OLD | NEW |
| (Empty) |
1 // Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file | |
2 // for details. All rights reserved. Use of this source code is governed by a | |
3 // BSD-style license that can be found in the LICENSE file. | |
4 | |
5 part of resolution; | |
6 | |
7 abstract class TreeElements { | |
8 AnalyzableElement get analyzedElement; | |
9 Iterable<Node> get superUses; | |
10 | |
11 /// Iterables of the dependencies that this [TreeElement] records of | |
12 /// [analyzedElement]. | |
13 Iterable<Element> get allElements; | |
14 void forEachConstantNode(f(Node n, ConstantExpression c)); | |
15 | |
16 /// A set of additional dependencies. See [registerDependency] below. | |
17 Iterable<Element> get otherDependencies; | |
18 | |
19 Element operator[](Node node); | |
20 | |
21 // TODO(johnniwinther): Investigate whether [Node] could be a [Send]. | |
22 Selector getSelector(Node node); | |
23 Selector getGetterSelectorInComplexSendSet(SendSet node); | |
24 Selector getOperatorSelectorInComplexSendSet(SendSet node); | |
25 DartType getType(Node node); | |
26 void setSelector(Node node, Selector selector); | |
27 void setGetterSelectorInComplexSendSet(SendSet node, Selector selector); | |
28 void setOperatorSelectorInComplexSendSet(SendSet node, Selector selector); | |
29 | |
30 /// Returns the for-in loop variable for [node]. | |
31 Element getForInVariable(ForIn node); | |
32 Selector getIteratorSelector(ForIn node); | |
33 Selector getMoveNextSelector(ForIn node); | |
34 Selector getCurrentSelector(ForIn node); | |
35 void setIteratorSelector(ForIn node, Selector selector); | |
36 void setMoveNextSelector(ForIn node, Selector selector); | |
37 void setCurrentSelector(ForIn node, Selector selector); | |
38 void setConstant(Node node, ConstantExpression constant); | |
39 ConstantExpression getConstant(Node node); | |
40 bool isAssert(Send send); | |
41 | |
42 /// Returns the [FunctionElement] defined by [node]. | |
43 FunctionElement getFunctionDefinition(FunctionExpression node); | |
44 | |
45 /// Returns target constructor for the redirecting factory body [node]. | |
46 ConstructorElement getRedirectingTargetConstructor( | |
47 RedirectingFactoryBody node); | |
48 | |
49 /** | |
50 * Returns [:true:] if [node] is a type literal. | |
51 * | |
52 * Resolution marks this by setting the type on the node to be the | |
53 * type that the literal refers to. | |
54 */ | |
55 bool isTypeLiteral(Send node); | |
56 | |
57 /// Returns the type that the type literal [node] refers to. | |
58 DartType getTypeLiteralType(Send node); | |
59 | |
60 /// Register additional dependencies required by [analyzedElement]. | |
61 /// For example, elements that are used by a backend. | |
62 void registerDependency(Element element); | |
63 | |
64 /// Returns a list of nodes that potentially mutate [element] anywhere in its | |
65 /// scope. | |
66 List<Node> getPotentialMutations(VariableElement element); | |
67 | |
68 /// Returns a list of nodes that potentially mutate [element] in [node]. | |
69 List<Node> getPotentialMutationsIn(Node node, VariableElement element); | |
70 | |
71 /// Returns a list of nodes that potentially mutate [element] in a closure. | |
72 List<Node> getPotentialMutationsInClosure(VariableElement element); | |
73 | |
74 /// Returns a list of nodes that access [element] within a closure in [node]. | |
75 List<Node> getAccessesByClosureIn(Node node, VariableElement element); | |
76 | |
77 /// Returns the jump target defined by [node]. | |
78 JumpTarget getTargetDefinition(Node node); | |
79 | |
80 /// Returns the jump target of the [node]. | |
81 JumpTarget getTargetOf(GotoStatement node); | |
82 | |
83 /// Returns the label defined by [node]. | |
84 LabelDefinition getLabelDefinition(Label node); | |
85 | |
86 /// Returns the label that [node] targets. | |
87 LabelDefinition getTargetLabel(GotoStatement node); | |
88 } | |
89 | |
90 class TreeElementMapping implements TreeElements { | |
91 final AnalyzableElement analyzedElement; | |
92 Map<Spannable, Selector> _selectors; | |
93 Map<Node, DartType> _types; | |
94 Setlet<Node> _superUses; | |
95 Setlet<Element> _otherDependencies; | |
96 Map<Node, ConstantExpression> _constants; | |
97 Map<VariableElement, List<Node>> _potentiallyMutated; | |
98 Map<Node, Map<VariableElement, List<Node>>> _potentiallyMutatedIn; | |
99 Map<VariableElement, List<Node>> _potentiallyMutatedInClosure; | |
100 Map<Node, Map<VariableElement, List<Node>>> _accessedByClosureIn; | |
101 Setlet<Element> _elements; | |
102 Setlet<Send> _asserts; | |
103 | |
104 /// Map from nodes to the targets they define. | |
105 Map<Node, JumpTarget> _definedTargets; | |
106 | |
107 /// Map from goto statements to their targets. | |
108 Map<GotoStatement, JumpTarget> _usedTargets; | |
109 | |
110 /// Map from labels to their label definition. | |
111 Map<Label, LabelDefinition> _definedLabels; | |
112 | |
113 /// Map from labeled goto statements to the labels they target. | |
114 Map<GotoStatement, LabelDefinition> _targetLabels; | |
115 | |
116 final int hashCode = ++_hashCodeCounter; | |
117 static int _hashCodeCounter = 0; | |
118 | |
119 TreeElementMapping(this.analyzedElement); | |
120 | |
121 operator []=(Node node, Element element) { | |
122 assert(invariant(node, () { | |
123 FunctionExpression functionExpression = node.asFunctionExpression(); | |
124 if (functionExpression != null) { | |
125 return !functionExpression.modifiers.isExternal; | |
126 } | |
127 return true; | |
128 })); | |
129 // TODO(johnniwinther): Simplify this invariant to use only declarations in | |
130 // [TreeElements]. | |
131 assert(invariant(node, () { | |
132 if (!element.isErroneous && analyzedElement != null && element.isPatch) { | |
133 return analyzedElement.implementationLibrary.isPatch; | |
134 } | |
135 return true; | |
136 })); | |
137 // TODO(ahe): Investigate why the invariant below doesn't hold. | |
138 // assert(invariant(node, | |
139 // getTreeElement(node) == element || | |
140 // getTreeElement(node) == null, | |
141 // message: '${getTreeElement(node)}; $element')); | |
142 | |
143 if (_elements == null) { | |
144 _elements = new Setlet<Element>(); | |
145 } | |
146 _elements.add(element); | |
147 setTreeElement(node, element); | |
148 } | |
149 | |
150 operator [](Node node) => getTreeElement(node); | |
151 | |
152 void setType(Node node, DartType type) { | |
153 if (_types == null) { | |
154 _types = new Maplet<Node, DartType>(); | |
155 } | |
156 _types[node] = type; | |
157 } | |
158 | |
159 DartType getType(Node node) => _types != null ? _types[node] : null; | |
160 | |
161 Iterable<Node> get superUses { | |
162 return _superUses != null ? _superUses : const <Node>[]; | |
163 } | |
164 | |
165 void addSuperUse(Node node) { | |
166 if (_superUses == null) { | |
167 _superUses = new Setlet<Node>(); | |
168 } | |
169 _superUses.add(node); | |
170 } | |
171 | |
172 Selector _getSelector(Spannable node) { | |
173 return _selectors != null ? _selectors[node] : null; | |
174 } | |
175 | |
176 void _setSelector(Spannable node, Selector selector) { | |
177 if (_selectors == null) { | |
178 _selectors = new Maplet<Spannable, Selector>(); | |
179 } | |
180 _selectors[node] = selector; | |
181 } | |
182 | |
183 void setSelector(Node node, Selector selector) { | |
184 _setSelector(node, selector); | |
185 } | |
186 | |
187 Selector getSelector(Node node) => _getSelector(node); | |
188 | |
189 int getSelectorCount() => _selectors == null ? 0 : _selectors.length; | |
190 | |
191 void setGetterSelectorInComplexSendSet(SendSet node, Selector selector) { | |
192 _setSelector(node.selector, selector); | |
193 } | |
194 | |
195 Selector getGetterSelectorInComplexSendSet(SendSet node) { | |
196 return _getSelector(node.selector); | |
197 } | |
198 | |
199 void setOperatorSelectorInComplexSendSet(SendSet node, Selector selector) { | |
200 _setSelector(node.assignmentOperator, selector); | |
201 } | |
202 | |
203 Selector getOperatorSelectorInComplexSendSet(SendSet node) { | |
204 return _getSelector(node.assignmentOperator); | |
205 } | |
206 | |
207 // The following methods set selectors on the "for in" node. Since | |
208 // we're using three selectors, we need to use children of the node, | |
209 // and we arbitrarily choose which ones. | |
210 | |
211 void setIteratorSelector(ForIn node, Selector selector) { | |
212 _setSelector(node, selector); | |
213 } | |
214 | |
215 Selector getIteratorSelector(ForIn node) { | |
216 return _getSelector(node); | |
217 } | |
218 | |
219 void setMoveNextSelector(ForIn node, Selector selector) { | |
220 _setSelector(node.forToken, selector); | |
221 } | |
222 | |
223 Selector getMoveNextSelector(ForIn node) { | |
224 return _getSelector(node.forToken); | |
225 } | |
226 | |
227 void setCurrentSelector(ForIn node, Selector selector) { | |
228 _setSelector(node.inToken, selector); | |
229 } | |
230 | |
231 Selector getCurrentSelector(ForIn node) { | |
232 return _getSelector(node.inToken); | |
233 } | |
234 | |
235 Element getForInVariable(ForIn node) { | |
236 return this[node]; | |
237 } | |
238 | |
239 void setConstant(Node node, ConstantExpression constant) { | |
240 if (_constants == null) { | |
241 _constants = new Maplet<Node, ConstantExpression>(); | |
242 } | |
243 _constants[node] = constant; | |
244 } | |
245 | |
246 ConstantExpression getConstant(Node node) { | |
247 return _constants != null ? _constants[node] : null; | |
248 } | |
249 | |
250 bool isTypeLiteral(Send node) { | |
251 return getType(node) != null; | |
252 } | |
253 | |
254 DartType getTypeLiteralType(Send node) { | |
255 return getType(node); | |
256 } | |
257 | |
258 void registerDependency(Element element) { | |
259 if (element == null) return; | |
260 if (_otherDependencies == null) { | |
261 _otherDependencies = new Setlet<Element>(); | |
262 } | |
263 _otherDependencies.add(element.implementation); | |
264 } | |
265 | |
266 Iterable<Element> get otherDependencies { | |
267 return _otherDependencies != null ? _otherDependencies : const <Element>[]; | |
268 } | |
269 | |
270 List<Node> getPotentialMutations(VariableElement element) { | |
271 if (_potentiallyMutated == null) return const <Node>[]; | |
272 List<Node> mutations = _potentiallyMutated[element]; | |
273 if (mutations == null) return const <Node>[]; | |
274 return mutations; | |
275 } | |
276 | |
277 void registerPotentialMutation(VariableElement element, Node mutationNode) { | |
278 if (_potentiallyMutated == null) { | |
279 _potentiallyMutated = new Maplet<VariableElement, List<Node>>(); | |
280 } | |
281 _potentiallyMutated.putIfAbsent(element, () => <Node>[]).add(mutationNode); | |
282 } | |
283 | |
284 List<Node> getPotentialMutationsIn(Node node, VariableElement element) { | |
285 if (_potentiallyMutatedIn == null) return const <Node>[]; | |
286 Map<VariableElement, List<Node>> mutationsIn = _potentiallyMutatedIn[node]; | |
287 if (mutationsIn == null) return const <Node>[]; | |
288 List<Node> mutations = mutationsIn[element]; | |
289 if (mutations == null) return const <Node>[]; | |
290 return mutations; | |
291 } | |
292 | |
293 void registerPotentialMutationIn(Node contextNode, VariableElement element, | |
294 Node mutationNode) { | |
295 if (_potentiallyMutatedIn == null) { | |
296 _potentiallyMutatedIn = | |
297 new Maplet<Node, Map<VariableElement, List<Node>>>(); | |
298 } | |
299 Map<VariableElement, List<Node>> mutationMap = | |
300 _potentiallyMutatedIn.putIfAbsent(contextNode, | |
301 () => new Maplet<VariableElement, List<Node>>()); | |
302 mutationMap.putIfAbsent(element, () => <Node>[]).add(mutationNode); | |
303 } | |
304 | |
305 List<Node> getPotentialMutationsInClosure(VariableElement element) { | |
306 if (_potentiallyMutatedInClosure == null) return const <Node>[]; | |
307 List<Node> mutations = _potentiallyMutatedInClosure[element]; | |
308 if (mutations == null) return const <Node>[]; | |
309 return mutations; | |
310 } | |
311 | |
312 void registerPotentialMutationInClosure(VariableElement element, | |
313 Node mutationNode) { | |
314 if (_potentiallyMutatedInClosure == null) { | |
315 _potentiallyMutatedInClosure = new Maplet<VariableElement, List<Node>>(); | |
316 } | |
317 _potentiallyMutatedInClosure.putIfAbsent( | |
318 element, () => <Node>[]).add(mutationNode); | |
319 } | |
320 | |
321 List<Node> getAccessesByClosureIn(Node node, VariableElement element) { | |
322 if (_accessedByClosureIn == null) return const <Node>[]; | |
323 Map<VariableElement, List<Node>> accessesIn = _accessedByClosureIn[node]; | |
324 if (accessesIn == null) return const <Node>[]; | |
325 List<Node> accesses = accessesIn[element]; | |
326 if (accesses == null) return const <Node>[]; | |
327 return accesses; | |
328 } | |
329 | |
330 void setAccessedByClosureIn(Node contextNode, VariableElement element, | |
331 Node accessNode) { | |
332 if (_accessedByClosureIn == null) { | |
333 _accessedByClosureIn = new Map<Node, Map<VariableElement, List<Node>>>(); | |
334 } | |
335 Map<VariableElement, List<Node>> accessMap = | |
336 _accessedByClosureIn.putIfAbsent(contextNode, | |
337 () => new Maplet<VariableElement, List<Node>>()); | |
338 accessMap.putIfAbsent(element, () => <Node>[]).add(accessNode); | |
339 } | |
340 | |
341 String toString() => 'TreeElementMapping($analyzedElement)'; | |
342 | |
343 Iterable<Element> get allElements { | |
344 return _elements != null ? _elements : const <Element>[]; | |
345 } | |
346 | |
347 void forEachConstantNode(f(Node n, ConstantExpression c)) { | |
348 if (_constants != null) { | |
349 _constants.forEach(f); | |
350 } | |
351 } | |
352 | |
353 void setAssert(Send node) { | |
354 if (_asserts == null) { | |
355 _asserts = new Setlet<Send>(); | |
356 } | |
357 _asserts.add(node); | |
358 } | |
359 | |
360 bool isAssert(Send node) { | |
361 return _asserts != null && _asserts.contains(node); | |
362 } | |
363 | |
364 FunctionElement getFunctionDefinition(FunctionExpression node) { | |
365 return this[node]; | |
366 } | |
367 | |
368 ConstructorElement getRedirectingTargetConstructor( | |
369 RedirectingFactoryBody node) { | |
370 return this[node]; | |
371 } | |
372 | |
373 void defineTarget(Node node, JumpTarget target) { | |
374 if (_definedTargets == null) { | |
375 _definedTargets = new Maplet<Node, JumpTarget>(); | |
376 } | |
377 _definedTargets[node] = target; | |
378 } | |
379 | |
380 void undefineTarget(Node node) { | |
381 if (_definedTargets != null) { | |
382 _definedTargets.remove(node); | |
383 if (_definedTargets.isEmpty) { | |
384 _definedTargets = null; | |
385 } | |
386 } | |
387 } | |
388 | |
389 JumpTarget getTargetDefinition(Node node) { | |
390 return _definedTargets != null ? _definedTargets[node] : null; | |
391 } | |
392 | |
393 void registerTargetOf(GotoStatement node, JumpTarget target) { | |
394 if (_usedTargets == null) { | |
395 _usedTargets = new Maplet<GotoStatement, JumpTarget>(); | |
396 } | |
397 _usedTargets[node] = target; | |
398 } | |
399 | |
400 JumpTarget getTargetOf(GotoStatement node) { | |
401 return _usedTargets != null ? _usedTargets[node] : null; | |
402 } | |
403 | |
404 void defineLabel(Label label, LabelDefinition target) { | |
405 if (_definedLabels == null) { | |
406 _definedLabels = new Maplet<Label, LabelDefinition>(); | |
407 } | |
408 _definedLabels[label] = target; | |
409 } | |
410 | |
411 void undefineLabel(Label label) { | |
412 if (_definedLabels != null) { | |
413 _definedLabels.remove(label); | |
414 if (_definedLabels.isEmpty) { | |
415 _definedLabels = null; | |
416 } | |
417 } | |
418 } | |
419 | |
420 LabelDefinition getLabelDefinition(Label label) { | |
421 return _definedLabels != null ? _definedLabels[label] : null; | |
