| OLD | NEW |
| (Empty) |
| 1 // Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file | |
| 2 // for details. All rights reserved. Use of this source code is governed by a | |
| 3 // BSD-style license that can be found in the LICENSE file. | |
| 4 | |
| 5 part of resolution; | |
| 6 | |
| 7 abstract class TreeElements { | |
| 8 AnalyzableElement get analyzedElement; | |
| 9 Iterable<Node> get superUses; | |
| 10 | |
| 11 /// Iterables of the dependencies that this [TreeElement] records of | |
| 12 /// [analyzedElement]. | |
| 13 Iterable<Element> get allElements; | |
| 14 void forEachConstantNode(f(Node n, ConstantExpression c)); | |
| 15 | |
| 16 /// A set of additional dependencies. See [registerDependency] below. | |
| 17 Iterable<Element> get otherDependencies; | |
| 18 | |
| 19 Element operator[](Node node); | |
| 20 | |
| 21 // TODO(johnniwinther): Investigate whether [Node] could be a [Send]. | |
| 22 Selector getSelector(Node node); | |
| 23 Selector getGetterSelectorInComplexSendSet(SendSet node); | |
| 24 Selector getOperatorSelectorInComplexSendSet(SendSet node); | |
| 25 DartType getType(Node node); | |
| 26 void setSelector(Node node, Selector selector); | |
| 27 void setGetterSelectorInComplexSendSet(SendSet node, Selector selector); | |
| 28 void setOperatorSelectorInComplexSendSet(SendSet node, Selector selector); | |
| 29 | |
| 30 /// Returns the for-in loop variable for [node]. | |
| 31 Element getForInVariable(ForIn node); | |
| 32 Selector getIteratorSelector(ForIn node); | |
| 33 Selector getMoveNextSelector(ForIn node); | |
| 34 Selector getCurrentSelector(ForIn node); | |
| 35 void setIteratorSelector(ForIn node, Selector selector); | |
| 36 void setMoveNextSelector(ForIn node, Selector selector); | |
| 37 void setCurrentSelector(ForIn node, Selector selector); | |
| 38 void setConstant(Node node, ConstantExpression constant); | |
| 39 ConstantExpression getConstant(Node node); | |
| 40 bool isAssert(Send send); | |
| 41 | |
| 42 /// Returns the [FunctionElement] defined by [node]. | |
| 43 FunctionElement getFunctionDefinition(FunctionExpression node); | |
| 44 | |
| 45 /// Returns target constructor for the redirecting factory body [node]. | |
| 46 ConstructorElement getRedirectingTargetConstructor( | |
| 47 RedirectingFactoryBody node); | |
| 48 | |
| 49 /** | |
| 50 * Returns [:true:] if [node] is a type literal. | |
| 51 * | |
| 52 * Resolution marks this by setting the type on the node to be the | |
| 53 * type that the literal refers to. | |
| 54 */ | |
| 55 bool isTypeLiteral(Send node); | |
| 56 | |
| 57 /// Returns the type that the type literal [node] refers to. | |
| 58 DartType getTypeLiteralType(Send node); | |
| 59 | |
| 60 /// Register additional dependencies required by [analyzedElement]. | |
| 61 /// For example, elements that are used by a backend. | |
| 62 void registerDependency(Element element); | |
| 63 | |
| 64 /// Returns a list of nodes that potentially mutate [element] anywhere in its | |
| 65 /// scope. | |
| 66 List<Node> getPotentialMutations(VariableElement element); | |
| 67 | |
| 68 /// Returns a list of nodes that potentially mutate [element] in [node]. | |
| 69 List<Node> getPotentialMutationsIn(Node node, VariableElement element); | |
| 70 | |
| 71 /// Returns a list of nodes that potentially mutate [element] in a closure. | |
| 72 List<Node> getPotentialMutationsInClosure(VariableElement element); | |
| 73 | |
| 74 /// Returns a list of nodes that access [element] within a closure in [node]. | |
| 75 List<Node> getAccessesByClosureIn(Node node, VariableElement element); | |
| 76 | |
| 77 /// Returns the jump target defined by [node]. | |
| 78 JumpTarget getTargetDefinition(Node node); | |
| 79 | |
| 80 /// Returns the jump target of the [node]. | |
| 81 JumpTarget getTargetOf(GotoStatement node); | |
| 82 | |
| 83 /// Returns the label defined by [node]. | |
| 84 LabelDefinition getLabelDefinition(Label node); | |
| 85 | |
| 86 /// Returns the label that [node] targets. | |
| 87 LabelDefinition getTargetLabel(GotoStatement node); | |
| 88 } | |
| 89 | |
| 90 class TreeElementMapping implements TreeElements { | |
| 91 final AnalyzableElement analyzedElement; | |
| 92 Map<Spannable, Selector> _selectors; | |
| 93 Map<Node, DartType> _types; | |
| 94 Setlet<Node> _superUses; | |
| 95 Setlet<Element> _otherDependencies; | |
| 96 Map<Node, ConstantExpression> _constants; | |
| 97 Map<VariableElement, List<Node>> _potentiallyMutated; | |
| 98 Map<Node, Map<VariableElement, List<Node>>> _potentiallyMutatedIn; | |
| 99 Map<VariableElement, List<Node>> _potentiallyMutatedInClosure; | |
| 100 Map<Node, Map<VariableElement, List<Node>>> _accessedByClosureIn; | |
| 101 Setlet<Element> _elements; | |
| 102 Setlet<Send> _asserts; | |
| 103 | |
| 104 /// Map from nodes to the targets they define. | |
| 105 Map<Node, JumpTarget> _definedTargets; | |
| 106 | |
| 107 /// Map from goto statements to their targets. | |
| 108 Map<GotoStatement, JumpTarget> _usedTargets; | |
| 109 | |
| 110 /// Map from labels to their label definition. | |
| 111 Map<Label, LabelDefinition> _definedLabels; | |
| 112 | |
| 113 /// Map from labeled goto statements to the labels they target. | |
| 114 Map<GotoStatement, LabelDefinition> _targetLabels; | |
| 115 | |
| 116 final int hashCode = ++_hashCodeCounter; | |
| 117 static int _hashCodeCounter = 0; | |
| 118 | |
| 119 TreeElementMapping(this.analyzedElement); | |
| 120 | |
| 121 operator []=(Node node, Element element) { | |
| 122 assert(invariant(node, () { | |
| 123 FunctionExpression functionExpression = node.asFunctionExpression(); | |
| 124 if (functionExpression != null) { | |
| 125 return !functionExpression.modifiers.isExternal; | |
| 126 } | |
| 127 return true; | |
| 128 })); | |
| 129 // TODO(johnniwinther): Simplify this invariant to use only declarations in | |
| 130 // [TreeElements]. | |
| 131 assert(invariant(node, () { | |
| 132 if (!element.isErroneous && analyzedElement != null && element.isPatch) { | |
| 133 return analyzedElement.implementationLibrary.isPatch; | |
| 134 } | |
| 135 return true; | |
| 136 })); | |
| 137 // TODO(ahe): Investigate why the invariant below doesn't hold. | |
| 138 // assert(invariant(node, | |
| 139 // getTreeElement(node) == element || | |
| 140 // getTreeElement(node) == null, | |
| 141 // message: '${getTreeElement(node)}; $element')); | |
| 142 | |
| 143 if (_elements == null) { | |
| 144 _elements = new Setlet<Element>(); | |
| 145 } | |
| 146 _elements.add(element); | |
| 147 setTreeElement(node, element); | |
| 148 } | |
| 149 | |
| 150 operator [](Node node) => getTreeElement(node); | |
| 151 | |
| 152 void setType(Node node, DartType type) { | |
| 153 if (_types == null) { | |
| 154 _types = new Maplet<Node, DartType>(); | |
| 155 } | |
| 156 _types[node] = type; | |
| 157 } | |
| 158 | |
| 159 DartType getType(Node node) => _types != null ? _types[node] : null; | |
| 160 | |
| 161 Iterable<Node> get superUses { | |
| 162 return _superUses != null ? _superUses : const <Node>[]; | |
| 163 } | |
| 164 | |
| 165 void addSuperUse(Node node) { | |
| 166 if (_superUses == null) { | |
| 167 _superUses = new Setlet<Node>(); | |
| 168 } | |
| 169 _superUses.add(node); | |
| 170 } | |
| 171 | |
| 172 Selector _getSelector(Spannable node) { | |
| 173 return _selectors != null ? _selectors[node] : null; | |
| 174 } | |
| 175 | |
| 176 void _setSelector(Spannable node, Selector selector) { | |
| 177 if (_selectors == null) { | |
| 178 _selectors = new Maplet<Spannable, Selector>(); | |
| 179 } | |
| 180 _selectors[node] = selector; | |
| 181 } | |
| 182 | |
| 183 void setSelector(Node node, Selector selector) { | |
| 184 _setSelector(node, selector); | |
| 185 } | |
| 186 | |
| 187 Selector getSelector(Node node) => _getSelector(node); | |
| 188 | |
| 189 int getSelectorCount() => _selectors == null ? 0 : _selectors.length; | |
| 190 | |
| 191 void setGetterSelectorInComplexSendSet(SendSet node, Selector selector) { | |
| 192 _setSelector(node.selector, selector); | |
| 193 } | |
| 194 | |
| 195 Selector getGetterSelectorInComplexSendSet(SendSet node) { | |
| 196 return _getSelector(node.selector); | |
| 197 } | |
| 198 | |
| 199 void setOperatorSelectorInComplexSendSet(SendSet node, Selector selector) { | |
| 200 _setSelector(node.assignmentOperator, selector); | |
| 201 } | |
| 202 | |
| 203 Selector getOperatorSelectorInComplexSendSet(SendSet node) { | |
| 204 return _getSelector(node.assignmentOperator); | |
| 205 } | |
| 206 | |
| 207 // The following methods set selectors on the "for in" node. Since | |
| 208 // we're using three selectors, we need to use children of the node, | |
| 209 // and we arbitrarily choose which ones. | |
| 210 | |
| 211 void setIteratorSelector(ForIn node, Selector selector) { | |
| 212 _setSelector(node, selector); | |
| 213 } | |
| 214 | |
| 215 Selector getIteratorSelector(ForIn node) { | |
| 216 return _getSelector(node); | |
| 217 } | |
| 218 | |
| 219 void setMoveNextSelector(ForIn node, Selector selector) { | |
| 220 _setSelector(node.forToken, selector); | |
| 221 } | |
| 222 | |
| 223 Selector getMoveNextSelector(ForIn node) { | |
| 224 return _getSelector(node.forToken); | |
| 225 } | |
| 226 | |
| 227 void setCurrentSelector(ForIn node, Selector selector) { | |
| 228 _setSelector(node.inToken, selector); | |
| 229 } | |
| 230 | |
| 231 Selector getCurrentSelector(ForIn node) { | |
| 232 return _getSelector(node.inToken); | |
| 233 } | |
| 234 | |
| 235 Element getForInVariable(ForIn node) { | |
| 236 return this[node]; | |
| 237 } | |
| 238 | |
| 239 void setConstant(Node node, ConstantExpression constant) { | |
| 240 if (_constants == null) { | |
| 241 _constants = new Maplet<Node, ConstantExpression>(); | |
| 242 } | |
| 243 _constants[node] = constant; | |
| 244 } | |
| 245 | |
| 246 ConstantExpression getConstant(Node node) { | |
| 247 return _constants != null ? _constants[node] : null; | |
| 248 } | |
| 249 | |
| 250 bool isTypeLiteral(Send node) { | |
| 251 return getType(node) != null; | |
| 252 } | |
| 253 | |
| 254 DartType getTypeLiteralType(Send node) { | |
| 255 return getType(node); | |
| 256 } | |
| 257 | |
| 258 void registerDependency(Element element) { | |
| 259 if (element == null) return; | |
| 260 if (_otherDependencies == null) { | |
| 261 _otherDependencies = new Setlet<Element>(); | |
| 262 } | |
| 263 _otherDependencies.add(element.implementation); | |
| 264 } | |
| 265 | |
| 266 Iterable<Element> get otherDependencies { | |
| 267 return _otherDependencies != null ? _otherDependencies : const <Element>[]; | |
| 268 } | |
| 269 | |
| 270 List<Node> getPotentialMutations(VariableElement element) { | |
| 271 if (_potentiallyMutated == null) return const <Node>[]; | |
| 272 List<Node> mutations = _potentiallyMutated[element]; | |
| 273 if (mutations == null) return const <Node>[]; | |
| 274 return mutations; | |
| 275 } | |
| 276 | |
| 277 void registerPotentialMutation(VariableElement element, Node mutationNode) { | |
| 278 if (_potentiallyMutated == null) { | |
| 279 _potentiallyMutated = new Maplet<VariableElement, List<Node>>(); | |
| 280 } | |
| 281 _potentiallyMutated.putIfAbsent(element, () => <Node>[]).add(mutationNode); | |
| 282 } | |
| 283 | |
| 284 List<Node> getPotentialMutationsIn(Node node, VariableElement element) { | |
| 285 if (_potentiallyMutatedIn == null) return const <Node>[]; | |
| 286 Map<VariableElement, List<Node>> mutationsIn = _potentiallyMutatedIn[node]; | |
| 287 if (mutationsIn == null) return const <Node>[]; | |
| 288 List<Node> mutations = mutationsIn[element]; | |
| 289 if (mutations == null) return const <Node>[]; | |
| 290 return mutations; | |
| 291 } | |
| 292 | |
| 293 void registerPotentialMutationIn(Node contextNode, VariableElement element, | |
| 294 Node mutationNode) { | |
| 295 if (_potentiallyMutatedIn == null) { | |
| 296 _potentiallyMutatedIn = | |
| 297 new Maplet<Node, Map<VariableElement, List<Node>>>(); | |
| 298 } | |
| 299 Map<VariableElement, List<Node>> mutationMap = | |
| 300 _potentiallyMutatedIn.putIfAbsent(contextNode, | |
| 301 () => new Maplet<VariableElement, List<Node>>()); | |
| 302 mutationMap.putIfAbsent(element, () => <Node>[]).add(mutationNode); | |
| 303 } | |
| 304 | |
| 305 List<Node> getPotentialMutationsInClosure(VariableElement element) { | |
| 306 if (_potentiallyMutatedInClosure == null) return const <Node>[]; | |
| 307 List<Node> mutations = _potentiallyMutatedInClosure[element]; | |
| 308 if (mutations == null) return const <Node>[]; | |
| 309 return mutations; | |
| 310 } | |
| 311 | |
| 312 void registerPotentialMutationInClosure(VariableElement element, | |
| 313 Node mutationNode) { | |
| 314 if (_potentiallyMutatedInClosure == null) { | |
| 315 _potentiallyMutatedInClosure = new Maplet<VariableElement, List<Node>>(); | |
| 316 } | |
| 317 _potentiallyMutatedInClosure.putIfAbsent( | |
| 318 element, () => <Node>[]).add(mutationNode); | |
| 319 } | |
| 320 | |
| 321 List<Node> getAccessesByClosureIn(Node node, VariableElement element) { | |
| 322 if (_accessedByClosureIn == null) return const <Node>[]; | |
| 323 Map<VariableElement, List<Node>> accessesIn = _accessedByClosureIn[node]; | |
| 324 if (accessesIn == null) return const <Node>[]; | |
| 325 List<Node> accesses = accessesIn[element]; | |
| 326 if (accesses == null) return const <Node>[]; | |
| 327 return accesses; | |
| 328 } | |
| 329 | |
| 330 void setAccessedByClosureIn(Node contextNode, VariableElement element, | |
| 331 Node accessNode) { | |
| 332 if (_accessedByClosureIn == null) { | |
| 333 _accessedByClosureIn = new Map<Node, Map<VariableElement, List<Node>>>(); | |
| 334 } | |
| 335 Map<VariableElement, List<Node>> accessMap = | |
| 336 _accessedByClosureIn.putIfAbsent(contextNode, | |
| 337 () => new Maplet<VariableElement, List<Node>>()); | |
| 338 accessMap.putIfAbsent(element, () => <Node>[]).add(accessNode); | |
| 339 } | |
| 340 | |
| 341 String toString() => 'TreeElementMapping($analyzedElement)'; | |
| 342 | |
| 343 Iterable<Element> get allElements { | |
| 344 return _elements != null ? _elements : const <Element>[]; | |
| 345 } | |
| 346 | |
| 347 void forEachConstantNode(f(Node n, ConstantExpression c)) { | |
| 348 if (_constants != null) { | |
| 349 _constants.forEach(f); | |
| 350 } | |
| 351 } | |
| 352 | |
| 353 void setAssert(Send node) { | |
| 354 if (_asserts == null) { | |
| 355 _asserts = new Setlet<Send>(); | |
| 356 } | |
| 357 _asserts.add(node); | |
| 358 } | |
| 359 | |
| 360 bool isAssert(Send node) { | |
| 361 return _asserts != null && _asserts.contains(node); | |
| 362 } | |
| 363 | |
| 364 FunctionElement getFunctionDefinition(FunctionExpression node) { | |
| 365 return this[node]; | |
| 366 } | |
| 367 | |
| 368 ConstructorElement getRedirectingTargetConstructor( | |
| 369 RedirectingFactoryBody node) { | |
| 370 return this[node]; | |
| 371 } | |
| 372 | |
| 373 void defineTarget(Node node, JumpTarget target) { | |
| 374 if (_definedTargets == null) { | |
| 375 _definedTargets = new Maplet<Node, JumpTarget>(); | |
| 376 } | |
| 377 _definedTargets[node] = target; | |
| 378 } | |
| 379 | |
| 380 void undefineTarget(Node node) { | |
| 381 if (_definedTargets != null) { | |
| 382 _definedTargets.remove(node); | |
| 383 if (_definedTargets.isEmpty) { | |
| 384 _definedTargets = null; | |
| 385 } | |
| 386 } | |
| 387 } | |
| 388 | |
| 389 JumpTarget getTargetDefinition(Node node) { | |
| 390 return _definedTargets != null ? _definedTargets[node] : null; | |
| 391 } | |
| 392 | |
| 393 void registerTargetOf(GotoStatement node, JumpTarget target) { | |
| 394 if (_usedTargets == null) { | |
| 395 _usedTargets = new Maplet<GotoStatement, JumpTarget>(); | |
| 396 } | |
| 397 _usedTargets[node] = target; | |
| 398 } | |
| 399 | |
| 400 JumpTarget getTargetOf(GotoStatement node) { | |
| 401 return _usedTargets != null ? _usedTargets[node] : null; | |
| 402 } | |
| 403 | |
| 404 void defineLabel(Label label, LabelDefinition target) { | |
| 405 if (_definedLabels == null) { | |
| 406 _definedLabels = new Maplet<Label, LabelDefinition>(); | |
| 407 } | |
| 408 _definedLabels[label] = target; | |
| 409 } | |
| 410 | |
| 411 void undefineLabel(Label label) { | |
| 412 if (_definedLabels != null) { | |
| 413 _definedLabels.remove(label); | |
| 414 if (_definedLabels.isEmpty) { | |
| 415 _definedLabels = null; | |
| 416 } | |
| 417 } | |
| 418 } | |
| 419 | |
| 420 LabelDefinition getLabelDefinition(Label label) { | |
| 421 return _definedLabels != null ? _definedLabels[label] : null; | |
| 422 } | |
| 423 | |
| 424 void registerTargetLabel(GotoStatement node, LabelDefinition label) { | |
| 425 assert(node.target != null); | |
| 426 if (_targetLabels == null) { | |
| 427 _targetLabels = new Maplet<GotoStatement, LabelDefinition>(); | |
| 428 } | |
| 429 _targetLabels[node] = label; | |
| 430 } | |
| 431 | |
| 432 LabelDefinition getTargetLabel(GotoStatement node) { | |
| 433 assert(node.target != null); | |
| 434 return _targetLabels != null ? _targetLabels[node] : null; | |
| 435 } | |
| 436 } | |
| 437 | |
| 438 class ResolverTask extends CompilerTask { | |
| 439 final ConstantCompiler constantCompiler; | |
| 440 | |
| 441 ResolverTask(Compiler compiler, this.constantCompiler) : super(compiler); | |
| 442 | |
| 443 String get name => 'Resolver'; | |
| 444 | |
| 445 TreeElements resolve(Element element) { | |
| 446 return measure(() { | |
| 447 if (Elements.isErroneousElement(element)) return null; | |
| 448 | |
| 449 processMetadata([result]) { | |
| 450 for (MetadataAnnotation metadata in element.metadata) { | |
| 451 metadata.ensureResolved(compiler); | |
| 452 } | |
| 453 return result; | |
| 454 } | |
| 455 | |
| 456 ElementKind kind = element.kind; | |
| 457 if (identical(kind, ElementKind.GENERATIVE_CONSTRUCTOR) || | |
| 458 identical(kind, ElementKind.FUNCTION) || | |
| 459 identical(kind, ElementKind.GETTER) || | |
| 460 identical(kind, ElementKind.SETTER)) { | |
| 461 return processMetadata(resolveMethodElement(element)); | |
| 462 } | |
| 463 | |
| 464 if (identical(kind, ElementKind.FIELD)) { | |
| 465 return processMetadata(resolveField(element)); | |
| 466 } | |
| 467 if (element.isClass) { | |
| 468 ClassElement cls = element; | |
| 469 cls.ensureResolved(compiler); | |
| 470 return processMetadata(); | |
| 471 } else if (element.isTypedef) { | |
| 472 TypedefElement typdef = element; | |
| 473 return processMetadata(resolveTypedef(typdef)); | |
| 474 } | |
| 475 | |
| 476 compiler.unimplemented(element, "resolve($element)"); | |
| 477 }); | |
| 478 } | |
| 479 | |
| 480 void resolveRedirectingConstructor(InitializerResolver resolver, | |
| 481 Node node, | |
| 482 FunctionElement constructor, | |
| 483 FunctionElement redirection) { | |
| 484 assert(invariant(node, constructor.isImplementation, | |
| 485 message: 'Redirecting constructors must be resolved on implementation ' | |
| 486 'elements.')); | |
| 487 Setlet<FunctionElement> seen = new Setlet<FunctionElement>(); | |
| 488 seen.add(constructor); | |
| 489 while (redirection != null) { | |
| 490 // Ensure that we follow redirections through implementation elements. | |
| 491 redirection = redirection.implementation; | |
| 492 if (seen.contains(redirection)) { | |
| 493 resolver.visitor.error(node, MessageKind.REDIRECTING_CONSTRUCTOR_CYCLE); | |
| 494 return; | |
| 495 } | |
| 496 seen.add(redirection); | |
| 497 redirection = resolver.visitor.resolveConstructorRedirection(redirection); | |
| 498 } | |
| 499 } | |
| 500 | |
| 501 void checkMatchingPatchParameters(FunctionElement origin, | |
| 502 Link<Element> originParameters, | |
| 503 Link<Element> patchParameters) { | |
| 504 while (!originParameters.isEmpty) { | |
| 505 ParameterElementX originParameter = originParameters.head; | |
| 506 ParameterElementX patchParameter = patchParameters.head; | |
| 507 // TODO(johnniwinther): Remove the conditional patching when we never | |
| 508 // resolve the same method twice. | |
| 509 if (!originParameter.isPatched) { | |
| 510 originParameter.applyPatch(patchParameter); | |
| 511 } else { | |
| 512 assert(invariant(origin, originParameter.patch == patchParameter, | |
| 513 message: "Inconsistent repatch of $originParameter.")); | |
| 514 } | |
| 515 DartType originParameterType = originParameter.computeType(compiler); | |
| 516 DartType patchParameterType = patchParameter.computeType(compiler); | |
| 517 if (originParameterType != patchParameterType) { | |
| 518 compiler.reportError( | |
| 519 originParameter.parseNode(compiler), | |
| 520 MessageKind.PATCH_PARAMETER_TYPE_MISMATCH, | |
| 521 {'methodName': origin.name, | |
| 522 'parameterName': originParameter.name, | |
| 523 'originParameterType': originParameterType, | |
| 524 'patchParameterType': patchParameterType}); | |
| 525 compiler.reportInfo(patchParameter, | |
| 526 MessageKind.PATCH_POINT_TO_PARAMETER, | |
| 527 {'parameterName': patchParameter.name}); | |
| 528 } else { | |
| 529 // Hack: Use unparser to test parameter equality. This only works | |
| 530 // because we are restricting patch uses and the approach cannot be used | |
| 531 // elsewhere. | |
| 532 | |
| 533 // The node contains the type, so there is a potential overlap. | |
| 534 // Therefore we only check the text if the types are identical. | |
| 535 String originParameterText = | |
| 536 originParameter.parseNode(compiler).toString(); | |
| 537 String patchParameterText = | |
| 538 patchParameter.parseNode(compiler).toString(); | |
| 539 if (originParameterText != patchParameterText | |
| 540 // We special case the list constructor because of the | |
| 541 // optional parameter. | |
| 542 && origin != compiler.unnamedListConstructor) { | |
| 543 compiler.reportError( | |
| 544 originParameter.parseNode(compiler), | |
| 545 MessageKind.PATCH_PARAMETER_MISMATCH, | |
| 546 {'methodName': origin.name, | |
| 547 'originParameter': originParameterText, | |
| 548 'patchParameter': patchParameterText}); | |
| 549 compiler.reportInfo(patchParameter, | |
| 550 MessageKind.PATCH_POINT_TO_PARAMETER, | |
| 551 {'parameterName': patchParameter.name}); | |
| 552 } | |
| 553 } | |
| 554 | |
| 555 originParameters = originParameters.tail; | |
| 556 patchParameters = patchParameters.tail; | |
| 557 } | |
| 558 } | |
| 559 | |
| 560 void checkMatchingPatchSignatures(FunctionElement origin, | |
| 561 FunctionElement patch) { | |
| 562 // TODO(johnniwinther): Show both origin and patch locations on errors. | |
| 563 FunctionExpression originTree = origin.node; | |
| 564 FunctionSignature originSignature = origin.functionSignature; | |
| 565 FunctionExpression patchTree = patch.node; | |
| 566 FunctionSignature patchSignature = patch.functionSignature; | |
| 567 | |
| 568 if (originSignature.type.returnType != patchSignature.type.returnType) { | |
| 569 compiler.withCurrentElement(patch, () { | |
| 570 Node errorNode = | |
| 571 patchTree.returnType != null ? patchTree.returnType : patchTree; | |
| 572 error(errorNode, MessageKind.PATCH_RETURN_TYPE_MISMATCH, | |
| 573 {'methodName': origin.name, | |
| 574 'originReturnType': originSignature.type.returnType, | |
| 575 'patchReturnType': patchSignature.type.returnType}); | |
| 576 }); | |
| 577 } | |
| 578 if (originSignature.requiredParameterCount != | |
| 579 patchSignature.requiredParameterCount) { | |
| 580 compiler.withCurrentElement(patch, () { | |
| 581 error(patchTree, | |
| 582 MessageKind.PATCH_REQUIRED_PARAMETER_COUNT_MISMATCH, | |
| 583 {'methodName': origin.name, | |
| 584 'originParameterCount': originSignature.requiredParameterCount, | |
| 585 'patchParameterCount': patchSignature.requiredParameterCount}); | |
| 586 }); | |
| 587 } else { | |
| 588 checkMatchingPatchParameters(origin, | |
| 589 originSignature.requiredParameters, | |
| 590 patchSignature.requiredParameters); | |
| 591 } | |
| 592 if (originSignature.optionalParameterCount != 0 && | |
| 593 patchSignature.optionalParameterCount != 0) { | |
| 594 if (originSignature.optionalParametersAreNamed != | |
| 595 patchSignature.optionalParametersAreNamed) { | |
| 596 compiler.withCurrentElement(patch, () { | |
| 597 error(patchTree, | |
| 598 MessageKind.PATCH_OPTIONAL_PARAMETER_NAMED_MISMATCH, | |
| 599 {'methodName': origin.name}); | |
| 600 }); | |
| 601 } | |
| 602 } | |
| 603 if (originSignature.optionalParameterCount != | |
| 604 patchSignature.optionalParameterCount) { | |
| 605 compiler.withCurrentElement(patch, () { | |
| 606 error(patchTree, | |
| 607 MessageKind.PATCH_OPTIONAL_PARAMETER_COUNT_MISMATCH, | |
| 608 {'methodName': origin.name, | |
| 609 'originParameterCount': originSignature.optionalParameterCount, | |
| 610 'patchParameterCount': patchSignature.optionalParameterCount}); | |
| 611 }); | |
| 612 } else { | |
| 613 checkMatchingPatchParameters(origin, | |
| 614 originSignature.optionalParameters, | |
| 615 patchSignature.optionalParameters); | |
| 616 } | |
| 617 } | |
| 618 | |
| 619 static void processAsyncMarker(Compiler compiler, | |
| 620 BaseFunctionElementX element) { | |
| 621 FunctionExpression functionExpression = element.node; | |
| 622 AsyncModifier asyncModifier = functionExpression.asyncModifier; | |
| 623 if (asyncModifier != null) { | |
| 624 if (!compiler.enableAsyncAwait) { | |
| 625 compiler.reportError(asyncModifier, | |
| 626 MessageKind.EXPERIMENTAL_ASYNC_AWAIT, | |
| 627 {'modifier': element.asyncMarker}); | |
| 628 } else if (!compiler.analyzeOnly) { | |
| 629 compiler.reportError(asyncModifier, | |
| 630 MessageKind.EXPERIMENTAL_ASYNC_AWAIT, | |
| 631 {'modifier': element.asyncMarker}); | |
| 632 } | |
| 633 | |
| 634 if (asyncModifier.isAsynchronous) { | |
| 635 element.asyncMarker = asyncModifier.isYielding | |
| 636 ? AsyncMarker.ASYNC_STAR : AsyncMarker.ASYNC; | |
| 637 } else { | |
| 638 element.asyncMarker = AsyncMarker.SYNC_STAR; | |
| 639 } | |
| 640 if (element.isAbstract) { | |
| 641 compiler.reportError(asyncModifier, | |
| 642 MessageKind.ASYNC_MODIFIER_ON_ABSTRACT_METHOD, | |
| 643 {'modifier': element.asyncMarker}); | |
| 644 } else if (element.isConstructor) { | |
| 645 compiler.reportError(asyncModifier, | |
| 646 MessageKind.ASYNC_MODIFIER_ON_CONSTRUCTOR, | |
| 647 {'modifier': element.asyncMarker}); | |
| 648 } else if (functionExpression.body.asReturn() != null && | |
| 649 element.asyncMarker.isYielding) { | |
| 650 compiler.reportError(asyncModifier, | |
| 651 MessageKind.YIELDING_MODIFIER_ON_ARROW_BODY, | |
| 652 {'modifier': element.asyncMarker}); | |
| 653 } | |
| 654 } | |
| 655 } | |
| 656 | |
| 657 TreeElements resolveMethodElement(FunctionElementX element) { | |
