732 // blocks of the loop again to take values that flow from that | |
1733 // ending block into account. | |
1734 for (int j = block.successors[0].id; j <= block.id; j++) { | |
1735 visitBasicBlock(blocks[j]); | |
1736 } | |
1737 } | |
1738 } | |
1739 } | |
1740 | |
1741 void visitBasicBlock(HBasicBlock block) { | |
1742 if (block.predecessors.length == 0) { | |
1743 // Entry block. | |
1744 memorySet = new MemorySet(compiler); | |
1745 } else if (block.predecessors.length == 1 | |
1746 && block.predecessors[0].successors.length == 1) { | |
1747 // No need to clone, there is no other successor for | |
1748 // `block.predecessors[0]`, and this block has only one | |
1749 // predecessor. Since we are not going to visit | |
1750 // `block.predecessors[0]` again, we can just re-use its | |
1751 // [memorySet]. | |
1752 memorySet = memories[block.predecessors[0].id]; | |
1753 } else if (block.predecessors.length == 1) { | |
1754 // Clone the memorySet of the predecessor, because it is also used | |
1755 // by other successors of it. | |
1756 memorySet = memories[block.predecessors[0].id].clone(); | |
1757 } else { | |
1758 // Compute the intersection of all predecessors. | |
1759 memorySet = memories[block.predecessors[0].id]; | |
1760 for (int i = 1; i < block.predecessors.length; i++) { | |
1761 memorySet = memorySet.intersectionFor( | |
1762 memories[block.predecessors[i].id], block, i); | |
1763 } | |
1764 } | |
1765 | |
1766 memories[block.id] = memorySet; | |
1767 HInstruction instruction = block.first; | |
1768 while (instruction != null) { | |
1769 HInstruction next = instruction.next; | |
1770 instruction.accept(this); | |
1771 instruction = next; | |
1772 } | |
1773 } | |
1774 | |
1775 void visitFieldGet(HFieldGet instruction) { | |
1776 if (instruction.isNullCheck) return; | |
1777 Element element = instruction.element; | |
1778 HInstruction receiver = | |
1779 instruction.getDartReceiver(compiler).nonCheck(); | |
1780 HInstruction existing = memorySet.lookupFieldValue(element, receiver); | |
1781 if (existing != null) { | |
1782 instruction.block.rewriteWithBetterUser(instruction, existing); | |
1783 instruction.block.remove(instruction); | |
1784 } else { | |
1785 memorySet.registerFieldValue(element, receiver, instruction); | |
1786 } | |
1787 } | |
1788 | |
1789 void visitFieldSet(HFieldSet instruction) { | |
1790 HInstruction receiver = | |
1791 instruction.getDartReceiver(compiler).nonCheck(); | |
1792 memorySet.registerFieldValueUpdate( | |
1793 instruction.element, receiver, instruction.inputs.last); | |
1794 } | |
1795 | |
1796 void visitForeignNew(HForeignNew instruction) { | |
1797 memorySet.registerAllocation(instruction); | |
1798 int argumentIndex = 0; | |
1799 instruction.element.forEachInstanceField((_, Element member) { | |
1800 memorySet.registerFieldValue( | |
1801 member, instruction, instruction.inputs[argumentIndex++]); | |
1802 }, includeSuperAndInjectedMembers: true); | |
1803 // In case this instruction has as input non-escaping objects, we | |
1804 // need to mark these objects as escaping. | |
1805 memorySet.killAffectedBy(instruction); | |
1806 } | |
1807 | |
1808 void visitInstruction(HInstruction instruction) { | |
1809 memorySet.killAffectedBy(instruction); | |
1810 } | |
1811 | |
1812 void visitLazyStatic(HLazyStatic instruction) { | |
1813 handleStaticLoad(instruction.element, instruction); | |
1814 } | |
1815 | |
1816 void handleStaticLoad(Element element, HInstruction instruction) { | |
1817 HInstruction existing = memorySet.lookupFieldValue(element, null); | |
1818 if (existing != null) { | |
1819 instruction.block.rewriteWithBetterUser(instruction, existing); | |
1820 instruction.block.remove(instruction); | |
1821 } else { | |
1822 memorySet.registerFieldValue(element, null, instruction); | |
1823 } | |
1824 } | |
1825 | |
1826 void visitStatic(HStatic instruction) { | |
1827 handleStaticLoad(instruction.element, instruction); | |
1828 } | |
1829 | |