422 } | |
423 | |
424 void registerTargetLabel(GotoStatement node, LabelDefinition label) { | |
425 assert(node.target != null); | |
426 if (_targetLabels == null) { | |
427 _targetLabels = new Maplet<GotoStatement, LabelDefinition>(); | |
428 } | |
429 _targetLabels[node] = label; | |
430 } | |
431 | |
432 LabelDefinition getTargetLabel(GotoStatement node) { | |
433 assert(node.target != null); | |
434 return _targetLabels != null ? _targetLabels[node] : null; | |
435 } | |
436 } | |
437 | |
438 class ResolverTask extends CompilerTask { | |
439 final ConstantCompiler constantCompiler; | |
440 | |
441 ResolverTask(Compiler compiler, this.constantCompiler) : super(compiler); | |
442 | |
443 String get name => 'Resolver'; | |
444 | |
445 TreeElements resolve(Element element) { | |
446 return measure(() { | |
447 if (Elements.isErroneousElement(element)) return null; | |
448 | |
449 processMetadata([result]) { | |
450 for (MetadataAnnotation metadata in element.metadata) { | |
451 metadata.ensureResolved(compiler); | |
452 } | |
453 return result; | |
454 } | |
455 | |
456 ElementKind kind = element.kind; | |
457 if (identical(kind, ElementKind.GENERATIVE_CONSTRUCTOR) || | |
458 identical(kind, ElementKind.FUNCTION) || | |
459 identical(kind, ElementKind.GETTER) || | |
460 identical(kind, ElementKind.SETTER)) { | |
461 return processMetadata(resolveMethodElement(element)); | |
462 } | |
463 | |
464 if (identical(kind, ElementKind.FIELD)) { | |
465 return processMetadata(resolveField(element)); | |
466 } | |
467 if (element.isClass) { | |
468 ClassElement cls = element; | |
469 cls.ensureResolved(compiler); | |
470 return processMetadata(); | |
471 } else if (element.isTypedef) { | |
472 TypedefElement typdef = element; | |
473 return processMetadata(resolveTypedef(typdef)); | |
474 } | |
475 | |
476 compiler.unimplemented(element, "resolve($element)"); | |
477 }); | |
478 } | |
479 | |
480 void resolveRedirectingConstructor(InitializerResolver resolver, | |
481 Node node, | |
482 FunctionElement constructor, | |
483 FunctionElement redirection) { | |
484 assert(invariant(node, constructor.isImplementation, | |
485 message: 'Redirecting constructors must be resolved on implementation ' | |
486 'elements.')); | |
487 Setlet<FunctionElement> seen = new Setlet<FunctionElement>(); | |
488 seen.add(constructor); | |
489 while (redirection != null) { | |
490 // Ensure that we follow redirections through implementation elements. | |
491 redirection = redirection.implementation; | |
492 if (seen.contains(redirection)) { | |
493 resolver.visitor.error(node, MessageKind.REDIRECTING_CONSTRUCTOR_CYCLE); | |
494 return; | |
495 } | |
496 seen.add(redirection); | |
497 redirection = resolver.visitor.resolveConstructorRedirection(redirection); | |
498 } | |
499 } | |
500 | |
501 void checkMatchingPatchParameters(FunctionElement origin, | |
502 Link<Element> originParameters, | |
503 Link<Element> patchParameters) { | |
504 while (!originParameters.isEmpty) { | |
505 ParameterElementX originParameter = originParameters.head; | |
506 ParameterElementX patchParameter = patchParameters.head; | |
507 // TODO(johnniwinther): Remove the conditional patching when we never | |
508 // resolve the same method twice. | |
509 if (!originParameter.isPatched) { | |
510 originParameter.applyPatch(patchParameter); | |
511 } else { | |
512 assert(invariant(origin, originParameter.patch == patchParameter, | |
513 message: "Inconsistent repatch of $originParameter.")); | |
514 } | |
515 DartType originParameterType = originParameter.computeType(compiler); | |
516 DartType patchParameterType = patchParameter.computeType(compiler); | |
517 if (originParameterType != patchParameterType) { | |
518 compiler.reportError( | |
519 originParameter.parseNode(compiler), | |
520 MessageKind.PATCH_PARAMETER_TYPE_MISMATCH, | |
521 {'methodName': origin.name, | |
522 'parameterName': originParameter.name, | |
523 'originParameterType': originParameterType, | |
524 'patchParameterType': patchParameterType}); | |
525 compiler.reportInfo(patchParameter, | |
526 MessageKind.PATCH_POINT_TO_PARAMETER, | |
527 {'parameterName': patchParameter.name}); | |
528 } else { | |
529 // Hack: Use unparser to test parameter equality. This only works | |
530 // because we are restricting patch uses and the approach cannot be used | |
531 // elsewhere. | |
532 | |
533 // The node contains the type, so there is a potential overlap. | |
534 // Therefore we only check the text if the types are identical. | |
535 String originParameterText = | |
536 originParameter.parseNode(compiler).toString(); | |
537 String patchParameterText = | |
538 patchParameter.parseNode(compiler).toString(); | |
539 if (originParameterText != patchParameterText | |
540 // We special case the list constructor because of the | |
541 // optional parameter. | |
542 && origin != compiler.unnamedListConstructor) { | |
543 compiler.reportError( | |
544 originParameter.parseNode(compiler), | |
545 MessageKind.PATCH_PARAMETER_MISMATCH, | |
546 {'methodName': origin.name, | |
547 'originParameter': originParameterText, | |
548 'patchParameter': patchParameterText}); | |
549 compiler.reportInfo(patchParameter, | |
550 MessageKind.PATCH_POINT_TO_PARAMETER, | |
551 {'parameterName': patchParameter.name}); | |
552 } | |
553 } | |
554 | |
555 originParameters = originParameters.tail; | |
556 patchParameters = patchParameters.tail; | |
557 } | |
558 } | |
559 | |
560 void checkMatchingPatchSignatures(FunctionElement origin, | |
561 FunctionElement patch) { | |
562 // TODO(johnniwinther): Show both origin and patch locations on errors. | |
563 FunctionExpression originTree = origin.node; | |
564 FunctionSignature originSignature = origin.functionSignature; | |
565 FunctionExpression patchTree = patch.node; | |
566 FunctionSignature patchSignature = patch.functionSignature; | |
567 | |
568 if (originSignature.type.returnType != patchSignature.type.returnType) { | |
569 compiler.withCurrentElement(patch, () { | |
570 Node errorNode = | |
571 patchTree.returnType != null ? patchTree.returnType : patchTree; | |
572 error(errorNode, MessageKind.PATCH_RETURN_TYPE_MISMATCH, | |
573 {'methodName': origin.name, | |
574 'originReturnType': originSignature.type.returnType, | |
575 'patchReturnType': patchSignature.type.returnType}); | |
576 }); | |
577 } | |
578 if (originSignature.requiredParameterCount != | |
579 patchSignature.requiredParameterCount) { | |
580 compiler.withCurrentElement(patch, () { | |
581 error(patchTree, | |
582 MessageKind.PATCH_REQUIRED_PARAMETER_COUNT_MISMATCH, | |
583 {'methodName': origin.name, | |
584 'originParameterCount': originSignature.requiredParameterCount, | |
585 'patchParameterCount': patchSignature.requiredParameterCount}); | |
586 }); | |
587 } else { | |
588 checkMatchingPatchParameters(origin, | |
589 originSignature.requiredParameters, | |
590 patchSignature.requiredParameters); | |
591 } | |
592 if (originSignature.optionalParameterCount != 0 && | |
593 patchSignature.optionalParameterCount != 0) { | |
594 if (originSignature.optionalParametersAreNamed != | |
595 patchSignature.optionalParametersAreNamed) { | |
596 compiler.withCurrentElement(patch, () { | |
597 error(patchTree, | |
598 MessageKind.PATCH_OPTIONAL_PARAMETER_NAMED_MISMATCH, | |
599 {'methodName': origin.name}); | |
600 }); | |
601 } | |
602 } | |
603 if (originSignature.optionalParameterCount != | |
604 patchSignature.optionalParameterCount) { | |
605 compiler.withCurrentElement(patch, () { | |
606 error(patchTree, | |
607 MessageKind.PATCH_OPTIONAL_PARAMETER_COUNT_MISMATCH, | |
608 {'methodName': origin.name, | |
609 'originParameterCount': originSignature.optionalParameterCount, | |
610 'patchParameterCount': patchSignature.optionalParameterCount}); | |
611 }); | |
612 } else { | |
613 checkMatchingPatchParameters(origin, | |
614 originSignature.optionalParameters, | |
615 patchSignature.optionalParameters); | |
616 } | |
617 } | |
618 | |
619 static void processAsyncMarker(Compiler compiler, | |
620 BaseFunctionElementX element) { | |
621 FunctionExpression functionExpression = element.node; | |
622 AsyncModifier asyncModifier = functionExpression.asyncModifier; | |
623 if (asyncModifier != null) { | |
624 if (!compiler.enableAsyncAwait) { | |
625 compiler.reportError(asyncModifier, | |
626 MessageKind.EXPERIMENTAL_ASYNC_AWAIT, | |
627 {'modifier': element.asyncMarker}); | |
628 } else if (!compiler.analyzeOnly) { | |
629 compiler.reportError(asyncModifier, | |
630 MessageKind.EXPERIMENTAL_ASYNC_AWAIT, | |
631 {'modifier': element.asyncMarker}); | |
632 } | |
633 | |
634 if (asyncModifier.isAsynchronous) { | |
635 element.asyncMarker = asyncModifier.isYielding | |
636 ? AsyncMarker.ASYNC_STAR : AsyncMarker.ASYNC; | |
637 } else { | |
638 element.asyncMarker = AsyncMarker.SYNC_STAR; | |
639 } | |
640 if (element.isAbstract) { | |
641 compiler.reportError(asyncModifier, | |
642 MessageKind.ASYNC_MODIFIER_ON_ABSTRACT_METHOD, | |
643 {'modifier': element.asyncMarker}); | |
644 } else if (element.isConstructor) { | |
645 compiler.reportError(asyncModifier, | |
646 MessageKind.ASYNC_MODIFIER_ON_CONSTRUCTOR, | |
647 {'modifier': element.asyncMarker}); | |
648 } else if (functionExpression.body.asReturn() != null && | |
649 element.asyncMarker.isYielding) { | |
650 compiler.reportError(asyncModifier, | |
651 MessageKind.YIELDING_MODIFIER_ON_ARROW_BODY, | |
652 {'modifier': element.asyncMarker}); | |
653 } | |
654 } | |
655 } | |
656 | |
657 TreeElements resolveMethodElement(FunctionElementX element) { | |
658 assert(invariant(element, element.isDeclaration)); | |
659 return compiler.withCurrentElement(element, () { | |
660 bool isConstructor = | |
661 identical(element.kind, ElementKind.GENERATIVE_CONSTRUCTOR); | |
662 if (compiler.enqueuer.resolution.hasBeenResolved(element)) { | |
663 // TODO(karlklose): Remove the check for [isConstructor]. [elememts] | |
664 // should never be non-null, not even for constructors. | |
665 assert(invariant(element, element.isConstructor, | |
666 message: 'Non-constructor element $element ' | |
667 'has already been analyzed.')); | |
668 return element.resolvedAst.elements; | |
669 } | |
670 if (element.isSynthesized) { | |
671 if (isConstructor) { | |
672 ResolutionRegistry registry = | |
673 new ResolutionRegistry(compiler, element); | |
674 ConstructorElement constructor = element.asFunctionElement(); | |
675 ConstructorElement target = constructor.definingConstructor; | |
676 // Ensure the signature of the synthesized element is | |
677 // resolved. This is the only place where the resolver is | |
678 // seeing this element. | |
679 element.computeSignature(compiler); | |
680 if (!target.isErroneous) { | |
681 registry.registerStaticUse(target); | |
682 registry.registerImplicitSuperCall(target); | |
683 } | |
684 return registry.mapping; | |
685 } else { | |
686 assert(element.isDeferredLoaderGetter); | |
687 return _ensureTreeElements(element); | |
688 } | |
689 } | |
690 element.parseNode(compiler); | |
691 element.computeType(compiler); | |
692 processAsyncMarker(compiler, element); | |
693 if (element.isPatched) { | |
694 FunctionElementX patch = element.patch; | |
695 compiler.withCurrentElement(patch, () { | |
696 patch.parseNode(compiler); | |
697 patch.computeType(compiler); | |
698 }); | |
699 checkMatchingPatchSignatures(element, patch); | |
700 element = patch; | |
701 processAsyncMarker(compiler, element); | |
702 } | |
703 return compiler.withCurrentElement(element, () { | |
704 FunctionExpression tree = element.node; | |
705 if (tree.modifiers.isExternal) { | |
706 error(tree, MessageKind.PATCH_EXTERNAL_WITHOUT_IMPLEMENTATION); | |
707 return null; | |
708 } | |
709 if (isConstructor || element.isFactoryConstructor) { | |
710 if (tree.returnType != null) { | |
711 error(tree, MessageKind.CONSTRUCTOR_WITH_RETURN_TYPE); | |
712 } | |
713 if (element.modifiers.isConst && | |
714 tree.hasBody() && | |
715 !tree.isRedirectingFactory) { | |
716 compiler.reportError(tree, MessageKind.CONST_CONSTRUCTOR_HAS_BODY); | |
717 } | |
718 } | |
719 | |
720 ResolverVisitor visitor = visitorFor(element); | |
721 ResolutionRegistry registry = visitor.registry; | |
722 registry.defineFunction(tree, element); | |
723 visitor.setupFunction(tree, element); | |
724 | |
725 if (isConstructor && !element.isForwardingConstructor) { | |
726 // Even if there is no initializer list we still have to do the | |
727 // resolution in case there is an implicit super constructor call. | |
728 InitializerResolver resolver = new InitializerResolver(visitor); | |
729 FunctionElement redirection = | |
730 resolver.resolveInitializers(element, tree); | |
731 if (redirection != null) { | |
732 resolveRedirectingConstructor(resolver, tree, element, redirection); | |
733 } | |
734 } else if (element.isForwardingConstructor) { | |
735 // Initializers will be checked on the original constructor. | |
736 } else if (tree.initializers != null) { | |
737 error(tree, MessageKind.FUNCTION_WITH_INITIALIZER); | |
738 } | |
739 | |
740 if (!compiler.analyzeSignaturesOnly || tree.isRedirectingFactory) { | |
741 // We need to analyze the redirecting factory bodies to ensure that | |
742 // we can analyze compile-time constants. | |
743 visitor.visit(tree.body); | |
744 } | |
745 | |
746 // Get the resolution tree and check that the resolved | |
747 // function doesn't use 'super' if it is mixed into another | |
748 // class. This is the part of the 'super' mixin check that | |
749 // happens when a function is resolved after the mixin | |
750 // application has been performed. | |
751 TreeElements resolutionTree = registry.mapping; | |
752 ClassElement enclosingClass = element.enclosingClass; | |
753 if (enclosingClass != null) { | |
754 // TODO(johnniwinther): Find another way to obtain mixin uses. | |
755 Iterable<MixinApplicationElement> mixinUses = | |
756 compiler.world.allMixinUsesOf(enclosingClass); | |
757 ClassElement mixin = enclosingClass; | |
758 for (MixinApplicationElement mixinApplication in mixinUses) { | |
759 checkMixinSuperUses(resolutionTree, mixinApplication, mixin); | |
760 } | |
761 } | |
762 return resolutionTree; | |
763 }); | |
764 }); | |
765 } | |
766 | |
767 /// Creates a [ResolverVisitor] for resolving an AST in context of [element]. | |
768 /// If [useEnclosingScope] is `true` then the initial scope of the visitor | |
769 /// does not include inner scope of [element]. | |
770 /// | |
771 /// This method should only be used by this library (or tests of | |
772 /// this library). | |
773 ResolverVisitor visitorFor(Element element, {bool useEnclosingScope: false}) { | |
774 return new ResolverVisitor(compiler, element, | |
775 new ResolutionRegistry(compiler, element), | |
776 useEnclosingScope: useEnclosingScope); | |
777 } | |
778 | |
779 TreeElements resolveField(FieldElementX element) { | |
780 VariableDefinitions tree = element.parseNode(compiler); | |
781 if(element.modifiers.isStatic && element.isTopLevel) { | |
782 error(element.modifiers.getStatic(), | |
783 MessageKind.TOP_LEVEL_VARIABLE_DECLARED_STATIC); | |
784 } | |
785 ResolverVisitor visitor = visitorFor(element); | |
786 ResolutionRegistry registry = visitor.registry; | |
787 // TODO(johnniwinther): Maybe remove this when placeholderCollector migrates | |
788 // to the backend ast. | |
789 registry.defineElement(tree.definitions.nodes.head, element); | |
790 // TODO(johnniwinther): Share the resolved type between all variables | |
791 // declared in the same declaration. | |
792 if (tree.type != null) { | |
793 element.variables.type = visitor.resolveTypeAnnotation(tree.type); | |
794 } else { | |