| 658 assert(invariant(element, element.isDeclaration)); | |
| 659 return compiler.withCurrentElement(element, () { | |
| 660 bool isConstructor = | |
| 661 identical(element.kind, ElementKind.GENERATIVE_CONSTRUCTOR); | |
| 662 if (compiler.enqueuer.resolution.hasBeenResolved(element)) { | |
| 663 // TODO(karlklose): Remove the check for [isConstructor]. [elememts] | |
| 664 // should never be non-null, not even for constructors. | |
| 665 assert(invariant(element, element.isConstructor, | |
| 666 message: 'Non-constructor element $element ' | |
| 667 'has already been analyzed.')); | |
| 668 return element.resolvedAst.elements; | |
| 669 } | |
| 670 if (element.isSynthesized) { | |
| 671 if (isConstructor) { | |
| 672 ResolutionRegistry registry = | |
| 673 new ResolutionRegistry(compiler, element); | |
| 674 ConstructorElement constructor = element.asFunctionElement(); | |
| 675 ConstructorElement target = constructor.definingConstructor; | |
| 676 // Ensure the signature of the synthesized element is | |
| 677 // resolved. This is the only place where the resolver is | |
| 678 // seeing this element. | |
| 679 element.computeSignature(compiler); | |
| 680 if (!target.isErroneous) { | |
| 681 registry.registerStaticUse(target); | |
| 682 registry.registerImplicitSuperCall(target); | |
| 683 } | |
| 684 return registry.mapping; | |
| 685 } else { | |
| 686 assert(element.isDeferredLoaderGetter); | |
| 687 return _ensureTreeElements(element); | |
| 688 } | |
| 689 } | |
| 690 element.parseNode(compiler); | |
| 691 element.computeType(compiler); | |
| 692 processAsyncMarker(compiler, element); | |
| 693 if (element.isPatched) { | |
| 694 FunctionElementX patch = element.patch; | |
| 695 compiler.withCurrentElement(patch, () { | |
| 696 patch.parseNode(compiler); | |
| 697 patch.computeType(compiler); | |
| 698 }); | |
| 699 checkMatchingPatchSignatures(element, patch); | |
| 700 element = patch; | |
| 701 processAsyncMarker(compiler, element); | |
| 702 } | |
| 703 return compiler.withCurrentElement(element, () { | |
| 704 FunctionExpression tree = element.node; | |
| 705 if (tree.modifiers.isExternal) { | |
| 706 error(tree, MessageKind.PATCH_EXTERNAL_WITHOUT_IMPLEMENTATION); | |
| 707 return null; | |
| 708 } | |
| 709 if (isConstructor || element.isFactoryConstructor) { | |
| 710 if (tree.returnType != null) { | |
| 711 error(tree, MessageKind.CONSTRUCTOR_WITH_RETURN_TYPE); | |
| 712 } | |
| 713 if (element.modifiers.isConst && | |
| 714 tree.hasBody() && | |
| 715 !tree.isRedirectingFactory) { | |
| 716 compiler.reportError(tree, MessageKind.CONST_CONSTRUCTOR_HAS_BODY); | |
| 717 } | |
| 718 } | |
| 719 | |
| 720 ResolverVisitor visitor = visitorFor(element); | |
| 721 ResolutionRegistry registry = visitor.registry; | |
| 722 registry.defineFunction(tree, element); | |
| 723 visitor.setupFunction(tree, element); | |
| 724 | |
| 725 if (isConstructor && !element.isForwardingConstructor) { | |
| 726 // Even if there is no initializer list we still have to do the | |
| 727 // resolution in case there is an implicit super constructor call. | |
| 728 InitializerResolver resolver = new InitializerResolver(visitor); | |
| 729 FunctionElement redirection = | |
| 730 resolver.resolveInitializers(element, tree); | |
| 731 if (redirection != null) { | |
| 732 resolveRedirectingConstructor(resolver, tree, element, redirection); | |
| 733 } | |
| 734 } else if (element.isForwardingConstructor) { | |
| 735 // Initializers will be checked on the original constructor. | |
| 736 } else if (tree.initializers != null) { | |
| 737 error(tree, MessageKind.FUNCTION_WITH_INITIALIZER); | |
| 738 } | |
| 739 | |
| 740 if (!compiler.analyzeSignaturesOnly || tree.isRedirectingFactory) { | |
| 741 // We need to analyze the redirecting factory bodies to ensure that | |
| 742 // we can analyze compile-time constants. | |
| 743 visitor.visit(tree.body); | |
| 744 } | |
| 745 | |
| 746 // Get the resolution tree and check that the resolved | |
| 747 // function doesn't use 'super' if it is mixed into another | |
| 748 // class. This is the part of the 'super' mixin check that | |
| 749 // happens when a function is resolved after the mixin | |
| 750 // application has been performed. | |
| 751 TreeElements resolutionTree = registry.mapping; | |
| 752 ClassElement enclosingClass = element.enclosingClass; | |
| 753 if (enclosingClass != null) { | |
| 754 // TODO(johnniwinther): Find another way to obtain mixin uses. | |
| 755 Iterable<MixinApplicationElement> mixinUses = | |
| 756 compiler.world.allMixinUsesOf(enclosingClass); | |
| 757 ClassElement mixin = enclosingClass; | |
| 758 for (MixinApplicationElement mixinApplication in mixinUses) { | |
| 759 checkMixinSuperUses(resolutionTree, mixinApplication, mixin); | |
| 760 } | |
| 761 } | |
| 762 return resolutionTree; | |
| 763 }); | |
| 764 }); | |
| 765 } | |
| 766 | |
| 767 /// Creates a [ResolverVisitor] for resolving an AST in context of [element]. | |
| 768 /// If [useEnclosingScope] is `true` then the initial scope of the visitor | |
| 769 /// does not include inner scope of [element]. | |
| 770 /// | |
| 771 /// This method should only be used by this library (or tests of | |
| 772 /// this library). | |
| 773 ResolverVisitor visitorFor(Element element, {bool useEnclosingScope: false}) { | |
| 774 return new ResolverVisitor(compiler, element, | |
| 775 new ResolutionRegistry(compiler, element), | |
| 776 useEnclosingScope: useEnclosingScope); | |
| 777 } | |
| 778 | |
| 779 TreeElements resolveField(FieldElementX element) { | |
| 780 VariableDefinitions tree = element.parseNode(compiler); | |
| 781 if(element.modifiers.isStatic && element.isTopLevel) { | |
| 782 error(element.modifiers.getStatic(), | |
| 783 MessageKind.TOP_LEVEL_VARIABLE_DECLARED_STATIC); | |
| 784 } | |
| 785 ResolverVisitor visitor = visitorFor(element); | |
| 786 ResolutionRegistry registry = visitor.registry; | |
| 787 // TODO(johnniwinther): Maybe remove this when placeholderCollector migrates | |
| 788 // to the backend ast. | |
| 789 registry.defineElement(tree.definitions.nodes.head, element); | |
| 790 // TODO(johnniwinther): Share the resolved type between all variables | |
| 791 // declared in the same declaration. | |
| 792 if (tree.type != null) { | |
| 793 element.variables.type = visitor.resolveTypeAnnotation(tree.type); | |
| 794 } else { | |
| 795 element.variables.type = const DynamicType(); | |
| 796 } | |
| 797 | |
| 798 Expression initializer = element.initializer; | |
| 799 Modifiers modifiers = element.modifiers; | |
| 800 if (initializer != null) { | |
| 801 // TODO(johnniwinther): Avoid analyzing initializers if | |
| 802 // [Compiler.analyzeSignaturesOnly] is set. | |
| 803 visitor.visit(initializer); | |
| 804 } else if (modifiers.isConst) { | |
| 805 compiler.reportError(element, MessageKind.CONST_WITHOUT_INITIALIZER); | |
| 806 } else if (modifiers.isFinal && !element.isInstanceMember) { | |
| 807 compiler.reportError(element, MessageKind.FINAL_WITHOUT_INITIALIZER); | |
| 808 } else { | |
| 809 registry.registerInstantiatedClass(compiler.nullClass); | |
| 810 } | |
| 811 | |
| 812 if (Elements.isStaticOrTopLevelField(element)) { | |
| 813 visitor.addDeferredAction(element, () { | |
| 814 if (element.modifiers.isConst) { | |
| 815 constantCompiler.compileConstant(element); | |
| 816 } else { | |
| 817 constantCompiler.compileVariable(element); | |
| 818 } | |
| 819 }); | |
| 820 if (initializer != null) { | |
| 821 if (!element.modifiers.isConst) { | |
| 822 // TODO(johnniwinther): Determine the const-ness eagerly to avoid | |
| 823 // unnecessary registrations. | |
| 824 registry.registerLazyField(); | |
| 825 } | |
| 826 } | |
| 827 } | |
| 828 | |
| 829 // Perform various checks as side effect of "computing" the type. | |
| 830 element.computeType(compiler); | |
| 831 | |
| 832 return registry.mapping; | |
| 833 } | |
| 834 | |
| 835 DartType resolveTypeAnnotation(Element element, TypeAnnotation annotation) { | |
| 836 DartType type = resolveReturnType(element, annotation); | |
| 837 if (type.isVoid) { | |
| 838 error(annotation, MessageKind.VOID_NOT_ALLOWED); | |
| 839 } | |
| 840 return type; | |
| 841 } | |
| 842 | |
| 843 DartType resolveReturnType(Element element, TypeAnnotation annotation) { | |
| 844 if (annotation == null) return const DynamicType(); | |
| 845 DartType result = visitorFor(element).resolveTypeAnnotation(annotation); | |
| 846 if (result == null) { | |
| 847 // TODO(karklose): warning. | |
| 848 return const DynamicType(); | |
| 849 } | |
| 850 return result; | |
| 851 } | |
| 852 | |
| 853 void resolveRedirectionChain(ConstructorElementX constructor, | |
| 854 Spannable node) { | |
| 855 ConstructorElementX target = constructor; | |
| 856 InterfaceType targetType; | |
| 857 List<Element> seen = new List<Element>(); | |
| 858 // Follow the chain of redirections and check for cycles. | |
| 859 while (target.isRedirectingFactory) { | |
| 860 if (target.internalEffectiveTarget != null) { | |
| 861 // We found a constructor that already has been processed. | |
| 862 targetType = target.effectiveTargetType; | |
| 863 assert(invariant(target, targetType != null, | |
| 864 message: 'Redirection target type has not been computed for ' | |
| 865 '$target')); | |
| 866 target = target.internalEffectiveTarget; | |
| 867 break; | |
| 868 } | |
| 869 | |
| 870 Element nextTarget = target.immediateRedirectionTarget; | |
| 871 if (seen.contains(nextTarget)) { | |
| 872 error(node, MessageKind.CYCLIC_REDIRECTING_FACTORY); | |
| 873 break; | |
| 874 } | |
| 875 seen.add(target); | |
| 876 target = nextTarget; | |
| 877 } | |
| 878 | |
| 879 if (targetType == null) { | |
| 880 assert(!target.isRedirectingFactory); | |
| 881 targetType = target.enclosingClass.thisType; | |
| 882 } | |
| 883 | |
| 884 // [target] is now the actual target of the redirections. Run through | |
| 885 // the constructors again and set their [redirectionTarget], so that we | |
| 886 // do not have to run the loop for these constructors again. Furthermore, | |
| 887 // compute [redirectionTargetType] for each factory by computing the | |
| 888 // substitution of the target type with respect to the factory type. | |
| 889 while (!seen.isEmpty) { | |
| 890 ConstructorElementX factory = seen.removeLast(); | |
| 891 | |
| 892 // [factory] must already be analyzed but the [TreeElements] might not | |
| 893 // have been stored in the enqueuer cache yet. | |
| 894 // TODO(johnniwinther): Store [TreeElements] in the cache before | |
| 895 // resolution of the element. | |
| 896 TreeElements treeElements = factory.treeElements; | |
| 897 assert(invariant(node, treeElements != null, | |
| 898 message: 'No TreeElements cached for $factory.')); | |
| 899 FunctionExpression functionNode = factory.parseNode(compiler); | |
| 900 RedirectingFactoryBody redirectionNode = functionNode.body; | |
| 901 InterfaceType factoryType = treeElements.getType(redirectionNode); | |
| 902 | |
| 903 targetType = targetType.substByContext(factoryType); | |
| 904 factory.effectiveTarget = target; | |
| 905 factory.effectiveTargetType = targetType; | |
| 906 } | |
| 907 } | |
| 908 | |
| 909 /** | |
| 910 * Load and resolve the supertypes of [cls]. | |
| 911 * | |
| 912 * Warning: do not call this method directly. It should only be | |
| 913 * called by [resolveClass] and [ClassSupertypeResolver]. | |
| 914 */ | |
| 915 void loadSupertypes(BaseClassElementX cls, Spannable from) { | |
| 916 compiler.withCurrentElement(cls, () => measure(() { | |
| 917 if (cls.supertypeLoadState == STATE_DONE) return; | |
| 918 if (cls.supertypeLoadState == STATE_STARTED) { | |
| 919 compiler.reportError(from, MessageKind.CYCLIC_CLASS_HIERARCHY, | |
| 920 {'className': cls.name}); | |
| 921 cls.supertypeLoadState = STATE_DONE; | |
| 922 cls.hasIncompleteHierarchy = true; | |
| 923 cls.allSupertypesAndSelf = | |
| 924 compiler.objectClass.allSupertypesAndSelf.extendClass( | |
| 925 cls.computeType(compiler)); | |
| 926 cls.supertype = cls.allSupertypes.head; | |
| 927 assert(invariant(from, cls.supertype != null, | |
| 928 message: 'Missing supertype on cyclic class $cls.')); | |
| 929 cls.interfaces = const Link<DartType>(); | |
| 930 return; | |
| 931 } | |
| 932 cls.supertypeLoadState = STATE_STARTED; | |
| 933 compiler.withCurrentElement(cls, () { | |
| 934 // TODO(ahe): Cache the node in cls. | |
| 935 cls.parseNode(compiler).accept( | |
| 936 new ClassSupertypeResolver(compiler, cls)); | |
| 937 if (cls.supertypeLoadState != STATE_DONE) { | |
| 938 cls.supertypeLoadState = STATE_DONE; | |
| 939 } | |
| 940 }); | |
| 941 })); | |
| 942 } | |
| 943 | |
| 944 // TODO(johnniwinther): Remove this queue when resolution has been split into | |
| 945 // syntax and semantic resolution. | |
| 946 TypeDeclarationElement currentlyResolvedTypeDeclaration; | |
| 947 Queue<ClassElement> pendingClassesToBeResolved = new Queue<ClassElement>(); | |
| 948 Queue<ClassElement> pendingClassesToBePostProcessed = | |
| 949 new Queue<ClassElement>(); | |
| 950 | |
| 951 /// Resolve [element] using [resolveTypeDeclaration]. | |
| 952 /// | |
| 953 /// This methods ensure that class declarations encountered through type | |
| 954 /// annotations during the resolution of [element] are resolved after | |
| 955 /// [element] has been resolved. | |
| 956 // TODO(johnniwinther): Encapsulate this functionality in a | |
| 957 // 'TypeDeclarationResolver'. | |
| 958 _resolveTypeDeclaration(TypeDeclarationElement element, | |
| 959 resolveTypeDeclaration()) { | |
| 960 return compiler.withCurrentElement(element, () { | |
| 961 return measure(() { | |
| 962 TypeDeclarationElement previousResolvedTypeDeclaration = | |
| 963 currentlyResolvedTypeDeclaration; | |
| 964 currentlyResolvedTypeDeclaration = element; | |
| 965 var result = resolveTypeDeclaration(); | |
| 966 if (previousResolvedTypeDeclaration == null) { | |
| 967 do { | |
| 968 while (!pendingClassesToBeResolved.isEmpty) { | |
| 969 pendingClassesToBeResolved.removeFirst().ensureResolved(compiler); | |
| 970 } | |
| 971 while (!pendingClassesToBePostProcessed.isEmpty) { | |
| 972 _postProcessClassElement( | |
| 973 pendingClassesToBePostProcessed.removeFirst()); | |
| 974 } | |
| 975 } while (!pendingClassesToBeResolved.isEmpty); | |
| 976 assert(pendingClassesToBeResolved.isEmpty); | |
| 977 assert(pendingClassesToBePostProcessed.isEmpty); | |
| 978 } | |
| 979 currentlyResolvedTypeDeclaration = previousResolvedTypeDeclaration; | |
| 980 return result; | |
| 981 }); | |
| 982 }); | |
| 983 } | |
| 984 | |
| 985 /** | |
| 986 * Resolve the class [element]. | |
| 987 * | |
| 988 * Before calling this method, [element] was constructed by the | |
| 989 * scanner and most fields are null or empty. This method fills in | |
| 990 * these fields and also ensure that the supertypes of [element] are | |
| 991 * resolved. | |
| 992 * | |
| 993 * Warning: Do not call this method directly. Instead use | |
| 994 * [:element.ensureResolved(compiler):]. | |
| 995 */ | |
| 996 TreeElements resolveClass(BaseClassElementX element) { | |
| 997 return _resolveTypeDeclaration(element, () { | |
| 998 // TODO(johnniwinther): Store the mapping in the resolution enqueuer. | |
| 999 ResolutionRegistry registry = new ResolutionRegistry(compiler, element); | |
| 1000 resolveClassInternal(element, registry); | |
| 1001 return element.treeElements; | |
| 1002 }); | |
| 1003 } | |
| 1004 | |
| 1005 void _ensureClassWillBeResolved(ClassElement element) { | |
| 1006 if (currentlyResolvedTypeDeclaration == null) { | |
| 1007 element.ensureResolved(compiler); | |
| 1008 } else { | |
| 1009 pendingClassesToBeResolved.add(element); | |
| 1010 } | |
| 1011 } | |
| 1012 | |
| 1013 void resolveClassInternal(BaseClassElementX element, | |
| 1014 ResolutionRegistry registry) { | |
| 1015 if (!element.isPatch) { | |
| 1016 compiler.withCurrentElement(element, () => measure(() { | |
| 1017 assert(element.resolutionState == STATE_NOT_STARTED); | |
| 1018 element.resolutionState = STATE_STARTED; | |
| 1019 Node tree = element.parseNode(compiler); | |
| 1020 loadSupertypes(element, tree); | |
| 1021 | |
| 1022 ClassResolverVisitor visitor = | |
| 1023 new ClassResolverVisitor(compiler, element, registry); | |
| 1024 visitor.visit(tree); | |
| 1025 element.resolutionState = STATE_DONE; | |
| 1026 compiler.onClassResolved(element); | |
| 1027 pendingClassesToBePostProcessed.add(element); | |
| 1028 })); | |
| 1029 if (element.isPatched) { | |
| 1030 // Ensure handling patch after origin. | |
| 1031 element.patch.ensureResolved(compiler); | |
| 1032 } | |
| 1033 } else { // Handle patch classes: | |
| 1034 element.resolutionState = STATE_STARTED; | |
| 1035 // Ensure handling origin before patch. | |
| 1036 element.origin.ensureResolved(compiler); | |
| 1037 // Ensure that the type is computed. | |
| 1038 element.computeType(compiler); | |
| 1039 // Copy class hierarchy from origin. | |
| 1040 element.supertype = element.origin.supertype; | |
| 1041 element.interfaces = element.origin.interfaces; | |
| 1042 element.allSupertypesAndSelf = element.origin.allSupertypesAndSelf; | |
| 1043 // Stepwise assignment to ensure invariant. | |
| 1044 element.supertypeLoadState = STATE_STARTED; | |
| 1045 element.supertypeLoadState = STATE_DONE; | |
| 1046 element.resolutionState = STATE_DONE; | |
| 1047 // TODO(johnniwinther): Check matching type variables and | |
| 1048 // empty extends/implements clauses. | |
| 1049 } | |
| 1050 } | |
| 1051 | |
| 1052 void _postProcessClassElement(BaseClassElementX element) { | |
| 1053 for (MetadataAnnotation metadata in element.metadata) { | |
| 1054 metadata.ensureResolved(compiler); | |
| 1055 if (!element.isProxy && | |
| 1056 metadata.constant.value == compiler.proxyConstant) { | |
| 1057 element.isProxy = true; | |
| 1058 } | |
| 1059 } | |
| 1060 | |
| 1061 // Force resolution of metadata on non-instance members since they may be | |
| 1062 // inspected by the backend while emitting. Metadata on instance members is | |
| 1063 // handled as a result of processing instantiated class members in the | |
| 1064 // enqueuer. | |
| 1065 // TODO(ahe): Avoid this eager resolution. | |
| 1066 element.forEachMember((_, Element member) { | |
| 1067 if (!member.isInstanceMember) { | |
| 1068 compiler.withCurrentElement(member, () { | |
| 1069 for (MetadataAnnotation metadata in member.metadata) { | |
| 1070 metadata.ensureResolved(compiler); | |
| 1071 } | |
| 1072 }); | |
| 1073 } | |
| 1074 }); | |
| 1075 | |
| 1076 computeClassMember(element, Compiler.CALL_OPERATOR_NAME); | |
| 1077 } | |
| 1078 | |
| 1079 void computeClassMembers(ClassElement element) { | |
| 1080 MembersCreator.computeAllClassMembers(compiler, element); | |
| 1081 } | |
| 1082 | |
| 1083 void computeClassMember(ClassElement element, String name) { | |
| 1084 MembersCreator.computeClassMembersByName(compiler, element, name); | |
| 1085 } | |
| 1086 | |
| 1087 void checkClass(ClassElement element) { | |
| 1088 computeClassMembers(element); | |
| 1089 if (element.isMixinApplication) { | |
| 1090 checkMixinApplication(element); | |
| 1091 } else { | |
| 1092 checkClassMembers(element); | |
| 1093 } | |
| 1094 } | |
| 1095 | |
| 1096 void checkMixinApplication(MixinApplicationElementX mixinApplication) { | |
| 1097 Modifiers modifiers = mixinApplication.modifiers; | |
| 1098 int illegalFlags = modifiers.flags & ~Modifiers.FLAG_ABSTRACT; | |
| 1099 if (illegalFlags != 0) { | |
| 1100 Modifiers illegalModifiers = new Modifiers.withFlags(null, illegalFlags); | |
| 1101 compiler.reportError( | |
| 1102 modifiers, | |
| 1103 MessageKind.ILLEGAL_MIXIN_APPLICATION_MODIFIERS, | |
| 1104 {'modifiers': illegalModifiers}); | |
| 1105 } | |
| 1106 | |
| 1107 // In case of cyclic mixin applications, the mixin chain will have | |
| 1108 // been cut. If so, we have already reported the error to the | |
| 1109 // user so we just return from here. | |
| 1110 ClassElement mixin = mixinApplication.mixin; | |
| 1111 if (mixin == null) return; | |
| 1112 | |
| 1113 // Check that we're not trying to use Object as a mixin. | |
| 1114 if (mixin.superclass == null) { | |
| 1115 compiler.reportError(mixinApplication, | |
| 1116 MessageKind.ILLEGAL_MIXIN_OBJECT); | |
| 1117 // Avoid reporting additional errors for the Object class. | |
| 1118 return; | |
| 1119 } | |
| 1120 | |
| 1121 // Check that the mixed in class has Object as its superclass. | |
| 1122 if (!mixin.superclass.isObject) { | |
| 1123 compiler.reportError(mixin, MessageKind.ILLEGAL_MIXIN_SUPERCLASS); | |
| 1124 } | |
| 1125 | |
| 1126 // Check that the mixed in class doesn't have any constructors and | |
| 1127 // make sure we aren't mixing in methods that use 'super'. | |
| 1128 mixin.forEachLocalMember((AstElement member) { | |
| 1129 if (member.isGenerativeConstructor && !member.isSynthesized) { | |
| 1130 compiler.reportError(member, MessageKind.ILLEGAL_MIXIN_CONSTRUCTOR); | |
| 1131 } else { | |
| 1132 // Get the resolution tree and check that the resolved member | |
| 1133 // doesn't use 'super'. This is the part of the 'super' mixin | |
| 1134 // check that happens when a function is resolved before the | |
| 1135 // mixin application has been performed. | |
| 1136 // TODO(johnniwinther): Obtain the [TreeElements] for [member] | |
| 1137 // differently. | |
| 1138 if (compiler.enqueuer.resolution.hasBeenResolved(member)) { | |
| 1139 checkMixinSuperUses( | |
| 1140 member.resolvedAst.elements, | |
| 1141 mixinApplication, | |
| 1142 mixin); | |
| 1143 } | |
| 1144 } | |
| 1145 }); | |
| 1146 } | |
| 1147 | |
| 1148 void checkMixinSuperUses(TreeElements resolutionTree, | |
| 1149 MixinApplicationElement mixinApplication, | |
| 1150 ClassElement mixin) { | |
| 1151 // TODO(johnniwinther): Avoid the use of [TreeElements] here. | |
| 1152 if (resolutionTree == null) return; | |
| 1153 Iterable<Node> superUses = resolutionTree.superUses; | |
| 1154 if (superUses.isEmpty) return; | |
| 1155 compiler.reportError(mixinApplication, | |
| 1156 MessageKind.ILLEGAL_MIXIN_WITH_SUPER, | |
| 1157 {'className': mixin.name}); | |
| 1158 // Show the user the problematic uses of 'super' in the mixin. | |
| 1159 for (Node use in superUses) { | |
| 1160 compiler.reportInfo( | |
| 1161 use, | |
| 1162 MessageKind.ILLEGAL_MIXIN_SUPER_USE); | |
| 1163 } | |
| 1164 } | |
| 1165 | |
| 1166 void checkClassMembers(ClassElement cls) { | |
| 1167 assert(invariant(cls, cls.isDeclaration)); | |
| 1168 if (cls.isObject) return; | |
| 1169 // TODO(johnniwinther): Should this be done on the implementation element as | |
| 1170 // well? | |
| 1171 List<Element> constConstructors = <Element>[]; | |
| 1172 List<Element> nonFinalInstanceFields = <Element>[]; | |
| 1173 cls.forEachMember((holder, member) { | |
| 1174 compiler.withCurrentElement(member, () { | |
| 1175 // Perform various checks as side effect of "computing" the type. | |
| 1176 member.computeType(compiler); | |
| 1177 | |
| 1178 // Check modifiers. | |
| 1179 if (member.isFunction && member.modifiers.isFinal) { | |
| 1180 compiler.reportError( | |
| 1181 member, MessageKind.ILLEGAL_FINAL_METHOD_MODIFIER); | |
| 1182 } | |
| 1183 if (member.isConstructor) { | |
| 1184 final mismatchedFlagsBits = | |
| 1185 member.modifiers.flags & | |
| 1186 (Modifiers.FLAG_STATIC | Modifiers.FLAG_ABSTRACT); | |
| 1187 if (mismatchedFlagsBits != 0) { | |
| 1188 final mismatchedFlags = | |
| 1189 new Modifiers.withFlags(null, mismatchedFlagsBits); | |
| 1190 compiler.reportError( | |
| 1191 member, | |
| 1192 MessageKind.ILLEGAL_CONSTRUCTOR_MODIFIERS, | |
| 1193 {'modifiers': mismatchedFlags}); | |
| 1194 } | |
| 1195 if (member.modifiers.isConst) { | |
| 1196 constConstructors.add(member); | |
| 1197 } | |
| 1198 } | |
| 1199 if (member.isField) { | |
| 1200 if (member.modifiers.isConst && !member.modifiers.isStatic) { | |
| 1201 compiler.reportError( | |
| 1202 member, MessageKind.ILLEGAL_CONST_FIELD_MODIFIER); | |
| 1203 } | |
| 1204 if (!member.modifiers.isStatic && !member.modifiers.isFinal) { | |
| 1205 nonFinalInstanceFields.add(member); | |
| 1206 } | |
| 1207 } | |
| 1208 checkAbstractField(member); | |
| 1209 checkUserDefinableOperator(member); | |
| 1210 }); | |
| 1211 }); | |
| 1212 if (!constConstructors.isEmpty && !nonFinalInstanceFields.isEmpty) { | |
| 1213 Spannable span = constConstructors.length > 1 | |
| 1214 ? cls : constConstructors[0]; | |
| 1215 compiler.reportError(span, | |
| 1216 MessageKind.CONST_CONSTRUCTOR_WITH_NONFINAL_FIELDS, | |
| 1217 {'className': cls.name}); | |
| 1218 if (constConstructors.length > 1) { | |
| 1219 for (Element constructor in constConstructors) { | |
| 1220 compiler.reportInfo(constructor, | |
| 1221 MessageKind.CONST_CONSTRUCTOR_WITH_NONFINAL_FIELDS_CONSTRUCTOR); | |
| 1222 } | |
| 1223 } | |
| 1224 for (Element field in nonFinalInstanceFields) { | |
| 1225 compiler.reportInfo(field, | |
| 1226 MessageKind.CONST_CONSTRUCTOR_WITH_NONFINAL_FIELDS_FIELD); | |
| 1227 } | |
| 1228 } | |
| 1229 } | |
| 1230 | |
| 1231 void checkAbstractField(Element member) { | |
| 1232 // Only check for getters. The test can only fail if there is both a setter | |
| 1233 // and a getter with the same name, and we only need to check each abstract | |
| 1234 // field once, so we just ignore setters. | |
| 1235 if (!member.isGetter) return; | |
| 1236 | |
| 1237 // Find the associated abstract field. | |
| 1238 ClassElement classElement = member.enclosingClass; | |
| 1239 Element lookupElement = classElement.lookupLocalMember(member.name); | |
| 1240 if (lookupElement == null) { | |
| 1241 compiler.internalError(member, | |
| 1242 "No abstract field for accessor"); | |
| 1243 } else if (!identical(lookupElement.kind, ElementKind.ABSTRACT_FIELD)) { | |
| 1244 compiler.internalError(member, | |
| 1245 "Inaccessible abstract field for accessor"); | |
| 1246 } | |
| 1247 AbstractFieldElement field = lookupElement; | |
| 1248 | |
| 1249 FunctionElementX getter = field.getter; | |
| 1250 if (getter == null) return; | |
| 1251 FunctionElementX setter = field.setter; | |
| 1252 if (setter == null) return; | |
| 1253 int getterFlags = getter.modifiers.flags | Modifiers.FLAG_ABSTRACT; | |
| 1254 int setterFlags = setter.modifiers.flags | Modifiers.FLAG_ABSTRACT; | |
| 1255 if (!identical(getterFlags, setterFlags)) { | |
| 1256 final mismatchedFlags = | |
| 1257 new Modifiers.withFlags(null, getterFlags ^ setterFlags); | |
| 1258 compiler.reportError( | |
| 1259 field.getter, | |
| 1260 MessageKind.GETTER_MISMATCH, | |
| 1261 {'modifiers': mismatchedFlags}); | |
| 1262 compiler.reportError( | |
| 1263 field.setter, | |