1830 void visitStaticStore(HStaticStore instruction) { | |
1831 memorySet.registerFieldValueUpdate( | |
1832 instruction.element, null, instruction.inputs.last); | |
1833 } | |
1834 | |
1835 void visitLiteralList(HLiteralList instruction) { | |
1836 memorySet.registerAllocation(instruction); | |
1837 memorySet.killAffectedBy(instruction); | |
1838 } | |
1839 | |
1840 void visitIndex(HIndex instruction) { | |
1841 HInstruction receiver = instruction.receiver.nonCheck(); | |
1842 HInstruction existing = | |
1843 memorySet.lookupKeyedValue(receiver, instruction.index); | |
1844 if (existing != null) { | |
1845 instruction.block.rewriteWithBetterUser(instruction, existing); | |
1846 instruction.block.remove(instruction); | |
1847 } else { | |
1848 memorySet.registerKeyedValue(receiver, instruction.index, instruction); | |
1849 } | |
1850 } | |
1851 | |
1852 void visitIndexAssign(HIndexAssign instruction) { | |
1853 HInstruction receiver = instruction.receiver.nonCheck(); | |
1854 memorySet.registerKeyedValueUpdate( | |
1855 receiver, instruction.index, instruction.value); | |
1856 } | |
1857 } | |
1858 | |
1859 /** | |
1860 * Holds values of memory places. | |
1861 */ | |
1862 class MemorySet { | |
1863 final Compiler compiler; | |
1864 | |
1865 /** | |
1866 * Maps a field to a map of receiver to value. | |
1867 */ | |
1868 final Map<Element, Map<HInstruction, HInstruction>> fieldValues = | |
1869 <Element, Map<HInstruction, HInstruction>> {}; | |
1870 | |
1871 /** | |
1872 * Maps a receiver to a map of keys to value. | |
1873 */ | |
1874 final Map<HInstruction, Map<HInstruction, HInstruction>> keyedValues = | |
1875 <HInstruction, Map<HInstruction, HInstruction>> {}; | |
1876 | |
1877 /** | |
1878 * Set of objects that we know don't escape the current function. | |
1879 */ | |
1880 final Setlet<HInstruction> nonEscapingReceivers = new Setlet<HInstruction>(); | |
1881 | |
1882 MemorySet(this.compiler); | |
1883 | |
1884 /** | |
1885 * Returns whether [first] and [second] always alias to the same object. | |
1886 */ | |
1887 bool mustAlias(HInstruction first, HInstruction second) { | |
1888 return first == second; | |
1889 } | |
1890 | |
1891 /** | |
1892 * Returns whether [first] and [second] may alias to the same object. | |
1893 */ | |
1894 bool mayAlias(HInstruction first, HInstruction second) { | |
1895 if (mustAlias(first, second)) return true; | |
1896 if (isConcrete(first) && isConcrete(second)) return false; | |
1897 if (nonEscapingReceivers.contains(first)) return false; | |
1898 if (nonEscapingReceivers.contains(second)) return false; | |
1899 // Typed arrays of different types might have a shared buffer. | |
1900 if (couldBeTypedArray(first) && couldBeTypedArray(second)) return true; | |
1901 TypeMask intersection = first.instructionType.intersection( | |
1902 second.instructionType, compiler.world); | |
1903 if (intersection.isEmpty) return false; | |
1904 return true; | |
1905 } | |
1906 | |
1907 bool isFinal(Element element) { | |
1908 return compiler.world.fieldNeverChanges(element); | |
1909 } | |
1910 | |
1911 bool isConcrete(HInstruction instruction) { | |
1912 return instruction is HForeignNew | |
1913 || instruction is HConstant | |
1914 || instruction is HLiteralList; | |
1915 } | |
1916 | |
1917 bool couldBeTypedArray(HInstruction receiver) { | |
1918 JavaScriptBackend backend = compiler.backend; | |
1919 return backend.couldBeTypedArray(receiver.instructionType); | |
1920 } | |
1921 | |
1922 /** | |
1923 * Returns whether [receiver] escapes the current function. | |
1924 */ | |
1925 bool escapes(HInstruction receiver) { | |
1926 return !nonEscapingReceivers.contains(receiver); | |
1927 } | |
1928 | |
1929 void registerAllocation(HInstruction instruction) { | |
1930 nonEscapingReceivers.add(instruction); | |
1931 } | |
1932 | |
1933 /** | |
1934 * Sets `receiver.element` to contain [value]. Kills all potential | |
1935 * places that may be affected by this update. | |
1936 */ | |