795 element.variables.type = const DynamicType(); | |
796 } | |
797 | |
798 Expression initializer = element.initializer; | |
799 Modifiers modifiers = element.modifiers; | |
800 if (initializer != null) { | |
801 // TODO(johnniwinther): Avoid analyzing initializers if | |
802 // [Compiler.analyzeSignaturesOnly] is set. | |
803 visitor.visit(initializer); | |
804 } else if (modifiers.isConst) { | |
805 compiler.reportError(element, MessageKind.CONST_WITHOUT_INITIALIZER); | |
806 } else if (modifiers.isFinal && !element.isInstanceMember) { | |
807 compiler.reportError(element, MessageKind.FINAL_WITHOUT_INITIALIZER); | |
808 } else { | |
809 registry.registerInstantiatedClass(compiler.nullClass); | |
810 } | |
811 | |
812 if (Elements.isStaticOrTopLevelField(element)) { | |
813 visitor.addDeferredAction(element, () { | |
814 if (element.modifiers.isConst) { | |
815 constantCompiler.compileConstant(element); | |
816 } else { | |
817 constantCompiler.compileVariable(element); | |
818 } | |
819 }); | |
820 if (initializer != null) { | |
821 if (!element.modifiers.isConst) { | |
822 // TODO(johnniwinther): Determine the const-ness eagerly to avoid | |
823 // unnecessary registrations. | |
824 registry.registerLazyField(); | |
825 } | |
826 } | |
827 } | |
828 | |
829 // Perform various checks as side effect of "computing" the type. | |
830 element.computeType(compiler); | |
831 | |
832 return registry.mapping; | |
833 } | |
834 | |
835 DartType resolveTypeAnnotation(Element element, TypeAnnotation annotation) { | |
836 DartType type = resolveReturnType(element, annotation); | |
837 if (type.isVoid) { | |
838 error(annotation, MessageKind.VOID_NOT_ALLOWED); | |
839 } | |
840 return type; | |
841 } | |
842 | |
843 DartType resolveReturnType(Element element, TypeAnnotation annotation) { | |
844 if (annotation == null) return const DynamicType(); | |
845 DartType result = visitorFor(element).resolveTypeAnnotation(annotation); | |
846 if (result == null) { | |
847 // TODO(karklose): warning. | |
848 return const DynamicType(); | |
849 } | |
850 return result; | |
851 } | |
852 | |
853 void resolveRedirectionChain(ConstructorElementX constructor, | |
854 Spannable node) { | |
855 ConstructorElementX target = constructor; | |
856 InterfaceType targetType; | |
857 List<Element> seen = new List<Element>(); | |
858 // Follow the chain of redirections and check for cycles. | |
859 while (target.isRedirectingFactory) { | |
860 if (target.internalEffectiveTarget != null) { | |
861 // We found a constructor that already has been processed. | |
862 targetType = target.effectiveTargetType; | |
863 assert(invariant(target, targetType != null, | |
864 message: 'Redirection target type has not been computed for ' | |
865 '$target')); | |
866 target = target.internalEffectiveTarget; | |
867 break; | |
868 } | |
869 | |
870 Element nextTarget = target.immediateRedirectionTarget; | |
871 if (seen.contains(nextTarget)) { | |
872 error(node, MessageKind.CYCLIC_REDIRECTING_FACTORY); | |
873 break; | |
874 } | |
875 seen.add(target); | |
876 target = nextTarget; | |
877 } | |
878 | |
879 if (targetType == null) { | |
880 assert(!target.isRedirectingFactory); | |
881 targetType = target.enclosingClass.thisType; | |
882 } | |
883 | |
884 // [target] is now the actual target of the redirections. Run through | |
885 // the constructors again and set their [redirectionTarget], so that we | |
886 // do not have to run the loop for these constructors again. Furthermore, | |
887 // compute [redirectionTargetType] for each factory by computing the | |
888 // substitution of the target type with respect to the factory type. | |
889 while (!seen.isEmpty) { | |
890 ConstructorElementX factory = seen.removeLast(); | |
891 | |
892 // [factory] must already be analyzed but the [TreeElements] might not | |
893 // have been stored in the enqueuer cache yet. | |
894 // TODO(johnniwinther): Store [TreeElements] in the cache before | |
895 // resolution of the element. | |
896 TreeElements treeElements = factory.treeElements; | |
897 assert(invariant(node, treeElements != null, | |
898 message: 'No TreeElements cached for $factory.')); | |
899 FunctionExpression functionNode = factory.parseNode(compiler); | |
900 RedirectingFactoryBody redirectionNode = functionNode.body; | |
901 InterfaceType factoryType = treeElements.getType(redirectionNode); | |
902 | |
903 targetType = targetType.substByContext(factoryType); | |
904 factory.effectiveTarget = target; | |
905 factory.effectiveTargetType = targetType; | |
906 } | |
907 } | |
908 | |
909 /** | |
910 * Load and resolve the supertypes of [cls]. | |
911 * | |
912 * Warning: do not call this method directly. It should only be | |
913 * called by [resolveClass] and [ClassSupertypeResolver]. | |
914 */ | |
915 void loadSupertypes(BaseClassElementX cls, Spannable from) { | |
916 compiler.withCurrentElement(cls, () => measure(() { | |
917 if (cls.supertypeLoadState == STATE_DONE) return; | |
918 if (cls.supertypeLoadState == STATE_STARTED) { | |
919 compiler.reportError(from, MessageKind.CYCLIC_CLASS_HIERARCHY, | |
920 {'className': cls.name}); | |
921 cls.supertypeLoadState = STATE_DONE; | |
922 cls.hasIncompleteHierarchy = true; | |
923 cls.allSupertypesAndSelf = | |
924 compiler.objectClass.allSupertypesAndSelf.extendClass( | |
925 cls.computeType(compiler)); | |
926 cls.supertype = cls.allSupertypes.head; | |
927 assert(invariant(from, cls.supertype != null, | |
928 message: 'Missing supertype on cyclic class $cls.')); | |
929 cls.interfaces = const Link<DartType>(); | |
930 return; | |
931 } | |
932 cls.supertypeLoadState = STATE_STARTED; | |
933 compiler.withCurrentElement(cls, () { | |
934 // TODO(ahe): Cache the node in cls. | |
935 cls.parseNode(compiler).accept( | |
936 new ClassSupertypeResolver(compiler, cls)); | |
937 if (cls.supertypeLoadState != STATE_DONE) { | |
938 cls.supertypeLoadState = STATE_DONE; | |
939 } | |
940 }); | |
941 })); | |
942 } | |
943 | |
944 // TODO(johnniwinther): Remove this queue when resolution has been split into | |
945 // syntax and semantic resolution. | |
946 TypeDeclarationElement currentlyResolvedTypeDeclaration; | |
947 Queue<ClassElement> pendingClassesToBeResolved = new Queue<ClassElement>(); | |
948 Queue<ClassElement> pendingClassesToBePostProcessed = | |
949 new Queue<ClassElement>(); | |
950 | |
951 /// Resolve [element] using [resolveTypeDeclaration]. | |
952 /// | |
953 /// This methods ensure that class declarations encountered through type | |
954 /// annotations during the resolution of [element] are resolved after | |
955 /// [element] has been resolved. | |
956 // TODO(johnniwinther): Encapsulate this functionality in a | |
957 // 'TypeDeclarationResolver'. | |
958 _resolveTypeDeclaration(TypeDeclarationElement element, | |
959 resolveTypeDeclaration()) { | |
960 return compiler.withCurrentElement(element, () { | |
961 return measure(() { | |
962 TypeDeclarationElement previousResolvedTypeDeclaration = | |
963 currentlyResolvedTypeDeclaration; | |
964 currentlyResolvedTypeDeclaration = element; | |
965 var result = resolveTypeDeclaration(); | |
966 if (previousResolvedTypeDeclaration == null) { | |
967 do { | |
968 while (!pendingClassesToBeResolved.isEmpty) { | |
969 pendingClassesToBeResolved.removeFirst().ensureResolved(compiler); | |
970 } | |
971 while (!pendingClassesToBePostProcessed.isEmpty) { | |
972 _postProcessClassElement( | |
973 pendingClassesToBePostProcessed.removeFirst()); | |
974 } | |
975 } while (!pendingClassesToBeResolved.isEmpty); | |
976 assert(pendingClassesToBeResolved.isEmpty); | |
977 assert(pendingClassesToBePostProcessed.isEmpty); | |
978 } | |
979 currentlyResolvedTypeDeclaration = previousResolvedTypeDeclaration; | |
980 return result; | |
981 }); | |
982 }); | |
983 } | |
984 | |
985 /** | |
986 * Resolve the class [element]. | |
987 * | |
988 * Before calling this method, [element] was constructed by the | |
989 * scanner and most fields are null or empty. This method fills in | |
990 * these fields and also ensure that the supertypes of [element] are | |
991 * resolved. | |
992 * | |
993 * Warning: Do not call this method directly. Instead use | |
994 * [:element.ensureResolved(compiler):]. | |
995 */ | |
996 TreeElements resolveClass(BaseClassElementX element) { | |
997 return _resolveTypeDeclaration(element, () { | |
998 // TODO(johnniwinther): Store the mapping in the resolution enqueuer. | |
999 ResolutionRegistry registry = new ResolutionRegistry(compiler, element); | |
1000 resolveClassInternal(element, registry); | |
1001 return element.treeElements; | |
1002 }); | |
1003 } | |
1004 | |
1005 void _ensureClassWillBeResolved(ClassElement element) { | |
1006 if (currentlyResolvedTypeDeclaration == null) { | |
1007 element.ensureResolved(compiler); | |
1008 } else { | |
1009 pendingClassesToBeResolved.add(element); | |
1010 } | |
1011 } | |
1012 | |
1013 void resolveClassInternal(BaseClassElementX element, | |
1014 ResolutionRegistry registry) { | |
1015 if (!element.isPatch) { | |
1016 compiler.withCurrentElement(element, () => measure(() { | |
1017 assert(element.resolutionState == STATE_NOT_STARTED); | |
1018 element.resolutionState = STATE_STARTED; | |
1019 Node tree = element.parseNode(compiler); | |
1020 loadSupertypes(element, tree); | |
1021 | |
1022 ClassResolverVisitor visitor = | |
1023 new ClassResolverVisitor(compiler, element, registry); | |
1024 visitor.visit(tree); | |
1025 element.resolutionState = STATE_DONE; | |
1026 compiler.onClassResolved(element); | |
1027 pendingClassesToBePostProcessed.add(element); | |
1028 })); | |
1029 if (element.isPatched) { | |
1030 // Ensure handling patch after origin. | |
1031 element.patch.ensureResolved(compiler); | |
1032 } | |
1033 } else { // Handle patch classes: | |
1034 element.resolutionState = STATE_STARTED; | |
1035 // Ensure handling origin before patch. | |
1036 element.origin.ensureResolved(compiler); | |
1037 // Ensure that the type is computed. | |
1038 element.computeType(compiler); | |
1039 // Copy class hierarchy from origin. | |
1040 element.supertype = element.origin.supertype; | |
1041 element.interfaces = element.origin.interfaces; | |
1042 element.allSupertypesAndSelf = element.origin.allSupertypesAndSelf; | |
1043 // Stepwise assignment to ensure invariant. | |
1044 element.supertypeLoadState = STATE_STARTED; | |
1045 element.supertypeLoadState = STATE_DONE; | |
1046 element.resolutionState = STATE_DONE; | |
1047 // TODO(johnniwinther): Check matching type variables and | |
1048 // empty extends/implements clauses. | |
1049 } | |
1050 } | |
1051 | |
1052 void _postProcessClassElement(BaseClassElementX element) { | |
1053 for (MetadataAnnotation metadata in element.metadata) { | |
1054 metadata.ensureResolved(compiler); | |
1055 if (!element.isProxy && | |
1056 metadata.constant.value == compiler.proxyConstant) { | |
1057 element.isProxy = true; | |
1058 } | |
1059 } | |
1060 | |
1061 // Force resolution of metadata on non-instance members since they may be | |
1062 // inspected by the backend while emitting. Metadata on instance members is | |
1063 // handled as a result of processing instantiated class members in the | |
1064 // enqueuer. | |
1065 // TODO(ahe): Avoid this eager resolution. | |
1066 element.forEachMember((_, Element member) { | |
1067 if (!member.isInstanceMember) { | |
1068 compiler.withCurrentElement(member, () { | |
1069 for (MetadataAnnotation metadata in member.metadata) { | |
1070 metadata.ensureResolved(compiler); | |
1071 } | |
1072 }); | |
1073 } | |
1074 }); | |
1075 | |
1076 computeClassMember(element, Compiler.CALL_OPERATOR_NAME); | |
1077 } | |
1078 | |
1079 void computeClassMembers(ClassElement element) { | |
1080 MembersCreator.computeAllClassMembers(compiler, element); | |
1081 } | |
1082 | |
1083 void computeClassMember(ClassElement element, String name) { | |
1084 MembersCreator.computeClassMembersByName(compiler, element, name); | |
1085 } | |
1086 | |
1087 void checkClass(ClassElement element) { | |
1088 computeClassMembers(element); | |
1089 if (element.isMixinApplication) { | |
1090 checkMixinApplication(element); | |
1091 } else { | |
1092 checkClassMembers(element); | |
1093 } | |
1094 } | |
1095 | |
1096 void checkMixinApplication(MixinApplicationElementX mixinApplication) { | |
1097 Modifiers modifiers = mixinApplication.modifiers; | |
1098 int illegalFlags = modifiers.flags & ~Modifiers.FLAG_ABSTRACT; | |
1099 if (illegalFlags != 0) { | |
1100 Modifiers illegalModifiers = new Modifiers.withFlags(null, illegalFlags); | |
1101 compiler.reportError( | |
1102 modifiers, | |
1103 MessageKind.ILLEGAL_MIXIN_APPLICATION_MODIFIERS, | |
1104 {'modifiers': illegalModifiers}); | |
1105 } | |
1106 | |
1107 // In case of cyclic mixin applications, the mixin chain will have | |
1108 // been cut. If so, we have already reported the error to the | |
1109 // user so we just return from here. | |
1110 ClassElement mixin = mixinApplication.mixin; | |
1111 if (mixin == null) return; | |
1112 | |
1113 // Check that we're not trying to use Object as a mixin. | |
1114 if (mixin.superclass == null) { | |
1115 compiler.reportError(mixinApplication, | |
1116 MessageKind.ILLEGAL_MIXIN_OBJECT); | |
1117 // Avoid reporting additional errors for the Object class. | |
1118 return; | |
1119 } | |
1120 | |
1121 // Check that the mixed in class has Object as its superclass. | |
1122 if (!mixin.superclass.isObject) { | |
1123 compiler.reportError(mixin, MessageKind.ILLEGAL_MIXIN_SUPERCLASS); | |
1124 } | |
1125 | |
1126 // Check that the mixed in class doesn't have any constructors and | |
1127 // make sure we aren't mixing in methods that use 'super'. | |
1128 mixin.forEachLocalMember((AstElement member) { | |
1129 if (member.isGenerativeConstructor && !member.isSynthesized) { | |
1130 compiler.reportError(member, MessageKind.ILLEGAL_MIXIN_CONSTRUCTOR); | |
1131 } else { | |
1132 // Get the resolution tree and check that the resolved member | |
1133 // doesn't use 'super'. This is the part of the 'super' mixin | |
1134 // check that happens when a function is resolved before the | |
1135 // mixin application has been performed. | |
1136 // TODO(johnniwinther): Obtain the [TreeElements] for [member] | |
1137 // differently. | |
1138 if (compiler.enqueuer.resolution.hasBeenResolved(member)) { | |
1139 checkMixinSuperUses( | |
1140 member.resolvedAst.elements, | |
1141 mixinApplication, | |
1142 mixin); | |
1143 } | |
1144 } | |
1145 }); | |
1146 } | |
1147 | |
1148 void checkMixinSuperUses(TreeElements resolutionTree, | |
1149 MixinApplicationElement mixinApplication, | |
1150 ClassElement mixin) { | |
1151 // TODO(johnniwinther): Avoid the use of [TreeElements] here. | |
1152 if (resolutionTree == null) return; | |
1153 Iterable<Node> superUses = resolutionTree.superUses; | |
1154 if (superUses.isEmpty) return; | |
1155 compiler.reportError(mixinApplication, | |
1156 MessageKind.ILLEGAL_MIXIN_WITH_SUPER, | |
1157 {'className': mixin.name}); | |
1158 // Show the user the problematic uses of 'super' in the mixin. | |
1159 for (Node use in superUses) { | |
1160 compiler.reportInfo( | |
1161 use, | |
1162 MessageKind.ILLEGAL_MIXIN_SUPER_USE); | |
1163 } | |
1164 } | |
1165 | |
1166 void checkClassMembers(ClassElement cls) { | |
1167 assert(invariant(cls, cls.isDeclaration)); | |
1168 if (cls.isObject) return; | |
1169 // TODO(johnniwinther): Should this be done on the implementation element as | |
1170 // well? | |
1171 List<Element> constConstructors = <Element>[]; | |
1172 List<Element> nonFinalInstanceFields = <Element>[]; | |
1173 cls.forEachMember((holder, member) { | |
1174 compiler.withCurrentElement(member, () { | |