| 1264 MessageKind.SETTER_MISMATCH, | |
| 1265 {'modifiers': mismatchedFlags}); | |
| 1266 } | |
| 1267 } | |
| 1268 | |
| 1269 void checkUserDefinableOperator(Element member) { | |
| 1270 FunctionElement function = member.asFunctionElement(); | |
| 1271 if (function == null) return; | |
| 1272 String value = member.name; | |
| 1273 if (value == null) return; | |
| 1274 if (!(isUserDefinableOperator(value) || identical(value, 'unary-'))) return; | |
| 1275 | |
| 1276 bool isMinus = false; | |
| 1277 int requiredParameterCount; | |
| 1278 MessageKind messageKind; | |
| 1279 if (identical(value, 'unary-')) { | |
| 1280 isMinus = true; | |
| 1281 messageKind = MessageKind.MINUS_OPERATOR_BAD_ARITY; | |
| 1282 requiredParameterCount = 0; | |
| 1283 } else if (isMinusOperator(value)) { | |
| 1284 isMinus = true; | |
| 1285 messageKind = MessageKind.MINUS_OPERATOR_BAD_ARITY; | |
| 1286 requiredParameterCount = 1; | |
| 1287 } else if (isUnaryOperator(value)) { | |
| 1288 messageKind = MessageKind.UNARY_OPERATOR_BAD_ARITY; | |
| 1289 requiredParameterCount = 0; | |
| 1290 } else if (isBinaryOperator(value)) { | |
| 1291 messageKind = MessageKind.BINARY_OPERATOR_BAD_ARITY; | |
| 1292 requiredParameterCount = 1; | |
| 1293 if (identical(value, '==')) checkOverrideHashCode(member); | |
| 1294 } else if (isTernaryOperator(value)) { | |
| 1295 messageKind = MessageKind.TERNARY_OPERATOR_BAD_ARITY; | |
| 1296 requiredParameterCount = 2; | |
| 1297 } else { | |
| 1298 compiler.internalError(function, | |
| 1299 'Unexpected user defined operator $value'); | |
| 1300 } | |
| 1301 checkArity(function, requiredParameterCount, messageKind, isMinus); | |
| 1302 } | |
| 1303 | |
| 1304 void checkOverrideHashCode(FunctionElement operatorEquals) { | |
| 1305 if (operatorEquals.isAbstract) return; | |
| 1306 ClassElement cls = operatorEquals.enclosingClass; | |
| 1307 Element hashCodeImplementation = | |
| 1308 cls.lookupLocalMember('hashCode'); | |
| 1309 if (hashCodeImplementation != null) return; | |
| 1310 compiler.reportHint( | |
| 1311 operatorEquals, MessageKind.OVERRIDE_EQUALS_NOT_HASH_CODE, | |
| 1312 {'class': cls.name}); | |
| 1313 } | |
| 1314 | |
| 1315 void checkArity(FunctionElement function, | |
| 1316 int requiredParameterCount, MessageKind messageKind, | |
| 1317 bool isMinus) { | |
| 1318 FunctionExpression node = function.node; | |
| 1319 FunctionSignature signature = function.functionSignature; | |
| 1320 if (signature.requiredParameterCount != requiredParameterCount) { | |
| 1321 Node errorNode = node; | |
| 1322 if (node.parameters != null) { | |
| 1323 if (isMinus || | |
| 1324 signature.requiredParameterCount < requiredParameterCount) { | |
| 1325 // If there are too few parameters, point to the whole parameter list. | |
| 1326 // For instance | |
| 1327 // | |
| 1328 // int operator +() {} | |
| 1329 // ^^ | |
| 1330 // | |
| 1331 // int operator []=(value) {} | |
| 1332 // ^^^^^^^ | |
| 1333 // | |
| 1334 // For operator -, always point the whole parameter list, like | |
| 1335 // | |
| 1336 // int operator -(a, b) {} | |
| 1337 // ^^^^^^ | |
| 1338 // | |
| 1339 // instead of | |
| 1340 // | |
| 1341 // int operator -(a, b) {} | |
| 1342 // ^ | |
| 1343 // | |
| 1344 // since the correction might not be to remove 'b' but instead to | |
| 1345 // remove 'a, b'. | |
| 1346 errorNode = node.parameters; | |
| 1347 } else { | |
| 1348 errorNode = node.parameters.nodes.skip(requiredParameterCount).head; | |
| 1349 } | |
| 1350 } | |
| 1351 compiler.reportError( | |
| 1352 errorNode, messageKind, {'operatorName': function.name}); | |
| 1353 } | |
| 1354 if (signature.optionalParameterCount != 0) { | |
| 1355 Node errorNode = | |
| 1356 node.parameters.nodes.skip(signature.requiredParameterCount).head; | |
| 1357 if (signature.optionalParametersAreNamed) { | |
| 1358 compiler.reportError( | |
| 1359 errorNode, | |
| 1360 MessageKind.OPERATOR_NAMED_PARAMETERS, | |
| 1361 {'operatorName': function.name}); | |
| 1362 } else { | |
| 1363 compiler.reportError( | |
| 1364 errorNode, | |
| 1365 MessageKind.OPERATOR_OPTIONAL_PARAMETERS, | |
| 1366 {'operatorName': function.name}); | |
| 1367 } | |
| 1368 } | |
| 1369 } | |
| 1370 | |
| 1371 reportErrorWithContext(Element errorneousElement, | |
| 1372 MessageKind errorMessage, | |
| 1373 Element contextElement, | |
| 1374 MessageKind contextMessage) { | |
| 1375 compiler.reportError( | |
| 1376 errorneousElement, | |
| 1377 errorMessage, | |
| 1378 {'memberName': contextElement.name, | |
| 1379 'className': contextElement.enclosingClass.name}); | |
| 1380 compiler.reportInfo(contextElement, contextMessage); | |
| 1381 } | |
| 1382 | |
| 1383 | |
| 1384 FunctionSignature resolveSignature(FunctionElementX element) { | |
| 1385 MessageKind defaultValuesError = null; | |
| 1386 if (element.isFactoryConstructor) { | |
| 1387 FunctionExpression body = element.parseNode(compiler); | |
| 1388 if (body.isRedirectingFactory) { | |
| 1389 defaultValuesError = MessageKind.REDIRECTING_FACTORY_WITH_DEFAULT; | |
| 1390 } | |
| 1391 } | |
| 1392 return compiler.withCurrentElement(element, () { | |
| 1393 FunctionExpression node = | |
| 1394 compiler.parser.measure(() => element.parseNode(compiler)); | |
| 1395 return measure(() => SignatureResolver.analyze( | |
| 1396 compiler, node.parameters, node.returnType, element, | |
| 1397 new ResolutionRegistry(compiler, element), | |
| 1398 defaultValuesError: defaultValuesError, | |
| 1399 createRealParameters: true)); | |
| 1400 }); | |
| 1401 } | |
| 1402 | |
| 1403 TreeElements resolveTypedef(TypedefElementX element) { | |
| 1404 if (element.isResolved) return element.treeElements; | |
| 1405 compiler.world.allTypedefs.add(element); | |
| 1406 return _resolveTypeDeclaration(element, () { | |
| 1407 ResolutionRegistry registry = new ResolutionRegistry(compiler, element); | |
| 1408 return compiler.withCurrentElement(element, () { | |
| 1409 return measure(() { | |
| 1410 assert(element.resolutionState == STATE_NOT_STARTED); | |
| 1411 element.resolutionState = STATE_STARTED; | |
| 1412 Typedef node = | |
| 1413 compiler.parser.measure(() => element.parseNode(compiler)); | |
| 1414 TypedefResolverVisitor visitor = | |
| 1415 new TypedefResolverVisitor(compiler, element, registry); | |
| 1416 visitor.visit(node); | |
| 1417 element.resolutionState = STATE_DONE; | |
| 1418 return registry.mapping; | |
| 1419 }); | |
| 1420 }); | |
| 1421 }); | |
| 1422 } | |
| 1423 | |
| 1424 void resolveMetadataAnnotation(MetadataAnnotationX annotation) { | |
| 1425 compiler.withCurrentElement(annotation.annotatedElement, () => measure(() { | |
| 1426 assert(annotation.resolutionState == STATE_NOT_STARTED); | |
| 1427 annotation.resolutionState = STATE_STARTED; | |
| 1428 | |
| 1429 Node node = annotation.parseNode(compiler); | |
| 1430 Element annotatedElement = annotation.annotatedElement; | |
| 1431 AnalyzableElement context = annotatedElement.analyzableElement; | |
| 1432 ClassElement classElement = annotatedElement.enclosingClass; | |
| 1433 if (classElement != null) { | |
| 1434 // The annotation is resolved in the scope of [classElement]. | |
| 1435 classElement.ensureResolved(compiler); | |
| 1436 } | |
| 1437 assert(invariant(node, context != null, | |
| 1438 message: "No context found for metadata annotation " | |
| 1439 "on $annotatedElement.")); | |
| 1440 ResolverVisitor visitor = visitorFor(context, useEnclosingScope: true); | |
| 1441 ResolutionRegistry registry = visitor.registry; | |
| 1442 node.accept(visitor); | |
| 1443 // TODO(johnniwinther): Avoid passing the [TreeElements] to | |
| 1444 // [compileMetadata]. | |
| 1445 annotation.constant = | |
| 1446 constantCompiler.compileMetadata(annotation, node, registry.mapping); | |
| 1447 // TODO(johnniwinther): Register the relation between the annotation | |
| 1448 // and the annotated element instead. This will allow the backend to | |
| 1449 // retrieve the backend constant and only register metadata on the | |
| 1450 // elements for which it is needed. (Issue 17732). | |
| 1451 registry.registerMetadataConstant(annotation, annotatedElement); | |
| 1452 annotation.resolutionState = STATE_DONE; | |
| 1453 })); | |
| 1454 } | |
| 1455 | |
| 1456 error(Spannable node, MessageKind kind, [arguments = const {}]) { | |
| 1457 // TODO(ahe): Make non-fatal. | |
| 1458 compiler.reportFatalError(node, kind, arguments); | |
| 1459 } | |
| 1460 | |
| 1461 Link<MetadataAnnotation> resolveMetadata(Element element, | |
| 1462 VariableDefinitions node) { | |
| 1463 LinkBuilder<MetadataAnnotation> metadata = | |
| 1464 new LinkBuilder<MetadataAnnotation>(); | |
| 1465 for (Metadata annotation in node.metadata.nodes) { | |
| 1466 ParameterMetadataAnnotation metadataAnnotation = | |
| 1467 new ParameterMetadataAnnotation(annotation); | |
| 1468 metadataAnnotation.annotatedElement = element; | |
| 1469 metadata.addLast(metadataAnnotation.ensureResolved(compiler)); | |
| 1470 } | |
| 1471 return metadata.toLink(); | |
| 1472 } | |
| 1473 } | |
| 1474 | |
| 1475 class InitializerResolver { | |
| 1476 final ResolverVisitor visitor; | |
| 1477 final Map<Element, Node> initialized; | |
| 1478 Link<Node> initializers; | |
| 1479 bool hasSuper; | |
| 1480 | |
| 1481 InitializerResolver(this.visitor) | |
| 1482 : initialized = new Map<Element, Node>(), hasSuper = false; | |
| 1483 | |
| 1484 ResolutionRegistry get registry => visitor.registry; | |
| 1485 | |
| 1486 error(Node node, MessageKind kind, [arguments = const {}]) { | |
| 1487 visitor.error(node, kind, arguments); | |
| 1488 } | |
| 1489 | |
| 1490 warning(Node node, MessageKind kind, [arguments = const {}]) { | |
| 1491 visitor.warning(node, kind, arguments); | |
| 1492 } | |
| 1493 | |
| 1494 bool isFieldInitializer(SendSet node) { | |
| 1495 if (node.selector.asIdentifier() == null) return false; | |
| 1496 if (node.receiver == null) return true; | |
| 1497 if (node.receiver.asIdentifier() == null) return false; | |
| 1498 return node.receiver.asIdentifier().isThis(); | |
| 1499 } | |
| 1500 | |
| 1501 reportDuplicateInitializerError(Element field, Node init, Node existing) { | |
| 1502 visitor.compiler.reportError( | |
| 1503 init, | |
| 1504 MessageKind.DUPLICATE_INITIALIZER, {'fieldName': field.name}); | |
| 1505 visitor.compiler.reportInfo( | |
| 1506 existing, | |
| 1507 MessageKind.ALREADY_INITIALIZED, {'fieldName': field.name}); | |
| 1508 } | |
| 1509 | |
| 1510 void checkForDuplicateInitializers(FieldElementX field, Node init) { | |
| 1511 // [field] can be null if it could not be resolved. | |
| 1512 if (field == null) return; | |
| 1513 String name = field.name; | |
| 1514 if (initialized.containsKey(field)) { | |
| 1515 reportDuplicateInitializerError(field, init, initialized[field]); | |
| 1516 } else if (field.isFinal) { | |
| 1517 field.parseNode(visitor.compiler); | |
| 1518 Expression initializer = field.initializer; | |
| 1519 if (initializer != null) { | |
| 1520 reportDuplicateInitializerError(field, init, initializer); | |
| 1521 } | |
| 1522 } | |
| 1523 initialized[field] = init; | |
| 1524 } | |
| 1525 | |
| 1526 void resolveFieldInitializer(FunctionElement constructor, SendSet init) { | |
| 1527 // init is of the form [this.]field = value. | |
| 1528 final Node selector = init.selector; | |
| 1529 final String name = selector.asIdentifier().source; | |
| 1530 // Lookup target field. | |
| 1531 Element target; | |
| 1532 if (isFieldInitializer(init)) { | |
| 1533 target = constructor.enclosingClass.lookupLocalMember(name); | |
| 1534 if (target == null) { | |
| 1535 error(selector, MessageKind.CANNOT_RESOLVE, {'name': name}); | |
| 1536 } else if (target.kind != ElementKind.FIELD) { | |
| 1537 error(selector, MessageKind.NOT_A_FIELD, {'fieldName': name}); | |
| 1538 } else if (!target.isInstanceMember) { | |
| 1539 error(selector, MessageKind.INIT_STATIC_FIELD, {'fieldName': name}); | |
| 1540 } | |
| 1541 } else { | |
| 1542 error(init, MessageKind.INVALID_RECEIVER_IN_INITIALIZER); | |
| 1543 } | |
| 1544 registry.useElement(init, target); | |
| 1545 registry.registerStaticUse(target); | |
| 1546 checkForDuplicateInitializers(target, init); | |
| 1547 // Resolve initializing value. | |
| 1548 visitor.visitInStaticContext(init.arguments.head); | |
| 1549 } | |
| 1550 | |
| 1551 ClassElement getSuperOrThisLookupTarget(FunctionElement constructor, | |
| 1552 bool isSuperCall, | |
| 1553 Node diagnosticNode) { | |
| 1554 ClassElement lookupTarget = constructor.enclosingClass; | |
| 1555 if (isSuperCall) { | |
| 1556 // Calculate correct lookup target and constructor name. | |
| 1557 if (identical(lookupTarget, visitor.compiler.objectClass)) { | |
| 1558 error(diagnosticNode, MessageKind.SUPER_INITIALIZER_IN_OBJECT); | |
| 1559 } else { | |
| 1560 return lookupTarget.supertype.element; | |
| 1561 } | |
| 1562 } | |
| 1563 return lookupTarget; | |
| 1564 } | |
| 1565 | |
| 1566 Element resolveSuperOrThisForSend(FunctionElement constructor, | |
| 1567 FunctionExpression functionNode, | |
| 1568 Send call) { | |
| 1569 // Resolve the selector and the arguments. | |
| 1570 ResolverTask resolver = visitor.compiler.resolver; | |
| 1571 visitor.inStaticContext(() { | |
| 1572 visitor.resolveSelector(call, null); | |
| 1573 visitor.resolveArguments(call.argumentsNode); | |
| 1574 }); | |
| 1575 Selector selector = registry.getSelector(call); | |
| 1576 bool isSuperCall = Initializers.isSuperConstructorCall(call); | |
| 1577 | |
| 1578 ClassElement lookupTarget = getSuperOrThisLookupTarget(constructor, | |
| 1579 isSuperCall, | |
| 1580 call); | |
| 1581 Selector constructorSelector = | |
| 1582 visitor.getRedirectingThisOrSuperConstructorSelector(call); | |
| 1583 FunctionElement calledConstructor = | |
| 1584 lookupTarget.lookupConstructor(constructorSelector); | |
| 1585 | |
| 1586 final bool isImplicitSuperCall = false; | |
| 1587 final String className = lookupTarget.name; | |
| 1588 verifyThatConstructorMatchesCall(constructor, | |
| 1589 calledConstructor, | |
| 1590 selector, | |
| 1591 isImplicitSuperCall, | |
| 1592 call, | |
| 1593 className, | |
| 1594 constructorSelector); | |
| 1595 | |
| 1596 registry.useElement(call, calledConstructor); | |
| 1597 registry.registerStaticUse(calledConstructor); | |
| 1598 return calledConstructor; | |
| 1599 } | |
| 1600 | |
| 1601 void resolveImplicitSuperConstructorSend(FunctionElement constructor, | |
| 1602 FunctionExpression functionNode) { | |
| 1603 // If the class has a super resolve the implicit super call. | |
| 1604 ClassElement classElement = constructor.enclosingClass; | |
| 1605 ClassElement superClass = classElement.superclass; | |
| 1606 if (classElement != visitor.compiler.objectClass) { | |
| 1607 assert(superClass != null); | |
| 1608 assert(superClass.resolutionState == STATE_DONE); | |
| 1609 String constructorName = ''; | |
| 1610 Selector callToMatch = new Selector.call( | |
| 1611 constructorName, | |
| 1612 classElement.library, | |
| 1613 0); | |
| 1614 | |
| 1615 final bool isSuperCall = true; | |
| 1616 ClassElement lookupTarget = getSuperOrThisLookupTarget(constructor, | |
| 1617 isSuperCall, | |
| 1618 functionNode); | |
| 1619 Selector constructorSelector = new Selector.callDefaultConstructor( | |
| 1620 visitor.enclosingElement.library); | |
| 1621 Element calledConstructor = lookupTarget.lookupConstructor( | |
| 1622 constructorSelector); | |
| 1623 | |
| 1624 final String className = lookupTarget.name; | |
| 1625 final bool isImplicitSuperCall = true; | |
| 1626 verifyThatConstructorMatchesCall(constructor, | |
| 1627 calledConstructor, | |
| 1628 callToMatch, | |
| 1629 isImplicitSuperCall, | |
| 1630 functionNode, | |
| 1631 className, | |
| 1632 constructorSelector); | |
| 1633 registry.registerImplicitSuperCall(calledConstructor); | |
| 1634 registry.registerStaticUse(calledConstructor); | |
| 1635 } | |
| 1636 } | |
| 1637 | |
| 1638 void verifyThatConstructorMatchesCall( | |
| 1639 FunctionElement caller, | |
| 1640 FunctionElement lookedupConstructor, | |
| 1641 Selector call, | |
| 1642 bool isImplicitSuperCall, | |
| 1643 Node diagnosticNode, | |
| 1644 String className, | |
| 1645 Selector constructorSelector) { | |
| 1646 if (lookedupConstructor == null | |
| 1647 || !lookedupConstructor.isGenerativeConstructor) { | |
| 1648 String fullConstructorName = Elements.constructorNameForDiagnostics( | |
| 1649 className, | |
| 1650 constructorSelector.name); | |
| 1651 MessageKind kind = isImplicitSuperCall | |
| 1652 ? MessageKind.CANNOT_RESOLVE_CONSTRUCTOR_FOR_IMPLICIT | |
| 1653 : MessageKind.CANNOT_RESOLVE_CONSTRUCTOR; | |
| 1654 visitor.compiler.reportError( | |
| 1655 diagnosticNode, kind, {'constructorName': fullConstructorName}); | |
| 1656 } else { | |
| 1657 lookedupConstructor.computeSignature(visitor.compiler); | |
| 1658 if (!call.applies(lookedupConstructor, visitor.compiler.world)) { | |
| 1659 MessageKind kind = isImplicitSuperCall | |
| 1660 ? MessageKind.NO_MATCHING_CONSTRUCTOR_FOR_IMPLICIT | |
| 1661 : MessageKind.NO_MATCHING_CONSTRUCTOR; | |
| 1662 visitor.compiler.reportError(diagnosticNode, kind); | |
| 1663 } else if (caller.isConst | |
| 1664 && !lookedupConstructor.isConst) { | |
| 1665 visitor.compiler.reportError( | |
| 1666 diagnosticNode, MessageKind.CONST_CALLS_NON_CONST); | |
| 1667 } | |
| 1668 } | |
| 1669 } | |
| 1670 | |
| 1671 /** | |
| 1672 * Resolve all initializers of this constructor. In the case of a redirecting | |
| 1673 * constructor, the resolved constructor's function element is returned. | |
| 1674 */ | |
| 1675 FunctionElement resolveInitializers(FunctionElement constructor, | |
| 1676 FunctionExpression functionNode) { | |
| 1677 // Keep track of all "this.param" parameters specified for constructor so | |
| 1678 // that we can ensure that fields are initialized only once. | |
| 1679 FunctionSignature functionParameters = constructor.functionSignature; | |
| 1680 functionParameters.forEachParameter((ParameterElement element) { | |
| 1681 if (element.isInitializingFormal) { | |
| 1682 InitializingFormalElement initializingFormal = element; | |
| 1683 checkForDuplicateInitializers(initializingFormal.fieldElement, | |
| 1684 element.initializer); | |
| 1685 } | |
| 1686 }); | |
| 1687 | |
| 1688 if (functionNode.initializers == null) { | |
| 1689 initializers = const Link<Node>(); | |
| 1690 } else { | |
| 1691 initializers = functionNode.initializers.nodes; | |
| 1692 } | |
| 1693 FunctionElement result; | |
| 1694 bool resolvedSuper = false; | |
| 1695 for (Link<Node> link = initializers; !link.isEmpty; link = link.tail) { | |
| 1696 if (link.head.asSendSet() != null) { | |
| 1697 final SendSet init = link.head.asSendSet(); | |
| 1698 resolveFieldInitializer(constructor, init); | |
| 1699 } else if (link.head.asSend() != null) { | |
| 1700 final Send call = link.head.asSend(); | |
| 1701 if (call.argumentsNode == null) { | |
| 1702 error(link.head, MessageKind.INVALID_INITIALIZER); | |
| 1703 continue; | |
| 1704 } | |
| 1705 if (Initializers.isSuperConstructorCall(call)) { | |
| 1706 if (resolvedSuper) { | |
| 1707 error(call, MessageKind.DUPLICATE_SUPER_INITIALIZER); | |
| 1708 } | |
| 1709 resolveSuperOrThisForSend(constructor, functionNode, call); | |
| 1710 resolvedSuper = true; | |
| 1711 } else if (Initializers.isConstructorRedirect(call)) { | |
| 1712 // Check that there is no body (Language specification 7.5.1). If the | |
| 1713 // constructor is also const, we already reported an error in | |
| 1714 // [resolveMethodElement]. | |
| 1715 if (functionNode.hasBody() && !constructor.isConst) { | |
| 1716 error(functionNode, MessageKind.REDIRECTING_CONSTRUCTOR_HAS_BODY); | |
| 1717 } | |
| 1718 // Check that there are no other initializers. | |
| 1719 if (!initializers.tail.isEmpty) { | |
| 1720 error(call, MessageKind.REDIRECTING_CONSTRUCTOR_HAS_INITIALIZER); | |
| 1721 } | |
| 1722 // Check that there are no field initializing parameters. | |
| 1723 Compiler compiler = visitor.compiler; | |
| 1724 FunctionSignature signature = constructor.functionSignature; | |
| 1725 signature.forEachParameter((ParameterElement parameter) { | |
| 1726 if (parameter.isInitializingFormal) { | |
| 1727 Node node = parameter.node; | |
| 1728 error(node, MessageKind.INITIALIZING_FORMAL_NOT_ALLOWED); | |
| 1729 } | |
| 1730 }); | |
| 1731 return resolveSuperOrThisForSend(constructor, functionNode, call); | |
| 1732 } else { | |
| 1733 visitor.error(call, MessageKind.CONSTRUCTOR_CALL_EXPECTED); | |
| 1734 return null; | |
| 1735 } | |
| 1736 } else { | |
| 1737 error(link.head, MessageKind.INVALID_INITIALIZER); | |
| 1738 } | |
| 1739 } | |
| 1740 if (!resolvedSuper) { | |
| 1741 resolveImplicitSuperConstructorSend(constructor, functionNode); | |
| 1742 } | |
| 1743 return null; // If there was no redirection always return null. | |
| 1744 } | |
| 1745 } | |
| 1746 | |
| 1747 class CommonResolverVisitor<R> extends Visitor<R> { | |
| 1748 final Compiler compiler; | |
| 1749 | |
| 1750 CommonResolverVisitor(Compiler this.compiler); | |
| 1751 | |
| 1752 R visitNode(Node node) { | |
| 1753 internalError(node, | |
| 1754 'internal error: Unhandled node: ${node.getObjectDescription()}'); | |
| 1755 return null; | |
| 1756 } | |
| 1757 | |
| 1758 R visitEmptyStatement(Node node) => null; | |
| 1759 | |
| 1760 /** Convenience method for visiting nodes that may be null. */ | |
| 1761 R visit(Node node) => (node == null) ? null : node.accept(this); | |
| 1762 | |
| 1763 void error(Spannable node, MessageKind kind, [Map arguments = const {}]) { | |
| 1764 compiler.reportFatalError(node, kind, arguments); | |
| 1765 } | |
| 1766 | |
| 1767 void warning(Spannable node, MessageKind kind, [Map arguments = const {}]) { | |
| 1768 compiler.reportWarning(node, kind, arguments); | |
| 1769 } | |
| 1770 | |
| 1771 void internalError(Spannable node, message) { | |
| 1772 compiler.internalError(node, message); | |
| 1773 } | |
| 1774 | |
| 1775 void addDeferredAction(Element element, DeferredAction action) { | |
| 1776 compiler.enqueuer.resolution.addDeferredAction(element, action); | |
| 1777 } | |
| 1778 } | |
| 1779 | |
| 1780 abstract class LabelScope { | |
| 1781 LabelScope get outer; | |
| 1782 LabelDefinition lookup(String label); | |
| 1783 } | |
| 1784 | |
| 1785 class LabeledStatementLabelScope implements LabelScope { | |
| 1786 final LabelScope outer; | |
| 1787 final Map<String, LabelDefinition> labels; | |
| 1788 LabeledStatementLabelScope(this.outer, this.labels); | |
| 1789 LabelDefinition lookup(String labelName) { | |
| 1790 LabelDefinition label = labels[labelName]; | |
| 1791 if (label != null) return label; | |
| 1792 return outer.lookup(labelName); | |
| 1793 } | |
| 1794 } | |
| 1795 | |
| 1796 class SwitchLabelScope implements LabelScope { | |
| 1797 final LabelScope outer; | |
| 1798 final Map<String, LabelDefinition> caseLabels; | |
| 1799 | |
| 1800 SwitchLabelScope(this.outer, this.caseLabels); | |
| 1801 | |
| 1802 LabelDefinition lookup(String labelName) { | |
| 1803 LabelDefinition result = caseLabels[labelName]; | |
| 1804 if (result != null) return result; | |
| 1805 return outer.lookup(labelName); | |
| 1806 } | |
| 1807 } | |
| 1808 | |
| 1809 class EmptyLabelScope implements LabelScope { | |
| 1810 const EmptyLabelScope(); | |
| 1811 LabelDefinition lookup(String label) => null; | |
| 1812 LabelScope get outer { | |
| 1813 throw 'internal error: empty label scope has no outer'; | |
| 1814 } | |
| 1815 } | |
| 1816 | |
| 1817 class StatementScope { | |
| 1818 LabelScope labels; | |
| 1819 Link<JumpTarget> breakTargetStack; | |
| 1820 Link<JumpTarget> continueTargetStack; | |
| 1821 // Used to provide different numbers to statements if one is inside the other. | |
| 1822 // Can be used to make otherwise duplicate labels unique. | |
| 1823 int nestingLevel = 0; | |
| 1824 | |
| 1825 StatementScope() | |
| 1826 : labels = const EmptyLabelScope(), | |
| 1827 breakTargetStack = const Link<JumpTarget>(), | |
| 1828 continueTargetStack = const Link<JumpTarget>(); | |
| 1829 | |
| 1830 LabelDefinition lookupLabel(String label) { | |
| 1831 return labels.lookup(label); | |
| 1832 } | |
| 1833 | |
| 1834 JumpTarget currentBreakTarget() => | |
| 1835 breakTargetStack.isEmpty ? null : breakTargetStack.head; | |
| 1836 | |
| 1837 JumpTarget currentContinueTarget() => | |
| 1838 continueTargetStack.isEmpty ? null : continueTargetStack.head; | |
| 1839 | |
| 1840 void enterLabelScope(Map<String, LabelDefinition> elements) { | |
| 1841 labels = new LabeledStatementLabelScope(labels, elements); | |
| 1842 nestingLevel++; | |
| 1843 } | |
| 1844 | |
| 1845 void exitLabelScope() { | |
| 1846 nestingLevel--; | |
| 1847 labels = labels.outer; | |
| 1848 } | |
| 1849 | |
| 1850 void enterLoop(JumpTarget element) { | |
| 1851 breakTargetStack = breakTargetStack.prepend(element); | |
| 1852 continueTargetStack = continueTargetStack.prepend(element); | |
| 1853 nestingLevel++; | |
| 1854 } | |
| 1855 | |
| 1856 void exitLoop() { | |
| 1857 nestingLevel--; | |
| 1858 breakTargetStack = breakTargetStack.tail; | |
| 1859 continueTargetStack = continueTargetStack.tail; | |
| 1860 } | |
| 1861 | |
| 1862 void enterSwitch(JumpTarget breakElement, | |
| 1863 Map<String, LabelDefinition> continueElements) { | |
| 1864 breakTargetStack = breakTargetStack.prepend(breakElement); | |
| 1865 labels = new SwitchLabelScope(labels, continueElements); | |
| 1866 nestingLevel++; | |
| 1867 } | |
| 1868 | |
| 1869 void exitSwitch() { | |
| 1870 nestingLevel--; | |
| 1871 breakTargetStack = breakTargetStack.tail; | |
| 1872 labels = labels.outer; | |
| 1873 } | |
| 1874 } | |
| 1875 | |
| 1876 class TypeResolver { | |
| 1877 final Compiler compiler; | |
| 1878 | |
| 1879 TypeResolver(this.compiler); | |
| 1880 | |
| 1881 /// Tries to resolve the type name as an element. | |
| 1882 Element resolveTypeName(Identifier prefixName, | |
| 1883 Identifier typeName, | |
| 1884 Scope scope, | |
| 1885 {bool deferredIsMalformed: true}) { | |
| 1886 Element element; | |
| 1887 bool deferredTypeAnnotation = false; | |
| 1888 if (prefixName != null) { | |
| 1889 Element prefixElement = | |
| 1890 lookupInScope(compiler, prefixName, scope, prefixName.source); | |
| 1891 if (prefixElement != null && prefixElement.isPrefix) { | |
| 1892 // The receiver is a prefix. Lookup in the imported members. | |
| 1893 PrefixElement prefix = prefixElement; | |
| 1894 element = prefix.lookupLocalMember(typeName.source); | |
| 1895 // TODO(17260, sigurdm): The test for DartBackend is there because | |
| 1896 // dart2dart outputs malformed types with prefix. | |
| 1897 if (element != null && | |