1937 void registerFieldValueUpdate(Element element, | |
1938 HInstruction receiver, | |
1939 HInstruction value) { | |
1940 if (element.isNative) return; // TODO(14955): Remove this restriction? | |
1941 // [value] is being set in some place in memory, we remove it from | |
1942 // the non-escaping set. | |
1943 nonEscapingReceivers.remove(value); | |
1944 Map<HInstruction, HInstruction> map = fieldValues.putIfAbsent( | |
1945 element, () => <HInstruction, HInstruction> {}); | |
1946 map.forEach((key, value) { | |
1947 if (mayAlias(receiver, key)) map[key] = null; | |
1948 }); | |
1949 map[receiver] = value; | |
1950 } | |
1951 | |
1952 /** | |
1953 * Registers that `receiver.element` is now [value]. | |
1954 */ | |
1955 void registerFieldValue(Element element, | |
1956 HInstruction receiver, | |
1957 HInstruction value) { | |
1958 if (element.isNative) return; // TODO(14955): Remove this restriction? | |
1959 Map<HInstruction, HInstruction> map = fieldValues.putIfAbsent( | |
1960 element, () => <HInstruction, HInstruction> {}); | |
1961 map[receiver] = value; | |
1962 } | |
1963 | |
1964 /** | |
1965 * Returns the value stored in `receiver.element`. Returns null if | |
1966 * we don't know. | |
1967 */ | |
1968 HInstruction lookupFieldValue(Element element, HInstruction receiver) { | |
1969 Map<HInstruction, HInstruction> map = fieldValues[element]; | |
1970 return (map == null) ? null : map[receiver]; | |
1971 } | |
1972 | |
1973 /** | |
1974 * Kill all places that may be affected by this [instruction]. Also | |
1975 * update the set of non-escaping objects in case [instruction] has | |
1976 * non-escaping objects in its inputs. | |
1977 */ | |
1978 void killAffectedBy(HInstruction instruction) { | |
1979 // Even if [instruction] does not have side effects, it may use | |
1980 // non-escaping objects and store them in a new object, which | |
1981 // make these objects escaping. | |
1982 // TODO(ngeoffray): We need a new side effect flag to know whether | |
1983 // an instruction allocates an object. | |
1984 instruction.inputs.forEach((input) { | |
1985 nonEscapingReceivers.remove(input); | |
1986 }); | |
1987 | |
1988 if (instruction.sideEffects.changesInstanceProperty() | |
1989 || instruction.sideEffects.changesStaticProperty()) { | |
1990 fieldValues.forEach((element, map) { | |
1991 if (isFinal(element)) return; | |
1992 map.forEach((receiver, value) { | |
1993 if (escapes(receiver)) { | |
1994 map[receiver] = null; | |
1995 } | |
1996 }); | |
1997 }); | |
1998 } | |
1999 | |
2000 if (instruction.sideEffects.changesIndex()) { | |
2001 keyedValues.forEach((receiver, map) { | |
2002 if (escapes(receiver)) { | |
2003 map.forEach((index, value) { | |
2004 map[index] = null; | |
2005 }); | |
2006 } | |
2007 }); | |
2008 } | |
2009 } | |
2010 | |
2011 /** | |
2012 * Returns the value stored in `receiver[index]`. Returns null if | |
2013 * we don't know. | |
2014 */ | |
2015 HInstruction lookupKeyedValue(HInstruction receiver, HInstruction index) { | |
2016 Map<HInstruction, HInstruction> map = keyedValues[receiver]; | |
2017 return (map == null) ? null : map[index]; | |
2018 } | |
2019 | |
2020 /** | |
2021 * Registers that `receiver[index]` is now [value]. | |
2022 */ | |
2023 void registerKeyedValue(HInstruction receiver, | |
2024 HInstruction index, | |
2025 HInstruction value) { | |
2026 Map<HInstruction, HInstruction> map = keyedValues.putIfAbsent( | |
2027 receiver, () => <HInstruction, HInstruction> {}); | |
2028 map[index] = value; | |
2029 } | |
2030 | |
2031 /** | |
2032 * Sets `receiver[index]` to contain [value]. Kills all potential | |
2033 * places that may be affected by this update. | |
2034 */ | |
2035 void registerKeyedValueUpdate(HInstruction receiver, | |
2036 HInstruction index, | |
2037 HInstruction value) { | |
2038 nonEscapingReceivers.remove(value); | |
2039 keyedValues.forEach((key, values) { | |
2040 if (mayAlias(receiver, key)) { | |