1175 // Perform various checks as side effect of "computing" the type. | |
1176 member.computeType(compiler); | |
1177 | |
1178 // Check modifiers. | |
1179 if (member.isFunction && member.modifiers.isFinal) { | |
1180 compiler.reportError( | |
1181 member, MessageKind.ILLEGAL_FINAL_METHOD_MODIFIER); | |
1182 } | |
1183 if (member.isConstructor) { | |
1184 final mismatchedFlagsBits = | |
1185 member.modifiers.flags & | |
1186 (Modifiers.FLAG_STATIC | Modifiers.FLAG_ABSTRACT); | |
1187 if (mismatchedFlagsBits != 0) { | |
1188 final mismatchedFlags = | |
1189 new Modifiers.withFlags(null, mismatchedFlagsBits); | |
1190 compiler.reportError( | |
1191 member, | |
1192 MessageKind.ILLEGAL_CONSTRUCTOR_MODIFIERS, | |
1193 {'modifiers': mismatchedFlags}); | |
1194 } | |
1195 if (member.modifiers.isConst) { | |
1196 constConstructors.add(member); | |
1197 } | |
1198 } | |
1199 if (member.isField) { | |
1200 if (member.modifiers.isConst && !member.modifiers.isStatic) { | |
1201 compiler.reportError( | |
1202 member, MessageKind.ILLEGAL_CONST_FIELD_MODIFIER); | |
1203 } | |
1204 if (!member.modifiers.isStatic && !member.modifiers.isFinal) { | |
1205 nonFinalInstanceFields.add(member); | |
1206 } | |
1207 } | |
1208 checkAbstractField(member); | |
1209 checkUserDefinableOperator(member); | |
1210 }); | |
1211 }); | |
1212 if (!constConstructors.isEmpty && !nonFinalInstanceFields.isEmpty) { | |
1213 Spannable span = constConstructors.length > 1 | |
1214 ? cls : constConstructors[0]; | |
1215 compiler.reportError(span, | |
1216 MessageKind.CONST_CONSTRUCTOR_WITH_NONFINAL_FIELDS, | |
1217 {'className': cls.name}); | |
1218 if (constConstructors.length > 1) { | |
1219 for (Element constructor in constConstructors) { | |
1220 compiler.reportInfo(constructor, | |
1221 MessageKind.CONST_CONSTRUCTOR_WITH_NONFINAL_FIELDS_CONSTRUCTOR); | |
1222 } | |
1223 } | |
1224 for (Element field in nonFinalInstanceFields) { | |
1225 compiler.reportInfo(field, | |
1226 MessageKind.CONST_CONSTRUCTOR_WITH_NONFINAL_FIELDS_FIELD); | |
1227 } | |
1228 } | |
1229 } | |
1230 | |
1231 void checkAbstractField(Element member) { | |
1232 // Only check for getters. The test can only fail if there is both a setter | |
1233 // and a getter with the same name, and we only need to check each abstract | |
1234 // field once, so we just ignore setters. | |
1235 if (!member.isGetter) return; | |
1236 | |
1237 // Find the associated abstract field. | |
1238 ClassElement classElement = member.enclosingClass; | |
1239 Element lookupElement = classElement.lookupLocalMember(member.name); | |
1240 if (lookupElement == null) { | |
1241 compiler.internalError(member, | |
1242 "No abstract field for accessor"); | |
1243 } else if (!identical(lookupElement.kind, ElementKind.ABSTRACT_FIELD)) { | |
1244 compiler.internalError(member, | |
1245 "Inaccessible abstract field for accessor"); | |
1246 } | |
1247 AbstractFieldElement field = lookupElement; | |
1248 | |
1249 FunctionElementX getter = field.getter; | |
1250 if (getter == null) return; | |
1251 FunctionElementX setter = field.setter; | |
1252 if (setter == null) return; | |
1253 int getterFlags = getter.modifiers.flags | Modifiers.FLAG_ABSTRACT; | |
1254 int setterFlags = setter.modifiers.flags | Modifiers.FLAG_ABSTRACT; | |
1255 if (!identical(getterFlags, setterFlags)) { | |
1256 final mismatchedFlags = | |
1257 new Modifiers.withFlags(null, getterFlags ^ setterFlags); | |
1258 compiler.reportError( | |
1259 field.getter, | |
1260 MessageKind.GETTER_MISMATCH, | |
1261 {'modifiers': mismatchedFlags}); | |
1262 compiler.reportError( | |
1263 field.setter, | |
1264 MessageKind.SETTER_MISMATCH, | |
1265 {'modifiers': mismatchedFlags}); | |
1266 } | |
1267 } | |
1268 | |
1269 void checkUserDefinableOperator(Element member) { | |
1270 FunctionElement function = member.asFunctionElement(); | |
1271 if (function == null) return; | |
1272 String value = member.name; | |
1273 if (value == null) return; | |
1274 if (!(isUserDefinableOperator(value) || identical(value, 'unary-'))) return; | |
1275 | |
1276 bool isMinus = false; | |
1277 int requiredParameterCount; | |
1278 MessageKind messageKind; | |
1279 if (identical(value, 'unary-')) { | |
1280 isMinus = true; | |
1281 messageKind = MessageKind.MINUS_OPERATOR_BAD_ARITY; | |
1282 requiredParameterCount = 0; | |
1283 } else if (isMinusOperator(value)) { | |
1284 isMinus = true; | |
1285 messageKind = MessageKind.MINUS_OPERATOR_BAD_ARITY; | |
1286 requiredParameterCount = 1; | |
1287 } else if (isUnaryOperator(value)) { | |
1288 messageKind = MessageKind.UNARY_OPERATOR_BAD_ARITY; | |
1289 requiredParameterCount = 0; | |
1290 } else if (isBinaryOperator(value)) { | |
1291 messageKind = MessageKind.BINARY_OPERATOR_BAD_ARITY; | |
1292 requiredParameterCount = 1; | |
1293 if (identical(value, '==')) checkOverrideHashCode(member); | |
1294 } else if (isTernaryOperator(value)) { | |
1295 messageKind = MessageKind.TERNARY_OPERATOR_BAD_ARITY; | |
1296 requiredParameterCount = 2; | |
1297 } else { | |
1298 compiler.internalError(function, | |
1299 'Unexpected user defined operator $value'); | |
1300 } | |
1301 checkArity(function, requiredParameterCount, messageKind, isMinus); | |
1302 } | |
1303 | |
1304 void checkOverrideHashCode(FunctionElement operatorEquals) { | |
1305 if (operatorEquals.isAbstract) return; | |
1306 ClassElement cls = operatorEquals.enclosingClass; | |
1307 Element hashCodeImplementation = | |
1308 cls.lookupLocalMember('hashCode'); | |
1309 if (hashCodeImplementation != null) return; | |
1310 compiler.reportHint( | |
1311 operatorEquals, MessageKind.OVERRIDE_EQUALS_NOT_HASH_CODE, | |
1312 {'class': cls.name}); | |
1313 } | |
1314 | |
1315 void checkArity(FunctionElement function, | |
1316 int requiredParameterCount, MessageKind messageKind, | |
1317 bool isMinus) { | |
1318 FunctionExpression node = function.node; | |
1319 FunctionSignature signature = function.functionSignature; | |
1320 if (signature.requiredParameterCount != requiredParameterCount) { | |
1321 Node errorNode = node; | |
1322 if (node.parameters != null) { | |
1323 if (isMinus || | |
1324 signature.requiredParameterCount < requiredParameterCount) { | |
1325 // If there are too few parameters, point to the whole parameter list. | |
1326 // For instance | |
1327 // | |
1328 // int operator +() {} | |
1329 // ^^ | |
1330 // | |
1331 // int operator []=(value) {} | |
1332 // ^^^^^^^ | |
1333 // | |
1334 // For operator -, always point the whole parameter list, like | |
1335 // | |
1336 // int operator -(a, b) {} | |
1337 // ^^^^^^ | |
1338 // | |
1339 // instead of | |
1340 // | |
1341 // int operator -(a, b) {} | |
1342 // ^ | |
1343 // | |
1344 // since the correction might not be to remove 'b' but instead to | |
1345 // remove 'a, b'. | |
1346 errorNode = node.parameters; | |
1347 } else { | |
1348 errorNode = node.parameters.nodes.skip(requiredParameterCount).head; | |
1349 } | |
1350 } | |
1351 compiler.reportError( | |
1352 errorNode, messageKind, {'operatorName': function.name}); | |
1353 } | |
1354 if (signature.optionalParameterCount != 0) { | |
1355 Node errorNode = | |
1356 node.parameters.nodes.skip(signature.requiredParameterCount).head; | |
1357 if (signature.optionalParametersAreNamed) { | |
1358 compiler.reportError( | |
1359 errorNode, | |
1360 MessageKind.OPERATOR_NAMED_PARAMETERS, | |
1361 {'operatorName': function.name}); | |
1362 } else { | |
1363 compiler.reportError( | |
1364 errorNode, | |
1365 MessageKind.OPERATOR_OPTIONAL_PARAMETERS, | |
1366 {'operatorName': function.name}); | |
1367 } | |
1368 } | |
1369 } | |
1370 | |
1371 reportErrorWithContext(Element errorneousElement, | |
1372 MessageKind errorMessage, | |
1373 Element contextElement, | |
1374 MessageKind contextMessage) { | |
1375 compiler.reportError( | |
1376 errorneousElement, | |
1377 errorMessage, | |
1378 {'memberName': contextElement.name, | |
1379 'className': contextElement.enclosingClass.name}); | |
1380 compiler.reportInfo(contextElement, contextMessage); | |
1381 } | |
1382 | |
1383 | |
1384 FunctionSignature resolveSignature(FunctionElementX element) { | |
1385 MessageKind defaultValuesError = null; | |
1386 if (element.isFactoryConstructor) { | |
1387 FunctionExpression body = element.parseNode(compiler); | |
1388 if (body.isRedirectingFactory) { | |
1389 defaultValuesError = MessageKind.REDIRECTING_FACTORY_WITH_DEFAULT; | |
1390 } | |
1391 } | |
1392 return compiler.withCurrentElement(element, () { | |
1393 FunctionExpression node = | |
1394 compiler.parser.measure(() => element.parseNode(compiler)); | |
1395 return measure(() => SignatureResolver.analyze( | |
1396 compiler, node.parameters, node.returnType, element, | |
1397 new ResolutionRegistry(compiler, element), | |
1398 defaultValuesError: defaultValuesError, | |
1399 createRealParameters: true)); | |
1400 }); | |
1401 } | |
1402 | |
1403 TreeElements resolveTypedef(TypedefElementX element) { | |
1404 if (element.isResolved) return element.treeElements; | |
1405 compiler.world.allTypedefs.add(element); | |
1406 return _resolveTypeDeclaration(element, () { | |
1407 ResolutionRegistry registry = new ResolutionRegistry(compiler, element); | |
1408 return compiler.withCurrentElement(element, () { | |
1409 return measure(() { | |
1410 assert(element.resolutionState == STATE_NOT_STARTED); | |
1411 element.resolutionState = STATE_STARTED; | |
1412 Typedef node = | |
1413 compiler.parser.measure(() => element.parseNode(compiler)); | |
1414 TypedefResolverVisitor visitor = | |
1415 new TypedefResolverVisitor(compiler, element, registry); | |
1416 visitor.visit(node); | |
1417 element.resolutionState = STATE_DONE; | |
1418 return registry.mapping; | |
1419 }); | |
1420 }); | |
1421 }); | |
1422 } | |
1423 | |
1424 void resolveMetadataAnnotation(MetadataAnnotationX annotation) { | |
1425 compiler.withCurrentElement(annotation.annotatedElement, () => measure(() { | |
1426 assert(annotation.resolutionState == STATE_NOT_STARTED); | |
1427 annotation.resolutionState = STATE_STARTED; | |
1428 | |
1429 Node node = annotation.parseNode(compiler); | |
1430 Element annotatedElement = annotation.annotatedElement; | |
1431 AnalyzableElement context = annotatedElement.analyzableElement; | |
1432 ClassElement classElement = annotatedElement.enclosingClass; | |
1433 if (classElement != null) { | |
1434 // The annotation is resolved in the scope of [classElement]. | |
1435 classElement.ensureResolved(compiler); | |
1436 } | |
1437 assert(invariant(node, context != null, | |
1438 message: "No context found for metadata annotation " | |
1439 "on $annotatedElement.")); | |
1440 ResolverVisitor visitor = visitorFor(context, useEnclosingScope: true); | |
1441 ResolutionRegistry registry = visitor.registry; | |
1442 node.accept(visitor); | |
1443 // TODO(johnniwinther): Avoid passing the [TreeElements] to | |
1444 // [compileMetadata]. | |
1445 annotation.constant = | |
1446 constantCompiler.compileMetadata(annotation, node, registry.mapping); | |
1447 // TODO(johnniwinther): Register the relation between the annotation | |
1448 // and the annotated element instead. This will allow the backend to | |
1449 // retrieve the backend constant and only register metadata on the | |
1450 // elements for which it is needed. (Issue 17732). | |
1451 registry.registerMetadataConstant(annotation, annotatedElement); | |
1452 annotation.resolutionState = STATE_DONE; | |
1453 })); | |
1454 } | |
1455 | |
1456 error(Spannable node, MessageKind kind, [arguments = const {}]) { | |
1457 // TODO(ahe): Make non-fatal. | |
1458 compiler.reportFatalError(node, kind, arguments); | |
1459 } | |
1460 | |
1461 Link<MetadataAnnotation> resolveMetadata(Element element, | |
1462 VariableDefinitions node) { | |
1463 LinkBuilder<MetadataAnnotation> metadata = | |
1464 new LinkBuilder<MetadataAnnotation>(); | |
1465 for (Metadata annotation in node.metadata.nodes) { | |
1466 ParameterMetadataAnnotation metadataAnnotation = | |
1467 new ParameterMetadataAnnotation(annotation); | |
1468 metadataAnnotation.annotatedElement = element; | |
1469 metadata.addLast(metadataAnnotation.ensureResolved(compiler)); | |
1470 } | |
1471 return metadata.toLink(); | |
1472 } | |
1473 } | |
1474 | |
1475 class InitializerResolver { | |
1476 final ResolverVisitor visitor; | |
1477 final Map<Element, Node> initialized; | |
1478 Link<Node> initializers; | |
1479 bool hasSuper; | |
1480 | |
1481 InitializerResolver(this.visitor) | |
1482 : initialized = new Map<Element, Node>(), hasSuper = false; | |
1483 | |
1484 ResolutionRegistry get registry => visitor.registry; | |
1485 | |
1486 error(Node node, MessageKind kind, [arguments = const {}]) { | |
1487 visitor.error(node, kind, arguments); | |
1488 } | |
1489 | |
1490 warning(Node node, MessageKind kind, [arguments = const {}]) { | |
1491 visitor.warning(node, kind, arguments); | |
1492 } | |
1493 | |
1494 bool isFieldInitializer(SendSet node) { | |
1495 if (node.selector.asIdentifier() == null) return false; | |
1496 if (node.receiver == null) return true; | |
1497 if (node.receiver.asIdentifier() == null) return false; | |
1498 return node.receiver.asIdentifier().isThis(); | |
1499 } | |
1500 | |
1501 reportDuplicateInitializerError(Element field, Node init, Node existing) { | |
1502 visitor.compiler.reportError( | |
1503 init, | |
1504 MessageKind.DUPLICATE_INITIALIZER, {'fieldName': field.name}); | |
1505 visitor.compiler.reportInfo( | |
1506 existing, | |
1507 MessageKind.ALREADY_INITIALIZED, {'fieldName': field.name}); | |
1508 } | |
1509 | |
1510 void checkForDuplicateInitializers(FieldElementX field, Node init) { | |
1511 // [field] can be null if it could not be resolved. | |
1512 if (field == null) return; | |
1513 String name = field.name; | |
1514 if (initialized.containsKey(field)) { | |
1515 reportDuplicateInitializerError(field, init, initialized[field]); | |
1516 } else if (field.isFinal) { | |
1517 field.parseNode(visitor.compiler); | |
1518 Expression initializer = field.initializer; | |
1519 if (initializer != null) { | |
1520 reportDuplicateInitializerError(field, init, initializer); | |
1521 } | |
1522 } | |
1523 initialized[field] = init; | |
1524 } | |
1525 | |
1526 void resolveFieldInitializer(FunctionElement constructor, SendSet init) { | |
1527 // init is of the form [this.]field = value. | |
1528 final Node selector = init.selector; | |
1529 final String name = selector.asIdentifier().source; | |
1530 // Lookup target field. | |
1531 Element target; | |
1532 if (isFieldInitializer(init)) { | |
1533 target = constructor.enclosingClass.lookupLocalMember(name); | |
1534 if (target == null) { | |
1535 error(selector, MessageKind.CANNOT_RESOLVE, {'name': name}); | |
1536 } else if (target.kind != ElementKind.FIELD) { | |
1537 error(selector, MessageKind.NOT_A_FIELD, {'fieldName': name}); | |
1538 } else if (!target.isInstanceMember) { | |
1539 error(selector, MessageKind.INIT_STATIC_FIELD, {'fieldName': name}); | |
1540 } | |
1541 } else { | |
1542 error(init, MessageKind.INVALID_RECEIVER_IN_INITIALIZER); | |
1543 } | |
1544 registry.useElement(init, target); | |
1545 registry.registerStaticUse(target); | |
1546 checkForDuplicateInitializers(target, init); | |
1547 // Resolve initializing value. | |
1548 visitor.visitInStaticContext(init.arguments.head); | |
1549 } | |
1550 | |
1551 ClassElement getSuperOrThisLookupTarget(FunctionElement constructor, | |
1552 bool isSuperCall, | |
1553 Node diagnosticNode) { | |
1554 ClassElement lookupTarget = constructor.enclosingClass; | |
1555 if (isSuperCall) { | |
1556 // Calculate correct lookup target and constructor name. | |
1557 if (identical(lookupTarget, visitor.compiler.objectClass)) { | |