| 1898 prefix.isDeferred && | |
| 1899 deferredIsMalformed && | |
| 1900 compiler.backend is! DartBackend) { | |
| 1901 element = new ErroneousElementX(MessageKind.DEFERRED_TYPE_ANNOTATION, | |
| 1902 {'node': typeName}, | |
| 1903 element.name, | |
| 1904 element); | |
| 1905 } | |
| 1906 } else { | |
| 1907 // The caller of this method will create the ErroneousElement for | |
| 1908 // the MalformedType. | |
| 1909 element = null; | |
| 1910 } | |
| 1911 } else { | |
| 1912 String stringValue = typeName.source; | |
| 1913 element = lookupInScope(compiler, typeName, scope, typeName.source); | |
| 1914 } | |
| 1915 return element; | |
| 1916 } | |
| 1917 | |
| 1918 DartType resolveTypeAnnotation(MappingVisitor visitor, TypeAnnotation node, | |
| 1919 {bool malformedIsError: false, | |
| 1920 bool deferredIsMalformed: true}) { | |
| 1921 ResolutionRegistry registry = visitor.registry; | |
| 1922 | |
| 1923 Identifier typeName; | |
| 1924 DartType type; | |
| 1925 | |
| 1926 DartType checkNoTypeArguments(DartType type) { | |
| 1927 List<DartType> arguments = new List<DartType>(); | |
| 1928 bool hasTypeArgumentMismatch = resolveTypeArguments( | |
| 1929 visitor, node, const <DartType>[], arguments); | |
| 1930 if (hasTypeArgumentMismatch) { | |
| 1931 return new MalformedType( | |
| 1932 new ErroneousElementX(MessageKind.TYPE_ARGUMENT_COUNT_MISMATCH, | |
| 1933 {'type': node}, typeName.source, visitor.enclosingElement), | |
| 1934 type, arguments); | |
| 1935 } | |
| 1936 return type; | |
| 1937 } | |
| 1938 | |
| 1939 Identifier prefixName; | |
| 1940 Send send = node.typeName.asSend(); | |
| 1941 if (send != null) { | |
| 1942 // The type name is of the form [: prefix . identifier :]. | |
| 1943 prefixName = send.receiver.asIdentifier(); | |
| 1944 typeName = send.selector.asIdentifier(); | |
| 1945 } else { | |
| 1946 typeName = node.typeName.asIdentifier(); | |
| 1947 if (identical(typeName.source, 'void')) { | |
| 1948 type = const VoidType(); | |
| 1949 checkNoTypeArguments(type); | |
| 1950 registry.useType(node, type); | |
| 1951 return type; | |
| 1952 } else if (identical(typeName.source, 'dynamic')) { | |
| 1953 type = const DynamicType(); | |
| 1954 checkNoTypeArguments(type); | |
| 1955 registry.useType(node, type); | |
| 1956 return type; | |
| 1957 } | |
| 1958 } | |
| 1959 | |
| 1960 Element element = resolveTypeName(prefixName, typeName, visitor.scope, | |
| 1961 deferredIsMalformed: deferredIsMalformed); | |
| 1962 | |
| 1963 DartType reportFailureAndCreateType(MessageKind messageKind, | |
| 1964 Map messageArguments, | |
| 1965 {DartType userProvidedBadType, | |
| 1966 Element erroneousElement}) { | |
| 1967 if (malformedIsError) { | |
| 1968 visitor.error(node, messageKind, messageArguments); | |
| 1969 } else { | |
| 1970 registry.registerThrowRuntimeError(); | |
| 1971 visitor.warning(node, messageKind, messageArguments); | |
| 1972 } | |
| 1973 if (erroneousElement == null) { | |
| 1974 erroneousElement = new ErroneousElementX( | |
| 1975 messageKind, messageArguments, typeName.source, | |
| 1976 visitor.enclosingElement); | |
| 1977 } | |
| 1978 List<DartType> arguments = <DartType>[]; | |
| 1979 resolveTypeArguments(visitor, node, const <DartType>[], arguments); | |
| 1980 return new MalformedType(erroneousElement, | |
| 1981 userProvidedBadType, arguments); | |
| 1982 } | |
| 1983 | |
| 1984 // Try to construct the type from the element. | |
| 1985 if (element == null) { | |
| 1986 type = reportFailureAndCreateType( | |
| 1987 MessageKind.CANNOT_RESOLVE_TYPE, {'typeName': node.typeName}); | |
| 1988 } else if (element.isAmbiguous) { | |
| 1989 AmbiguousElement ambiguous = element; | |
| 1990 type = reportFailureAndCreateType( | |
| 1991 ambiguous.messageKind, ambiguous.messageArguments); | |
| 1992 ambiguous.diagnose(registry.mapping.analyzedElement, compiler); | |
| 1993 } else if (element.isErroneous) { | |
| 1994 ErroneousElement erroneousElement = element; | |
| 1995 type = reportFailureAndCreateType( | |
| 1996 erroneousElement.messageKind, erroneousElement.messageArguments, | |
| 1997 erroneousElement: erroneousElement); | |
| 1998 } else if (!element.impliesType) { | |
| 1999 type = reportFailureAndCreateType( | |
| 2000 MessageKind.NOT_A_TYPE, {'node': node.typeName}); | |
| 2001 } else { | |
| 2002 bool addTypeVariableBoundsCheck = false; | |
| 2003 if (element.isClass) { | |
| 2004 ClassElement cls = element; | |
| 2005 // TODO(johnniwinther): [_ensureClassWillBeResolved] should imply | |
| 2006 // [computeType]. | |
| 2007 compiler.resolver._ensureClassWillBeResolved(cls); | |
| 2008 element.computeType(compiler); | |
| 2009 List<DartType> arguments = <DartType>[]; | |
| 2010 bool hasTypeArgumentMismatch = resolveTypeArguments( | |
| 2011 visitor, node, cls.typeVariables, arguments); | |
| 2012 if (hasTypeArgumentMismatch) { | |
| 2013 type = new BadInterfaceType(cls.declaration, | |
| 2014 new InterfaceType.forUserProvidedBadType(cls.declaration, | |
| 2015 arguments)); | |
| 2016 } else { | |
| 2017 if (arguments.isEmpty) { | |
| 2018 type = cls.rawType; | |
| 2019 } else { | |
| 2020 type = new InterfaceType(cls.declaration, arguments.toList(growable:
false)); | |
| 2021 addTypeVariableBoundsCheck = true; | |
| 2022 } | |
| 2023 } | |
| 2024 } else if (element.isTypedef) { | |
| 2025 TypedefElement typdef = element; | |
| 2026 // TODO(johnniwinther): [ensureResolved] should imply [computeType]. | |
| 2027 typdef.ensureResolved(compiler); | |
| 2028 element.computeType(compiler); | |
| 2029 List<DartType> arguments = <DartType>[]; | |
| 2030 bool hasTypeArgumentMismatch = resolveTypeArguments( | |
| 2031 visitor, node, typdef.typeVariables, arguments); | |
| 2032 if (hasTypeArgumentMismatch) { | |
| 2033 type = new BadTypedefType(typdef, | |
| 2034 new TypedefType.forUserProvidedBadType(typdef, arguments)); | |
| 2035 } else { | |
| 2036 if (arguments.isEmpty) { | |
| 2037 type = typdef.rawType; | |
| 2038 } else { | |
| 2039 type = new TypedefType(typdef, arguments.toList(growable: false)); | |
| 2040 addTypeVariableBoundsCheck = true; | |
| 2041 } | |
| 2042 } | |
| 2043 } else if (element.isTypeVariable) { | |
| 2044 Element outer = | |
| 2045 visitor.enclosingElement.outermostEnclosingMemberOrTopLevel; | |
| 2046 bool isInFactoryConstructor = | |
| 2047 outer != null && outer.isFactoryConstructor; | |
| 2048 if (!outer.isClass && | |
| 2049 !outer.isTypedef && | |
| 2050 !isInFactoryConstructor && | |
| 2051 Elements.isInStaticContext(visitor.enclosingElement)) { | |
| 2052 registry.registerThrowRuntimeError(); | |
| 2053 type = reportFailureAndCreateType( | |
| 2054 MessageKind.TYPE_VARIABLE_WITHIN_STATIC_MEMBER, | |
| 2055 {'typeVariableName': node}, | |
| 2056 userProvidedBadType: element.computeType(compiler)); | |
| 2057 } else { | |
| 2058 type = element.computeType(compiler); | |
| 2059 } | |
| 2060 type = checkNoTypeArguments(type); | |
| 2061 } else { | |
| 2062 compiler.internalError(node, | |
| 2063 "Unexpected element kind ${element.kind}."); | |
| 2064 } | |
| 2065 if (addTypeVariableBoundsCheck) { | |
| 2066 registry.registerTypeVariableBoundCheck(); | |
| 2067 visitor.addDeferredAction( | |
| 2068 visitor.enclosingElement, | |
| 2069 () => checkTypeVariableBounds(node, type)); | |
| 2070 } | |
| 2071 } | |
| 2072 registry.useType(node, type); | |
| 2073 return type; | |
| 2074 } | |
| 2075 | |
| 2076 /// Checks the type arguments of [type] against the type variable bounds. | |
| 2077 void checkTypeVariableBounds(TypeAnnotation node, GenericType type) { | |
| 2078 void checkTypeVariableBound(_, DartType typeArgument, | |
| 2079 TypeVariableType typeVariable, | |
| 2080 DartType bound) { | |
| 2081 if (!compiler.types.isSubtype(typeArgument, bound)) { | |
| 2082 compiler.reportWarning(node, | |
| 2083 MessageKind.INVALID_TYPE_VARIABLE_BOUND, | |
| 2084 {'typeVariable': typeVariable, | |
| 2085 'bound': bound, | |
| 2086 'typeArgument': typeArgument, | |
| 2087 'thisType': type.element.thisType}); | |
| 2088 } | |
| 2089 }; | |
| 2090 | |
| 2091 compiler.types.checkTypeVariableBounds(type, checkTypeVariableBound); | |
| 2092 } | |
| 2093 | |
| 2094 /** | |
| 2095 * Resolves the type arguments of [node] and adds these to [arguments]. | |
| 2096 * | |
| 2097 * Returns [: true :] if the number of type arguments did not match the | |
| 2098 * number of type variables. | |
| 2099 */ | |
| 2100 bool resolveTypeArguments(MappingVisitor visitor, | |
| 2101 TypeAnnotation node, | |
| 2102 List<DartType> typeVariables, | |
| 2103 List<DartType> arguments) { | |
| 2104 if (node.typeArguments == null) { | |
| 2105 return false; | |
| 2106 } | |
| 2107 int expectedVariables = typeVariables.length; | |
| 2108 int index = 0; | |
| 2109 bool typeArgumentCountMismatch = false; | |
| 2110 for (Link<Node> typeArguments = node.typeArguments.nodes; | |
| 2111 !typeArguments.isEmpty; | |
| 2112 typeArguments = typeArguments.tail, index++) { | |
| 2113 if (index > expectedVariables - 1) { | |
| 2114 visitor.warning( | |
| 2115 typeArguments.head, MessageKind.ADDITIONAL_TYPE_ARGUMENT); | |
| 2116 typeArgumentCountMismatch = true; | |
| 2117 } | |
| 2118 DartType argType = resolveTypeAnnotation(visitor, typeArguments.head); | |
| 2119 // TODO(karlklose): rewrite to not modify [arguments]. | |
| 2120 arguments.add(argType); | |
| 2121 } | |
| 2122 if (index < expectedVariables) { | |
| 2123 visitor.warning(node.typeArguments, | |
| 2124 MessageKind.MISSING_TYPE_ARGUMENT); | |
| 2125 typeArgumentCountMismatch = true; | |
| 2126 } | |
| 2127 return typeArgumentCountMismatch; | |
| 2128 } | |
| 2129 } | |
| 2130 | |
| 2131 /** | |
| 2132 * Common supertype for resolver visitors that record resolutions in a | |
| 2133 * [ResolutionRegistry]. | |
| 2134 */ | |
| 2135 abstract class MappingVisitor<T> extends CommonResolverVisitor<T> { | |
| 2136 final ResolutionRegistry registry; | |
| 2137 final TypeResolver typeResolver; | |
| 2138 /// The current enclosing element for the visited AST nodes. | |
| 2139 Element get enclosingElement; | |
| 2140 /// The current scope of the visitor. | |
| 2141 Scope get scope; | |
| 2142 | |
| 2143 MappingVisitor(Compiler compiler, ResolutionRegistry this.registry) | |
| 2144 : typeResolver = new TypeResolver(compiler), | |
| 2145 super(compiler); | |
| 2146 | |
| 2147 AsyncMarker get currentAsyncMarker => AsyncMarker.SYNC; | |
| 2148 | |
| 2149 /// Add [element] to the current scope and check for duplicate definitions. | |
| 2150 void addToScope(Element element) { | |
| 2151 Element existing = scope.add(element); | |
| 2152 if (existing != element) { | |
| 2153 reportDuplicateDefinition(element.name, element, existing); | |
| 2154 } | |
| 2155 } | |
| 2156 | |
| 2157 void checkLocalDefinitionName(Node node, Element element) { | |
| 2158 if (currentAsyncMarker != AsyncMarker.SYNC) { | |
| 2159 if (element.name == 'yield' || | |
| 2160 element.name == 'async' || | |
| 2161 element.name == 'await') { | |
| 2162 compiler.reportError( | |
| 2163 node, MessageKind.ASYNC_KEYWORD_AS_IDENTIFIER, | |
| 2164 {'keyword': element.name, | |
| 2165 'modifier': currentAsyncMarker}); | |
| 2166 } | |
| 2167 } | |
| 2168 } | |
| 2169 | |
| 2170 /// Register [node] as the definition of [element]. | |
| 2171 void defineLocalVariable(Node node, LocalVariableElement element) { | |
| 2172 invariant(node, element != null); | |
| 2173 checkLocalDefinitionName(node, element); | |
| 2174 registry.defineElement(node, element); | |
| 2175 } | |
| 2176 | |
| 2177 void reportDuplicateDefinition(String name, | |
| 2178 Spannable definition, | |
| 2179 Spannable existing) { | |
| 2180 compiler.reportError(definition, | |
| 2181 MessageKind.DUPLICATE_DEFINITION, {'name': name}); | |
| 2182 compiler.reportInfo(existing, | |
| 2183 MessageKind.EXISTING_DEFINITION, {'name': name}); | |
| 2184 } | |
| 2185 } | |
| 2186 | |
| 2187 /** | |
| 2188 * Core implementation of resolution. | |
| 2189 * | |
| 2190 * Do not subclass or instantiate this class outside this library | |
| 2191 * except for testing. | |
| 2192 */ | |
| 2193 class ResolverVisitor extends MappingVisitor<ResolutionResult> { | |
| 2194 /** | |
| 2195 * The current enclosing element for the visited AST nodes. | |
| 2196 * | |
| 2197 * This field is updated when nested closures are visited. | |
| 2198 */ | |
| 2199 Element enclosingElement; | |
| 2200 bool inInstanceContext; | |
| 2201 bool inCheckContext; | |
| 2202 bool inCatchBlock; | |
| 2203 | |
| 2204 Scope scope; | |
| 2205 ClassElement currentClass; | |
| 2206 ExpressionStatement currentExpressionStatement; | |
| 2207 bool sendIsMemberAccess = false; | |
| 2208 StatementScope statementScope; | |
| 2209 int allowedCategory = ElementCategory.VARIABLE | ElementCategory.FUNCTION | |
| 2210 | ElementCategory.IMPLIES_TYPE; | |
| 2211 | |
| 2212 /** | |
| 2213 * Record of argument nodes to JS_INTERCEPTOR_CONSTANT for deferred | |
| 2214 * processing. | |
| 2215 */ | |
| 2216 Set<Node> argumentsToJsInterceptorConstant = null; | |
| 2217 | |
| 2218 /// When visiting the type declaration of the variable in a [ForIn] loop, | |
| 2219 /// the initializer of the variable is implicit and we should not emit an | |
| 2220 /// error when verifying that all final variables are initialized. | |
| 2221 bool allowFinalWithoutInitializer = false; | |
| 2222 | |
| 2223 /// The nodes for which variable access and mutation must be registered in | |
| 2224 /// order to determine when the static type of variables types is promoted. | |
| 2225 Link<Node> promotionScope = const Link<Node>(); | |
| 2226 | |
| 2227 bool isPotentiallyMutableTarget(Element target) { | |
| 2228 if (target == null) return false; | |
| 2229 return (target.isVariable || target.isParameter) && | |
| 2230 !(target.isFinal || target.isConst); | |
| 2231 } | |
| 2232 | |
| 2233 // TODO(ahe): Find a way to share this with runtime implementation. | |
| 2234 static final RegExp symbolValidationPattern = | |
| 2235 new RegExp(r'^(?:[a-zA-Z$][a-zA-Z$0-9_]*\.)*(?:[a-zA-Z$][a-zA-Z$0-9_]*=?|' | |
| 2236 r'-|' | |
| 2237 r'unary-|' | |
| 2238 r'\[\]=|' | |
| 2239 r'~|' | |
| 2240 r'==|' | |
| 2241 r'\[\]|' | |
| 2242 r'\*|' | |
| 2243 r'/|' | |
| 2244 r'%|' | |
| 2245 r'~/|' | |
| 2246 r'\+|' | |
| 2247 r'<<|' | |
| 2248 r'>>|' | |
| 2249 r'>=|' | |
| 2250 r'>|' | |
| 2251 r'<=|' | |
| 2252 r'<|' | |
| 2253 r'&|' | |
| 2254 r'\^|' | |
| 2255 r'\|' | |
| 2256 r')$'); | |
| 2257 | |
| 2258 ResolverVisitor(Compiler compiler, | |
| 2259 Element element, | |
| 2260 ResolutionRegistry registry, | |
| 2261 {bool useEnclosingScope: false}) | |
| 2262 : this.enclosingElement = element, | |
| 2263 // When the element is a field, we are actually resolving its | |
| 2264 // initial value, which should not have access to instance | |
| 2265 // fields. | |
| 2266 inInstanceContext = (element.isInstanceMember && !element.isField) | |
| 2267 || element.isGenerativeConstructor, | |
| 2268 this.currentClass = element.isClassMember ? element.enclosingClass | |
| 2269 : null, | |
| 2270 this.statementScope = new StatementScope(), | |
| 2271 scope = useEnclosingScope | |
| 2272 ? Scope.buildEnclosingScope(element) : element.buildScope(), | |
| 2273 // The type annotations on a typedef do not imply type checks. | |
| 2274 // TODO(karlklose): clean this up (dartbug.com/8870). | |
| 2275 inCheckContext = compiler.enableTypeAssertions && | |
| 2276 !element.isLibrary && | |
| 2277 !element.isTypedef && | |
| 2278 !element.enclosingElement.isTypedef, | |
| 2279 inCatchBlock = false, | |
| 2280 super(compiler, registry); | |
| 2281 | |
| 2282 AsyncMarker get currentAsyncMarker { | |
| 2283 if (enclosingElement is FunctionElement) { | |
| 2284 FunctionElement function = enclosingElement; | |
| 2285 return function.asyncMarker; | |
| 2286 } | |
| 2287 return AsyncMarker.SYNC; | |
| 2288 } | |
| 2289 | |
| 2290 Element reportLookupErrorIfAny(Element result, Node node, String name) { | |
| 2291 if (!Elements.isUnresolved(result)) { | |
| 2292 if (!inInstanceContext && result.isInstanceMember) { | |
| 2293 compiler.reportError( | |
| 2294 node, MessageKind.NO_INSTANCE_AVAILABLE, {'name': name}); | |
| 2295 return new ErroneousElementX(MessageKind.NO_INSTANCE_AVAILABLE, | |
| 2296 {'name': name}, | |
| 2297 name, enclosingElement); | |
| 2298 } else if (result.isAmbiguous) { | |
| 2299 AmbiguousElement ambiguous = result; | |
| 2300 compiler.reportError( | |
| 2301 node, ambiguous.messageKind, ambiguous.messageArguments); | |
| 2302 ambiguous.diagnose(enclosingElement, compiler); | |
| 2303 return new ErroneousElementX(ambiguous.messageKind, | |
| 2304 ambiguous.messageArguments, | |
| 2305 name, enclosingElement); | |
| 2306 } | |
| 2307 } | |
| 2308 return result; | |
| 2309 } | |
| 2310 | |
| 2311 // Create, or reuse an already created, target element for a statement. | |
| 2312 JumpTarget getOrDefineTarget(Node statement) { | |
| 2313 JumpTarget element = registry.getTargetDefinition(statement); | |
| 2314 if (element == null) { | |
| 2315 element = new JumpTargetX(statement, | |
| 2316 statementScope.nestingLevel, | |
| 2317 enclosingElement); | |
| 2318 registry.defineTarget(statement, element); | |
| 2319 } | |
| 2320 return element; | |
| 2321 } | |
| 2322 | |
| 2323 doInCheckContext(action()) { | |
| 2324 bool wasInCheckContext = inCheckContext; | |
| 2325 inCheckContext = true; | |
| 2326 var result = action(); | |
| 2327 inCheckContext = wasInCheckContext; | |
| 2328 return result; | |
| 2329 } | |
| 2330 | |
| 2331 inStaticContext(action()) { | |
| 2332 bool wasInstanceContext = inInstanceContext; | |
| 2333 inInstanceContext = false; | |
| 2334 var result = action(); | |
| 2335 inInstanceContext = wasInstanceContext; | |
| 2336 return result; | |
| 2337 } | |
| 2338 | |
| 2339 doInPromotionScope(Node node, action()) { | |
| 2340 promotionScope = promotionScope.prepend(node); | |
| 2341 var result = action(); | |
| 2342 promotionScope = promotionScope.tail; | |
| 2343 return result; | |
| 2344 } | |
| 2345 | |
| 2346 visitInStaticContext(Node node) { | |
| 2347 inStaticContext(() => visit(node)); | |
| 2348 } | |
| 2349 | |
| 2350 ErroneousElement warnAndCreateErroneousElement(Node node, | |
| 2351 String name, | |
| 2352 MessageKind kind, | |
| 2353 [Map arguments = const {}]) { | |
| 2354 compiler.reportWarning(node, kind, arguments); | |
| 2355 return new ErroneousElementX(kind, arguments, name, enclosingElement); | |
| 2356 } | |
| 2357 | |
| 2358 ResolutionResult visitIdentifier(Identifier node) { | |
| 2359 if (node.isThis()) { | |
| 2360 if (!inInstanceContext) { | |
| 2361 error(node, MessageKind.NO_INSTANCE_AVAILABLE, {'name': node}); | |
| 2362 } | |
| 2363 return null; | |
| 2364 } else if (node.isSuper()) { | |
| 2365 if (!inInstanceContext) error(node, MessageKind.NO_SUPER_IN_STATIC); | |
| 2366 if ((ElementCategory.SUPER & allowedCategory) == 0) { | |
| 2367 error(node, MessageKind.INVALID_USE_OF_SUPER); | |
| 2368 } | |
| 2369 return null; | |
| 2370 } else { | |
| 2371 String name = node.source; | |
| 2372 Element element = lookupInScope(compiler, node, scope, name); | |
| 2373 if (Elements.isUnresolved(element) && name == 'dynamic') { | |
| 2374 // TODO(johnniwinther): Remove this hack when we can return more complex | |
| 2375 // objects than [Element] from this method. | |
| 2376 element = compiler.typeClass; | |
| 2377 // Set the type to be `dynamic` to mark that this is a type literal. | |
| 2378 registry.setType(node, const DynamicType()); | |
| 2379 } | |
| 2380 element = reportLookupErrorIfAny(element, node, node.source); | |
| 2381 if (element == null) { | |
| 2382 if (!inInstanceContext) { | |
| 2383 element = warnAndCreateErroneousElement( | |
| 2384 node, node.source, MessageKind.CANNOT_RESOLVE, | |
| 2385 {'name': node}); | |
| 2386 registry.registerThrowNoSuchMethod(); | |
| 2387 } | |
| 2388 } else if (element.isErroneous) { | |
| 2389 // Use the erroneous element. | |
| 2390 } else { | |
| 2391 if ((element.kind.category & allowedCategory) == 0) { | |
| 2392 // TODO(ahe): Improve error message. Need UX input. | |
| 2393 error(node, MessageKind.GENERIC, | |
| 2394 {'text': "is not an expression $element"}); | |
| 2395 } | |
| 2396 } | |
| 2397 if (!Elements.isUnresolved(element) && element.isClass) { | |
| 2398 ClassElement classElement = element; | |
| 2399 classElement.ensureResolved(compiler); | |
| 2400 } | |
| 2401 return new ElementResult(registry.useElement(node, element)); | |
| 2402 } | |
| 2403 } | |
| 2404 | |
| 2405 ResolutionResult visitTypeAnnotation(TypeAnnotation node) { | |
| 2406 DartType type = resolveTypeAnnotation(node); | |
| 2407 if (inCheckContext) { | |
| 2408 registry.registerIsCheck(type); | |
| 2409 } | |
| 2410 return new TypeResult(type); | |
| 2411 } | |
| 2412 | |
| 2413 bool isNamedConstructor(Send node) => node.receiver != null; | |
| 2414 | |
| 2415 Selector getRedirectingThisOrSuperConstructorSelector(Send node) { | |
| 2416 if (isNamedConstructor(node)) { | |
| 2417 String constructorName = node.selector.asIdentifier().source; | |
| 2418 return new Selector.callConstructor( | |
| 2419 constructorName, | |
| 2420 enclosingElement.library); | |
| 2421 } else { | |
| 2422 return new Selector.callDefaultConstructor( | |
| 2423 enclosingElement.library); | |
| 2424 } | |
| 2425 } | |
| 2426 | |
| 2427 FunctionElement resolveConstructorRedirection(FunctionElementX constructor) { | |
| 2428 FunctionExpression node = constructor.parseNode(compiler); | |
| 2429 | |
| 2430 // A synthetic constructor does not have a node. | |
| 2431 if (node == null) return null; | |
| 2432 if (node.initializers == null) return null; | |
| 2433 Link<Node> initializers = node.initializers.nodes; | |
| 2434 if (!initializers.isEmpty && | |
| 2435 Initializers.isConstructorRedirect(initializers.head)) { | |
| 2436 Selector selector = | |
| 2437 getRedirectingThisOrSuperConstructorSelector(initializers.head); | |
| 2438 final ClassElement classElement = constructor.enclosingClass; | |
| 2439 return classElement.lookupConstructor(selector); | |
| 2440 } | |
| 2441 return null; | |
| 2442 } | |
| 2443 | |
| 2444 void setupFunction(FunctionExpression node, FunctionElement function) { | |
| 2445 Element enclosingElement = function.enclosingElement; | |
| 2446 if (node.modifiers.isStatic && | |
| 2447 enclosingElement.kind != ElementKind.CLASS) { | |
| 2448 compiler.reportError(node, MessageKind.ILLEGAL_STATIC); | |
| 2449 } | |
| 2450 | |
| 2451 scope = new MethodScope(scope, function); | |
| 2452 // Put the parameters in scope. | |
| 2453 FunctionSignature functionParameters = function.functionSignature; | |
| 2454 Link<Node> parameterNodes = (node.parameters == null) | |
| 2455 ? const Link<Node>() : node.parameters.nodes; | |
| 2456 functionParameters.forEachParameter((ParameterElement element) { | |
| 2457 // TODO(karlklose): should be a list of [FormalElement]s, but the actual | |
| 2458 // implementation uses [Element]. | |
| 2459 Link<Element> optionals = functionParameters.optionalParameters; | |
| 2460 if (!optionals.isEmpty && element == optionals.head) { | |
| 2461 NodeList nodes = parameterNodes.head; | |
| 2462 parameterNodes = nodes.nodes; | |
| 2463 } | |
| 2464 visit(element.initializer); | |
| 2465 VariableDefinitions variableDefinitions = parameterNodes.head; | |
| 2466 Node parameterNode = variableDefinitions.definitions.nodes.head; | |
| 2467 // Field parameters (this.x) are not visible inside the constructor. The | |
| 2468 // fields they reference are visible, but must be resolved independently. | |
| 2469 if (element.isInitializingFormal) { | |
| 2470 registry.useElement(parameterNode, element); | |
| 2471 } else { | |
| 2472 LocalParameterElement parameterElement = element; | |
| 2473 defineLocalVariable(parameterNode, parameterElement); | |
| 2474 addToScope(parameterElement); | |
| 2475 } | |
| 2476 parameterNodes = parameterNodes.tail; | |
| 2477 }); | |
| 2478 addDeferredAction(enclosingElement, () { | |
| 2479 functionParameters.forEachOptionalParameter((Element parameter) { | |
| 2480 compiler.resolver.constantCompiler.compileConstant(parameter); | |
| 2481 }); | |
| 2482 }); | |
| 2483 if (inCheckContext) { | |
| 2484 functionParameters.forEachParameter((ParameterElement element) { | |
| 2485 registry.registerIsCheck(element.type); | |
| 2486 }); | |
| 2487 } | |
| 2488 } | |
| 2489 | |
| 2490 visitCascade(Cascade node) { | |
| 2491 visit(node.expression); | |
| 2492 } | |
| 2493 | |
| 2494 visitCascadeReceiver(CascadeReceiver node) { | |
| 2495 visit(node.expression); | |
| 2496 } | |
| 2497 | |
| 2498 visitClassNode(ClassNode node) { | |
| 2499 internalError(node, "shouldn't be called"); | |
| 2500 } | |
| 2501 | |
| 2502 visitIn(Node node, Scope nestedScope) { | |
| 2503 Scope oldScope = scope; | |
| 2504 scope = nestedScope; | |
| 2505 ResolutionResult result = visit(node); | |
| 2506 scope = oldScope; | |
| 2507 return result; | |
| 2508 } | |
| 2509 | |
| 2510 /** | |
| 2511 * Introduces new default targets for break and continue | |
| 2512 * before visiting the body of the loop | |
| 2513 */ | |
| 2514 visitLoopBodyIn(Loop loop, Node body, Scope bodyScope) { | |
| 2515 JumpTarget element = getOrDefineTarget(loop); | |
| 2516 statementScope.enterLoop(element); | |
| 2517 visitIn(body, bodyScope); | |
| 2518 statementScope.exitLoop(); | |
| 2519 if (!element.isTarget) { | |
| 2520 registry.undefineTarget(loop); | |
| 2521 } | |
| 2522 } | |
| 2523 | |
| 2524 visitBlock(Block node) { | |
| 2525 visitIn(node.statements, new BlockScope(scope)); | |
| 2526 } | |
| 2527 | |
| 2528 visitDoWhile(DoWhile node) { | |
| 2529 visitLoopBodyIn(node, node.body, new BlockScope(scope)); | |
| 2530 visit(node.condition); | |
| 2531 } | |
| 2532 | |
| 2533 visitEmptyStatement(EmptyStatement node) { } | |
| 2534 | |
| 2535 visitExpressionStatement(ExpressionStatement node) { | |
| 2536 ExpressionStatement oldExpressionStatement = currentExpressionStatement; | |
| 2537 currentExpressionStatement = node; | |
| 2538 visit(node.expression); | |
| 2539 currentExpressionStatement = oldExpressionStatement; | |
| 2540 } | |
| 2541 | |
| 2542 visitFor(For node) { | |
| 2543 Scope blockScope = new BlockScope(scope); | |
| 2544 visitIn(node.initializer, blockScope); | |
| 2545 visitIn(node.condition, blockScope); | |
| 2546 visitIn(node.update, blockScope); | |
| 2547 visitLoopBodyIn(node, node.body, blockScope); | |
| 2548 } | |
| 2549 | |
| 2550 visitFunctionDeclaration(FunctionDeclaration node) { | |
| 2551 assert(node.function.name != null); | |
| 2552 visitFunctionExpression(node.function, inFunctionDeclaration: true); | |