2041 // Typed arrays that are views of the same buffer may have different | |
2042 // offsets or element sizes, unless they are the same typed array. | |
2043 bool weakIndex = couldBeTypedArray(key) && !mustAlias(receiver, key); | |
2044 values.forEach((otherIndex, otherValue) { | |
2045 if (weakIndex || mayAlias(index, otherIndex)) { | |
2046 values[otherIndex] = null; | |
2047 } | |
2048 }); | |
2049 } | |
2050 }); | |
2051 | |
2052 // Typed arrays may narrow incoming values. | |
2053 if (couldBeTypedArray(receiver)) return; | |
2054 | |
2055 Map<HInstruction, HInstruction> map = keyedValues.putIfAbsent( | |
2056 receiver, () => <HInstruction, HInstruction> {}); | |
2057 map[index] = value; | |
2058 } | |
2059 | |
2060 /** | |
2061 * Returns null if either [first] or [second] is null. Otherwise | |
2062 * returns [first] if [first] and [second] are equal. Otherwise | |
2063 * creates or re-uses a phi in [block] that holds [first] and [second]. | |
2064 */ | |
2065 HInstruction findCommonInstruction(HInstruction first, | |
2066 HInstruction second, | |
2067 HBasicBlock block, | |
2068 int predecessorIndex) { | |
2069 if (first == null || second == null) return null; | |
2070 if (first == second) return first; | |
2071 TypeMask phiType = second.instructionType.union( | |
2072 first.instructionType, compiler.world); | |
2073 if (first is HPhi && first.block == block) { | |
2074 HPhi phi = first; | |
2075 phi.addInput(second); | |
2076 phi.instructionType = phiType; | |
2077 return phi; | |
2078 } else { | |
2079 HPhi phi = new HPhi.noInputs(null, phiType); | |
2080 block.addPhi(phi); | |
2081 // Previous predecessors had the same input. A phi must have | |
2082 // the same number of inputs as its block has predecessors. | |
2083 for (int i = 0; i < predecessorIndex; i++) { | |
2084 phi.addInput(first); | |
2085 } | |
2086 phi.addInput(second); | |
2087 return phi; | |
2088 } | |
2089 } | |
2090 | |
2091 /** | |
2092 * Returns the intersection between [this] and [other]. | |
2093 */ | |
2094 MemorySet intersectionFor(MemorySet other, | |
2095 HBasicBlock block, | |
2096 int predecessorIndex) { | |
2097 MemorySet result = new MemorySet(compiler); | |
2098 if (other == null) return result; | |
2099 | |
2100 fieldValues.forEach((element, values) { | |
2101 var otherValues = other.fieldValues[element]; | |
2102 if (otherValues == null) return; | |
2103 values.forEach((receiver, value) { | |
2104 HInstruction instruction = findCommonInstruction( | |
2105 value, otherValues[receiver], block, predecessorIndex); | |
2106 if (instruction != null) { | |
2107 result.registerFieldValue(element, receiver, instruction); | |
2108 } | |
2109 }); | |
2110 }); | |
2111 | |
2112 keyedValues.forEach((receiver, values) { | |
2113 var otherValues = other.keyedValues[receiver]; | |
2114 if (otherValues == null) return; | |
2115 values.forEach((index, value) { | |
2116 HInstruction instruction = findCommonInstruction( | |
2117 value, otherValues[index], block, predecessorIndex); | |
2118 if (instruction != null) { | |
2119 result.registerKeyedValue(receiver, index, instruction); | |
2120 } | |
2121 }); | |
2122 }); | |
2123 | |
2124 nonEscapingReceivers.forEach((receiver) { | |
2125 if (other.nonEscapingReceivers.contains(receiver)) { | |
2126 result.nonEscapingReceivers.add(receiver); | |
2127 } | |
2128 }); | |
2129 return result; | |
2130 } | |
2131 | |
2132 /** | |
2133 * Returns a copy of [this]. | |
2134 */ | |
2135 MemorySet clone() { | |
2136 MemorySet result = new MemorySet(compiler); | |
2137 | |
2138 fieldValues.forEach((element, values) { | |
2139 result.fieldValues[element] = | |
2140 new Map<HInstruction, HInstruction>.from(values); | |
2141 }); | |
2142 | |
2143 keyedValues.forEach((receiver, values) { | |
2144 result.keyedValues[receiver] = | |
2145 new Map<HInstruction, HInstruction>.from(values); | |
2146 }); | |
2147 | |
2148 result.nonEscapingReceivers.addAll(nonEscapingReceivers); | |
2149 return result; | |
2150 } | |
2151 } | |
OLD | NEW |