1558 error(diagnosticNode, MessageKind.SUPER_INITIALIZER_IN_OBJECT); | |
1559 } else { | |
1560 return lookupTarget.supertype.element; | |
1561 } | |
1562 } | |
1563 return lookupTarget; | |
1564 } | |
1565 | |
1566 Element resolveSuperOrThisForSend(FunctionElement constructor, | |
1567 FunctionExpression functionNode, | |
1568 Send call) { | |
1569 // Resolve the selector and the arguments. | |
1570 ResolverTask resolver = visitor.compiler.resolver; | |
1571 visitor.inStaticContext(() { | |
1572 visitor.resolveSelector(call, null); | |
1573 visitor.resolveArguments(call.argumentsNode); | |
1574 }); | |
1575 Selector selector = registry.getSelector(call); | |
1576 bool isSuperCall = Initializers.isSuperConstructorCall(call); | |
1577 | |
1578 ClassElement lookupTarget = getSuperOrThisLookupTarget(constructor, | |
1579 isSuperCall, | |
1580 call); | |
1581 Selector constructorSelector = | |
1582 visitor.getRedirectingThisOrSuperConstructorSelector(call); | |
1583 FunctionElement calledConstructor = | |
1584 lookupTarget.lookupConstructor(constructorSelector); | |
1585 | |
1586 final bool isImplicitSuperCall = false; | |
1587 final String className = lookupTarget.name; | |
1588 verifyThatConstructorMatchesCall(constructor, | |
1589 calledConstructor, | |
1590 selector, | |
1591 isImplicitSuperCall, | |
1592 call, | |
1593 className, | |
1594 constructorSelector); | |
1595 | |
1596 registry.useElement(call, calledConstructor); | |
1597 registry.registerStaticUse(calledConstructor); | |
1598 return calledConstructor; | |
1599 } | |
1600 | |
1601 void resolveImplicitSuperConstructorSend(FunctionElement constructor, | |
1602 FunctionExpression functionNode) { | |
1603 // If the class has a super resolve the implicit super call. | |
1604 ClassElement classElement = constructor.enclosingClass; | |
1605 ClassElement superClass = classElement.superclass; | |
1606 if (classElement != visitor.compiler.objectClass) { | |
1607 assert(superClass != null); | |
1608 assert(superClass.resolutionState == STATE_DONE); | |
1609 String constructorName = ''; | |
1610 Selector callToMatch = new Selector.call( | |
1611 constructorName, | |
1612 classElement.library, | |
1613 0); | |
1614 | |
1615 final bool isSuperCall = true; | |
1616 ClassElement lookupTarget = getSuperOrThisLookupTarget(constructor, | |
1617 isSuperCall, | |
1618 functionNode); | |
1619 Selector constructorSelector = new Selector.callDefaultConstructor( | |
1620 visitor.enclosingElement.library); | |
1621 Element calledConstructor = lookupTarget.lookupConstructor( | |
1622 constructorSelector); | |
1623 | |
1624 final String className = lookupTarget.name; | |
1625 final bool isImplicitSuperCall = true; | |
1626 verifyThatConstructorMatchesCall(constructor, | |
1627 calledConstructor, | |
1628 callToMatch, | |
1629 isImplicitSuperCall, | |
1630 functionNode, | |
1631 className, | |
1632 constructorSelector); | |
1633 registry.registerImplicitSuperCall(calledConstructor); | |
1634 registry.registerStaticUse(calledConstructor); | |
1635 } | |
1636 } | |
1637 | |
1638 void verifyThatConstructorMatchesCall( | |
1639 FunctionElement caller, | |
1640 FunctionElement lookedupConstructor, | |
1641 Selector call, | |
1642 bool isImplicitSuperCall, | |
1643 Node diagnosticNode, | |
1644 String className, | |
1645 Selector constructorSelector) { | |
1646 if (lookedupConstructor == null | |
1647 || !lookedupConstructor.isGenerativeConstructor) { | |
1648 String fullConstructorName = Elements.constructorNameForDiagnostics( | |
1649 className, | |
1650 constructorSelector.name); | |
1651 MessageKind kind = isImplicitSuperCall | |
1652 ? MessageKind.CANNOT_RESOLVE_CONSTRUCTOR_FOR_IMPLICIT | |
1653 : MessageKind.CANNOT_RESOLVE_CONSTRUCTOR; | |
1654 visitor.compiler.reportError( | |
1655 diagnosticNode, kind, {'constructorName': fullConstructorName}); | |
1656 } else { | |
1657 lookedupConstructor.computeSignature(visitor.compiler); | |
1658 if (!call.applies(lookedupConstructor, visitor.compiler.world)) { | |
1659 MessageKind kind = isImplicitSuperCall | |
1660 ? MessageKind.NO_MATCHING_CONSTRUCTOR_FOR_IMPLICIT | |
1661 : MessageKind.NO_MATCHING_CONSTRUCTOR; | |
1662 visitor.compiler.reportError(diagnosticNode, kind); | |
1663 } else if (caller.isConst | |
1664 && !lookedupConstructor.isConst) { | |
1665 visitor.compiler.reportError( | |
1666 diagnosticNode, MessageKind.CONST_CALLS_NON_CONST); | |
1667 } | |
1668 } | |
1669 } | |
1670 | |
1671 /** | |
1672 * Resolve all initializers of this constructor. In the case of a redirecting | |
1673 * constructor, the resolved constructor's function element is returned. | |
1674 */ | |
1675 FunctionElement resolveInitializers(FunctionElement constructor, | |
1676 FunctionExpression functionNode) { | |
1677 // Keep track of all "this.param" parameters specified for constructor so | |
1678 // that we can ensure that fields are initialized only once. | |
1679 FunctionSignature functionParameters = constructor.functionSignature; | |
1680 functionParameters.forEachParameter((ParameterElement element) { | |
1681 if (element.isInitializingFormal) { | |
1682 InitializingFormalElement initializingFormal = element; | |
1683 checkForDuplicateInitializers(initializingFormal.fieldElement, | |
1684 element.initializer); | |
1685 } | |
1686 }); | |
1687 | |
1688 if (functionNode.initializers == null) { | |
1689 initializers = const Link<Node>(); | |
1690 } else { | |
1691 initializers = functionNode.initializers.nodes; | |
1692 } | |
1693 FunctionElement result; | |
1694 bool resolvedSuper = false; | |
1695 for (Link<Node> link = initializers; !link.isEmpty; link = link.tail) { | |
1696 if (link.head.asSendSet() != null) { | |
1697 final SendSet init = link.head.asSendSet(); | |
1698 resolveFieldInitializer(constructor, init); | |
1699 } else if (link.head.asSend() != null) { | |
1700 final Send call = link.head.asSend(); | |
1701 if (call.argumentsNode == null) { | |
1702 error(link.head, MessageKind.INVALID_INITIALIZER); | |
1703 continue; | |
1704 } | |
1705 if (Initializers.isSuperConstructorCall(call)) { | |
1706 if (resolvedSuper) { | |
1707 error(call, MessageKind.DUPLICATE_SUPER_INITIALIZER); | |
1708 } | |
1709 resolveSuperOrThisForSend(constructor, functionNode, call); | |
1710 resolvedSuper = true; | |
1711 } else if (Initializers.isConstructorRedirect(call)) { | |
1712 // Check that there is no body (Language specification 7.5.1). If the | |
1713 // constructor is also const, we already reported an error in | |
1714 // [resolveMethodElement]. | |
1715 if (functionNode.hasBody() && !constructor.isConst) { | |
1716 error(functionNode, MessageKind.REDIRECTING_CONSTRUCTOR_HAS_BODY); | |
1717 } | |
1718 // Check that there are no other initializers. | |
1719 if (!initializers.tail.isEmpty) { | |
1720 error(call, MessageKind.REDIRECTING_CONSTRUCTOR_HAS_INITIALIZER); | |
1721 } | |
1722 // Check that there are no field initializing parameters. | |
1723 Compiler compiler = visitor.compiler; | |
1724 FunctionSignature signature = constructor.functionSignature; | |
1725 signature.forEachParameter((ParameterElement parameter) { | |
1726 if (parameter.isInitializingFormal) { | |
1727 Node node = parameter.node; | |
1728 error(node, MessageKind.INITIALIZING_FORMAL_NOT_ALLOWED); | |
1729 } | |
1730 }); | |
1731 return resolveSuperOrThisForSend(constructor, functionNode, call); | |
1732 } else { | |
1733 visitor.error(call, MessageKind.CONSTRUCTOR_CALL_EXPECTED); | |
1734 return null; | |
1735 } | |
1736 } else { | |
1737 error(link.head, MessageKind.INVALID_INITIALIZER); | |
1738 } | |
1739 } | |
1740 if (!resolvedSuper) { | |
1741 resolveImplicitSuperConstructorSend(constructor, functionNode); | |
1742 } | |
1743 return null; // If there was no redirection always return null. | |
1744 } | |
1745 } | |
1746 | |
1747 class CommonResolverVisitor<R> extends Visitor<R> { | |
1748 final Compiler compiler; | |
1749 | |
1750 CommonResolverVisitor(Compiler this.compiler); | |
1751 | |
1752 R visitNode(Node node) { | |
1753 internalError(node, | |
1754 'internal error: Unhandled node: ${node.getObjectDescription()}'); | |
1755 return null; | |
1756 } | |
1757 | |
1758 R visitEmptyStatement(Node node) => null; | |
1759 | |
1760 /** Convenience method for visiting nodes that may be null. */ | |
1761 R visit(Node node) => (node == null) ? null : node.accept(this); | |
1762 | |
1763 void error(Spannable node, MessageKind kind, [Map arguments = const {}]) { | |
1764 compiler.reportFatalError(node, kind, arguments); | |
1765 } | |
1766 | |
1767 void warning(Spannable node, MessageKind kind, [Map arguments = const {}]) { | |
1768 compiler.reportWarning(node, kind, arguments); | |
1769 } | |
1770 | |
1771 void internalError(Spannable node, message) { | |
1772 compiler.internalError(node, message); | |
1773 } | |
1774 | |
1775 void addDeferredAction(Element element, DeferredAction action) { | |
1776 compiler.enqueuer.resolution.addDeferredAction(element, action); | |
1777 } | |
1778 } | |
1779 | |
1780 abstract class LabelScope { | |
1781 LabelScope get outer; | |
1782 LabelDefinition lookup(String label); | |
1783 } | |
1784 | |
1785 class LabeledStatementLabelScope implements LabelScope { | |
1786 final LabelScope outer; | |
1787 final Map<String, LabelDefinition> labels; | |
1788 LabeledStatementLabelScope(this.outer, this.labels); | |
1789 LabelDefinition lookup(String labelName) { | |
1790 LabelDefinition label = labels[labelName]; | |
1791 if (label != null) return label; | |
1792 return outer.lookup(labelName); | |
1793 } | |
1794 } | |
1795 | |
1796 class SwitchLabelScope implements LabelScope { | |
1797 final LabelScope outer; | |
1798 final Map<String, LabelDefinition> caseLabels; | |
1799 | |
1800 SwitchLabelScope(this.outer, this.caseLabels); | |
1801 | |
1802 LabelDefinition lookup(String labelName) { | |
1803 LabelDefinition result = caseLabels[labelName]; | |
1804 if (result != null) return result; | |
1805 return outer.lookup(labelName); | |
1806 } | |
1807 } | |
1808 | |
1809 class EmptyLabelScope implements LabelScope { | |
1810 const EmptyLabelScope(); | |
1811 LabelDefinition lookup(String label) => null; | |
1812 LabelScope get outer { | |
1813 throw 'internal error: empty label scope has no outer'; | |
1814 } | |
1815 } | |
1816 | |
1817 class StatementScope { | |
1818 LabelScope labels; | |
1819 Link<JumpTarget> breakTargetStack; | |
1820 Link<JumpTarget> continueTargetStack; | |
1821 // Used to provide different numbers to statements if one is inside the other. | |
1822 // Can be used to make otherwise duplicate labels unique. | |
1823 int nestingLevel = 0; | |
1824 | |
1825 StatementScope() | |
1826 : labels = const EmptyLabelScope(), | |
1827 breakTargetStack = const Link<JumpTarget>(), | |
1828 continueTargetStack = const Link<JumpTarget>(); | |
1829 | |
1830 LabelDefinition lookupLabel(String label) { | |
1831 return labels.lookup(label); | |
1832 } | |
1833 | |
1834 JumpTarget currentBreakTarget() => | |
1835 breakTargetStack.isEmpty ? null : breakTargetStack.head; | |
1836 | |
1837 JumpTarget currentContinueTarget() => | |
1838 continueTargetStack.isEmpty ? null : continueTargetStack.head; | |
1839 | |
1840 void enterLabelScope(Map<String, LabelDefinition> elements) { | |
1841 labels = new LabeledStatementLabelScope(labels, elements); | |
1842 nestingLevel++; | |
1843 } | |
1844 | |
1845 void exitLabelScope() { | |
1846 nestingLevel--; | |
1847 labels = labels.outer; | |
1848 } | |
1849 | |
1850 void enterLoop(JumpTarget element) { | |
1851 breakTargetStack = breakTargetStack.prepend(element); | |
1852 continueTargetStack = continueTargetStack.prepend(element); | |
1853 nestingLevel++; | |
1854 } | |
1855 | |
1856 void exitLoop() { | |
1857 nestingLevel--; | |
1858 breakTargetStack = breakTargetStack.tail; | |
1859 continueTargetStack = continueTargetStack.tail; | |
1860 } | |
1861 | |
1862 void enterSwitch(JumpTarget breakElement, | |
1863 Map<String, LabelDefinition> continueElements) { | |
1864 breakTargetStack = breakTargetStack.prepend(breakElement); | |
1865 labels = new SwitchLabelScope(labels, continueElements); | |
1866 nestingLevel++; | |
1867 } | |
1868 | |
1869 void exitSwitch() { | |
1870 nestingLevel--; | |
1871 breakTargetStack = breakTargetStack.tail; | |
1872 labels = labels.outer; | |
1873 } | |
1874 } | |
1875 | |
1876 class TypeResolver { | |
1877 final Compiler compiler; | |
1878 | |
1879 TypeResolver(this.compiler); | |
1880 | |
1881 /// Tries to resolve the type name as an element. | |
1882 Element resolveTypeName(Identifier prefixName, | |
1883 Identifier typeName, | |
1884 Scope scope, | |
1885 {bool deferredIsMalformed: true}) { | |
1886 Element element; | |
1887 bool deferredTypeAnnotation = false; | |
1888 if (prefixName != null) { | |
1889 Element prefixElement = | |
1890 lookupInScope(compiler, prefixName, scope, prefixName.source); | |
1891 if (prefixElement != null && prefixElement.isPrefix) { | |
1892 // The receiver is a prefix. Lookup in the imported members. | |
1893 PrefixElement prefix = prefixElement; | |
1894 element = prefix.lookupLocalMember(typeName.source); | |
1895 // TODO(17260, sigurdm): The test for DartBackend is there because | |
1896 // dart2dart outputs malformed types with prefix. | |
1897 if (element != null && | |
1898 prefix.isDeferred && | |
1899 deferredIsMalformed && | |
1900 compiler.backend is! DartBackend) { | |
1901 element = new ErroneousElementX(MessageKind.DEFERRED_TYPE_ANNOTATION, | |
1902 {'node': typeName}, | |
1903 element.name, | |
1904 element); | |
1905 } | |
1906 } else { | |
1907 // The caller of this method will create the ErroneousElement for | |
1908 // the MalformedType. | |
1909 element = null; | |
1910 } | |
1911 } else { | |
1912 String stringValue = typeName.source; | |
1913 element = lookupInScope(compiler, typeName, scope, typeName.source); | |
1914 } | |
1915 return element; | |
1916 } | |
1917 | |
1918 DartType resolveTypeAnnotation(MappingVisitor visitor, TypeAnnotation node, | |
1919 {bool malformedIsError: false, | |
1920 bool deferredIsMalformed: true}) { | |
1921 ResolutionRegistry registry = visitor.registry; | |
1922 | |
1923 Identifier typeName; | |
1924 DartType type; | |
1925 | |
1926 DartType checkNoTypeArguments(DartType type) { | |
1927 List<DartType> arguments = new List<DartType>(); | |
1928 bool hasTypeArgumentMismatch = resolveTypeArguments( | |
1929 visitor, node, const <DartType>[], arguments); | |
1930 if (hasTypeArgumentMismatch) { | |
1931 return new MalformedType( | |
1932 new ErroneousElementX(MessageKind.TYPE_ARGUMENT_COUNT_MISMATCH, | |
1933 {'type': node}, typeName.source, visitor.enclosingElement), | |
1934 type, arguments); | |
1935 } | |
1936 return type; | |
1937 } | |
1938 | |
1939 Identifier prefixName; | |
1940 Send send = node.typeName.asSend(); | |
1941 if (send != null) { | |
1942 // The type name is of the form [: prefix . identifier :]. | |
1943 prefixName = send.receiver.asIdentifier(); | |
1944 typeName = send.selector.asIdentifier(); | |
1945 } else { | |
1946 typeName = node.typeName.asIdentifier(); | |
1947 if (identical(typeName.source, 'void')) { | |
1948 type = const VoidType(); | |
1949 checkNoTypeArguments(type); | |
1950 registry.useType(node, type); | |
1951 return type; | |
1952 } else if (identical(typeName.source, 'dynamic')) { | |
1953 type = const DynamicType(); | |
1954 checkNoTypeArguments(type); | |
1955 registry.useType(node, type); | |
1956 return type; | |
1957 } | |
1958 } | |
1959 | |
1960 Element element = resolveTypeName(prefixName, typeName, visitor.scope, | |
1961 deferredIsMalformed: deferredIsMalformed); | |
1962 | |
1963 DartType reportFailureAndCreateType(MessageKind messageKind, | |