| 2553 } | |
| 2554 | |
| 2555 | |
| 2556 /// Process a local function declaration or an anonymous function expression. | |
| 2557 /// | |
| 2558 /// [inFunctionDeclaration] is `true` when the current node is the immediate | |
| 2559 /// child of a function declaration. | |
| 2560 /// | |
| 2561 /// This is used to distinguish local function declarations from anonymous | |
| 2562 /// function expressions. | |
| 2563 visitFunctionExpression(FunctionExpression node, | |
| 2564 {bool inFunctionDeclaration: false}) { | |
| 2565 bool doAddToScope = inFunctionDeclaration; | |
| 2566 if (!inFunctionDeclaration && node.name != null) { | |
| 2567 compiler.reportError( | |
| 2568 node.name, | |
| 2569 MessageKind.NAMED_FUNCTION_EXPRESSION, | |
| 2570 {'name': node.name}); | |
| 2571 } | |
| 2572 visit(node.returnType); | |
| 2573 String name; | |
| 2574 if (node.name == null) { | |
| 2575 name = ""; | |
| 2576 } else { | |
| 2577 name = node.name.asIdentifier().source; | |
| 2578 } | |
| 2579 LocalFunctionElementX function = new LocalFunctionElementX( | |
| 2580 name, node, ElementKind.FUNCTION, Modifiers.EMPTY, | |
| 2581 enclosingElement); | |
| 2582 function.functionSignatureCache = | |
| 2583 SignatureResolver.analyze(compiler, node.parameters, node.returnType, | |
| 2584 function, registry, createRealParameters: true); | |
| 2585 ResolverTask.processAsyncMarker(compiler, function); | |
| 2586 checkLocalDefinitionName(node, function); | |
| 2587 registry.defineFunction(node, function); | |
| 2588 if (doAddToScope) { | |
| 2589 addToScope(function); | |
| 2590 } | |
| 2591 Scope oldScope = scope; // The scope is modified by [setupFunction]. | |
| 2592 setupFunction(node, function); | |
| 2593 | |
| 2594 Element previousEnclosingElement = enclosingElement; | |
| 2595 enclosingElement = function; | |
| 2596 // Run the body in a fresh statement scope. | |
| 2597 StatementScope oldStatementScope = statementScope; | |
| 2598 statementScope = new StatementScope(); | |
| 2599 visit(node.body); | |
| 2600 statementScope = oldStatementScope; | |
| 2601 | |
| 2602 scope = oldScope; | |
| 2603 enclosingElement = previousEnclosingElement; | |
| 2604 | |
| 2605 registry.registerClosure(function); | |
| 2606 registry.registerInstantiatedClass(compiler.functionClass); | |
| 2607 } | |
| 2608 | |
| 2609 visitIf(If node) { | |
| 2610 doInPromotionScope(node.condition.expression, () => visit(node.condition)); | |
| 2611 doInPromotionScope(node.thenPart, | |
| 2612 () => visitIn(node.thenPart, new BlockScope(scope))); | |
| 2613 visitIn(node.elsePart, new BlockScope(scope)); | |
| 2614 } | |
| 2615 | |
| 2616 ResolutionResult resolveSend(Send node) { | |
| 2617 Selector selector = resolveSelector(node, null); | |
| 2618 if (node.isSuperCall) registry.registerSuperUse(node); | |
| 2619 | |
| 2620 if (node.receiver == null) { | |
| 2621 // If this send is of the form "assert(expr);", then | |
| 2622 // this is an assertion. | |
| 2623 if (selector.isAssert) { | |
| 2624 if (selector.argumentCount != 1) { | |
| 2625 error(node.selector, | |
| 2626 MessageKind.WRONG_NUMBER_OF_ARGUMENTS_FOR_ASSERT, | |
| 2627 {'argumentCount': selector.argumentCount}); | |
| 2628 } else if (selector.namedArgumentCount != 0) { | |
| 2629 error(node.selector, | |
| 2630 MessageKind.ASSERT_IS_GIVEN_NAMED_ARGUMENTS, | |
| 2631 {'argumentCount': selector.namedArgumentCount}); | |
| 2632 } | |
| 2633 registry.registerAssert(node); | |
| 2634 return const AssertResult(); | |
| 2635 } | |
| 2636 | |
| 2637 return node.selector.accept(this); | |
| 2638 } | |
| 2639 | |
| 2640 var oldCategory = allowedCategory; | |
| 2641 allowedCategory |= ElementCategory.PREFIX | ElementCategory.SUPER; | |
| 2642 ResolutionResult resolvedReceiver = visit(node.receiver); | |
| 2643 allowedCategory = oldCategory; | |
| 2644 | |
| 2645 Element target; | |
| 2646 String name = node.selector.asIdentifier().source; | |
| 2647 if (identical(name, 'this')) { | |
| 2648 // TODO(ahe): Why is this using GENERIC? | |
| 2649 error(node.selector, MessageKind.GENERIC, | |
| 2650 {'text': "expected an identifier"}); | |
| 2651 } else if (node.isSuperCall) { | |
| 2652 if (node.isOperator) { | |
| 2653 if (isUserDefinableOperator(name)) { | |
| 2654 name = selector.name; | |
| 2655 } else { | |
| 2656 error(node.selector, MessageKind.ILLEGAL_SUPER_SEND, {'name': name}); | |
| 2657 } | |
| 2658 } | |
| 2659 if (!inInstanceContext) { | |
| 2660 error(node.receiver, MessageKind.NO_INSTANCE_AVAILABLE, {'name': name}); | |
| 2661 return null; | |
| 2662 } | |
| 2663 if (currentClass.supertype == null) { | |
| 2664 // This is just to guard against internal errors, so no need | |
| 2665 // for a real error message. | |
| 2666 error(node.receiver, MessageKind.GENERIC, | |
| 2667 {'text': "Object has no superclass"}); | |
| 2668 } | |
| 2669 // TODO(johnniwinther): Ensure correct behavior if currentClass is a | |
| 2670 // patch. | |
| 2671 target = currentClass.lookupSuperSelector(selector); | |
| 2672 // [target] may be null which means invoking noSuchMethod on | |
| 2673 // super. | |
| 2674 if (target == null) { | |
| 2675 target = warnAndCreateErroneousElement( | |
| 2676 node, name, MessageKind.NO_SUCH_SUPER_MEMBER, | |
| 2677 {'className': currentClass, 'memberName': name}); | |
| 2678 // We still need to register the invocation, because we might | |
| 2679 // call [:super.noSuchMethod:] which calls | |
| 2680 // [JSInvocationMirror._invokeOn]. | |
| 2681 registry.registerDynamicInvocation(selector); | |
| 2682 registry.registerSuperNoSuchMethod(); | |
| 2683 } | |
| 2684 } else if (resolvedReceiver == null || | |
| 2685 Elements.isUnresolved(resolvedReceiver.element)) { | |
| 2686 return null; | |
| 2687 } else if (resolvedReceiver.element.isClass) { | |
| 2688 ClassElement receiverClass = resolvedReceiver.element; | |
| 2689 receiverClass.ensureResolved(compiler); | |
| 2690 if (node.isOperator) { | |
| 2691 // When the resolved receiver is a class, we can have two cases: | |
| 2692 // 1) a static send: C.foo, or | |
| 2693 // 2) an operator send, where the receiver is a class literal: 'C + 1'. | |
| 2694 // The following code that looks up the selector on the resolved | |
| 2695 // receiver will treat the second as the invocation of a static operator | |
| 2696 // if the resolved receiver is not null. | |
| 2697 return null; | |
| 2698 } | |
| 2699 MembersCreator.computeClassMembersByName( | |
| 2700 compiler, receiverClass.declaration, name); | |
| 2701 target = receiverClass.lookupLocalMember(name); | |
| 2702 if (target == null || target.isInstanceMember) { | |
| 2703 registry.registerThrowNoSuchMethod(); | |
| 2704 // TODO(johnniwinther): With the simplified [TreeElements] invariant, | |
| 2705 // try to resolve injected elements if [currentClass] is in the patch | |
| 2706 // library of [receiverClass]. | |
| 2707 | |
| 2708 // TODO(karlklose): this should be reported by the caller of | |
| 2709 // [resolveSend] to select better warning messages for getters and | |
| 2710 // setters. | |
| 2711 MessageKind kind = (target == null) | |
| 2712 ? MessageKind.MEMBER_NOT_FOUND | |
| 2713 : MessageKind.MEMBER_NOT_STATIC; | |
| 2714 return new ElementResult(warnAndCreateErroneousElement( | |
| 2715 node, name, kind, | |
| 2716 {'className': receiverClass.name, 'memberName': name})); | |
| 2717 } else if (isPrivateName(name) && | |
| 2718 target.library != enclosingElement.library) { | |
| 2719 registry.registerThrowNoSuchMethod(); | |
| 2720 return new ElementResult(warnAndCreateErroneousElement( | |
| 2721 node, name, MessageKind.PRIVATE_ACCESS, | |
| 2722 {'libraryName': target.library.getLibraryOrScriptName(), | |
| 2723 'name': name})); | |
| 2724 } | |
| 2725 } else if (resolvedReceiver.element.isPrefix) { | |
| 2726 PrefixElement prefix = resolvedReceiver.element; | |
| 2727 target = prefix.lookupLocalMember(name); | |
| 2728 if (Elements.isUnresolved(target)) { | |
| 2729 registry.registerThrowNoSuchMethod(); | |
| 2730 return new ElementResult(warnAndCreateErroneousElement( | |
| 2731 node, name, MessageKind.NO_SUCH_LIBRARY_MEMBER, | |
| 2732 {'libraryName': prefix.name, 'memberName': name})); | |
| 2733 } else if (target.isAmbiguous) { | |
| 2734 registry.registerThrowNoSuchMethod(); | |
| 2735 AmbiguousElement ambiguous = target; | |
| 2736 target = warnAndCreateErroneousElement(node, name, | |
| 2737 ambiguous.messageKind, | |
| 2738 ambiguous.messageArguments); | |
| 2739 ambiguous.diagnose(enclosingElement, compiler); | |
| 2740 return new ElementResult(target); | |
| 2741 } else if (target.kind == ElementKind.CLASS) { | |
| 2742 ClassElement classElement = target; | |
| 2743 classElement.ensureResolved(compiler); | |
| 2744 } | |
| 2745 } | |
| 2746 return new ElementResult(target); | |
| 2747 } | |
| 2748 | |
| 2749 static Selector computeSendSelector(Send node, | |
| 2750 LibraryElement library, | |
| 2751 Element element) { | |
| 2752 // First determine if this is part of an assignment. | |
| 2753 bool isSet = node.asSendSet() != null; | |
| 2754 | |
| 2755 if (node.isIndex) { | |
| 2756 return isSet ? new Selector.indexSet() : new Selector.index(); | |
| 2757 } | |
| 2758 | |
| 2759 if (node.isOperator) { | |
| 2760 String source = node.selector.asOperator().source; | |
| 2761 String string = source; | |
| 2762 if (identical(string, '!') || | |
| 2763 identical(string, '&&') || identical(string, '||') || | |
| 2764 identical(string, 'is') || identical(string, 'as') || | |
| 2765 identical(string, '?') || | |
| 2766 identical(string, '>>>')) { | |
| 2767 return null; | |
| 2768 } | |
| 2769 String op = source; | |
| 2770 if (!isUserDefinableOperator(source)) { | |
| 2771 op = Elements.mapToUserOperatorOrNull(source); | |
| 2772 } | |
| 2773 if (op == null) { | |
| 2774 // Unsupported operator. An error has been reported during parsing. | |
| 2775 return new Selector.call( | |
| 2776 source, library, node.argumentsNode.slowLength(), []); | |
| 2777 } | |
| 2778 return node.arguments.isEmpty | |
| 2779 ? new Selector.unaryOperator(op) | |
| 2780 : new Selector.binaryOperator(op); | |
| 2781 } | |
| 2782 | |
| 2783 Identifier identifier = node.selector.asIdentifier(); | |
| 2784 if (node.isPropertyAccess) { | |
| 2785 assert(!isSet); | |
| 2786 return new Selector.getter(identifier.source, library); | |
| 2787 } else if (isSet) { | |
| 2788 return new Selector.setter(identifier.source, library); | |
| 2789 } | |
| 2790 | |
| 2791 // Compute the arity and the list of named arguments. | |
| 2792 int arity = 0; | |
| 2793 List<String> named = <String>[]; | |
| 2794 for (Link<Node> link = node.argumentsNode.nodes; | |
| 2795 !link.isEmpty; | |
| 2796 link = link.tail) { | |
| 2797 Expression argument = link.head; | |
| 2798 NamedArgument namedArgument = argument.asNamedArgument(); | |
| 2799 if (namedArgument != null) { | |
| 2800 named.add(namedArgument.name.source); | |
| 2801 } | |
| 2802 arity++; | |
| 2803 } | |
| 2804 | |
| 2805 if (element != null && element.isConstructor) { | |
| 2806 return new Selector.callConstructor( | |
| 2807 element.name, library, arity, named); | |
| 2808 } | |
| 2809 | |
| 2810 // If we're invoking a closure, we do not have an identifier. | |
| 2811 return (identifier == null) | |
| 2812 ? new Selector.callClosure(arity, named) | |
| 2813 : new Selector.call(identifier.source, library, arity, named); | |
| 2814 } | |
| 2815 | |
| 2816 Selector resolveSelector(Send node, Element element) { | |
| 2817 LibraryElement library = enclosingElement.library; | |
| 2818 Selector selector = computeSendSelector(node, library, element); | |
| 2819 if (selector != null) registry.setSelector(node, selector); | |
| 2820 return selector; | |
| 2821 } | |
| 2822 | |
| 2823 void resolveArguments(NodeList list) { | |
| 2824 if (list == null) return; | |
| 2825 bool oldSendIsMemberAccess = sendIsMemberAccess; | |
| 2826 sendIsMemberAccess = false; | |
| 2827 Map<String, Node> seenNamedArguments = new Map<String, Node>(); | |
| 2828 for (Link<Node> link = list.nodes; !link.isEmpty; link = link.tail) { | |
| 2829 Expression argument = link.head; | |
| 2830 visit(argument); | |
| 2831 NamedArgument namedArgument = argument.asNamedArgument(); | |
| 2832 if (namedArgument != null) { | |
| 2833 String source = namedArgument.name.source; | |
| 2834 if (seenNamedArguments.containsKey(source)) { | |
| 2835 reportDuplicateDefinition( | |
| 2836 source, | |
| 2837 argument, | |
| 2838 seenNamedArguments[source]); | |
| 2839 } else { | |
| 2840 seenNamedArguments[source] = namedArgument; | |
| 2841 } | |
| 2842 } else if (!seenNamedArguments.isEmpty) { | |
| 2843 error(argument, MessageKind.INVALID_ARGUMENT_AFTER_NAMED); | |
| 2844 } | |
| 2845 } | |
| 2846 sendIsMemberAccess = oldSendIsMemberAccess; | |
| 2847 } | |
| 2848 | |
| 2849 ResolutionResult visitSend(Send node) { | |
| 2850 bool oldSendIsMemberAccess = sendIsMemberAccess; | |
| 2851 sendIsMemberAccess = node.isPropertyAccess || node.isCall; | |
| 2852 ResolutionResult result; | |
| 2853 if (node.isLogicalAnd) { | |
| 2854 result = doInPromotionScope(node.receiver, () => resolveSend(node)); | |
| 2855 } else { | |
| 2856 result = resolveSend(node); | |
| 2857 } | |
| 2858 sendIsMemberAccess = oldSendIsMemberAccess; | |
| 2859 | |
| 2860 Element target = result != null ? result.element : null; | |
| 2861 | |
| 2862 if (target != null | |
| 2863 && target == compiler.mirrorSystemGetNameFunction | |
| 2864 && !compiler.mirrorUsageAnalyzerTask.hasMirrorUsage(enclosingElement)) { | |
| 2865 compiler.reportHint( | |
| 2866 node.selector, MessageKind.STATIC_FUNCTION_BLOAT, | |
| 2867 {'class': compiler.mirrorSystemClass.name, | |
| 2868 'name': compiler.mirrorSystemGetNameFunction.name}); | |
| 2869 } | |
| 2870 | |
| 2871 if (!Elements.isUnresolved(target)) { | |
| 2872 if (target.isAbstractField) { | |
| 2873 AbstractFieldElement field = target; | |
| 2874 target = field.getter; | |
| 2875 if (target == null && !inInstanceContext) { | |
| 2876 registry.registerThrowNoSuchMethod(); | |
| 2877 target = | |
| 2878 warnAndCreateErroneousElement(node.selector, field.name, | |
| 2879 MessageKind.CANNOT_RESOLVE_GETTER); | |
| 2880 } | |
| 2881 } else if (target.isTypeVariable) { | |
| 2882 ClassElement cls = target.enclosingClass; | |
| 2883 assert(enclosingElement.enclosingClass == cls); | |
| 2884 registry.registerClassUsingVariableExpression(cls); | |
| 2885 registry.registerTypeVariableExpression(); | |
| 2886 // Set the type of the node to [Type] to mark this send as a | |
| 2887 // type variable expression. | |
| 2888 registry.registerTypeLiteral(node, target.computeType(compiler)); | |
| 2889 } else if (target.impliesType && (!sendIsMemberAccess || node.isCall)) { | |
| 2890 // Set the type of the node to [Type] to mark this send as a | |
| 2891 // type literal. | |
| 2892 DartType type; | |
| 2893 | |
| 2894 // TODO(johnniwinther): Remove this hack when we can pass more complex | |
| 2895 // information between methods than resolved elements. | |
| 2896 if (target == compiler.typeClass && node.receiver == null) { | |
| 2897 // Potentially a 'dynamic' type literal. | |
| 2898 type = registry.getType(node.selector); | |
| 2899 } | |
| 2900 if (type == null) { | |
| 2901 type = target.computeType(compiler); | |
| 2902 } | |
| 2903 registry.registerTypeLiteral(node, type); | |
| 2904 | |
| 2905 // Don't try to make constants of calls to type literals. | |
| 2906 if (!node.isCall) { | |
| 2907 analyzeConstant(node); | |
| 2908 } else { | |
| 2909 // The node itself is not a constant but we register the selector (the | |
| 2910 // identifier that refers to the class/typedef) as a constant. | |
| 2911 analyzeConstant(node.selector); | |
| 2912 } | |
| 2913 } | |
| 2914 if (isPotentiallyMutableTarget(target)) { | |
| 2915 if (enclosingElement != target.enclosingElement) { | |
| 2916 for (Node scope in promotionScope) { | |
| 2917 registry.setAccessedByClosureIn(scope, target, node); | |
| 2918 } | |
| 2919 } | |
| 2920 } | |
| 2921 } | |
| 2922 | |
| 2923 bool resolvedArguments = false; | |
| 2924 if (node.isOperator) { | |
| 2925 String operatorString = node.selector.asOperator().source; | |
| 2926 if (identical(operatorString, 'is')) { | |
| 2927 // TODO(johnniwinther): Use seen type tests to avoid registration of | |
| 2928 // mutation/access to unpromoted variables. | |
| 2929 DartType type = | |
| 2930 resolveTypeAnnotation(node.typeAnnotationFromIsCheckOrCast); | |
| 2931 if (type != null) { | |
| 2932 registry.registerIsCheck(type); | |
| 2933 } | |
| 2934 resolvedArguments = true; | |
| 2935 } else if (identical(operatorString, 'as')) { | |
| 2936 DartType type = resolveTypeAnnotation(node.arguments.head); | |
| 2937 if (type != null) { | |
| 2938 registry.registerAsCheck(type); | |
| 2939 } | |
| 2940 resolvedArguments = true; | |
| 2941 } else if (identical(operatorString, '&&')) { | |
| 2942 doInPromotionScope(node.arguments.head, | |
| 2943 () => resolveArguments(node.argumentsNode)); | |
| 2944 resolvedArguments = true; | |
| 2945 } | |
| 2946 } | |
| 2947 | |
| 2948 if (!resolvedArguments) { | |
| 2949 resolveArguments(node.argumentsNode); | |
| 2950 } | |
| 2951 | |
| 2952 // If the selector is null, it means that we will not be generating | |
| 2953 // code for this as a send. | |
| 2954 Selector selector = registry.getSelector(node); | |
| 2955 if (selector == null) return null; | |
| 2956 | |
| 2957 if (node.isCall) { | |
| 2958 if (Elements.isUnresolved(target) || | |
| 2959 target.isGetter || | |
| 2960 target.isField || | |
| 2961 Elements.isClosureSend(node, target)) { | |
| 2962 // If we don't know what we're calling or if we are calling a getter, | |
| 2963 // we need to register that fact that we may be calling a closure | |
| 2964 // with the same arguments. | |
| 2965 Selector call = new Selector.callClosureFrom(selector); | |
| 2966 registry.registerDynamicInvocation(call); | |
| 2967 } else if (target.impliesType) { | |
| 2968 // We call 'call()' on a Type instance returned from the reference to a | |
| 2969 // class or typedef literal. We do not need to register this call as a | |
| 2970 // dynamic invocation, because we statically know what the target is. | |
| 2971 } else { | |
| 2972 if (target is FunctionElement) { | |
| 2973 FunctionElement function = target; | |
| 2974 function.computeSignature(compiler); | |
| 2975 } | |
| 2976 if (!selector.applies(target, compiler.world)) { | |
| 2977 registry.registerThrowNoSuchMethod(); | |
| 2978 if (node.isSuperCall) { | |
| 2979 // Similar to what we do when we can't find super via selector | |
| 2980 // in [resolveSend] above, we still need to register the invocation, | |
| 2981 // because we might call [:super.noSuchMethod:] which calls | |
| 2982 // [JSInvocationMirror._invokeOn]. | |
| 2983 registry.registerDynamicInvocation(selector); | |
| 2984 registry.registerSuperNoSuchMethod(); | |
| 2985 } | |
| 2986 } | |
| 2987 } | |
| 2988 | |
| 2989 if (target != null && target.isForeign(compiler.backend)) { | |
| 2990 if (selector.name == 'JS') { | |
| 2991 registry.registerJsCall(node, this); | |
| 2992 } else if (selector.name == 'JS_EMBEDDED_GLOBAL') { | |
| 2993 registry.registerJsEmbeddedGlobalCall(node, this); | |
| 2994 } else if (selector.name == 'JS_INTERCEPTOR_CONSTANT') { | |
| 2995 if (!node.argumentsNode.isEmpty) { | |
| 2996 Node argument = node.argumentsNode.nodes.head; | |
| 2997 if (argumentsToJsInterceptorConstant == null) { | |
| 2998 argumentsToJsInterceptorConstant = new Set<Node>(); | |
| 2999 } | |
| 3000 argumentsToJsInterceptorConstant.add(argument); | |
| 3001 } | |
| 3002 } | |
| 3003 } | |
| 3004 } | |
| 3005 | |
| 3006 registry.useElement(node, target); | |
| 3007 registerSend(selector, target); | |
| 3008 if (node.isPropertyAccess && Elements.isStaticOrTopLevelFunction(target)) { | |
| 3009 registry.registerGetOfStaticFunction(target.declaration); | |
| 3010 } | |
| 3011 return node.isPropertyAccess ? new ElementResult(target) : null; | |
| 3012 } | |
| 3013 | |
| 3014 /// Callback for native enqueuer to parse a type. Returns [:null:] on error. | |
| 3015 DartType resolveTypeFromString(Node node, String typeName) { | |
| 3016 Element element = lookupInScope(compiler, node, | |
| 3017 scope, typeName); | |
| 3018 if (element == null) return null; | |
| 3019 if (element is! ClassElement) return null; | |
| 3020 ClassElement cls = element; | |
| 3021 cls.ensureResolved(compiler); | |
| 3022 return cls.computeType(compiler); | |
| 3023 } | |
| 3024 | |
| 3025 ResolutionResult visitSendSet(SendSet node) { | |
| 3026 bool oldSendIsMemberAccess = sendIsMemberAccess; | |
| 3027 sendIsMemberAccess = node.isPropertyAccess || node.isCall; | |
| 3028 ResolutionResult result = resolveSend(node); | |
| 3029 sendIsMemberAccess = oldSendIsMemberAccess; | |
| 3030 Element target = result != null ? result.element : null; | |
| 3031 Element setter = target; | |
| 3032 Element getter = target; | |
| 3033 String operatorName = node.assignmentOperator.source; | |
| 3034 String source = operatorName; | |
| 3035 bool isComplex = !identical(source, '='); | |
| 3036 if (!(result is AssertResult || Elements.isUnresolved(target))) { | |
| 3037 if (target.isAbstractField) { | |
| 3038 AbstractFieldElement field = target; | |
| 3039 setter = field.setter; | |
| 3040 getter = field.getter; | |
| 3041 if (setter == null && !inInstanceContext) { | |
| 3042 setter = warnAndCreateErroneousElement( | |
| 3043 node.selector, field.name, MessageKind.CANNOT_RESOLVE_SETTER); | |
| 3044 registry.registerThrowNoSuchMethod(); | |
| 3045 } | |
| 3046 if (isComplex && getter == null && !inInstanceContext) { | |
| 3047 getter = warnAndCreateErroneousElement( | |
| 3048 node.selector, field.name, MessageKind.CANNOT_RESOLVE_GETTER); | |
| 3049 registry.registerThrowNoSuchMethod(); | |
| 3050 } | |
| 3051 } else if (target.impliesType) { | |
| 3052 setter = warnAndCreateErroneousElement( | |
| 3053 node.selector, target.name, MessageKind.ASSIGNING_TYPE); | |
| 3054 registry.registerThrowNoSuchMethod(); | |
| 3055 } else if (target.isFinal || | |
| 3056 target.isConst || | |
| 3057 (target.isFunction && | |
| 3058 Elements.isStaticOrTopLevelFunction(target) && | |
| 3059 !target.isSetter)) { | |
| 3060 if (target.isFunction) { | |
| 3061 setter = warnAndCreateErroneousElement( | |
| 3062 node.selector, target.name, MessageKind.ASSIGNING_METHOD); | |
| 3063 } else { | |
| 3064 setter = warnAndCreateErroneousElement( | |
| 3065 node.selector, target.name, MessageKind.CANNOT_RESOLVE_SETTER); | |
| 3066 } | |
| 3067 registry.registerThrowNoSuchMethod(); | |
| 3068 } | |
| 3069 if (isPotentiallyMutableTarget(target)) { | |
| 3070 registry.registerPotentialMutation(target, node); | |
| 3071 if (enclosingElement != target.enclosingElement) { | |
| 3072 registry.registerPotentialMutationInClosure(target, node); | |
| 3073 } | |
| 3074 for (Node scope in promotionScope) { | |
| 3075 registry.registerPotentialMutationIn(scope, target, node); | |
| 3076 } | |
| 3077 } | |
| 3078 } | |
| 3079 | |
| 3080 resolveArguments(node.argumentsNode); | |
| 3081 | |
| 3082 Selector selector = registry.getSelector(node); | |
| 3083 if (isComplex) { | |
| 3084 Selector getterSelector; | |
| 3085 if (selector.isSetter) { | |
| 3086 getterSelector = new Selector.getterFrom(selector); | |
| 3087 } else { | |
| 3088 assert(selector.isIndexSet); | |
| 3089 getterSelector = new Selector.index(); | |
| 3090 } | |
| 3091 registerSend(getterSelector, getter); | |
| 3092 registry.setGetterSelectorInComplexSendSet(node, getterSelector); | |
| 3093 if (node.isSuperCall) { | |
| 3094 getter = currentClass.lookupSuperSelector(getterSelector); | |
| 3095 if (getter == null) { | |
| 3096 target = warnAndCreateErroneousElement( | |
| 3097 node, selector.name, MessageKind.NO_SUCH_SUPER_MEMBER, | |
| 3098 {'className': currentClass, 'memberName': selector.name}); | |
| 3099 registry.registerSuperNoSuchMethod(); | |
| 3100 } | |
| 3101 } | |
| 3102 registry.useElement(node.selector, getter); | |
| 3103 | |
| 3104 // Make sure we include the + and - operators if we are using | |
| 3105 // the ++ and -- ones. Also, if op= form is used, include op itself. | |
| 3106 void registerBinaryOperator(String name) { | |
| 3107 Selector binop = new Selector.binaryOperator(name); | |
| 3108 registry.registerDynamicInvocation(binop); | |
| 3109 registry.setOperatorSelectorInComplexSendSet(node, binop); | |
| 3110 } | |
| 3111 if (identical(source, '++')) { | |
| 3112 registerBinaryOperator('+'); | |
| 3113 registry.registerInstantiatedClass(compiler.intClass); | |
| 3114 } else if (identical(source, '--')) { | |
| 3115 registerBinaryOperator('-'); | |
| 3116 registry.registerInstantiatedClass(compiler.intClass); | |
| 3117 } else if (source.endsWith('=')) { | |
| 3118 registerBinaryOperator(Elements.mapToUserOperator(operatorName)); | |
| 3119 } | |
| 3120 } | |
| 3121 | |
| 3122 registerSend(selector, setter); | |
| 3123 return new ElementResult(registry.useElement(node, setter)); | |
| 3124 } | |
| 3125 | |
| 3126 void registerSend(Selector selector, Element target) { | |
| 3127 if (target == null || target.isInstanceMember) { | |
| 3128 if (selector.isGetter) { | |
| 3129 registry.registerDynamicGetter(selector); | |
| 3130 } else if (selector.isSetter) { | |
| 3131 registry.registerDynamicSetter(selector); | |
| 3132 } else { | |
| 3133 registry.registerDynamicInvocation(selector); | |
| 3134 } | |
| 3135 } else if (Elements.isStaticOrTopLevel(target)) { | |
| 3136 // Avoid registration of type variables since they are not analyzable but | |
| 3137 // instead resolved through their enclosing type declaration. | |
| 3138 if (!target.isTypeVariable) { | |
| 3139 // [target] might be the implementation element and only declaration | |
| 3140 // elements may be registered. | |
| 3141 registry.registerStaticUse(target.declaration); | |
| 3142 } | |
| 3143 } | |
| 3144 } | |
| 3145 | |
| 3146 visitLiteralInt(LiteralInt node) { | |
| 3147 registry.registerInstantiatedClass(compiler.intClass); | |
| 3148 } | |
| 3149 | |
| 3150 visitLiteralDouble(LiteralDouble node) { | |
| 3151 registry.registerInstantiatedClass(compiler.doubleClass); | |
| 3152 } | |
| 3153 | |
| 3154 visitLiteralBool(LiteralBool node) { | |
| 3155 registry.registerInstantiatedClass(compiler.boolClass); | |
| 3156 } | |
| 3157 | |
| 3158 visitLiteralString(LiteralString node) { | |
| 3159 registry.registerInstantiatedClass(compiler.stringClass); | |
| 3160 } | |
| 3161 | |
| 3162 visitLiteralNull(LiteralNull node) { | |
| 3163 registry.registerInstantiatedClass(compiler.nullClass); | |
| 3164 } | |
| 3165 | |
| 3166 visitLiteralSymbol(LiteralSymbol node) { | |
| 3167 registry.registerInstantiatedClass(compiler.symbolClass); | |
| 3168 registry.registerStaticUse(compiler.symbolConstructor.declaration); | |
| 3169 registry.registerConstSymbol(node.slowNameString); | |
| 3170 if (!validateSymbol(node, node.slowNameString, reportError: false)) { | |
| 3171 compiler.reportError(node, | |
| 3172 MessageKind.UNSUPPORTED_LITERAL_SYMBOL, | |
| 3173 {'value': node.slowNameString}); | |
| 3174 } | |
| 3175 analyzeConstant(node); | |
| 3176 } | |
| 3177 | |
| 3178 visitStringJuxtaposition(StringJuxtaposition node) { | |
| 3179 registry.registerInstantiatedClass(compiler.stringClass); | |
| 3180 node.visitChildren(this); | |
| 3181 } | |
| 3182 | |
| 3183 visitNodeList(NodeList node) { | |
| 3184 for (Link<Node> link = node.nodes; !link.isEmpty; link = link.tail) { | |
| 3185 visit(link.head); | |
| 3186 } | |
| 3187 } | |
| 3188 | |
| 3189 visitOperator(Operator node) { | |
| 3190 internalError(node, 'operator'); | |
| 3191 } | |
| 3192 | |
| 3193 visitRethrow(Rethrow node) { | |
| 3194 if (!inCatchBlock) { | |
| 3195 error(node, MessageKind.THROW_WITHOUT_EXPRESSION); | |
| 3196 } | |
| 3197 } | |
| 3198 | |
| 3199 visitReturn(Return node) { | |
| 3200 Node expression = node.expression; | |
| 3201 if (expression != null && | |
| 3202 enclosingElement.isGenerativeConstructor) { | |
| 3203 // It is a compile-time error if a return statement of the form | |
| 3204 // `return e;` appears in a generative constructor. (Dart Language | |
| 3205 // Specification 13.12.) | |
| 3206 compiler.reportError(expression, | |
| 3207 MessageKind.CANNOT_RETURN_FROM_CONSTRUCTOR); | |
| 3208 } | |
| 3209 visit(node.expression); | |
| 3210 } | |
| 3211 | |
| 3212 visitYield(Yield node) { | |
| 3213 compiler.streamClass.ensureResolved(compiler); | |
| 3214 compiler.iterableClass.ensureResolved(compiler); | |
| 3215 visit(node.expression); | |
| 3216 } | |
| 3217 | |
| 3218 visitRedirectingFactoryBody(RedirectingFactoryBody node) { | |
| 3219 final isSymbolConstructor = enclosingElement == compiler.symbolConstructor; | |
| 3220 if (!enclosingElement.isFactoryConstructor) { | |
| 3221 compiler.reportError( | |
| 3222 node, MessageKind.FACTORY_REDIRECTION_IN_NON_FACTORY); | |
| 3223 compiler.reportHint( | |
| 3224 enclosingElement, MessageKind.MISSING_FACTORY_KEYWORD); | |
| 3225 } | |
| 3226 ConstructorElementX constructor = enclosingElement; | |
| 3227 bool isConstConstructor = constructor.isConst; | |
| 3228 ConstructorElement redirectionTarget = resolveRedirectingFactory( | |
| 3229 node, inConstContext: isConstConstructor); | |
| 3230 constructor.immediateRedirectionTarget = redirectionTarget; | |
| 3231 registry.setRedirectingTargetConstructor(node, redirectionTarget); | |
| 3232 if (Elements.isUnresolved(redirectionTarget)) { | |
| 3233 registry.registerThrowNoSuchMethod(); | |
| 3234 return; | |
| 3235 } else { | |
| 3236 if (isConstConstructor && | |
| 3237 !redirectionTarget.isConst) { | |
| 3238 compiler.reportError(node, MessageKind.CONSTRUCTOR_IS_NOT_CONST); | |
| 3239 } | |
| 3240 if (redirectionTarget == constructor) { | |
| 3241 compiler.reportError(node, MessageKind.CYCLIC_REDIRECTING_FACTORY); | |
| 3242 return; | |
| 3243 } | |
| 3244 } | |
| 3245 | |
| 3246 // Check that the target constructor is type compatible with the | |
| 3247 // redirecting constructor. | |
| 3248 ClassElement targetClass = redirectionTarget.enclosingClass; | |
| 3249 InterfaceType type = registry.getType(node); | |
| 3250 FunctionType targetType = redirectionTarget.computeType(compiler) | |
| 3251 .subst(type.typeArguments, targetClass.typeVariables); | |
| 3252 FunctionType constructorType = constructor.computeType(compiler); | |
| 3253 bool isSubtype = compiler.types.isSubtype(targetType, constructorType); | |
| 3254 if (!isSubtype) { | |
| 3255 warning(node, MessageKind.NOT_ASSIGNABLE, | |
| 3256 {'fromType': targetType, 'toType': constructorType}); | |
| 3257 } | |
| 3258 | |
| 3259 FunctionSignature targetSignature = | |
| 3260 redirectionTarget.computeSignature(compiler); | |
| 3261 FunctionSignature constructorSignature = | |
| 3262 constructor.computeSignature(compiler); | |
| 3263 if (!targetSignature.isCompatibleWith(constructorSignature)) { | |
| 3264 assert(!isSubtype); | |
| 3265 registry.registerThrowNoSuchMethod(); | |
| 3266 } | |
| 3267 | |
| 3268 // Register a post process to check for cycles in the redirection chain and | |
| 3269 // set the actual generative constructor at the end of the chain. | |
| 3270 addDeferredAction(constructor, () { | |
| 3271 compiler.resolver.resolveRedirectionChain(constructor, node); | |
| 3272 }); | |
| 3273 | |
| 3274 registry.registerStaticUse(redirectionTarget); | |
| 3275 // TODO(johnniwinther): Register the effective target type instead. | |
| 3276 registry.registerInstantiatedClass( | |
| 3277 redirectionTarget.enclosingClass.declaration); | |
| 3278 if (isSymbolConstructor) { | |
| 3279 registry.registerSymbolConstructor(); | |
| 3280 } | |
| 3281 } | |
| 3282 | |
| 3283 visitThrow(Throw node) { | |
| 3284 registry.registerThrowExpression(); | |
| 3285 visit(node.expression); | |
| 3286 } | |
| 3287 | |
| 3288 visitAwait(Await node) { | |
| 3289 compiler.futureClass.ensureResolved(compiler); | |
| 3290 visit(node.expression); | |
| 3291 } | |
| 3292 | |
| 3293 visitVariableDefinitions(VariableDefinitions node) { | |
| 3294 DartType type; | |
| 3295 if (node.type != null) { | |
| 3296 type = resolveTypeAnnotation(node.type); | |
| 3297 } else { | |
| 3298 type = const DynamicType(); | |
| 3299 } | |
| 3300 VariableList variables = new VariableList.node(node, type); | |
| 3301 VariableDefinitionsVisitor visitor = | |
| 3302 new VariableDefinitionsVisitor(compiler, node, this, variables); | |
| 3303 | |
| 3304 Modifiers modifiers = node.modifiers; | |
| 3305 void reportExtraModifier(String modifier) { | |
| 3306 Node modifierNode; | |
| 3307 for (Link<Node> nodes = modifiers.nodes.nodes; | |
| 3308 !nodes.isEmpty; | |
| 3309 nodes = nodes.tail) { | |
| 3310 if (modifier == nodes.head.asIdentifier().source) { | |
| 3311 modifierNode = nodes.head; | |
| 3312 break; | |
| 3313 } | |
| 3314 } | |
| 3315 assert(modifierNode != null); | |
| 3316 compiler.reportError(modifierNode, MessageKind.EXTRANEOUS_MODIFIER, | |
| 3317 {'modifier': modifier}); | |
| 3318 } | |
| 3319 if (modifiers.isFinal && (modifiers.isConst || modifiers.isVar)) { | |
| 3320 reportExtraModifier('final'); | |
| 3321 } | |
| 3322 if (modifiers.isVar && (modifiers.isConst || node.type != null)) { | |
| 3323 reportExtraModifier('var'); | |
| 3324 } | |
| 3325 if (enclosingElement.isFunction) { | |
| 3326 if (modifiers.isAbstract) { | |
| 3327 reportExtraModifier('abstract'); | |
| 3328 } | |
| 3329 if (modifiers.isStatic) { | |
| 3330 reportExtraModifier('static'); | |
| 3331 } | |
| 3332 } | |
| 3333 if (node.metadata != null) { | |
| 3334 variables.metadata = | |
| 3335 compiler.resolver.resolveMetadata(enclosingElement, node); | |
| 3336 } | |
| 3337 visitor.visit(node.definitions); | |
| 3338 } | |
| 3339 | |
| 3340 visitWhile(While node) { | |
| 3341 visit(node.condition); | |
| 3342 visitLoopBodyIn(node, node.body, new BlockScope(scope)); | |
| 3343 } | |
| 3344 | |
| 3345 visitParenthesizedExpression(ParenthesizedExpression node) { | |
| 3346 bool oldSendIsMemberAccess = sendIsMemberAccess; | |
| 3347 sendIsMemberAccess = false; | |
| 3348 visit(node.expression); | |
| 3349 sendIsMemberAccess = oldSendIsMemberAccess; | |
| 3350 } | |
| 3351 | |
| 3352 ResolutionResult visitNewExpression(NewExpression node) { | |
| 3353 Node selector = node.send.selector; | |
| 3354 FunctionElement constructor = resolveConstructor(node); | |
| 3355 final bool isSymbolConstructor = constructor == compiler.symbolConstructor; | |
| 3356 final bool isMirrorsUsedConstant = | |
| 3357 node.isConst && (constructor == compiler.mirrorsUsedConstructor); | |
| 3358 Selector callSelector = resolveSelector(node.send, constructor); | |
| 3359 resolveArguments(node.send.argumentsNode); | |
| 3360 registry.useElement(node.send, constructor); | |
| 3361 if (Elements.isUnresolved(constructor)) { | |
| 3362 return new ElementResult(constructor); | |
| 3363 } | |
| 3364 constructor.computeSignature(compiler); | |
| 3365 if (!callSelector.applies(constructor, compiler.world)) { | |
| 3366 registry.registerThrowNoSuchMethod(); | |
| 3367 } | |
| 3368 | |
| 3369 // [constructor] might be the implementation element | |
| 3370 // and only declaration elements may be registered. | |
| 3371 registry.registerStaticUse(constructor.declaration); | |
| 3372 ClassElement cls = constructor.enclosingClass; | |
| 3373 InterfaceType type = registry.getType(node); | |
| 3374 if (node.isConst && type.containsTypeVariables) { | |
| 3375 compiler.reportError(node.send.selector, | |
| 3376 MessageKind.TYPE_VARIABLE_IN_CONSTANT); | |
| 3377 } | |
| 3378 // TODO(johniwinther): Avoid registration of `type` in face of redirecting | |
| 3379 // factory constructors. | |
| 3380 registry.registerInstantiatedType(type); | |
| 3381 if (constructor.isFactoryConstructor && !type.typeArguments.isEmpty) { | |
| 3382 registry.registerFactoryWithTypeArguments(); | |
| 3383 } | |
| 3384 if (constructor.isGenerativeConstructor && cls.isAbstract) { | |
| 3385 warning(node, MessageKind.ABSTRACT_CLASS_INSTANTIATION); | |
| 3386 registry.registerAbstractClassInstantiation(); | |
| 3387 } | |
| 3388 | |
| 3389 if (isSymbolConstructor) { | |
| 3390 if (node.isConst) { | |
| 3391 Node argumentNode = node.send.arguments.head; | |
| 3392 ConstantExpression constant = | |
| 3393 compiler.resolver.constantCompiler.compileNode( | |
| 3394 argumentNode, registry.mapping); | |
| 3395 ConstantValue name = constant.value; | |
| 3396 if (!name.isString) { | |
| 3397 DartType type = name.computeType(compiler); | |
| 3398 compiler.reportError(argumentNode, MessageKind.STRING_EXPECTED, | |
| 3399 {'type': type}); | |
| 3400 } else { | |
| 3401 StringConstantValue stringConstant = name; | |
| 3402 String nameString = stringConstant.toDartString().slowToString(); | |
| 3403 if (validateSymbol(argumentNode, nameString)) { | |
| 3404 registry.registerConstSymbol(nameString); | |
| 3405 } | |
| 3406 } | |
| 3407 } else { | |
| 3408 if (!compiler.mirrorUsageAnalyzerTask.hasMirrorUsage( | |
| 3409 enclosingElement)) { | |
| 3410 compiler.reportHint( | |
| 3411 node.newToken, MessageKind.NON_CONST_BLOAT, | |
| 3412 {'name': compiler.symbolClass.name}); | |
| 3413 } | |
| 3414 registry.registerNewSymbol(); | |
| 3415 } | |
| 3416 } else if (isMirrorsUsedConstant) { | |
| 3417 compiler.mirrorUsageAnalyzerTask.validate(node, registry.mapping); | |
| 3418 } | |
| 3419 if (node.isConst) { | |
| 3420 analyzeConstant(node); | |
| 3421 } | |
| 3422 | |
| 3423 return null; | |
| 3424 } | |
| 3425 | |
| 3426 void checkConstMapKeysDontOverrideEquals(Spannable spannable, | |
| 3427 MapConstantValue map) { | |
| 3428 for (ConstantValue key in map.keys) { | |
| 3429 if (!key.isObject) continue; | |
| 3430 ObjectConstantValue objectConstant = key; | |
| 3431 DartType keyType = objectConstant.type; | |
| 3432 ClassElement cls = keyType.element; | |
| 3433 if (cls == compiler.stringClass) continue; | |
| 3434 Element equals = cls.lookupMember('=='); | |
| 3435 if (equals.enclosingClass != compiler.objectClass) { | |
| 3436 compiler.reportError(spannable, | |
| 3437 MessageKind.CONST_MAP_KEY_OVERRIDES_EQUALS, | |
| 3438 {'type': keyType}); | |
| 3439 } | |
| 3440 } | |
| 3441 } | |
| 3442 | |
| 3443 void analyzeConstant(Node node) { | |
| 3444 addDeferredAction(enclosingElement, () { | |
| 3445 ConstantExpression constant = | |
| 3446 compiler.resolver.constantCompiler.compileNode( | |
| 3447 node, registry.mapping); | |
| 3448 | |
| 3449 ConstantValue value = constant.value; | |
| 3450 if (value.isMap) { | |
| 3451 checkConstMapKeysDontOverrideEquals(node, value); | |
| 3452 } | |
| 3453 | |
| 3454 // The type constant that is an argument to JS_INTERCEPTOR_CONSTANT names | |
| 3455 // a class that will be instantiated outside the program by attaching a | |
| 3456 // native class dispatch record referencing the interceptor. | |
| 3457 if (argumentsToJsInterceptorConstant != null && | |
| 3458 argumentsToJsInterceptorConstant.contains(node)) { | |
| 3459 if (value.isType) { | |
| 3460 TypeConstantValue typeConstant = value; | |
| 3461 if (typeConstant.representedType is InterfaceType) { | |
| 3462 registry.registerInstantiatedType(typeConstant.representedType); | |
| 3463 } else { | |
| 3464 compiler.reportError(node, | |
| 3465 MessageKind.WRONG_ARGUMENT_FOR_JS_INTERCEPTOR_CONSTANT); | |
| 3466 } | |
| 3467 } else { | |
| 3468 compiler.reportError(node, | |
| 3469 MessageKind.WRONG_ARGUMENT_FOR_JS_INTERCEPTOR_CONSTANT); | |
| 3470 } | |
| 3471 } | |
| 3472 }); | |
| 3473 } | |
| 3474 | |
| 3475 bool validateSymbol(Node node, String name, {bool reportError: true}) { | |
| 3476 if (name.isEmpty) return true; | |
| 3477 if (name.startsWith('_')) { | |
| 3478 if (reportError) { | |
| 3479 compiler.reportError(node, MessageKind.PRIVATE_IDENTIFIER, | |
| 3480 {'value': name}); | |
| 3481 } | |
| 3482 return false; | |
| 3483 } | |
| 3484 if (!symbolValidationPattern.hasMatch(name)) { | |
| 3485 if (reportError) { | |
| 3486 compiler.reportError(node, MessageKind.INVALID_SYMBOL, | |
| 3487 {'value': name}); | |
| 3488 } | |
| 3489 return false; | |
| 3490 } | |
| 3491 return true; | |
| 3492 } | |
| 3493 | |
| 3494 /** | |
| 3495 * Try to resolve the constructor that is referred to by [node]. | |
| 3496 * Note: this function may return an ErroneousFunctionElement instead of | |
| 3497 * [:null:], if there is no corresponding constructor, class or library. | |
| 3498 */ | |
| 3499 ConstructorElement resolveConstructor(NewExpression node) { | |
| 3500 return node.accept(new ConstructorResolver(compiler, this)); | |
| 3501 } | |
| 3502 | |
| 3503 ConstructorElement resolveRedirectingFactory(RedirectingFactoryBody node, | |
| 3504 {bool inConstContext: false}) { | |
| 3505 return node.accept(new ConstructorResolver(compiler, this, | |
| 3506 inConstContext: inConstContext)); | |
| 3507 } | |
| 3508 | |
| 3509 DartType resolveTypeAnnotation(TypeAnnotation node, | |
| 3510 {bool malformedIsError: false, | |
| 3511 bool deferredIsMalformed: true}) { | |
| 3512 DartType type = typeResolver.resolveTypeAnnotation( | |
| 3513 this, node, malformedIsError: malformedIsError, | |
| 3514 deferredIsMalformed: deferredIsMalformed); | |
| 3515 if (inCheckContext) { | |
| 3516 registry.registerIsCheck(type); | |
| 3517 registry.registerRequiredType(type, enclosingElement); | |
| 3518 } | |
| 3519 return type; | |
| 3520 } | |
| 3521 | |
| 3522 visitModifiers(Modifiers node) { | |
| 3523 internalError(node, 'modifiers'); | |
| 3524 } | |
| 3525 | |
| 3526 visitLiteralList(LiteralList node) { | |
| 3527 bool oldSendIsMemberAccess = sendIsMemberAccess; | |
| 3528 sendIsMemberAccess = false; | |
| 3529 | |
| 3530 NodeList arguments = node.typeArguments; | |
| 3531 DartType typeArgument; | |
| 3532 if (arguments != null) { | |
| 3533 Link<Node> nodes = arguments.nodes; | |
| 3534 if (nodes.isEmpty) { | |
| 3535 // The syntax [: <>[] :] is not allowed. | |
| 3536 error(arguments, MessageKind.MISSING_TYPE_ARGUMENT); | |
| 3537 } else { | |
| 3538 typeArgument = resolveTypeAnnotation(nodes.head); | |
| 3539 for (nodes = nodes.tail; !nodes.isEmpty; nodes = nodes.tail) { | |
| 3540 warning(nodes.head, MessageKind.ADDITIONAL_TYPE_ARGUMENT); | |
| 3541 resolveTypeAnnotation(nodes.head); | |
| 3542 } | |
| 3543 } | |
| 3544 } | |
| 3545 DartType listType; | |
| 3546 if (typeArgument != null) { | |
| 3547 if (node.isConst && typeArgument.containsTypeVariables) { | |
| 3548 compiler.reportError(arguments.nodes.head, | |
| 3549 MessageKind.TYPE_VARIABLE_IN_CONSTANT); | |
| 3550 } | |
| 3551 listType = new InterfaceType(compiler.listClass, [typeArgument]); | |
| 3552 } else { | |
| 3553 compiler.listClass.computeType(compiler); | |
| 3554 listType = compiler.listClass.rawType; | |
| 3555 } | |
| 3556 registry.setType(node, listType); | |
| 3557 registry.registerInstantiatedType(listType); | |
| 3558 registry.registerRequiredType(listType, enclosingElement); | |
| 3559 visit(node.elements); | |
| 3560 if (node.isConst) { | |
| 3561 analyzeConstant(node); | |
| 3562 } | |
| 3563 | |
| 3564 sendIsMemberAccess = false; | |
| 3565 } | |
| 3566 | |
| 3567 visitConditional(Conditional node) { | |
| 3568 doInPromotionScope(node.condition, () => visit(node.condition)); | |
| 3569 doInPromotionScope(node.thenExpression, () => visit(node.thenExpression)); | |
| 3570 visit(node.elseExpression); | |
| 3571 } | |
| 3572 | |
| 3573 visitStringInterpolation(StringInterpolation node) { | |
| 3574 registry.registerInstantiatedClass(compiler.stringClass); | |
| 3575 registry.registerStringInterpolation(); | |
| 3576 node.visitChildren(this); | |
| 3577 } | |
| 3578 | |
| 3579 visitStringInterpolationPart(StringInterpolationPart node) { | |
| 3580 registerImplicitInvocation('toString', 0); | |
| 3581 node.visitChildren(this); | |
| 3582 } | |
| 3583 | |
| 3584 visitBreakStatement(BreakStatement node) { | |
| 3585 JumpTarget target; | |
| 3586 if (node.target == null) { | |
| 3587 target = statementScope.currentBreakTarget(); | |
| 3588 if (target == null) { | |
| 3589 error(node, MessageKind.NO_BREAK_TARGET); | |
| 3590 return; | |
| 3591 } | |
| 3592 target.isBreakTarget = true; | |
| 3593 } else { | |
| 3594 String labelName = node.target.source; | |
| 3595 LabelDefinition label = statementScope.lookupLabel(labelName); | |
| 3596 if (label == null) { | |
| 3597 error(node.target, MessageKind.UNBOUND_LABEL, {'labelName': labelName}); | |
| 3598 return; | |
| 3599 } | |
| 3600 target = label.target; | |
| 3601 if (!target.statement.isValidBreakTarget()) { | |
| 3602 error(node.target, MessageKind.INVALID_BREAK); | |
| 3603 return; | |
| 3604 } | |
| 3605 label.setBreakTarget(); | |
| 3606 registry.useLabel(node, label); | |
| 3607 } | |
| 3608 registry.registerTargetOf(node, target); | |
| 3609 } | |
| 3610 | |
| 3611 visitContinueStatement(ContinueStatement node) { | |
| 3612 JumpTarget target; | |
| 3613 if (node.target == null) { | |
| 3614 target = statementScope.currentContinueTarget(); | |
| 3615 if (target == null) { | |
| 3616 error(node, MessageKind.NO_CONTINUE_TARGET); | |
| 3617 return; | |
| 3618 } | |
| 3619 target.isContinueTarget = true; | |
| 3620 } else { | |
| 3621 String labelName = node.target.source; | |
| 3622 LabelDefinition label = statementScope.lookupLabel(labelName); | |
| 3623 if (label == null) { | |
| 3624 error(node.target, MessageKind.UNBOUND_LABEL, {'labelName': labelName}); | |
| 3625 return; | |
| 3626 } | |
| 3627 target = label.target; | |
| 3628 if (!target.statement.isValidContinueTarget()) { | |
| 3629 error(node.target, MessageKind.INVALID_CONTINUE); | |
| 3630 } | |
| 3631 label.setContinueTarget(); | |
| 3632 registry.useLabel(node, label); | |
| 3633 } | |
| 3634 registry.registerTargetOf(node, target); | |
| 3635 } | |
| 3636 | |
| 3637 registerImplicitInvocation(String name, int arity) { | |
| 3638 Selector selector = new Selector.call(name, null, arity); | |
| 3639 registry.registerDynamicInvocation(selector); | |
| 3640 } | |
| 3641 | |
| 3642 visitForIn(ForIn node) { | |
| 3643 LibraryElement library = enclosingElement.library; | |
| 3644 registry.setIteratorSelector(node, compiler.iteratorSelector); | |
| 3645 registry.registerDynamicGetter(compiler.iteratorSelector); | |
| 3646 registry.setCurrentSelector(node, compiler.currentSelector); | |
| 3647 registry.registerDynamicGetter(compiler.currentSelector); | |
| 3648 registry.setMoveNextSelector(node, compiler.moveNextSelector); | |
| 3649 registry.registerDynamicInvocation(compiler.moveNextSelector); | |
| 3650 | |
| 3651 visit(node.expression); | |
| 3652 Scope blockScope = new BlockScope(scope); | |
| 3653 Node declaration = node.declaredIdentifier; | |
| 3654 | |
| 3655 bool oldAllowFinalWithoutInitializer = allowFinalWithoutInitializer; | |
| 3656 allowFinalWithoutInitializer = true; | |
| 3657 visitIn(declaration, blockScope); | |
| 3658 allowFinalWithoutInitializer = oldAllowFinalWithoutInitializer; | |
| 3659 | |
| 3660 Send send = declaration.asSend(); | |
| 3661 VariableDefinitions variableDefinitions = | |
| 3662 declaration.asVariableDefinitions(); | |
| 3663 Element loopVariable; | |
| 3664 Selector loopVariableSelector; | |
| 3665 if (send != null) { | |
| 3666 loopVariable = registry.getDefinition(send); | |
| 3667 Identifier identifier = send.selector.asIdentifier(); | |
| 3668 if (identifier == null) { | |
| 3669 compiler.reportError(send.selector, MessageKind.INVALID_FOR_IN); | |
| 3670 } else { | |
| 3671 loopVariableSelector = new Selector.setter(identifier.source, library); | |
| 3672 } | |
| 3673 if (send.receiver != null) { | |
| 3674 compiler.reportError(send.receiver, MessageKind.INVALID_FOR_IN); | |
| 3675 } | |
| 3676 } else if (variableDefinitions != null) { | |
| 3677 Link<Node> nodes = variableDefinitions.definitions.nodes; | |
| 3678 if (!nodes.tail.isEmpty) { | |
| 3679 compiler.reportError(nodes.tail.head, MessageKind.INVALID_FOR_IN); | |
| 3680 } | |
| 3681 Node first = nodes.head; | |
| 3682 Identifier identifier = first.asIdentifier(); | |
| 3683 if (identifier == null) { | |
| 3684 compiler.reportError(first, MessageKind.INVALID_FOR_IN); | |
| 3685 } else { | |
| 3686 loopVariableSelector = new Selector.setter(identifier.source, library); | |
| 3687 loopVariable = registry.getDefinition(identifier); | |
| 3688 } | |
| 3689 } else { | |
| 3690 compiler.reportError(declaration, MessageKind.INVALID_FOR_IN); | |
| 3691 } | |
| 3692 if (loopVariableSelector != null) { | |
| 3693 registry.setSelector(declaration, loopVariableSelector); | |
| 3694 registerSend(loopVariableSelector, loopVariable); | |
| 3695 } else { | |
| 3696 // The selector may only be null if we reported an error. | |
| 3697 assert(invariant(declaration, compiler.compilationFailed)); | |
| 3698 } | |
| 3699 if (loopVariable != null) { | |
| 3700 // loopVariable may be null if it could not be resolved. | |
| 3701 registry.setForInVariable(node, loopVariable); | |
| 3702 } | |
| 3703 visitLoopBodyIn(node, node.body, blockScope); | |
| 3704 } | |
| 3705 | |
| 3706 visitLabel(Label node) { | |
| 3707 // Labels are handled by their containing statements/cases. | |
| 3708 } | |
| 3709 | |
| 3710 visitLabeledStatement(LabeledStatement node) { | |
| 3711 Statement body = node.statement; | |
| 3712 JumpTarget targetElement = getOrDefineTarget(body); | |
| 3713 Map<String, LabelDefinition> labelElements = <String, LabelDefinition>{}; | |
| 3714 for (Label label in node.labels) { | |
| 3715 String labelName = label.labelName; | |
| 3716 if (labelElements.containsKey(labelName)) continue; | |
| 3717 LabelDefinition element = targetElement.addLabel(label, labelName); | |
| 3718 labelElements[labelName] = element; | |
| 3719 } | |
| 3720 statementScope.enterLabelScope(labelElements); | |
| 3721 visit(node.statement); | |
| 3722 statementScope.exitLabelScope(); | |
| 3723 labelElements.forEach((String labelName, LabelDefinition element) { | |
| 3724 if (element.isTarget) { | |
| 3725 registry.defineLabel(element.label, element); | |
| 3726 } else { | |
| 3727 warning(element.label, MessageKind.UNUSED_LABEL, | |
| 3728 {'labelName': labelName}); | |
| 3729 } | |
| 3730 }); | |
| 3731 if (!targetElement.isTarget) { | |
| 3732 registry.undefineTarget(body); | |
| 3733 } | |
| 3734 } | |
| 3735 | |
| 3736 visitLiteralMap(LiteralMap node) { | |
| 3737 bool oldSendIsMemberAccess = sendIsMemberAccess; | |
| 3738 sendIsMemberAccess = false; | |
| 3739 | |
| 3740 NodeList arguments = node.typeArguments; | |
| 3741 DartType keyTypeArgument; | |
| 3742 DartType valueTypeArgument; | |
| 3743 if (arguments != null) { | |
| 3744 Link<Node> nodes = arguments.nodes; | |
| 3745 if (nodes.isEmpty) { | |
| 3746 // The syntax [: <>{} :] is not allowed. | |
| 3747 error(arguments, MessageKind.MISSING_TYPE_ARGUMENT); | |
| 3748 } else { | |
| 3749 keyTypeArgument = resolveTypeAnnotation(nodes.head); | |
| 3750 nodes = nodes.tail; | |
| 3751 if (nodes.isEmpty) { | |
| 3752 warning(arguments, MessageKind.MISSING_TYPE_ARGUMENT); | |
| 3753 } else { | |
| 3754 valueTypeArgument = resolveTypeAnnotation(nodes.head); | |
| 3755 for (nodes = nodes.tail; !nodes.isEmpty; nodes = nodes.tail) { | |
| 3756 warning(nodes.head, MessageKind.ADDITIONAL_TYPE_ARGUMENT); | |
| 3757 resolveTypeAnnotation(nodes.head); | |
| 3758 } | |
| 3759 } | |
| 3760 } | |
| 3761 } | |
| 3762 DartType mapType; | |
| 3763 if (valueTypeArgument != null) { | |
| 3764 mapType = new InterfaceType(compiler.mapClass, | |
| 3765 [keyTypeArgument, valueTypeArgument]); | |
| 3766 } else { | |
| 3767 compiler.mapClass.computeType(compiler); | |
| 3768 mapType = compiler.mapClass.rawType; | |
| 3769 } | |
| 3770 if (node.isConst && mapType.containsTypeVariables) { | |
| 3771 compiler.reportError(arguments, | |
| 3772 MessageKind.TYPE_VARIABLE_IN_CONSTANT); | |
| 3773 } | |
| 3774 registry.setType(node, mapType); | |
| 3775 registry.registerInstantiatedType(mapType); | |
| 3776 if (node.isConst) { | |
| 3777 registry.registerConstantMap(); | |
| 3778 } | |
| 3779 registry.registerRequiredType(mapType, enclosingElement); | |
| 3780 node.visitChildren(this); | |
| 3781 if (node.isConst) { | |
| 3782 analyzeConstant(node); | |
| 3783 } | |
| 3784 | |
| 3785 sendIsMemberAccess = false; | |
| 3786 } | |
| 3787 | |
| 3788 visitLiteralMapEntry(LiteralMapEntry node) { | |
| 3789 node.visitChildren(this); | |
| 3790 } | |
| 3791 | |
| 3792 visitNamedArgument(NamedArgument node) { | |
| 3793 visit(node.expression); | |
| 3794 } | |
| 3795 | |
| 3796 DartType typeOfConstant(ConstantValue constant) { | |
| 3797 if (constant.isInt) return compiler.intClass.rawType; | |
| 3798 if (constant.isBool) return compiler.boolClass.rawType; | |
| 3799 if (constant.isDouble) return compiler.doubleClass.rawType; | |
| 3800 if (constant.isString) return compiler.stringClass.rawType; | |
| 3801 if (constant.isNull) return compiler.nullClass.rawType; | |
| 3802 if (constant.isFunction) return compiler.functionClass.rawType; | |
| 3803 assert(constant.isObject); | |
| 3804 ObjectConstantValue objectConstant = constant; | |
| 3805 return objectConstant.type; | |
| 3806 } | |
| 3807 | |
| 3808 bool overridesEquals(DartType type) { | |