1964 Map messageArguments, | |
1965 {DartType userProvidedBadType, | |
1966 Element erroneousElement}) { | |
1967 if (malformedIsError) { | |
1968 visitor.error(node, messageKind, messageArguments); | |
1969 } else { | |
1970 registry.registerThrowRuntimeError(); | |
1971 visitor.warning(node, messageKind, messageArguments); | |
1972 } | |
1973 if (erroneousElement == null) { | |
1974 erroneousElement = new ErroneousElementX( | |
1975 messageKind, messageArguments, typeName.source, | |
1976 visitor.enclosingElement); | |
1977 } | |
1978 List<DartType> arguments = <DartType>[]; | |
1979 resolveTypeArguments(visitor, node, const <DartType>[], arguments); | |
1980 return new MalformedType(erroneousElement, | |
1981 userProvidedBadType, arguments); | |
1982 } | |
1983 | |
1984 // Try to construct the type from the element. | |
1985 if (element == null) { | |
1986 type = reportFailureAndCreateType( | |
1987 MessageKind.CANNOT_RESOLVE_TYPE, {'typeName': node.typeName}); | |
1988 } else if (element.isAmbiguous) { | |
1989 AmbiguousElement ambiguous = element; | |
1990 type = reportFailureAndCreateType( | |
1991 ambiguous.messageKind, ambiguous.messageArguments); | |
1992 ambiguous.diagnose(registry.mapping.analyzedElement, compiler); | |
1993 } else if (element.isErroneous) { | |
1994 ErroneousElement erroneousElement = element; | |
1995 type = reportFailureAndCreateType( | |
1996 erroneousElement.messageKind, erroneousElement.messageArguments, | |
1997 erroneousElement: erroneousElement); | |
1998 } else if (!element.impliesType) { | |
1999 type = reportFailureAndCreateType( | |
2000 MessageKind.NOT_A_TYPE, {'node': node.typeName}); | |
2001 } else { | |
2002 bool addTypeVariableBoundsCheck = false; | |
2003 if (element.isClass) { | |
2004 ClassElement cls = element; | |
2005 // TODO(johnniwinther): [_ensureClassWillBeResolved] should imply | |
2006 // [computeType]. | |
2007 compiler.resolver._ensureClassWillBeResolved(cls); | |
2008 element.computeType(compiler); | |
2009 List<DartType> arguments = <DartType>[]; | |
2010 bool hasTypeArgumentMismatch = resolveTypeArguments( | |
2011 visitor, node, cls.typeVariables, arguments); | |
2012 if (hasTypeArgumentMismatch) { | |
2013 type = new BadInterfaceType(cls.declaration, | |
2014 new InterfaceType.forUserProvidedBadType(cls.declaration, | |
2015 arguments)); | |
2016 } else { | |
2017 if (arguments.isEmpty) { | |
2018 type = cls.rawType; | |
2019 } else { | |
2020 type = new InterfaceType(cls.declaration, arguments.toList(growable:
false)); | |
2021 addTypeVariableBoundsCheck = true; | |
2022 } | |
2023 } | |
2024 } else if (element.isTypedef) { | |
2025 TypedefElement typdef = element; | |
2026 // TODO(johnniwinther): [ensureResolved] should imply [computeType]. | |
2027 typdef.ensureResolved(compiler); | |
2028 element.computeType(compiler); | |
2029 List<DartType> arguments = <DartType>[]; | |
2030 bool hasTypeArgumentMismatch = resolveTypeArguments( | |
2031 visitor, node, typdef.typeVariables, arguments); | |
2032 if (hasTypeArgumentMismatch) { | |
2033 type = new BadTypedefType(typdef, | |
2034 new TypedefType.forUserProvidedBadType(typdef, arguments)); | |
2035 } else { | |
2036 if (arguments.isEmpty) { | |
2037 type = typdef.rawType; | |
2038 } else { | |
2039 type = new TypedefType(typdef, arguments.toList(growable: false)); | |
2040 addTypeVariableBoundsCheck = true; | |
2041 } | |
2042 } | |
2043 } else if (element.isTypeVariable) { | |
2044 Element outer = | |
2045 visitor.enclosingElement.outermostEnclosingMemberOrTopLevel; | |
2046 bool isInFactoryConstructor = | |
2047 outer != null && outer.isFactoryConstructor; | |
2048 if (!outer.isClass && | |
2049 !outer.isTypedef && | |
2050 !isInFactoryConstructor && | |
2051 Elements.isInStaticContext(visitor.enclosingElement)) { | |
2052 registry.registerThrowRuntimeError(); | |
2053 type = reportFailureAndCreateType( | |
2054 MessageKind.TYPE_VARIABLE_WITHIN_STATIC_MEMBER, | |
2055 {'typeVariableName': node}, | |
2056 userProvidedBadType: element.computeType(compiler)); | |
2057 } else { | |
2058 type = element.computeType(compiler); | |
2059 } | |
2060 type = checkNoTypeArguments(type); | |
2061 } else { | |
2062 compiler.internalError(node, | |
2063 "Unexpected element kind ${element.kind}."); | |
2064 } | |
2065 if (addTypeVariableBoundsCheck) { | |
2066 registry.registerTypeVariableBoundCheck(); | |
2067 visitor.addDeferredAction( | |
2068 visitor.enclosingElement, | |
2069 () => checkTypeVariableBounds(node, type)); | |
2070 } | |
2071 } | |
2072 registry.useType(node, type); | |
2073 return type; | |
2074 } | |
2075 | |
2076 /// Checks the type arguments of [type] against the type variable bounds. | |
2077 void checkTypeVariableBounds(TypeAnnotation node, GenericType type) { | |
2078 void checkTypeVariableBound(_, DartType typeArgument, | |
2079 TypeVariableType typeVariable, | |
2080 DartType bound) { | |
2081 if (!compiler.types.isSubtype(typeArgument, bound)) { | |
2082 compiler.reportWarning(node, | |
2083 MessageKind.INVALID_TYPE_VARIABLE_BOUND, | |
2084 {'typeVariable': typeVariable, | |
2085 'bound': bound, | |
2086 'typeArgument': typeArgument, | |
2087 'thisType': type.element.thisType}); | |
2088 } | |
2089 }; | |
2090 | |
2091 compiler.types.checkTypeVariableBounds(type, checkTypeVariableBound); | |
2092 } | |
2093 | |
2094 /** | |
2095 * Resolves the type arguments of [node] and adds these to [arguments]. | |
2096 * | |
2097 * Returns [: true :] if the number of type arguments did not match the | |
2098 * number of type variables. | |
2099 */ | |
2100 bool resolveTypeArguments(MappingVisitor visitor, | |
2101 TypeAnnotation node, | |
2102 List<DartType> typeVariables, | |
2103 List<DartType> arguments) { | |
2104 if (node.typeArguments == null) { | |
2105 return false; | |
2106 } | |
2107 int expectedVariables = typeVariables.length; | |
2108 int index = 0; | |
2109 bool typeArgumentCountMismatch = false; | |
2110 for (Link<Node> typeArguments = node.typeArguments.nodes; | |
2111 !typeArguments.isEmpty; | |
2112 typeArguments = typeArguments.tail, index++) { | |
2113 if (index > expectedVariables - 1) { | |
2114 visitor.warning( | |
2115 typeArguments.head, MessageKind.ADDITIONAL_TYPE_ARGUMENT); | |
2116 typeArgumentCountMismatch = true; | |
2117 } | |
2118 DartType argType = resolveTypeAnnotation(visitor, typeArguments.head); | |
2119 // TODO(karlklose): rewrite to not modify [arguments]. | |
2120 arguments.add(argType); | |
2121 } | |
2122 if (index < expectedVariables) { | |
2123 visitor.warning(node.typeArguments, | |
2124 MessageKind.MISSING_TYPE_ARGUMENT); | |
2125 typeArgumentCountMismatch = true; | |
2126 } | |
2127 return typeArgumentCountMismatch; | |
2128 } | |
2129 } | |
2130 | |
2131 /** | |
2132 * Common supertype for resolver visitors that record resolutions in a | |
2133 * [ResolutionRegistry]. | |
2134 */ | |
2135 abstract class MappingVisitor<T> extends CommonResolverVisitor<T> { | |
2136 final ResolutionRegistry registry; | |
2137 final TypeResolver typeResolver; | |
2138 /// The current enclosing element for the visited AST nodes. | |
2139 Element get enclosingElement; | |
2140 /// The current scope of the visitor. | |
2141 Scope get scope; | |
2142 | |
2143 MappingVisitor(Compiler compiler, ResolutionRegistry this.registry) | |
2144 : typeResolver = new TypeResolver(compiler), | |
2145 super(compiler); | |
2146 | |
2147 AsyncMarker get currentAsyncMarker => AsyncMarker.SYNC; | |
2148 | |
2149 /// Add [element] to the current scope and check for duplicate definitions. | |
2150 void addToScope(Element element) { | |
2151 Element existing = scope.add(element); | |
2152 if (existing != element) { | |
2153 reportDuplicateDefinition(element.name, element, existing); | |
2154 } | |
2155 } | |
2156 | |
2157 void checkLocalDefinitionName(Node node, Element element) { | |
2158 if (currentAsyncMarker != AsyncMarker.SYNC) { | |
2159 if (element.name == 'yield' || | |
2160 element.name == 'async' || | |
2161 element.name == 'await') { | |
2162 compiler.reportError( | |
2163 node, MessageKind.ASYNC_KEYWORD_AS_IDENTIFIER, | |
2164 {'keyword': element.name, | |
2165 'modifier': currentAsyncMarker}); | |
2166 } | |
2167 } | |
2168 } | |
2169 | |
2170 /// Register [node] as the definition of [element]. | |
2171 void defineLocalVariable(Node node, LocalVariableElement element) { | |
2172 invariant(node, element != null); | |
2173 checkLocalDefinitionName(node, element); | |
2174 registry.defineElement(node, element); | |
2175 } | |
2176 | |
2177 void reportDuplicateDefinition(String name, | |
2178 Spannable definition, | |
2179 Spannable existing) { | |
2180 compiler.reportError(definition, | |
2181 MessageKind.DUPLICATE_DEFINITION, {'name': name}); | |
2182 compiler.reportInfo(existing, | |
2183 MessageKind.EXISTING_DEFINITION, {'name': name}); | |
2184 } | |
2185 } | |
2186 | |
2187 /** | |
2188 * Core implementation of resolution. | |
2189 * | |
2190 * Do not subclass or instantiate this class outside this library | |
2191 * except for testing. | |
2192 */ | |
2193 class ResolverVisitor extends MappingVisitor<ResolutionResult> { | |
2194 /** | |
2195 * The current enclosing element for the visited AST nodes. | |
2196 * | |
2197 * This field is updated when nested closures are visited. | |
2198 */ | |
2199 Element enclosingElement; | |
2200 bool inInstanceContext; | |
2201 bool inCheckContext; | |
2202 bool inCatchBlock; | |
2203 | |
2204 Scope scope; | |
2205 ClassElement currentClass; | |
2206 ExpressionStatement currentExpressionStatement; | |
2207 bool sendIsMemberAccess = false; | |
2208 StatementScope statementScope; | |
2209 int allowedCategory = ElementCategory.VARIABLE | ElementCategory.FUNCTION | |
2210 | ElementCategory.IMPLIES_TYPE; | |
2211 | |
2212 /** | |
2213 * Record of argument nodes to JS_INTERCEPTOR_CONSTANT for deferred | |
2214 * processing. | |
2215 */ | |
2216 Set<Node> argumentsToJsInterceptorConstant = null; | |
2217 | |
2218 /// When visiting the type declaration of the variable in a [ForIn] loop, | |
2219 /// the initializer of the variable is implicit and we should not emit an | |
2220 /// error when verifying that all final variables are initialized. | |
2221 bool allowFinalWithoutInitializer = false; | |
2222 | |
2223 /// The nodes for which variable access and mutation must be registered in | |
2224 /// order to determine when the static type of variables types is promoted. | |
2225 Link<Node> promotionScope = const Link<Node>(); | |
2226 | |
2227 bool isPotentiallyMutableTarget(Element target) { | |
2228 if (target == null) return false; | |
2229 return (target.isVariable || target.isParameter) && | |
2230 !(target.isFinal || target.isConst); | |
2231 } | |
2232 | |
2233 // TODO(ahe): Find a way to share this with runtime implementation. | |
2234 static final RegExp symbolValidationPattern = | |
2235 new RegExp(r'^(?:[a-zA-Z$][a-zA-Z$0-9_]*\.)*(?:[a-zA-Z$][a-zA-Z$0-9_]*=?|' | |
2236 r'-|' | |
2237 r'unary-|' | |
2238 r'\[\]=|' | |
2239 r'~|' | |
2240 r'==|' | |
2241 r'\[\]|' | |
2242 r'\*|' | |
2243 r'/|' | |
2244 r'%|' | |
2245 r'~/|' | |
2246 r'\+|' | |
2247 r'<<|' | |
2248 r'>>|' | |
2249 r'>=|' | |
2250 r'>|' | |
2251 r'<=|' | |
2252 r'<|' | |
2253 r'&|' | |
2254 r'\^|' | |
2255 r'\|' | |
2256 r')$'); | |
2257 | |
2258 ResolverVisitor(Compiler compiler, | |
2259 Element element, | |
2260 ResolutionRegistry registry, | |
2261 {bool useEnclosingScope: false}) | |
2262 : this.enclosingElement = element, | |
2263 // When the element is a field, we are actually resolving its | |
2264 // initial value, which should not have access to instance | |
2265 // fields. | |
2266 inInstanceContext = (element.isInstanceMember && !element.isField) | |
2267 || element.isGenerativeConstructor, | |
2268 this.currentClass = element.isClassMember ? element.enclosingClass | |
2269 : null, | |
2270 this.statementScope = new StatementScope(), | |
2271 scope = useEnclosingScope | |
2272 ? Scope.buildEnclosingScope(element) : element.buildScope(), | |
2273 // The type annotations on a typedef do not imply type checks. | |
2274 // TODO(karlklose): clean this up (dartbug.com/8870). | |
2275 inCheckContext = compiler.enableTypeAssertions && | |
2276 !element.isLibrary && | |
2277 !element.isTypedef && | |
2278 !element.enclosingElement.isTypedef, | |
2279 inCatchBlock = false, | |
2280 super(compiler, registry); | |
2281 | |
2282 AsyncMarker get currentAsyncMarker { | |
2283 if (enclosingElement is FunctionElement) { | |
2284 FunctionElement function = enclosingElement; | |
2285 return function.asyncMarker; | |
2286 } | |
2287 return AsyncMarker.SYNC; | |
2288 } | |
2289 | |
2290 Element reportLookupErrorIfAny(Element result, Node node, String name) { | |
2291 if (!Elements.isUnresolved(result)) { | |
2292 if (!inInstanceContext && result.isInstanceMember) { | |
2293 compiler.reportError( | |
2294 node, MessageKind.NO_INSTANCE_AVAILABLE, {'name': name}); | |
2295 return new ErroneousElementX(MessageKind.NO_INSTANCE_AVAILABLE, | |
2296 {'name': name}, | |
2297 name, enclosingElement); | |
2298 } else if (result.isAmbiguous) { | |
2299 AmbiguousElement ambiguous = result; | |
2300 compiler.reportError( | |
2301 node, ambiguous.messageKind, ambiguous.messageArguments); | |
2302 ambiguous.diagnose(enclosingElement, compiler); | |
2303 return new ErroneousElementX(ambiguous.messageKind, | |
2304 ambiguous.messageArguments, | |
2305 name, enclosingElement); | |
2306 } | |
2307 } | |
2308 return result; | |
2309 } | |
2310 | |
2311 // Create, or reuse an already created, target element for a statement. | |
2312 JumpTarget getOrDefineTarget(Node statement) { | |
2313 JumpTarget element = registry.getTargetDefinition(statement); | |
2314 if (element == null) { | |
2315 element = new JumpTargetX(statement, | |
2316 statementScope.nestingLevel, | |
2317 enclosingElement); | |
2318 registry.defineTarget(statement, element); | |
2319 } | |
2320 return element; | |
2321 } | |
2322 | |
2323 doInCheckContext(action()) { | |
2324 bool wasInCheckContext = inCheckContext; | |
2325 inCheckContext = true; | |
2326 var result = action(); | |
2327 inCheckContext = wasInCheckContext; | |
2328 return result; | |
2329 } | |
2330 | |
2331 inStaticContext(action()) { | |
2332 bool wasInstanceContext = inInstanceContext; | |
2333 inInstanceContext = false; | |
2334 var result = action(); | |
2335 inInstanceContext = wasInstanceContext; | |
2336 return result; | |
2337 } | |
2338 | |
2339 doInPromotionScope(Node node, action()) { | |
2340 promotionScope = promotionScope.prepend(node); | |
2341 var result = action(); | |
2342 promotionScope = promotionScope.tail; | |
2343 return result; | |
2344 } | |
2345 | |
2346 visitInStaticContext(Node node) { | |
2347 inStaticContext(() => visit(node)); | |
2348 } | |
2349 | |
2350 ErroneousElement warnAndCreateErroneousElement(Node node, | |
2351 String name, | |
2352 MessageKind kind, | |
2353 [Map arguments = const {}]) { | |
2354 compiler.reportWarning(node, kind, arguments); | |
2355 return new ErroneousElementX(kind, arguments, name, enclosingElement); | |
2356 } | |
2357 | |
2358 ResolutionResult visitIdentifier(Identifier node) { | |
2359 if (node.isThis()) { | |
2360 if (!inInstanceContext) { | |
2361 error(node, MessageKind.NO_INSTANCE_AVAILABLE, {'name': node}); | |
2362 } | |
2363 return null; | |
2364 } else if (node.isSuper()) { | |
2365 if (!inInstanceContext) error(node, MessageKind.NO_SUPER_IN_STATIC); | |
2366 if ((ElementCategory.SUPER & allowedCategory) == 0) { | |
2367 error(node, MessageKind.INVALID_USE_OF_SUPER); | |
2368 } | |
2369 return null; | |
2370 } else { | |
2371 String name = node.source; | |
2372 Element element = lookupInScope(compiler, node, scope, name); | |
2373 if (Elements.isUnresolved(element) && name == 'dynamic') { | |
2374 // TODO(johnniwinther): Remove this hack when we can return more complex | |
2375 // objects than [Element] from this method. | |
2376 element = compiler.typeClass; | |
2377 // Set the type to be `dynamic` to mark that this is a type literal. | |
2378 registry.setType(node, const DynamicType()); | |
2379 } | |
2380 element = reportLookupErrorIfAny(element, node, node.source); | |
2381 if (element == null) { | |
2382 if (!inInstanceContext) { | |
2383 element = warnAndCreateErroneousElement( | |
2384 node, node.source, MessageKind.CANNOT_RESOLVE, | |
2385 {'name': node}); | |
2386 registry.registerThrowNoSuchMethod(); | |
2387 } | |
2388 } else if (element.isErroneous) { | |
2389 // Use the erroneous element. | |
2390 } else { | |
2391 if ((element.kind.category & allowedCategory) == 0) { | |
2392 // TODO(ahe): Improve error message. Need UX input. | |
2393 error(node, MessageKind.GENERIC, | |
2394 {'text': "is not an expression $element"}); | |
2395 } | |
2396 } | |
2397 if (!Elements.isUnresolved(element) && element.isClass) { | |
2398 ClassElement classElement = element; | |
2399 classElement.ensureResolved(compiler); | |
2400 } | |
2401 return new ElementResult(registry.useElement(node, element)); | |
2402 } | |
2403 } | |
2404 | |
2405 ResolutionResult visitTypeAnnotation(TypeAnnotation node) { | |
2406 DartType type = resolveTypeAnnotation(node); | |
2407 if (inCheckContext) { | |
2408 registry.registerIsCheck(type); | |
2409 } | |
2410 return new TypeResult(type); | |
2411 } | |
2412 | |
2413 bool isNamedConstructor(Send node) => node.receiver != null; | |
2414 | |
2415 Selector getRedirectingThisOrSuperConstructorSelector(Send node) { | |
2416 if (isNamedConstructor(node)) { | |
2417 String constructorName = node.selector.asIdentifier().source; | |
2418 return new Selector.callConstructor( | |
2419 constructorName, | |
2420 enclosingElement.library); | |
2421 } else { | |
2422 return new Selector.callDefaultConstructor( | |
2423 enclosingElement.library); | |
2424 } | |
2425 } | |
2426 | |
2427 FunctionElement resolveConstructorRedirection(FunctionElementX constructor) { | |
2428 FunctionExpression node = constructor.parseNode(compiler); | |
2429 | |
2430 // A synthetic constructor does not have a node. | |
2431 if (node == null) return null; | |
2432 if (node.initializers == null) return null; | |
2433 Link<Node> initializers = node.initializers.nodes; | |
2434 if (!initializers.isEmpty && | |
2435 Initializers.isConstructorRedirect(initializers.head)) { | |
2436 Selector selector = | |
2437 getRedirectingThisOrSuperConstructorSelector(initializers.head); | |
2438 final ClassElement classElement = constructor.enclosingClass; | |
2439 return classElement.lookupConstructor(selector); | |
2440 } | |
2441 return null; | |
2442 } | |
2443 | |
2444 void setupFunction(FunctionExpression node, FunctionElement function) { | |
2445 Element enclosingElement = function.enclosingElement; | |
2446 if (node.modifiers.isStatic && | |
2447 enclosingElement.kind != ElementKind.CLASS) { | |
2448 compiler.reportError(node, MessageKind.ILLEGAL_STATIC); | |
2449 } | |
2450 | |
2451 scope = new MethodScope(scope, function); | |
2452 // Put the parameters in scope. | |
2453 FunctionSignature functionParameters = function.functionSignature; | |
2454 Link<Node> parameterNodes = (node.parameters == null) | |
2455 ? const Link<Node>() : node.parameters.nodes; | |
2456 functionParameters.forEachParameter((ParameterElement element) { | |
2457 // TODO(karlklose): should be a list of [FormalElement]s, but the actual | |
2458 // implementation uses [Element]. | |
2459 Link<Element> optionals = functionParameters.optionalParameters; | |
2460 if (!optionals.isEmpty && element == optionals.head) { | |
2461 NodeList nodes = parameterNodes.head; | |
2462 parameterNodes = nodes.nodes; | |
2463 } | |
2464 visit(element.initializer); | |
2465 VariableDefinitions variableDefinitions = parameterNodes.head; | |
2466 Node parameterNode = variableDefinitions.definitions.nodes.head; | |
2467 // Field parameters (this.x) are not visible inside the constructor. The | |
2468 // fields they reference are visible, but must be resolved independently. | |
2469 if (element.isInitializingFormal) { | |
2470 registry.useElement(parameterNode, element); | |
2471 } else { | |
2472 LocalParameterElement parameterElement = element; | |
2473 defineLocalVariable(parameterNode, parameterElement); | |
2474 addToScope(parameterElement); | |
2475 } | |
2476 parameterNodes = parameterNodes.tail; | |
2477 }); | |
2478 addDeferredAction(enclosingElement, () { | |
2479 functionParameters.forEachOptionalParameter((Element parameter) { | |
2480 compiler.resolver.constantCompiler.compileConstant(parameter); | |
2481 }); | |
2482 }); | |
2483 if (inCheckContext) { | |
2484 functionParameters.forEachParameter((ParameterElement element) { | |
2485 registry.registerIsCheck(element.type); | |
2486 }); | |
2487 } | |
2488 } | |
2489 | |
2490 visitCascade(Cascade node) { | |
2491 visit(node.expression); | |
2492 } | |
2493 | |
2494 visitCascadeReceiver(CascadeReceiver node) { | |
2495 visit(node.expression); | |
2496 } | |
2497 | |
2498 visitClassNode(ClassNode node) { | |
2499 internalError(node, "shouldn't be called"); | |
2500 } | |
2501 | |
2502 visitIn(Node node, Scope nestedScope) { | |
2503 Scope oldScope = scope; | |
2504 scope = nestedScope; | |
2505 ResolutionResult result = visit(node); | |
2506 scope = oldScope; | |
2507 return result; | |
2508 } | |
2509 | |
2510 /** | |
2511 * Introduces new default targets for break and continue | |
2512 * before visiting the body of the loop | |
2513 */ | |
2514 visitLoopBodyIn(Loop loop, Node body, Scope bodyScope) { | |
2515 JumpTarget element = getOrDefineTarget(loop); | |
2516 statementScope.enterLoop(element); | |
2517 visitIn(body, bodyScope); | |
2518 statementScope.exitLoop(); | |
2519 if (!element.isTarget) { | |
2520 registry.undefineTarget(loop); | |
2521 } | |
2522 } | |
2523 | |
2524 visitBlock(Block node) { | |
2525 visitIn(node.statements, new BlockScope(scope)); | |
2526 } | |
2527 | |
2528 visitDoWhile(DoWhile node) { | |
2529 visitLoopBodyIn(node, node.body, new BlockScope(scope)); | |
2530 visit(node.condition); | |
2531 } | |
2532 | |
2533 visitEmptyStatement(EmptyStatement node) { } | |
2534 | |
2535 visitExpressionStatement(ExpressionStatement node) { | |
2536 ExpressionStatement oldExpressionStatement = currentExpressionStatement; | |
2537 currentExpressionStatement = node; | |
2538 visit(node.expression); | |
2539 currentExpressionStatement = oldExpressionStatement; | |
2540 } | |
2541 | |
2542 visitFor(For node) { | |
2543 Scope blockScope = new BlockScope(scope); | |
2544 visitIn(node.initializer, blockScope); | |
2545 visitIn(node.condition, blockScope); | |
2546 visitIn(node.update, blockScope); | |
2547 visitLoopBodyIn(node, node.body, blockScope); | |
2548 } | |
2549 | |
2550 visitFunctionDeclaration(FunctionDeclaration node) { | |
2551 assert(node.function.name != null); | |
2552 visitFunctionExpression(node.function, inFunctionDeclaration: true); | |
2553 } | |
2554 | |
2555 | |
2556 /// Process a local function declaration or an anonymous function expression. | |
2557 /// | |
2558 /// [inFunctionDeclaration] is `true` when the current node is the immediate | |
2559 /// child of a function declaration. | |
2560 /// | |
2561 /// This is used to distinguish local function declarations from anonymous | |
2562 /// function expressions. | |
2563 visitFunctionExpression(FunctionExpression node, | |
2564 {bool inFunctionDeclaration: false}) { | |
2565 bool doAddToScope = inFunctionDeclaration; | |
2566 if (!inFunctionDeclaration && node.name != null) { | |
2567 compiler.reportError( | |
2568 node.name, | |
2569 MessageKind.NAMED_FUNCTION_EXPRESSION, | |
2570 {'name': node.name}); | |
2571 } | |
2572 visit(node.returnType); | |
2573 String name; | |
2574 if (node.name == null) { | |
2575 name = ""; | |
2576 } else { | |
2577 name = node.name.asIdentifier().source; | |
2578 } | |
2579 LocalFunctionElementX function = new LocalFunctionElementX( | |
2580 name, node, ElementKind.FUNCTION, Modifiers.EMPTY, | |
2581 enclosingElement); | |
2582 function.functionSignatureCache = | |
2583 SignatureResolver.analyze(compiler, node.parameters, node.returnType, | |
2584 function, registry, createRealParameters: true); | |
2585 ResolverTask.processAsyncMarker(compiler, function); | |
2586 checkLocalDefinitionName(node, function); | |
2587 registry.defineFunction(node, function); | |
2588 if (doAddToScope) { | |
2589 addToScope(function); | |
2590 } | |
2591 Scope oldScope = scope; // The scope is modified by [setupFunction]. | |
2592 setupFunction(node, function); | |
2593 | |
2594 Element previousEnclosingElement = enclosingElement; | |
2595 enclosingElement = function; | |
2596 // Run the body in a fresh statement scope. | |
2597 StatementScope oldStatementScope = statementScope; | |
2598 statementScope = new StatementScope(); | |
2599 visit(node.body); | |
2600 statementScope = oldStatementScope; | |
2601 | |
2602 scope = oldScope; | |
2603 enclosingElement = previousEnclosingElement; | |
2604 | |
2605 registry.registerClosure(function); | |
2606 registry.registerInstantiatedClass(compiler.functionClass); | |
2607 } | |
2608 | |
2609 visitIf(If node) { | |
2610 doInPromotionScope(node.condition.expression, () => visit(node.condition)); | |
2611 doInPromotionScope(node.thenPart, | |
2612 () => visitIn(node.thenPart, new BlockScope(scope))); | |
2613 visitIn(node.elsePart, new BlockScope(scope)); | |
2614 } | |
2615 | |
2616 ResolutionResult resolveSend(Send node) { | |
2617 Selector selector = resolveSelector(node, null); | |
2618 if (node.isSuperCall) registry.registerSuperUse(node); | |
2619 | |
2620 if (node.receiver == null) { | |
2621 // If this send is of the form "assert(expr);", then | |
2622 // this is an assertion. | |
2623 if (selector.isAssert) { | |
2624 if (selector.argumentCount != 1) { | |
2625 error(node.selector, | |
2626 MessageKind.WRONG_NUMBER_OF_ARGUMENTS_FOR_ASSERT, | |
2627 {'argumentCount': selector.argumentCount}); | |
2628 } else if (selector.namedArgumentCount != 0) { | |
2629 error(node.selector, | |
2630 MessageKind.ASSERT_IS_GIVEN_NAMED_ARGUMENTS, | |
2631 {'argumentCount': selector.namedArgumentCount}); | |
2632 } | |
2633 registry.registerAssert(node); | |
2634 return const AssertResult(); | |
2635 } | |
2636 | |
2637 return node.selector.accept(this); | |
2638 } | |
2639 | |
2640 var oldCategory = allowedCategory; | |
2641 allowedCategory |= ElementCategory.PREFIX | ElementCategory.SUPER; | |
2642 ResolutionResult resolvedReceiver = visit(node.receiver); | |
2643 allowedCategory = oldCategory; | |
2644 | |
2645 Element target; | |
2646 String name = node.selector.asIdentifier().source; | |
2647 if (identical(name, 'this')) { | |
2648 // TODO(ahe): Why is this using GENERIC? | |
2649 error(node.selector, MessageKind.GENERIC, | |
2650 {'text': "expected an identifier"}); | |
2651 } else if (node.isSuperCall) { | |
2652 if (node.isOperator) { | |
2653 if (isUserDefinableOperator(name)) { | |
2654 name = selector.name; | |
2655 } else { | |
2656 error(node.selector, MessageKind.ILLEGAL_SUPER_SEND, {'name': name}); | |
2657 } | |
2658 } | |
2659 if (!inInstanceContext) { | |
2660 error(node.receiver, MessageKind.NO_INSTANCE_AVAILABLE, {'name': name}); | |
2661 return null; | |
2662 } | |
2663 if (currentClass.supertype == null) { | |
2664 // This is just to guard against internal errors, so no need | |
2665 // for a real error message. | |
2666 error(node.receiver, MessageKind.GENERIC, | |
2667 {'text': "Object has no superclass"}); | |
2668 } | |
2669 // TODO(johnniwinther): Ensure correct behavior if currentClass is a | |
2670 // patch. | |
2671 target = currentClass.lookupSuperSelector(selector); | |
2672 // [target] may be null which means invoking noSuchMethod on | |
2673 // super. | |
2674 if (target == null) { | |
2675 target = warnAndCreateErroneousElement( | |
2676 node, name, MessageKind.NO_SUCH_SUPER_MEMBER, | |
2677 {'className': currentClass, 'memberName': name}); | |
2678 // We still need to register the invocation, because we might | |
2679 // call [:super.noSuchMethod:] which calls | |
2680 // [JSInvocationMirror._invokeOn]. | |
2681 registry.registerDynamicInvocation(selector); | |
2682 registry.registerSuperNoSuchMethod(); | |
2683 } | |
2684 } else if (resolvedReceiver == null || | |
2685 Elements.isUnresolved(resolvedReceiver.element)) { | |
2686 return null; | |
2687 } else if (resolvedReceiver.element.isClass) { | |
2688 ClassElement receiverClass = resolvedReceiver.element; | |
2689 receiverClass.ensureResolved(compiler); | |
2690 if (node.isOperator) { | |
2691 // When the resolved receiver is a class, we can have two cases: | |
2692 // 1) a static send: C.foo, or | |
2693 // 2) an operator send, where the receiver is a class literal: 'C + 1'. | |
2694 // The following code that looks up the selector on the resolved | |
2695 // receiver will treat the second as the invocation of a static operator | |
2696 // if the resolved receiver is not null. | |
2697 return null; | |
2698 } | |
2699 MembersCreator.computeClassMembersByName( | |
2700 compiler, receiverClass.declaration, name); | |
2701 target = receiverClass.lookupLocalMember(name); | |
2702 if (target == null || target.isInstanceMember) { | |
2703 registry.registerThrowNoSuchMethod(); | |
2704 // TODO(johnniwinther): With the simplified [TreeElements] invariant, | |
2705 // try to resolve injected elements if [currentClass] is in the patch | |
2706 // library of [receiverClass]. | |
2707 | |
2708 // TODO(karlklose): this should be reported by the caller of | |
2709 // [resolveSend] to select better warning messages for getters and | |
2710 // setters. | |
2711 MessageKind kind = (target == null) | |
2712 ? MessageKind.MEMBER_NOT_FOUND | |
2713 : MessageKind.MEMBER_NOT_STATIC; | |
2714 return new ElementResult(warnAndCreateErroneousElement( | |
2715 node, name, kind, | |
2716 {'className': receiverClass.name, 'memberName': name})); | |
2717 } else if (isPrivateName(name) && | |
2718 target.library != enclosingElement.library) { | |
2719 registry.registerThrowNoSuchMethod(); | |
2720 return new ElementResult(warnAndCreateErroneousElement( | |
2721 node, name, MessageKind.PRIVATE_ACCESS, | |
2722 {'libraryName': target.library.getLibraryOrScriptName(), | |
2723 'name': name})); | |
2724 } | |
2725 } else if (resolvedReceiver.element.isPrefix) { | |
2726 PrefixElement prefix = resolvedReceiver.element; | |
2727 target = prefix.lookupLocalMember(name); | |
2728 if (Elements.isUnresolved(target)) { | |
2729 registry.registerThrowNoSuchMethod(); | |
2730 return new ElementResult(warnAndCreateErroneousElement( | |
2731 node, name, MessageKind.NO_SUCH_LIBRARY_MEMBER, | |
2732 {'libraryName': prefix.name, 'memberName': name})); | |
2733 } else if (target.isAmbiguous) { | |
2734 registry.registerThrowNoSuchMethod(); | |
2735 AmbiguousElement ambiguous = target; | |
2736 target = warnAndCreateErroneousElement(node, name, | |
2737 ambiguous.messageKind, | |
2738 ambiguous.messageArguments); | |
2739 ambiguous.diagnose(enclosingElement, compiler); | |
2740 return new ElementResult(target); | |
2741 } else if (target.kind == ElementKind.CLASS) { | |
2742 ClassElement classElement = target; | |
2743 classElement.ensureResolved(compiler); | |
2744 } | |
2745 } | |
2746 return new ElementResult(target); | |
2747 } | |
2748 | |
2749 static Selector computeSendSelector(Send node, | |