| 3809 ClassElement cls = type.element; | |
| 3810 Element equals = cls.lookupMember('=='); | |
| 3811 return equals.enclosingClass != compiler.objectClass; | |
| 3812 } | |
| 3813 | |
| 3814 void checkCaseExpressions(SwitchStatement node) { | |
| 3815 JumpTarget breakElement = getOrDefineTarget(node); | |
| 3816 Map<String, LabelDefinition> continueLabels = <String, LabelDefinition>{}; | |
| 3817 | |
| 3818 Link<Node> cases = node.cases.nodes; | |
| 3819 CaseMatch firstCase = null; | |
| 3820 DartType firstCaseType = null; | |
| 3821 bool hasReportedProblem = false; | |
| 3822 | |
| 3823 for (Link<Node> cases = node.cases.nodes; | |
| 3824 !cases.isEmpty; | |
| 3825 cases = cases.tail) { | |
| 3826 SwitchCase switchCase = cases.head; | |
| 3827 | |
| 3828 for (Node labelOrCase in switchCase.labelsAndCases) { | |
| 3829 CaseMatch caseMatch = labelOrCase.asCaseMatch(); | |
| 3830 if (caseMatch == null) continue; | |
| 3831 | |
| 3832 // Analyze the constant. | |
| 3833 ConstantExpression constant = | |
| 3834 registry.getConstant(caseMatch.expression); | |
| 3835 assert(invariant(node, constant != null, | |
| 3836 message: 'No constant computed for $node')); | |
| 3837 | |
| 3838 DartType caseType = typeOfConstant(constant.value); | |
| 3839 | |
| 3840 if (firstCaseType == null) { | |
| 3841 firstCase = caseMatch; | |
| 3842 firstCaseType = caseType; | |
| 3843 | |
| 3844 // We only report the bad type on the first class element. All others | |
| 3845 // get a "type differs" error. | |
| 3846 if (caseType.element == compiler.doubleClass) { | |
| 3847 compiler.reportError(node, | |
| 3848 MessageKind.SWITCH_CASE_VALUE_OVERRIDES_EQUALS, | |
| 3849 {'type': "double"}); | |
| 3850 } else if (caseType.element == compiler.functionClass) { | |
| 3851 compiler.reportError(node, MessageKind.SWITCH_CASE_FORBIDDEN, | |
| 3852 {'type': "Function"}); | |
| 3853 } else if (constant.value.isObject && overridesEquals(caseType)) { | |
| 3854 compiler.reportError(firstCase.expression, | |
| 3855 MessageKind.SWITCH_CASE_VALUE_OVERRIDES_EQUALS, | |
| 3856 {'type': caseType}); | |
| 3857 } | |
| 3858 } else { | |
| 3859 if (caseType != firstCaseType) { | |
| 3860 if (!hasReportedProblem) { | |
| 3861 compiler.reportError( | |
| 3862 node, | |
| 3863 MessageKind.SWITCH_CASE_TYPES_NOT_EQUAL, | |
| 3864 {'type': firstCaseType}); | |
| 3865 compiler.reportInfo( | |
| 3866 firstCase.expression, | |
| 3867 MessageKind.SWITCH_CASE_TYPES_NOT_EQUAL_CASE, | |
| 3868 {'type': firstCaseType}); | |
| 3869 hasReportedProblem = true; | |
| 3870 } | |
| 3871 compiler.reportInfo( | |
| 3872 caseMatch.expression, | |
| 3873 MessageKind.SWITCH_CASE_TYPES_NOT_EQUAL_CASE, | |
| 3874 {'type': caseType}); | |
| 3875 } | |
| 3876 } | |
| 3877 } | |
| 3878 } | |
| 3879 } | |
| 3880 | |
| 3881 visitSwitchStatement(SwitchStatement node) { | |
| 3882 node.expression.accept(this); | |
| 3883 | |
| 3884 JumpTarget breakElement = getOrDefineTarget(node); | |
| 3885 Map<String, LabelDefinition> continueLabels = <String, LabelDefinition>{}; | |
| 3886 Link<Node> cases = node.cases.nodes; | |
| 3887 while (!cases.isEmpty) { | |
| 3888 SwitchCase switchCase = cases.head; | |
| 3889 for (Node labelOrCase in switchCase.labelsAndCases) { | |
| 3890 CaseMatch caseMatch = labelOrCase.asCaseMatch(); | |
| 3891 if (caseMatch != null) { | |
| 3892 analyzeConstant(caseMatch.expression); | |
| 3893 continue; | |
| 3894 } | |
| 3895 Label label = labelOrCase; | |
| 3896 String labelName = label.labelName; | |
| 3897 | |
| 3898 LabelDefinition existingElement = continueLabels[labelName]; | |
| 3899 if (existingElement != null) { | |
| 3900 // It's an error if the same label occurs twice in the same switch. | |
| 3901 compiler.reportError( | |
| 3902 label, | |
| 3903 MessageKind.DUPLICATE_LABEL, {'labelName': labelName}); | |
| 3904 compiler.reportInfo( | |
| 3905 existingElement.label, | |
| 3906 MessageKind.EXISTING_LABEL, {'labelName': labelName}); | |
| 3907 } else { | |
| 3908 // It's only a warning if it shadows another label. | |
| 3909 existingElement = statementScope.lookupLabel(labelName); | |
| 3910 if (existingElement != null) { | |
| 3911 compiler.reportWarning( | |
| 3912 label, | |
| 3913 MessageKind.DUPLICATE_LABEL, {'labelName': labelName}); | |
| 3914 compiler.reportInfo( | |
| 3915 existingElement.label, | |
| 3916 MessageKind.EXISTING_LABEL, {'labelName': labelName}); | |
| 3917 } | |
| 3918 } | |
| 3919 | |
| 3920 JumpTarget targetElement = getOrDefineTarget(switchCase); | |
| 3921 LabelDefinition labelElement = targetElement.addLabel(label, labelName); | |
| 3922 registry.defineLabel(label, labelElement); | |
| 3923 continueLabels[labelName] = labelElement; | |
| 3924 } | |
| 3925 cases = cases.tail; | |
| 3926 // Test that only the last case, if any, is a default case. | |
| 3927 if (switchCase.defaultKeyword != null && !cases.isEmpty) { | |
| 3928 error(switchCase, MessageKind.INVALID_CASE_DEFAULT); | |
| 3929 } | |
| 3930 } | |
| 3931 | |
| 3932 addDeferredAction(enclosingElement, () { | |
| 3933 checkCaseExpressions(node); | |
| 3934 }); | |
| 3935 | |
| 3936 statementScope.enterSwitch(breakElement, continueLabels); | |
| 3937 node.cases.accept(this); | |
| 3938 statementScope.exitSwitch(); | |
| 3939 | |
| 3940 // Clean-up unused labels. | |
| 3941 continueLabels.forEach((String key, LabelDefinition label) { | |
| 3942 if (!label.isContinueTarget) { | |
| 3943 JumpTarget targetElement = label.target; | |
| 3944 SwitchCase switchCase = targetElement.statement; | |
| 3945 registry.undefineTarget(switchCase); | |
| 3946 registry.undefineLabel(label.label); | |
| 3947 } | |
| 3948 }); | |
| 3949 // TODO(15575): We should warn if we can detect a fall through | |
| 3950 // error. | |
| 3951 registry.registerFallThroughError(); | |
| 3952 } | |
| 3953 | |
| 3954 visitSwitchCase(SwitchCase node) { | |
| 3955 node.labelsAndCases.accept(this); | |
| 3956 visitIn(node.statements, new BlockScope(scope)); | |
| 3957 } | |
| 3958 | |
| 3959 visitCaseMatch(CaseMatch node) { | |
| 3960 visit(node.expression); | |
| 3961 } | |
| 3962 | |
| 3963 visitTryStatement(TryStatement node) { | |
| 3964 visit(node.tryBlock); | |
| 3965 if (node.catchBlocks.isEmpty && node.finallyBlock == null) { | |
| 3966 error(node.getEndToken().next, MessageKind.NO_CATCH_NOR_FINALLY); | |
| 3967 } | |
| 3968 visit(node.catchBlocks); | |
| 3969 visit(node.finallyBlock); | |
| 3970 } | |
| 3971 | |
| 3972 visitCatchBlock(CatchBlock node) { | |
| 3973 registry.registerCatchStatement(); | |
| 3974 // Check that if catch part is present, then | |
| 3975 // it has one or two formal parameters. | |
| 3976 VariableDefinitions exceptionDefinition; | |
| 3977 VariableDefinitions stackTraceDefinition; | |
| 3978 if (node.formals != null) { | |
| 3979 Link<Node> formalsToProcess = node.formals.nodes; | |
| 3980 if (formalsToProcess.isEmpty) { | |
| 3981 error(node, MessageKind.EMPTY_CATCH_DECLARATION); | |
| 3982 } else { | |
| 3983 exceptionDefinition = formalsToProcess.head.asVariableDefinitions(); | |
| 3984 formalsToProcess = formalsToProcess.tail; | |
| 3985 if (!formalsToProcess.isEmpty) { | |
| 3986 stackTraceDefinition = formalsToProcess.head.asVariableDefinitions(); | |
| 3987 formalsToProcess = formalsToProcess.tail; | |
| 3988 if (!formalsToProcess.isEmpty) { | |
| 3989 for (Node extra in formalsToProcess) { | |
| 3990 error(extra, MessageKind.EXTRA_CATCH_DECLARATION); | |
| 3991 } | |
| 3992 } | |
| 3993 registry.registerStackTraceInCatch(); | |
| 3994 } | |
| 3995 } | |
| 3996 | |
| 3997 // Check that the formals aren't optional and that they have no | |
| 3998 // modifiers or type. | |
| 3999 for (Link<Node> link = node.formals.nodes; | |
| 4000 !link.isEmpty; | |
| 4001 link = link.tail) { | |
| 4002 // If the formal parameter is a node list, it means that it is a | |
| 4003 // sequence of optional parameters. | |
| 4004 NodeList nodeList = link.head.asNodeList(); | |
| 4005 if (nodeList != null) { | |
| 4006 error(nodeList, MessageKind.OPTIONAL_PARAMETER_IN_CATCH); | |
| 4007 } else { | |
| 4008 VariableDefinitions declaration = link.head; | |
| 4009 for (Node modifier in declaration.modifiers.nodes) { | |
| 4010 error(modifier, MessageKind.PARAMETER_WITH_MODIFIER_IN_CATCH); | |
| 4011 } | |
| 4012 TypeAnnotation type = declaration.type; | |
| 4013 if (type != null) { | |
| 4014 error(type, MessageKind.PARAMETER_WITH_TYPE_IN_CATCH); | |
| 4015 } | |
| 4016 } | |
| 4017 } | |
| 4018 } | |
| 4019 | |
| 4020 Scope blockScope = new BlockScope(scope); | |
| 4021 doInCheckContext(() => visitIn(node.type, blockScope)); | |
| 4022 visitIn(node.formals, blockScope); | |
| 4023 var oldInCatchBlock = inCatchBlock; | |
| 4024 inCatchBlock = true; | |
| 4025 visitIn(node.block, blockScope); | |
| 4026 inCatchBlock = oldInCatchBlock; | |
| 4027 | |
| 4028 if (node.type != null && exceptionDefinition != null) { | |
| 4029 DartType exceptionType = registry.getType(node.type); | |
| 4030 Node exceptionVariable = exceptionDefinition.definitions.nodes.head; | |
| 4031 VariableElementX exceptionElement = | |
| 4032 registry.getDefinition(exceptionVariable); | |
| 4033 exceptionElement.variables.type = exceptionType; | |
| 4034 } | |
| 4035 if (stackTraceDefinition != null) { | |
| 4036 Node stackTraceVariable = stackTraceDefinition.definitions.nodes.head; | |
| 4037 VariableElementX stackTraceElement = | |
| 4038 registry.getDefinition(stackTraceVariable); | |
| 4039 registry.registerInstantiatedClass(compiler.stackTraceClass); | |
| 4040 stackTraceElement.variables.type = compiler.stackTraceClass.rawType; | |
| 4041 } | |
| 4042 } | |
| 4043 | |
| 4044 visitTypedef(Typedef node) { | |
| 4045 internalError(node, 'typedef'); | |
| 4046 } | |
| 4047 } | |
| 4048 | |
| 4049 class TypeDefinitionVisitor extends MappingVisitor<DartType> { | |
| 4050 Scope scope; | |
| 4051 final TypeDeclarationElement enclosingElement; | |
| 4052 TypeDeclarationElement get element => enclosingElement; | |
| 4053 | |
| 4054 TypeDefinitionVisitor(Compiler compiler, | |
| 4055 TypeDeclarationElement element, | |
| 4056 ResolutionRegistry registry) | |
| 4057 : this.enclosingElement = element, | |
| 4058 scope = Scope.buildEnclosingScope(element), | |
| 4059 super(compiler, registry); | |
| 4060 | |
| 4061 DartType get objectType => compiler.objectClass.rawType; | |
| 4062 | |
| 4063 void resolveTypeVariableBounds(NodeList node) { | |
| 4064 if (node == null) return; | |
| 4065 | |
| 4066 Setlet<String> nameSet = new Setlet<String>(); | |
| 4067 // Resolve the bounds of type variables. | |
| 4068 Iterator<DartType> types = element.typeVariables.iterator; | |
| 4069 Link<Node> nodeLink = node.nodes; | |
| 4070 while (!nodeLink.isEmpty) { | |
| 4071 types.moveNext(); | |
| 4072 TypeVariableType typeVariable = types.current; | |
| 4073 String typeName = typeVariable.name; | |
| 4074 TypeVariable typeNode = nodeLink.head; | |
| 4075 registry.useType(typeNode, typeVariable); | |
| 4076 if (nameSet.contains(typeName)) { | |
| 4077 error(typeNode, MessageKind.DUPLICATE_TYPE_VARIABLE_NAME, | |
| 4078 {'typeVariableName': typeName}); | |
| 4079 } | |
| 4080 nameSet.add(typeName); | |
| 4081 | |
| 4082 TypeVariableElementX variableElement = typeVariable.element; | |
| 4083 if (typeNode.bound != null) { | |
| 4084 DartType boundType = typeResolver.resolveTypeAnnotation( | |
| 4085 this, typeNode.bound); | |
| 4086 variableElement.boundCache = boundType; | |
| 4087 | |
| 4088 void checkTypeVariableBound() { | |
| 4089 Link<TypeVariableElement> seenTypeVariables = | |
| 4090 const Link<TypeVariableElement>(); | |
| 4091 seenTypeVariables = seenTypeVariables.prepend(variableElement); | |
| 4092 DartType bound = boundType; | |
| 4093 while (bound.isTypeVariable) { | |
| 4094 TypeVariableElement element = bound.element; | |
| 4095 if (seenTypeVariables.contains(element)) { | |
| 4096 if (identical(element, variableElement)) { | |
| 4097 // Only report an error on the checked type variable to avoid | |
| 4098 // generating multiple errors for the same cyclicity. | |
| 4099 warning(typeNode.name, MessageKind.CYCLIC_TYPE_VARIABLE, | |
| 4100 {'typeVariableName': variableElement.name}); | |
| 4101 } | |
| 4102 break; | |
| 4103 } | |
| 4104 seenTypeVariables = seenTypeVariables.prepend(element); | |
| 4105 bound = element.bound; | |
| 4106 } | |
| 4107 } | |
| 4108 addDeferredAction(element, checkTypeVariableBound); | |
| 4109 } else { | |
| 4110 variableElement.boundCache = objectType; | |
| 4111 } | |
| 4112 nodeLink = nodeLink.tail; | |
| 4113 } | |
| 4114 assert(!types.moveNext()); | |
| 4115 } | |
| 4116 } | |
| 4117 | |
| 4118 class TypedefResolverVisitor extends TypeDefinitionVisitor { | |
| 4119 TypedefElementX get element => enclosingElement; | |
| 4120 | |
| 4121 TypedefResolverVisitor(Compiler compiler, | |
| 4122 TypedefElement typedefElement, | |
| 4123 ResolutionRegistry registry) | |
| 4124 : super(compiler, typedefElement, registry); | |
| 4125 | |
| 4126 visitTypedef(Typedef node) { | |
| 4127 TypedefType type = element.computeType(compiler); | |
| 4128 scope = new TypeDeclarationScope(scope, element); | |
| 4129 resolveTypeVariableBounds(node.typeParameters); | |
| 4130 | |
| 4131 FunctionSignature signature = SignatureResolver.analyze( | |
| 4132 compiler, node.formals, node.returnType, element, registry, | |
| 4133 defaultValuesError: MessageKind.TYPEDEF_FORMAL_WITH_DEFAULT); | |
| 4134 element.functionSignature = signature; | |
| 4135 | |
| 4136 scope = new MethodScope(scope, element); | |
| 4137 signature.forEachParameter(addToScope); | |
| 4138 | |
| 4139 element.alias = signature.type; | |
| 4140 | |
| 4141 void checkCyclicReference() { | |
| 4142 element.checkCyclicReference(compiler); | |
| 4143 } | |
| 4144 addDeferredAction(element, checkCyclicReference); | |
| 4145 } | |
| 4146 } | |
| 4147 | |
| 4148 // TODO(johnniwinther): Replace with a traversal on the AST when the type | |
| 4149 // annotations in typedef alias are stored in a [TreeElements] mapping. | |
| 4150 class TypedefCyclicVisitor extends DartTypeVisitor { | |
| 4151 final Compiler compiler; | |
| 4152 final TypedefElementX element; | |
| 4153 bool hasCyclicReference = false; | |
| 4154 | |
| 4155 Link<TypedefElement> seenTypedefs = const Link<TypedefElement>(); | |
| 4156 | |
| 4157 int seenTypedefsCount = 0; | |
| 4158 | |
| 4159 Link<TypeVariableElement> seenTypeVariables = | |
| 4160 const Link<TypeVariableElement>(); | |
| 4161 | |
| 4162 TypedefCyclicVisitor(Compiler this.compiler, TypedefElement this.element); | |
| 4163 | |
| 4164 visitType(DartType type, _) { | |
| 4165 // Do nothing. | |
| 4166 } | |
| 4167 | |
| 4168 visitTypedefType(TypedefType type, _) { | |
| 4169 TypedefElementX typedefElement = type.element; | |
| 4170 if (seenTypedefs.contains(typedefElement)) { | |
| 4171 if (!hasCyclicReference && identical(element, typedefElement)) { | |
| 4172 // Only report an error on the checked typedef to avoid generating | |
| 4173 // multiple errors for the same cyclicity. | |
| 4174 hasCyclicReference = true; | |
| 4175 if (seenTypedefsCount == 1) { | |
| 4176 // Direct cyclicity. | |
| 4177 compiler.reportError(element, | |
| 4178 MessageKind.CYCLIC_TYPEDEF, | |
| 4179 {'typedefName': element.name}); | |
| 4180 } else if (seenTypedefsCount == 2) { | |
| 4181 // Cyclicity through one other typedef. | |
| 4182 compiler.reportError(element, | |
| 4183 MessageKind.CYCLIC_TYPEDEF_ONE, | |
| 4184 {'typedefName': element.name, | |
| 4185 'otherTypedefName': seenTypedefs.head.name}); | |
| 4186 } else { | |
| 4187 // Cyclicity through more than one other typedef. | |
| 4188 for (TypedefElement cycle in seenTypedefs) { | |
| 4189 if (!identical(typedefElement, cycle)) { | |
| 4190 compiler.reportError(element, | |
| 4191 MessageKind.CYCLIC_TYPEDEF_ONE, | |
| 4192 {'typedefName': element.name, | |
| 4193 'otherTypedefName': cycle.name}); | |
| 4194 } | |
| 4195 } | |
| 4196 } | |
| 4197 ErroneousElementX erroneousElement = new ErroneousElementX( | |
| 4198 MessageKind.CYCLIC_TYPEDEF, | |
| 4199 {'typedefName': element.name}, | |
| 4200 element.name, element); | |
| 4201 element.alias = | |
| 4202 new MalformedType(erroneousElement, typedefElement.alias); | |
| 4203 element.hasBeenCheckedForCycles = true; | |
| 4204 } | |
| 4205 } else { | |
| 4206 seenTypedefs = seenTypedefs.prepend(typedefElement); | |
| 4207 seenTypedefsCount++; | |
| 4208 type.visitChildren(this, null); | |
| 4209 typedefElement.alias.accept(this, null); | |
| 4210 seenTypedefs = seenTypedefs.tail; | |
| 4211 seenTypedefsCount--; | |
| 4212 } | |
| 4213 } | |
| 4214 | |
| 4215 visitFunctionType(FunctionType type, _) { | |
| 4216 type.visitChildren(this, null); | |
| 4217 } | |
| 4218 | |
| 4219 visitInterfaceType(InterfaceType type, _) { | |
| 4220 type.visitChildren(this, null); | |
| 4221 } | |
| 4222 | |
| 4223 visitTypeVariableType(TypeVariableType type, _) { | |
| 4224 TypeVariableElement typeVariableElement = type.element; | |
| 4225 if (seenTypeVariables.contains(typeVariableElement)) { | |
| 4226 // Avoid running in cycles on cyclic type variable bounds. | |
| 4227 // Cyclicity is reported elsewhere. | |
| 4228 return; | |
| 4229 } | |
| 4230 seenTypeVariables = seenTypeVariables.prepend(typeVariableElement); | |
| 4231 typeVariableElement.bound.accept(this, null); | |
| 4232 seenTypeVariables = seenTypeVariables.tail; | |
| 4233 } | |
| 4234 } | |
| 4235 | |
| 4236 /** | |
| 4237 * The implementation of [ResolverTask.resolveClass]. | |
| 4238 * | |
| 4239 * This visitor has to be extra careful as it is building the basic | |
| 4240 * element information, and cannot safely look at other elements as | |
| 4241 * this may lead to cycles. | |
| 4242 * | |
| 4243 * This visitor can assume that the supertypes have already been | |
| 4244 * resolved, but it cannot call [ResolverTask.resolveClass] directly | |
| 4245 * or indirectly (through [ClassElement.ensureResolved]) for any other | |
| 4246 * types. | |
| 4247 */ | |
| 4248 class ClassResolverVisitor extends TypeDefinitionVisitor { | |
| 4249 BaseClassElementX get element => enclosingElement; | |
| 4250 | |
| 4251 ClassResolverVisitor(Compiler compiler, | |
| 4252 ClassElement classElement, | |
| 4253 ResolutionRegistry registry) | |
| 4254 : super(compiler, classElement, registry); | |
| 4255 | |
| 4256 DartType visitClassNode(ClassNode node) { | |
| 4257 invariant(node, element != null); | |
| 4258 invariant(element, element.resolutionState == STATE_STARTED, | |
| 4259 message: () => 'cyclic resolution of class $element'); | |
| 4260 | |
| 4261 InterfaceType type = element.computeType(compiler); | |
| 4262 scope = new TypeDeclarationScope(scope, element); | |
| 4263 // TODO(ahe): It is not safe to call resolveTypeVariableBounds yet. | |
| 4264 // As a side-effect, this may get us back here trying to | |
| 4265 // resolve this class again. | |
| 4266 resolveTypeVariableBounds(node.typeParameters); | |
| 4267 | |
| 4268 // Setup the supertype for the element (if there is a cycle in the | |
| 4269 // class hierarchy, it has already been set to Object). | |
| 4270 if (element.supertype == null && node.superclass != null) { | |
| 4271 MixinApplication superMixin = node.superclass.asMixinApplication(); | |
| 4272 if (superMixin != null) { | |
| 4273 DartType supertype = resolveSupertype(element, superMixin.superclass); | |
| 4274 Link<Node> link = superMixin.mixins.nodes; | |
| 4275 while (!link.isEmpty) { | |
| 4276 supertype = applyMixin(supertype, | |
| 4277 checkMixinType(link.head), link.head); | |
| 4278 link = link.tail; | |
| 4279 } | |
| 4280 element.supertype = supertype; | |
| 4281 } else { | |
| 4282 element.supertype = resolveSupertype(element, node.superclass); | |
| 4283 } | |
| 4284 } | |
| 4285 // If the super type isn't specified, we provide a default. The language | |
| 4286 // specifies [Object] but the backend can pick a specific 'implementation' | |
| 4287 // of Object - the JavaScript backend chooses between Object and | |
| 4288 // Interceptor. | |
| 4289 if (element.supertype == null) { | |
| 4290 ClassElement superElement = registry.defaultSuperclass(element); | |
| 4291 // Avoid making the superclass (usually Object) extend itself. | |
| 4292 if (element != superElement) { | |
| 4293 if (superElement == null) { | |
| 4294 compiler.internalError(node, | |
| 4295 "Cannot resolve default superclass for $element."); | |
| 4296 } else { | |
| 4297 superElement.ensureResolved(compiler); | |
| 4298 } | |
| 4299 element.supertype = superElement.computeType(compiler); | |
| 4300 } | |
| 4301 } | |
| 4302 | |
| 4303 if (element.interfaces == null) { | |
| 4304 element.interfaces = resolveInterfaces(node.interfaces, node.superclass); | |
| 4305 } else { | |
| 4306 assert(invariant(element, element.hasIncompleteHierarchy)); | |
| 4307 } | |
| 4308 calculateAllSupertypes(element); | |
| 4309 | |
| 4310 if (!element.hasConstructor) { | |
| 4311 Element superMember = element.superclass.localLookup(''); | |
| 4312 if (superMember == null || !superMember.isGenerativeConstructor) { | |
| 4313 MessageKind kind = MessageKind.CANNOT_FIND_CONSTRUCTOR; | |
| 4314 Map arguments = {'constructorName': ''}; | |
| 4315 // TODO(ahe): Why is this a compile-time error? Or if it is an error, | |
| 4316 // why do we bother to registerThrowNoSuchMethod below? | |
| 4317 compiler.reportError(node, kind, arguments); | |
| 4318 superMember = new ErroneousElementX( | |
| 4319 kind, arguments, '', element); | |
| 4320 registry.registerThrowNoSuchMethod(); | |
| 4321 } else { | |
| 4322 ConstructorElement superConstructor = superMember; | |
| 4323 Selector callToMatch = new Selector.call("", element.library, 0); | |
| 4324 superConstructor.computeSignature(compiler); | |
| 4325 if (!callToMatch.applies(superConstructor, compiler.world)) { | |
| 4326 MessageKind kind = MessageKind.NO_MATCHING_CONSTRUCTOR_FOR_IMPLICIT; | |
| 4327 compiler.reportError(node, kind); | |
| 4328 superMember = new ErroneousElementX(kind, {}, '', element); | |
| 4329 } | |
| 4330 } | |
| 4331 FunctionElement constructor = | |
| 4332 new SynthesizedConstructorElementX.forDefault(superMember, element); | |
| 4333 element.setDefaultConstructor(constructor, compiler); | |
| 4334 } | |
| 4335 return element.computeType(compiler); | |
| 4336 } | |
| 4337 | |
| 4338 /// Resolves the mixed type for [mixinNode] and checks that the the mixin type | |
| 4339 /// is a valid, non-blacklisted interface type. The mixin type is returned. | |
| 4340 DartType checkMixinType(TypeAnnotation mixinNode) { | |
| 4341 DartType mixinType = resolveType(mixinNode); | |
| 4342 if (isBlackListed(mixinType)) { | |
| 4343 compiler.reportError(mixinNode, | |
| 4344 MessageKind.CANNOT_MIXIN, {'type': mixinType}); | |
| 4345 } else if (mixinType.isTypeVariable) { | |
| 4346 compiler.reportError(mixinNode, MessageKind.CLASS_NAME_EXPECTED); | |
| 4347 } else if (mixinType.isMalformed) { | |
| 4348 compiler.reportError(mixinNode, MessageKind.CANNOT_MIXIN_MALFORMED, | |
| 4349 {'className': element.name, 'malformedType': mixinType}); | |
| 4350 } | |
| 4351 return mixinType; | |
| 4352 } | |
| 4353 | |
| 4354 DartType visitNamedMixinApplication(NamedMixinApplication node) { | |
| 4355 invariant(node, element != null); | |
| 4356 invariant(element, element.resolutionState == STATE_STARTED, | |
| 4357 message: () => 'cyclic resolution of class $element'); | |
| 4358 | |
| 4359 if (identical(node.classKeyword.stringValue, 'typedef')) { | |
| 4360 // TODO(aprelev@gmail.com): Remove this deprecation diagnostic | |
| 4361 // together with corresponding TODO in parser.dart. | |
| 4362 compiler.reportWarning(node.classKeyword, | |
| 4363 MessageKind.DEPRECATED_TYPEDEF_MIXIN_SYNTAX); | |
| 4364 } | |
| 4365 | |
| 4366 InterfaceType type = element.computeType(compiler); | |
| 4367 scope = new TypeDeclarationScope(scope, element); | |
| 4368 resolveTypeVariableBounds(node.typeParameters); | |
| 4369 | |
| 4370 // Generate anonymous mixin application elements for the | |
| 4371 // intermediate mixin applications (excluding the last). | |
| 4372 DartType supertype = resolveSupertype(element, node.superclass); | |
| 4373 Link<Node> link = node.mixins.nodes; | |
| 4374 while (!link.tail.isEmpty) { | |
| 4375 supertype = applyMixin(supertype, checkMixinType(link.head), link.head); | |
| 4376 link = link.tail; | |
| 4377 } | |
| 4378 doApplyMixinTo(element, supertype, checkMixinType(link.head)); | |
| 4379 return element.computeType(compiler); | |
| 4380 } | |
| 4381 | |
| 4382 DartType applyMixin(DartType supertype, DartType mixinType, Node node) { | |
| 4383 String superName = supertype.name; | |
| 4384 String mixinName = mixinType.name; | |
| 4385 MixinApplicationElementX mixinApplication = new MixinApplicationElementX( | |
| 4386 "${superName}+${mixinName}", | |
| 4387 element.compilationUnit, | |
| 4388 compiler.getNextFreeClassId(), | |
| 4389 node, | |
| 4390 new Modifiers.withFlags(new NodeList.empty(), Modifiers.FLAG_ABSTRACT)); | |
| 4391 // Create synthetic type variables for the mixin application. | |
| 4392 List<DartType> typeVariables = <DartType>[]; | |
| 4393 element.typeVariables.forEach((TypeVariableType type) { | |
| 4394 TypeVariableElementX typeVariableElement = new TypeVariableElementX( | |
| 4395 type.name, mixinApplication, type.element.node); | |
| 4396 TypeVariableType typeVariable = new TypeVariableType(typeVariableElement); | |
| 4397 typeVariables.add(typeVariable); | |
| 4398 }); | |
| 4399 // Setup bounds on the synthetic type variables. | |
| 4400 List<DartType> link = typeVariables; | |
| 4401 int index = 0; | |
| 4402 element.typeVariables.forEach((TypeVariableType type) { | |
| 4403 TypeVariableType typeVariable = typeVariables[index++]; | |
| 4404 TypeVariableElementX typeVariableElement = typeVariable.element; | |
| 4405 typeVariableElement.typeCache = typeVariable; | |
| 4406 typeVariableElement.boundCache = | |
| 4407 type.element.bound.subst(typeVariables, element.typeVariables); | |
| 4408 }); | |
| 4409 // Setup this and raw type for the mixin application. | |
| 4410 mixinApplication.computeThisAndRawType(compiler, typeVariables); | |
| 4411 // Substitute in synthetic type variables in super and mixin types. | |
| 4412 supertype = supertype.subst(typeVariables, element.typeVariables); | |
| 4413 mixinType = mixinType.subst(typeVariables, element.typeVariables); | |
| 4414 | |
| 4415 doApplyMixinTo(mixinApplication, supertype, mixinType); | |
| 4416 mixinApplication.resolutionState = STATE_DONE; | |
| 4417 mixinApplication.supertypeLoadState = STATE_DONE; | |
| 4418 // Replace the synthetic type variables by the original type variables in | |
| 4419 // the returned type (which should be the type actually extended). | |
| 4420 InterfaceType mixinThisType = mixinApplication.computeType(compiler); | |
| 4421 return mixinThisType.subst(element.typeVariables, | |
| 4422 mixinThisType.typeArguments); | |
| 4423 } | |
| 4424 | |
| 4425 bool isDefaultConstructor(FunctionElement constructor) { | |
| 4426 return constructor.name == '' && | |
| 4427 constructor.computeSignature(compiler).parameterCount == 0; | |
| 4428 } | |
| 4429 | |
| 4430 FunctionElement createForwardingConstructor(ConstructorElement target, | |
| 4431 ClassElement enclosing) { | |
| 4432 return new SynthesizedConstructorElementX( | |
| 4433 target.name, target, enclosing, false); | |
| 4434 } | |
| 4435 | |
| 4436 void doApplyMixinTo(MixinApplicationElementX mixinApplication, | |
| 4437 DartType supertype, | |
| 4438 DartType mixinType) { | |
| 4439 Node node = mixinApplication.parseNode(compiler); | |
| 4440 | |
| 4441 if (mixinApplication.supertype != null) { | |
| 4442 // [supertype] is not null if there was a cycle. | |
| 4443 assert(invariant(node, compiler.compilationFailed)); | |
| 4444 supertype = mixinApplication.supertype; | |
| 4445 assert(invariant(node, supertype.element == compiler.objectClass)); | |
| 4446 } else { | |
| 4447 mixinApplication.supertype = supertype; | |
| 4448 } | |
| 4449 | |
| 4450 // Named mixin application may have an 'implements' clause. | |
| 4451 NamedMixinApplication namedMixinApplication = | |
| 4452 node.asNamedMixinApplication(); | |
| 4453 Link<DartType> interfaces = (namedMixinApplication != null) | |
| 4454 ? resolveInterfaces(namedMixinApplication.interfaces, | |
| 4455 namedMixinApplication.superclass) | |
| 4456 : const Link<DartType>(); | |
| 4457 | |
| 4458 // The class that is the result of a mixin application implements | |
| 4459 // the interface of the class that was mixed in so always prepend | |
| 4460 // that to the interface list. | |
| 4461 if (mixinApplication.interfaces == null) { | |
| 4462 if (mixinType.isInterfaceType) { | |
| 4463 // Avoid malformed types in the interfaces. | |
| 4464 interfaces = interfaces.prepend(mixinType); | |
| 4465 } | |
| 4466 mixinApplication.interfaces = interfaces; | |
| 4467 } else { | |
| 4468 assert(invariant(mixinApplication, | |
| 4469 mixinApplication.hasIncompleteHierarchy)); | |
| 4470 } | |
| 4471 | |
| 4472 ClassElement superclass = supertype.element; | |
| 4473 if (mixinType.kind != TypeKind.INTERFACE) { | |
| 4474 mixinApplication.hasIncompleteHierarchy = true; | |
| 4475 mixinApplication.allSupertypesAndSelf = superclass.allSupertypesAndSelf; | |
| 4476 return; | |
| 4477 } | |
| 4478 | |
| 4479 assert(mixinApplication.mixinType == null); | |
| 4480 mixinApplication.mixinType = resolveMixinFor(mixinApplication, mixinType); | |
| 4481 | |
| 4482 // Create forwarding constructors for constructor defined in the superclass | |
| 4483 // because they are now hidden by the mixin application. | |
| 4484 superclass.forEachLocalMember((Element member) { | |
| 4485 if (!member.isGenerativeConstructor) return; | |
| 4486 FunctionElement forwarder = | |
| 4487 createForwardingConstructor(member, mixinApplication); | |
| 4488 if (isPrivateName(member.name) && | |
| 4489 mixinApplication.library != superclass.library) { | |
| 4490 // Do not create a forwarder to the super constructor, because the mixin | |
| 4491 // application is in a different library than the constructor in the | |
| 4492 // super class and it is not possible to call that constructor from the | |
| 4493 // library using the mixin application. | |
| 4494 return; | |
| 4495 } | |
| 4496 mixinApplication.addConstructor(forwarder); | |
| 4497 }); | |
| 4498 calculateAllSupertypes(mixinApplication); | |
| 4499 } | |
| 4500 | |
| 4501 InterfaceType resolveMixinFor(MixinApplicationElement mixinApplication, | |
| 4502 DartType mixinType) { | |
| 4503 ClassElement mixin = mixinType.element; | |
| 4504 mixin.ensureResolved(compiler); | |
| 4505 | |
| 4506 // Check for cycles in the mixin chain. | |
| 4507 ClassElement previous = mixinApplication; // For better error messages. | |
| 4508 ClassElement current = mixin; | |
| 4509 while (current != null && current.isMixinApplication) { | |
| 4510 MixinApplicationElement currentMixinApplication = current; | |
| 4511 if (currentMixinApplication == mixinApplication) { | |
| 4512 compiler.reportError( | |
| 4513 mixinApplication, MessageKind.ILLEGAL_MIXIN_CYCLE, | |
| 4514 {'mixinName1': current.name, 'mixinName2': previous.name}); | |
| 4515 // We have found a cycle in the mixin chain. Return null as | |
| 4516 // the mixin for this application to avoid getting into | |
| 4517 // infinite recursion when traversing members. | |
| 4518 return null; | |
| 4519 } | |
| 4520 previous = current; | |
| 4521 current = currentMixinApplication.mixin; | |
| 4522 } | |
| 4523 registry.registerMixinUse(mixinApplication, mixin); | |
| 4524 return mixinType; | |
| 4525 } | |
| 4526 | |
| 4527 DartType resolveType(TypeAnnotation node) { | |
| 4528 return typeResolver.resolveTypeAnnotation(this, node); | |
| 4529 } | |
| 4530 | |
| 4531 DartType resolveSupertype(ClassElement cls, TypeAnnotation superclass) { | |
| 4532 DartType supertype = resolveType(superclass); | |
| 4533 if (supertype != null) { | |
| 4534 if (identical(supertype.kind, TypeKind.MALFORMED_TYPE)) { | |
| 4535 compiler.reportError(superclass, MessageKind.CANNOT_EXTEND_MALFORMED, | |
| 4536 {'className': element.name, 'malformedType': supertype}); | |
| 4537 return objectType; | |
| 4538 } else if (!identical(supertype.kind, TypeKind.INTERFACE)) { | |
| 4539 compiler.reportError(superclass.typeName, | |
| 4540 MessageKind.CLASS_NAME_EXPECTED); | |
| 4541 return objectType; | |
| 4542 } else if (isBlackListed(supertype)) { | |
| 4543 compiler.reportError(superclass, MessageKind.CANNOT_EXTEND, | |
| 4544 {'type': supertype}); | |
| 4545 return objectType; | |
| 4546 } | |
| 4547 } | |
| 4548 return supertype; | |
| 4549 } | |
| 4550 | |
| 4551 Link<DartType> resolveInterfaces(NodeList interfaces, Node superclass) { | |
| 4552 Link<DartType> result = const Link<DartType>(); | |
| 4553 if (interfaces == null) return result; | |
| 4554 for (Link<Node> link = interfaces.nodes; !link.isEmpty; link = link.tail) { | |
| 4555 DartType interfaceType = resolveType(link.head); | |
| 4556 if (interfaceType != null) { | |
| 4557 if (identical(interfaceType.kind, TypeKind.MALFORMED_TYPE)) { | |
| 4558 compiler.reportError(superclass, | |
| 4559 MessageKind.CANNOT_IMPLEMENT_MALFORMED, | |
| 4560 {'className': element.name, 'malformedType': interfaceType}); | |
| 4561 } else if (!identical(interfaceType.kind, TypeKind.INTERFACE)) { | |
| 4562 // TODO(johnniwinther): Handle dynamic. | |
| 4563 TypeAnnotation typeAnnotation = link.head; | |
| 4564 error(typeAnnotation.typeName, MessageKind.CLASS_NAME_EXPECTED); | |
| 4565 } else { | |
| 4566 if (interfaceType == element.supertype) { | |
| 4567 compiler.reportError( | |
| 4568 superclass, | |
| 4569 MessageKind.DUPLICATE_EXTENDS_IMPLEMENTS, | |
| 4570 {'type': interfaceType}); | |
| 4571 compiler.reportError( | |
| 4572 link.head, | |
| 4573 MessageKind.DUPLICATE_EXTENDS_IMPLEMENTS, | |
| 4574 {'type': interfaceType}); | |
| 4575 } | |
| 4576 if (result.contains(interfaceType)) { | |
| 4577 compiler.reportError( | |
| 4578 link.head, | |
| 4579 MessageKind.DUPLICATE_IMPLEMENTS, | |
| 4580 {'type': interfaceType}); | |
| 4581 } | |
| 4582 result = result.prepend(interfaceType); | |
| 4583 if (isBlackListed(interfaceType)) { | |
| 4584 error(link.head, MessageKind.CANNOT_IMPLEMENT, | |
| 4585 {'type': interfaceType}); | |
| 4586 } | |
| 4587 } | |
| 4588 } | |
| 4589 } | |
| 4590 return result; | |
| 4591 } | |
| 4592 | |
| 4593 /** | |
| 4594 * Compute the list of all supertypes. | |
| 4595 * | |
| 4596 * The elements of this list are ordered as follows: first the supertype that | |
| 4597 * the class extends, then the implemented interfaces, and then the supertypes | |
| 4598 * of these. The class [Object] appears only once, at the end of the list. | |
| 4599 * | |
| 4600 * For example, for a class `class C extends S implements I1, I2`, we compute | |
| 4601 * supertypes(C) = [S, I1, I2] ++ supertypes(S) ++ supertypes(I1) | |
| 4602 * ++ supertypes(I2), | |
| 4603 * where ++ stands for list concatenation. | |
| 4604 * | |
| 4605 * This order makes sure that if a class implements an interface twice with | |
| 4606 * different type arguments, the type used in the most specific class comes | |
| 4607 * first. | |
| 4608 */ | |
| 4609 void calculateAllSupertypes(BaseClassElementX cls) { | |
| 4610 if (cls.allSupertypesAndSelf != null) return; | |
| 4611 final DartType supertype = cls.supertype; | |
| 4612 if (supertype != null) { | |
| 4613 OrderedTypeSetBuilder allSupertypes = new OrderedTypeSetBuilder(cls); | |
| 4614 // TODO(15296): Collapse these iterations to one when the order is not | |
| 4615 // needed. | |
| 4616 allSupertypes.add(compiler, supertype); | |
| 4617 for (Link<DartType> interfaces = cls.interfaces; | |
| 4618 !interfaces.isEmpty; | |
| 4619 interfaces = interfaces.tail) { | |
| 4620 allSupertypes.add(compiler, interfaces.head); | |
| 4621 } | |
| 4622 | |
| 4623 addAllSupertypes(allSupertypes, supertype); | |
| 4624 for (Link<DartType> interfaces = cls.interfaces; | |
| 4625 !interfaces.isEmpty; | |
| 4626 interfaces = interfaces.tail) { | |
| 4627 addAllSupertypes(allSupertypes, interfaces.head); | |
| 4628 } | |
| 4629 allSupertypes.add(compiler, cls.computeType(compiler)); | |
| 4630 cls.allSupertypesAndSelf = allSupertypes.toTypeSet(); | |
| 4631 } else { | |
| 4632 assert(identical(cls, compiler.objectClass)); | |
| 4633 cls.allSupertypesAndSelf = | |
| 4634 new OrderedTypeSet.singleton(cls.computeType(compiler)); | |
| 4635 } | |
| 4636 } | |
| 4637 | |
| 4638 /** | |
| 4639 * Adds [type] and all supertypes of [type] to [allSupertypes] while | |
| 4640 * substituting type variables. | |
| 4641 */ | |
| 4642 void addAllSupertypes(OrderedTypeSetBuilder allSupertypes, | |
| 4643 InterfaceType type) { | |
| 4644 ClassElement classElement = type.element; | |
| 4645 Link<DartType> supertypes = classElement.allSupertypes; | |
| 4646 assert(invariant(element, supertypes != null, | |
| 4647 message: "Supertypes not computed on $classElement " | |
| 4648 "during resolution of $element")); | |
| 4649 while (!supertypes.isEmpty) { | |
| 4650 DartType supertype = supertypes.head; | |
| 4651 allSupertypes.add(compiler, supertype.substByContext(type)); | |
| 4652 supertypes = supertypes.tail; | |
| 4653 } | |
| 4654 } | |
| 4655 | |
| 4656 isBlackListed(DartType type) { | |
| 4657 LibraryElement lib = element.library; | |
| 4658 return | |
| 4659 !identical(lib, compiler.coreLibrary) && | |
| 4660 !compiler.backend.isBackendLibrary(lib) && | |
| 4661 (type.isDynamic || | |
| 4662 identical(type.element, compiler.boolClass) || | |
| 4663 identical(type.element, compiler.numClass) || | |
| 4664 identical(type.element, compiler.intClass) || | |
| 4665 identical(type.element, compiler.doubleClass) || | |
| 4666 identical(type.element, compiler.stringClass) || | |
| 4667 identical(type.element, compiler.nullClass)); | |
| 4668 } | |
| 4669 } | |
| 4670 | |
| 4671 class ClassSupertypeResolver extends CommonResolverVisitor { | |
| 4672 Scope context; | |
| 4673 ClassElement classElement; | |
| 4674 | |
| 4675 ClassSupertypeResolver(Compiler compiler, ClassElement cls) | |
| 4676 : context = Scope.buildEnclosingScope(cls), | |
| 4677 this.classElement = cls, | |
| 4678 super(compiler); | |
| 4679 | |
| 4680 void loadSupertype(ClassElement element, Node from) { | |
| 4681 compiler.resolver.loadSupertypes(element, from); | |
| 4682 element.ensureResolved(compiler); | |
| 4683 } | |
| 4684 | |
| 4685 void visitNodeList(NodeList node) { | |
| 4686 if (node != null) { | |
| 4687 for (Link<Node> link = node.nodes; !link.isEmpty; link = link.tail) { | |
| 4688 link.head.accept(this); | |
| 4689 } | |
| 4690 } | |
| 4691 } | |
| 4692 | |
| 4693 void visitClassNode(ClassNode node) { | |
| 4694 if (node.superclass == null) { | |
| 4695 if (!identical(classElement, compiler.objectClass)) { | |
| 4696 loadSupertype(compiler.objectClass, node); | |
| 4697 } | |
| 4698 } else { | |
| 4699 node.superclass.accept(this); | |
| 4700 } | |
| 4701 visitNodeList(node.interfaces); | |
| 4702 } | |
| 4703 | |
| 4704 void visitMixinApplication(MixinApplication node) { | |
| 4705 node.superclass.accept(this); | |
| 4706 visitNodeList(node.mixins); | |
| 4707 } | |
| 4708 | |
| 4709 void visitNamedMixinApplication(NamedMixinApplication node) { | |
| 4710 node.superclass.accept(this); | |
| 4711 visitNodeList(node.mixins); | |
| 4712 visitNodeList(node.interfaces); | |
| 4713 } | |
| 4714 | |
| 4715 void visitTypeAnnotation(TypeAnnotation node) { | |
| 4716 node.typeName.accept(this); | |
| 4717 } | |
| 4718 | |
| 4719 void visitIdentifier(Identifier node) { | |
| 4720 Element element = lookupInScope(compiler, node, context, node.source); | |
| 4721 if (element != null && element.isClass) { | |
| 4722 loadSupertype(element, node); | |
| 4723 } | |
| 4724 } | |
| 4725 | |
| 4726 void visitSend(Send node) { | |
| 4727 Identifier prefix = node.receiver.asIdentifier(); | |
| 4728 if (prefix == null) { | |
| 4729 error(node.receiver, MessageKind.NOT_A_PREFIX, {'node': node.receiver}); | |
| 4730 return; | |
| 4731 } | |
| 4732 Element element = lookupInScope(compiler, prefix, context, prefix.source); | |
| 4733 if (element == null || !identical(element.kind, ElementKind.PREFIX)) { | |
| 4734 error(node.receiver, MessageKind.NOT_A_PREFIX, {'node': node.receiver}); | |
| 4735 return; | |
| 4736 } | |
| 4737 PrefixElement prefixElement = element; | |
| 4738 Identifier selector = node.selector.asIdentifier(); | |
| 4739 var e = prefixElement.lookupLocalMember(selector.source); | |
| 4740 if (e == null || !e.impliesType) { | |
| 4741 error(node.selector, MessageKind.CANNOT_RESOLVE_TYPE, | |
| 4742 {'typeName': node.selector}); | |
| 4743 return; | |
| 4744 } | |
| 4745 loadSupertype(e, node); | |
| 4746 } | |
| 4747 } | |
| 4748 | |
| 4749 class VariableDefinitionsVisitor extends CommonResolverVisitor<Identifier> { | |
| 4750 VariableDefinitions definitions; | |
| 4751 ResolverVisitor resolver; | |
| 4752 VariableList variables; | |
| 4753 | |
| 4754 VariableDefinitionsVisitor(Compiler compiler, | |
| 4755 this.definitions, | |
| 4756 this.resolver, | |
| 4757 this.variables) | |
| 4758 : super(compiler) { | |
| 4759 } | |
| 4760 | |
| 4761 ResolutionRegistry get registry => resolver.registry; | |
| 4762 | |
| 4763 Identifier visitSendSet(SendSet node) { | |
| 4764 assert(node.arguments.tail.isEmpty); // Sanity check | |
| 4765 Identifier identifier = node.selector; | |
| 4766 String name = identifier.source; | |
| 4767 VariableDefinitionScope scope = | |
| 4768 new VariableDefinitionScope(resolver.scope, name); | |
| 4769 resolver.visitIn(node.arguments.head, scope); | |
| 4770 if (scope.variableReferencedInInitializer) { | |
| 4771 compiler.reportError( | |
| 4772 identifier, MessageKind.REFERENCE_IN_INITIALIZATION, | |
| 4773 {'variableName': name}); | |
| 4774 } | |
| 4775 return identifier; | |
| 4776 } | |
| 4777 | |
| 4778 Identifier visitIdentifier(Identifier node) { | |
| 4779 // The variable is initialized to null. | |
| 4780 registry.registerInstantiatedClass(compiler.nullClass); | |
| 4781 if (definitions.modifiers.isConst) { | |
| 4782 compiler.reportError(node, MessageKind.CONST_WITHOUT_INITIALIZER); | |
| 4783 } | |
| 4784 if (definitions.modifiers.isFinal && | |
| 4785 !resolver.allowFinalWithoutInitializer) { | |
| 4786 compiler.reportError(node, MessageKind.FINAL_WITHOUT_INITIALIZER); | |
| 4787 } | |
| 4788 return node; | |
| 4789 } | |
| 4790 | |
| 4791 visitNodeList(NodeList node) { | |
| 4792 for (Link<Node> link = node.nodes; !link.isEmpty; link = link.tail) { | |
| 4793 Identifier name = visit(link.head); | |
| 4794 LocalVariableElement element = new LocalVariableElementX( | |
| 4795 name.source, resolver.enclosingElement, | |
| 4796 variables, name.token); | |
| 4797 resolver.defineLocalVariable(link.head, element); | |
| 4798 resolver.addToScope(element); | |
| 4799 if (definitions.modifiers.isConst) { | |
| 4800 compiler.enqueuer.resolution.addDeferredAction(element, () { | |
| 4801 compiler.resolver.constantCompiler.compileConstant(element); | |
| 4802 }); | |
| 4803 } | |
| 4804 } | |
| 4805 } | |
| 4806 } | |
| 4807 | |
| 4808 class ConstructorResolver extends CommonResolverVisitor<Element> { | |
| 4809 final ResolverVisitor resolver; | |
| 4810 bool inConstContext; | |
| 4811 DartType type; | |
| 4812 | |
| 4813 ConstructorResolver(Compiler compiler, this.resolver, | |
| 4814 {bool this.inConstContext: false}) | |
| 4815 : super(compiler); | |
| 4816 | |
| 4817 ResolutionRegistry get registry => resolver.registry; | |
| 4818 | |
| 4819 visitNode(Node node) { | |
| 4820 throw 'not supported'; | |
| 4821 } | |
| 4822 | |
| 4823 failOrReturnErroneousElement(Element enclosing, Node diagnosticNode, | |
| 4824 String targetName, MessageKind kind, | |
| 4825 Map arguments) { | |
| 4826 if (kind == MessageKind.CANNOT_FIND_CONSTRUCTOR) { | |
| 4827 registry.registerThrowNoSuchMethod(); | |
| 4828 } else { | |
| 4829 registry.registerThrowRuntimeError(); | |
| 4830 } | |
| 4831 if (inConstContext) { | |
| 4832 compiler.reportError(diagnosticNode, kind, arguments); | |
| 4833 } else { | |
| 4834 compiler.reportWarning(diagnosticNode, kind, arguments); | |
| 4835 } | |
| 4836 return new ErroneousElementX(kind, arguments, targetName, enclosing); | |
| 4837 } | |
| 4838 | |
| 4839 Selector createConstructorSelector(String constructorName) { | |
| 4840 return constructorName == '' | |
| 4841 ? new Selector.callDefaultConstructor( | |
| 4842 resolver.enclosingElement.library) | |
| 4843 : new Selector.callConstructor( | |
| 4844 constructorName, | |
| 4845 resolver.enclosingElement.library); | |
| 4846 } | |
| 4847 | |
| 4848 FunctionElement resolveConstructor(ClassElement cls, | |
| 4849 Node diagnosticNode, | |
| 4850 String constructorName) { | |
| 4851 cls.ensureResolved(compiler); | |
| 4852 Selector selector = createConstructorSelector(constructorName); | |
| 4853 Element result = cls.lookupConstructor(selector); | |
| 4854 if (result == null) { | |
| 4855 String fullConstructorName = Elements.constructorNameForDiagnostics( | |
| 4856 cls.name, | |
| 4857 constructorName); | |
| 4858 return failOrReturnErroneousElement( | |
| 4859 cls, | |
| 4860 diagnosticNode, | |
| 4861 fullConstructorName, | |
| 4862 MessageKind.CANNOT_FIND_CONSTRUCTOR, | |
| 4863 {'constructorName': fullConstructorName}); | |
| 4864 } else if (inConstContext && !result.isConst) { | |
| 4865 error(diagnosticNode, MessageKind.CONSTRUCTOR_IS_NOT_CONST); | |
| 4866 } | |
| 4867 return result; | |
| 4868 } | |
| 4869 | |
| 4870 Element visitNewExpression(NewExpression node) { | |
| 4871 inConstContext = node.isConst; | |
| 4872 Node selector = node.send.selector; | |
| 4873 Element element = visit(selector); | |
| 4874 assert(invariant(selector, element != null, | |
| 4875 message: 'No element return for $selector.')); | |
| 4876 return finishConstructorReference(element, node.send.selector, node); | |
| 4877 } | |
| 4878 | |
| 4879 /// Finishes resolution of a constructor reference and records the | |
| 4880 /// type of the constructed instance on [expression]. | |
| 4881 FunctionElement finishConstructorReference(Element element, | |
| 4882 Node diagnosticNode, | |
| 4883 Node expression) { | |
| 4884 assert(invariant(diagnosticNode, element != null, | |
| 4885 message: 'No element return for $diagnosticNode.')); | |
| 4886 // Find the unnamed constructor if the reference resolved to a | |
| 4887 // class. | |
| 4888 if (!Elements.isUnresolved(element) && !element.isConstructor) { | |
| 4889 if (element.isClass) { | |
| 4890 ClassElement cls = element; | |
| 4891 cls.ensureResolved(compiler); | |
| 4892 // The unnamed constructor may not exist, so [e] may become unresolved. | |
| 4893 element = resolveConstructor(cls, diagnosticNode, ''); | |
| 4894 } else { | |
| 4895 element = failOrReturnErroneousElement( | |
| 4896 element, diagnosticNode, element.name, MessageKind.NOT_A_TYPE, | |
| 4897 {'node': diagnosticNode}); | |
| 4898 } | |
| 4899 } | |
| 4900 if (type == null) { | |
| 4901 if (Elements.isUnresolved(element)) { | |
| 4902 type = const DynamicType(); | |
| 4903 } else { | |
| 4904 type = element.enclosingClass.rawType; | |
| 4905 } | |
| 4906 } | |
| 4907 resolver.registry.setType(expression, type); | |
| 4908 return element; | |
| 4909 } | |
| 4910 | |
| 4911 Element visitTypeAnnotation(TypeAnnotation node) { | |
| 4912 assert(invariant(node, type == null)); | |
| 4913 // This is not really resolving a type-annotation, but the name of the | |
| 4914 // constructor. Therefore we allow deferred types. | |
| 4915 type = resolver.resolveTypeAnnotation(node, | |
| 4916 malformedIsError: inConstContext, | |
| 4917 deferredIsMalformed: false); | |
| 4918 registry.registerRequiredType(type, resolver.enclosingElement); | |
| 4919 return type.element; | |
| 4920 } | |
| 4921 | |
| 4922 Element visitSend(Send node) { | |
| 4923 Element element = visit(node.receiver); | |
| 4924 assert(invariant(node.receiver, element != null, | |
| 4925 message: 'No element return for $node.receiver.')); | |
| 4926 if (Elements.isUnresolved(element)) return element; | |
| 4927 Identifier name = node.selector.asIdentifier(); | |
| 4928 if (name == null) internalError(node.selector, 'unexpected node'); | |
| 4929 | |
| 4930 if (element.isClass) { | |
| 4931 ClassElement cls = element; | |
| 4932 cls.ensureResolved(compiler); | |
| 4933 return resolveConstructor(cls, name, name.source); | |
| 4934 } else if (element.isPrefix) { | |
| 4935 PrefixElement prefix = element; | |
| 4936 element = prefix.lookupLocalMember(name.source); | |
| 4937 element = Elements.unwrap(element, compiler, node); | |
| 4938 if (element == null) { | |
| 4939 return failOrReturnErroneousElement( | |
| 4940 resolver.enclosingElement, name, | |
| 4941 name.source, | |
| 4942 MessageKind.CANNOT_RESOLVE, | |
| 4943 {'name': name}); | |
| 4944 } else if (!element.isClass) { | |
| 4945 error(node, MessageKind.NOT_A_TYPE, {'node': name}); | |
| 4946 } | |
| 4947 } else { | |
| 4948 internalError(node.receiver, 'unexpected element $element'); | |
| 4949 } | |
| 4950 return element; | |
| 4951 } | |
| 4952 | |
| 4953 Element visitIdentifier(Identifier node) { | |
| 4954 String name = node.source; | |
| 4955 Element element = resolver.reportLookupErrorIfAny( | |
| 4956 lookupInScope(compiler, node, resolver.scope, name), node, name); | |
| 4957 registry.useElement(node, element); | |
| 4958 // TODO(johnniwinther): Change errors to warnings, cf. 11.11.1. | |
| 4959 if (element == null) { | |
| 4960 return failOrReturnErroneousElement(resolver.enclosingElement, node, name, | |
| 4961 MessageKind.CANNOT_RESOLVE, | |
| 4962 {'name': name}); | |
| 4963 } else if (element.isErroneous) { | |
| 4964 return element; | |
| 4965 } else if (element.isTypedef) { | |
| 4966 error(node, MessageKind.CANNOT_INSTANTIATE_TYPEDEF, | |
| 4967 {'typedefName': name}); | |
| 4968 } else if (element.isTypeVariable) { | |
| 4969 error(node, MessageKind.CANNOT_INSTANTIATE_TYPE_VARIABLE, | |
| 4970 {'typeVariableName': name}); | |
| 4971 } else if (!element.isClass && !element.isPrefix) { | |
| 4972 error(node, MessageKind.NOT_A_TYPE, {'node': name}); | |
| 4973 } | |
| 4974 return element; | |
| 4975 } | |
| 4976 | |
| 4977 /// Assumed to be called by [resolveRedirectingFactory]. | |
| 4978 Element visitRedirectingFactoryBody(RedirectingFactoryBody node) { | |
| 4979 Node constructorReference = node.constructorReference; | |
| 4980 return finishConstructorReference(visit(constructorReference), | |
| 4981 constructorReference, node); | |
| 4982 } | |
| 4983 } | |
| 4984 | |
| 4985 /// Looks up [name] in [scope] and unwraps the result. | |
| 4986 Element lookupInScope(Compiler compiler, Node node, | |
| 4987 Scope scope, String name) { | |
| 4988 return Elements.unwrap(scope.lookup(name), compiler, node); | |
| 4989 } | |
| 4990 | |
| 4991 TreeElements _ensureTreeElements(AnalyzableElementX element) { | |
| 4992 if (element._treeElements == null) { | |
| 4993 element._treeElements = new TreeElementMapping(element); | |
| 4994 } | |
| 4995 return element._treeElements; | |
| 4996 } | |
| 4997 | |
| 4998 abstract class AnalyzableElementX implements AnalyzableElement { | |
| 4999 TreeElements _treeElements; | |
| 5000 | |
| 5001 bool get hasTreeElements => _treeElements != null; | |
| 5002 | |
| 5003 TreeElements get treeElements { | |
| 5004 assert(invariant(this, _treeElements !=null, | |
| 5005 message: "TreeElements have not been computed for $this.")); | |
| 5006 return _treeElements; | |
| 5007 } | |
| 5008 | |
| 5009 void reuseElement() { | |
| 5010 _treeElements = null; | |
| 5011 } | |
| 5012 } | |
| 5013 | |
| 5014 /// The result of resolving a node. | |
| 5015 abstract class ResolutionResult { | |
| 5016 Element get element; | |
| 5017 } | |
| 5018 | |
| 5019 /// The result for the resolution of a node that points to an [Element]. | |
| 5020 class ElementResult implements ResolutionResult { | |
| 5021 final Element element; | |
| 5022 | |
| 5023 // TODO(johnniwinther): Remove this factory constructor when `null` is never | |
| 5024 // passed as an element result. | |
| 5025 factory ElementResult(Element element) { | |
| 5026 return element != null ? new ElementResult.internal(element) : null; | |
| 5027 } | |
| 5028 | |
| 5029 ElementResult.internal(this.element); | |
| 5030 | |
| 5031 String toString() => 'ElementResult($element)'; | |
| 5032 } | |
| 5033 | |
| 5034 /// The result for the resolution of a node that points to an [DartType]. | |
| 5035 class TypeResult implements ResolutionResult { | |
| 5036 final DartType type; | |
| 5037 | |
| 5038 TypeResult(this.type) { | |
| 5039 assert(type != null); | |
| 5040 } | |
| 5041 | |
| 5042 Element get element => type.element; | |
| 5043 | |
| 5044 String toString() => 'TypeResult($type)'; | |
| 5045 } | |
| 5046 | |
| 5047 /// The result for the resolution of the `assert` method. | |
| 5048 class AssertResult implements ResolutionResult { | |
| 5049 const AssertResult(); | |
| 5050 | |
| 5051 Element get element => null; | |
| 5052 | |
| 5053 String toString() => 'AssertResult()'; | |
| 5054 } | |
| OLD | NEW |