2750 LibraryElement library, | |
2751 Element element) { | |
2752 // First determine if this is part of an assignment. | |
2753 bool isSet = node.asSendSet() != null; | |
2754 | |
2755 if (node.isIndex) { | |
2756 return isSet ? new Selector.indexSet() : new Selector.index(); | |
2757 } | |
2758 | |
2759 if (node.isOperator) { | |
2760 String source = node.selector.asOperator().source; | |
2761 String string = source; | |
2762 if (identical(string, '!') || | |
2763 identical(string, '&&') || identical(string, '||') || | |
2764 identical(string, 'is') || identical(string, 'as') || | |
2765 identical(string, '?') || | |
2766 identical(string, '>>>')) { | |
2767 return null; | |
2768 } | |
2769 String op = source; | |
2770 if (!isUserDefinableOperator(source)) { | |
2771 op = Elements.mapToUserOperatorOrNull(source); | |
2772 } | |
2773 if (op == null) { | |
2774 // Unsupported operator. An error has been reported during parsing. | |
2775 return new Selector.call( | |
2776 source, library, node.argumentsNode.slowLength(), []); | |
2777 } | |
2778 return node.arguments.isEmpty | |
2779 ? new Selector.unaryOperator(op) | |
2780 : new Selector.binaryOperator(op); | |
2781 } | |
2782 | |
2783 Identifier identifier = node.selector.asIdentifier(); | |
2784 if (node.isPropertyAccess) { | |
2785 assert(!isSet); | |
2786 return new Selector.getter(identifier.source, library); | |
2787 } else if (isSet) { | |
2788 return new Selector.setter(identifier.source, library); | |
2789 } | |
2790 | |
2791 // Compute the arity and the list of named arguments. | |
2792 int arity = 0; | |
2793 List<String> named = <String>[]; | |
2794 for (Link<Node> link = node.argumentsNode.nodes; | |
2795 !link.isEmpty; | |
2796 link = link.tail) { | |
2797 Expression argument = link.head; | |
2798 NamedArgument namedArgument = argument.asNamedArgument(); | |
2799 if (namedArgument != null) { | |
2800 named.add(namedArgument.name.source); | |
2801 } | |
2802 arity++; | |
2803 } | |
2804 | |
2805 if (element != null && element.isConstructor) { | |
2806 return new Selector.callConstructor( | |
2807 element.name, library, arity, named); | |
2808 } | |
2809 | |
2810 // If we're invoking a closure, we do not have an identifier. | |
2811 return (identifier == null) | |
2812 ? new Selector.callClosure(arity, named) | |
2813 : new Selector.call(identifier.source, library, arity, named); | |
2814 } | |
2815 | |
2816 Selector resolveSelector(Send node, Element element) { | |
2817 LibraryElement library = enclosingElement.library; | |
2818 Selector selector = computeSendSelector(node, library, element); | |
2819 if (selector != null) registry.setSelector(node, selector); | |
2820 return selector; | |
2821 } | |
2822 | |
2823 void resolveArguments(NodeList list) { | |
2824 if (list == null) return; | |
2825 bool oldSendIsMemberAccess = sendIsMemberAccess; | |
2826 sendIsMemberAccess = false; | |
2827 Map<String, Node> seenNamedArguments = new Map<String, Node>(); | |
2828 for (Link<Node> link = list.nodes; !link.isEmpty; link = link.tail) { | |
2829 Expression argument = link.head; | |
2830 visit(argument); | |
2831 NamedArgument namedArgument = argument.asNamedArgument(); | |
2832 if (namedArgument != null) { | |
2833 String source = namedArgument.name.source; | |
2834 if (seenNamedArguments.containsKey(source)) { | |
2835 reportDuplicateDefinition( | |
2836 source, | |
2837 argument, | |
2838 seenNamedArguments[source]); | |
2839 } else { | |
2840 seenNamedArguments[source] = namedArgument; | |
2841 } | |
2842 } else if (!seenNamedArguments.isEmpty) { | |
2843 error(argument, MessageKind.INVALID_ARGUMENT_AFTER_NAMED); | |
2844 } | |
2845 } | |
2846 sendIsMemberAccess = oldSendIsMemberAccess; | |
2847 } | |
2848 | |
2849 ResolutionResult visitSend(Send node) { | |
2850 bool oldSendIsMemberAccess = sendIsMemberAccess; | |
2851 sendIsMemberAccess = node.isPropertyAccess || node.isCall; | |
2852 ResolutionResult result; | |
2853 if (node.isLogicalAnd) { | |
2854 result = doInPromotionScope(node.receiver, () => resolveSend(node)); | |
2855 } else { | |
2856 result = resolveSend(node); | |
2857 } | |
2858 sendIsMemberAccess = oldSendIsMemberAccess; | |
2859 | |
2860 Element target = result != null ? result.element : null; | |
2861 | |
2862 if (target != null | |
2863 && target == compiler.mirrorSystemGetNameFunction | |
2864 && !compiler.mirrorUsageAnalyzerTask.hasMirrorUsage(enclosingElement)) { | |
2865 compiler.reportHint( | |
2866 node.selector, MessageKind.STATIC_FUNCTION_BLOAT, | |
2867 {'class': compiler.mirrorSystemClass.name, | |
2868 'name': compiler.mirrorSystemGetNameFunction.name}); | |
2869 } | |
2870 | |
2871 if (!Elements.isUnresolved(target)) { | |
2872 if (target.isAbstractField) { | |
2873 AbstractFieldElement field = target; | |
2874 target = field.getter; | |
2875 if (target == null && !inInstanceContext) { | |
2876 registry.registerThrowNoSuchMethod(); | |
2877 target = | |
2878 warnAndCreateErroneousElement(node.selector, field.name, | |
2879 MessageKind.CANNOT_RESOLVE_GETTER); | |
2880 } | |
2881 } else if (target.isTypeVariable) { | |
2882 ClassElement cls = target.enclosingClass; | |
2883 assert(enclosingElement.enclosingClass == cls); | |
2884 registry.registerClassUsingVariableExpression(cls); | |
2885 registry.registerTypeVariableExpression(); | |
2886 // Set the type of the node to [Type] to mark this send as a | |
2887 // type variable expression. | |
2888 registry.registerTypeLiteral(node, target.computeType(compiler)); | |
2889 } else if (target.impliesType && (!sendIsMemberAccess || node.isCall)) { | |
2890 // Set the type of the node to [Type] to mark this send as a | |
2891 // type literal. | |
2892 DartType type; | |
2893 | |
2894 // TODO(johnniwinther): Remove this hack when we can pass more complex | |
2895 // information between methods than resolved elements. | |
2896 if (target == compiler.typeClass && node.receiver == null) { | |
2897 // Potentially a 'dynamic' type literal. | |
2898 type = registry.getType(node.selector); | |
2899 } | |
2900 if (type == null) { | |
2901 type = target.computeType(compiler); | |
2902 } | |
2903 registry.registerTypeLiteral(node, type); | |
2904 | |
2905 // Don't try to make constants of calls to type literals. | |
2906 if (!node.isCall) { | |
2907 analyzeConstant(node); | |
2908 } else { | |
2909 // The node itself is not a constant but we register the selector (the | |
2910 // identifier that refers to the class/typedef) as a constant. | |
2911 analyzeConstant(node.selector); | |
2912 } | |
2913 } | |
2914 if (isPotentiallyMutableTarget(target)) { | |
2915 if (enclosingElement != target.enclosingElement) { | |
2916 for (Node scope in promotionScope) { | |
2917 registry.setAccessedByClosureIn(scope, target, node); | |
2918 } | |
2919 } | |
2920 } | |
2921 } | |
2922 | |
2923 bool resolvedArguments = false; | |
2924 if (node.isOperator) { | |
2925 String operatorString = node.selector.asOperator().source; | |
2926 if (identical(operatorString, 'is')) { | |
2927 // TODO(johnniwinther): Use seen type tests to avoid registration of | |
2928 // mutation/access to unpromoted variables. | |
2929 DartType type = | |
2930 resolveTypeAnnotation(node.typeAnnotationFromIsCheckOrCast); | |
2931 if (type != null) { | |
2932 registry.registerIsCheck(type); | |
2933 } | |
2934 resolvedArguments = true; | |
2935 } else if (identical(operatorString, 'as')) { | |
2936 DartType type = resolveTypeAnnotation(node.arguments.head); | |
2937 if (type != null) { | |
2938 registry.registerAsCheck(type); | |
2939 } | |
2940 resolvedArguments = true; | |
2941 } else if (identical(operatorString, '&&')) { | |
2942 doInPromotionScope(node.arguments.head, | |
2943 () => resolveArguments(node.argumentsNode)); | |
2944 resolvedArguments = true; | |
2945 } | |
2946 } | |
2947 | |
2948 if (!resolvedArguments) { | |
2949 resolveArguments(node.argumentsNode); | |
2950 } | |
2951 | |
2952 // If the selector is null, it means that we will not be generating | |
2953 // code for this as a send. | |
2954 Selector selector = registry.getSelector(node); | |
2955 if (selector == null) return null; | |
2956 | |
2957 if (node.isCall) { | |
2958 if (Elements.isUnresolved(target) || | |
2959 target.isGetter || | |
2960 target.isField || | |
2961 Elements.isClosureSend(node, target)) { | |
2962 // If we don't know what we're calling or if we are calling a getter, | |
2963 // we need to register that fact that we may be calling a closure | |
2964 // with the same arguments. | |
2965 Selector call = new Selector.callClosureFrom(selector); | |
2966 registry.registerDynamicInvocation(call); | |
2967 } else if (target.impliesType) { | |
2968 // We call 'call()' on a Type instance returned from the reference to a | |
2969 // class or typedef literal. We do not need to register this call as a | |
2970 // dynamic invocation, because we statically know what the target is. | |
2971 } else { | |
2972 if (target is FunctionElement) { | |
2973 FunctionElement function = target; | |
2974 function.computeSignature(compiler); | |
2975 } | |
2976 if (!selector.applies(target, compiler.world)) { | |
2977 registry.registerThrowNoSuchMethod(); | |
2978 if (node.isSuperCall) { | |
2979 // Similar to what we do when we can't find super via selector | |
2980 // in [resolveSend] above, we still need to register the invocation, | |
2981 // because we might call [:super.noSuchMethod:] which calls | |
2982 // [JSInvocationMirror._invokeOn]. | |
2983 registry.registerDynamicInvocation(selector); | |
2984 registry.registerSuperNoSuchMethod(); | |
2985 } | |
2986 } | |
2987 } | |
2988 | |
2989 if (target != null && target.isForeign(compiler.backend)) { | |
2990 if (selector.name == 'JS') { | |
2991 registry.registerJsCall(node, this); | |
2992 } else if (selector.name == 'JS_EMBEDDED_GLOBAL') { | |
2993 registry.registerJsEmbeddedGlobalCall(node, this); | |
2994 } else if (selector.name == 'JS_INTERCEPTOR_CONSTANT') { | |
2995 if (!node.argumentsNode.isEmpty) { | |
2996 Node argument = node.argumentsNode.nodes.head; | |
2997 if (argumentsToJsInterceptorConstant == null) { | |
2998 argumentsToJsInterceptorConstant = new Set<Node>(); | |
2999 } | |
3000 argumentsToJsInterceptorConstant.add(argument); | |
3001 } | |
3002 } | |
3003 } | |
3004 } | |
3005 | |
3006 registry.useElement(node, target); | |
3007 registerSend(selector, target); | |
3008 if (node.isPropertyAccess && Elements.isStaticOrTopLevelFunction(target)) { | |
3009 registry.registerGetOfStaticFunction(target.declaration); | |
3010 } | |
3011 return node.isPropertyAccess ? new ElementResult(target) : null; | |
3012 } | |
3013 | |
3014 /// Callback for native enqueuer to parse a type. Returns [:null:] on error. | |
3015 DartType resolveTypeFromString(Node node, String typeName) { | |
3016 Element element = lookupInScope(compiler, node, | |
3017 scope, typeName); | |
3018 if (element == null) return null; | |
3019 if (element is! ClassElement) return null; | |
3020 ClassElement cls = element; | |
3021 cls.ensureResolved(compiler); | |
3022 return cls.computeType(compiler); | |
3023 } | |
3024 | |
3025 ResolutionResult visitSendSet(SendSet node) { | |
3026 bool oldSendIsMemberAccess = sendIsMemberAccess; | |
3027 sendIsMemberAccess = node.isPropertyAccess || node.isCall; | |
3028 ResolutionResult result = resolveSend(node); | |
3029 sendIsMemberAccess = oldSendIsMemberAccess; | |
3030 Element target = result != null ? result.element : null; | |
3031 Element setter = target; | |
3032 Element getter = target; | |
3033 String operatorName = node.assignmentOperator.source; | |
3034 String source = operatorName; | |
3035 bool isComplex = !identical(source, '='); | |
3036 if (!(result is AssertResult || Elements.isUnresolved(target))) { | |
3037 if (target.isAbstractField) { | |
3038 AbstractFieldElement field = target; | |
3039 setter = field.setter; | |
3040 getter = field.getter; | |
3041 if (setter == null && !inInstanceContext) { | |
3042 setter = warnAndCreateErroneousElement( | |
3043 node.selector, field.name, MessageKind.CANNOT_RESOLVE_SETTER); | |
3044 registry.registerThrowNoSuchMethod(); | |
3045 } | |
3046 if (isComplex && getter == null && !inInstanceContext) { | |
3047 getter = warnAndCreateErroneousElement( | |
3048 node.selector, field.name, MessageKind.CANNOT_RESOLVE_GETTER); | |
3049 registry.registerThrowNoSuchMethod(); | |
3050 } | |
3051 } else if (target.impliesType) { | |
3052 setter = warnAndCreateErroneousElement( | |
3053 node.selector, target.name, MessageKind.ASSIGNING_TYPE); | |
3054 registry.registerThrowNoSuchMethod(); | |
3055 } else if (target.isFinal || | |
3056 target.isConst || | |
3057 (target.isFunction && | |
3058 Elements.isStaticOrTopLevelFunction(target) && | |
3059 !target.isSetter)) { | |
3060 if (target.isFunction) { | |
3061 setter = warnAndCreateErroneousElement( | |
3062 node.selector, target.name, MessageKind.ASSIGNING_METHOD); | |
3063 } else { | |
3064 setter = warnAndCreateErroneousElement( | |
3065 node.selector, target.name, MessageKind.CANNOT_RESOLVE_SETTER); | |
3066 } | |
3067 registry.registerThrowNoSuchMethod(); | |
3068 } | |
3069 if (isPotentiallyMutableTarget(target)) { | |
3070 registry.registerPotentialMutation(target, node); | |
3071 if (enclosingElement != target.enclosingElement) { | |
3072 registry.registerPotentialMutationInClosure(target, node); | |
3073 } | |
3074 for (Node scope in promotionScope) { | |
3075 registry.registerPotentialMutationIn(scope, target, node); | |
3076 } | |
3077 } | |
3078 } | |
3079 | |
3080 resolveArguments(node.argumentsNode); | |
3081 | |
3082 Selector selector = registry.getSelector(node); | |
3083 if (isComplex) { | |
3084 Selector getterSelector; | |
3085 if (selector.isSetter) { | |
3086 getterSelector = new Selector.getterFrom(selector); | |
3087 } else { | |
3088 assert(selector.isIndexSet); | |
3089 getterSelector = new Selector.index(); | |
3090 } | |
3091 registerSend(getterSelector, getter); | |
3092 registry.setGetterSelectorInComplexSendSet(node, getterSelector); | |
3093 if (node.isSuperCall) { | |
3094 getter = currentClass.lookupSuperSelector(getterSelector); | |
3095 if (getter == null) { | |
3096 target = warnAndCreateErroneousElement( | |
3097 node, selector.name, MessageKind.NO_SUCH_SUPER_MEMBER, | |
3098 {'className': currentClass, 'memberName': selector.name}); | |
3099 registry.registerSuperNoSuchMethod(); | |
3100 } | |
3101 } | |
3102 registry.useElement(node.selector, getter); | |
3103 | |
3104 // Make sure we include the + and - operators if we are using | |
3105 // the ++ and -- ones. Also, if op= form is used, include op itself. | |
3106 void registerBinaryOperator(String name) { | |
3107 Selector binop = new Selector.binaryOperator(name); | |
3108 registry.registerDynamicInvocation(binop); | |
3109 registry.setOperatorSelectorInComplexSendSet(node, binop); | |
3110 } | |
3111 if (identical(source, '++')) { | |
3112 registerBinaryOperator('+'); | |
3113 registry.registerInstantiatedClass(compiler.intClass); | |
3114 } else if (identical(source, '--')) { | |
3115 registerBinaryOperator('-'); | |
3116 registry.registerInstantiatedClass(compiler.intClass); | |
3117 } else if (source.endsWith('=')) { | |
3118 registerBinaryOperator(Elements.mapToUserOperator(operatorName)); | |
3119 } | |
3120 } | |
3121 | |
3122 registerSend(selector, setter); | |
3123 return new ElementResult(registry.useElement(node, setter)); | |
3124 } | |
3125 | |
3126 void registerSend(Selector selector, Element target) { | |
3127 if (target == null || target.isInstanceMember) { | |
3128 if (selector.isGetter) { | |
3129 registry.registerDynamicGetter(selector); | |
3130 } else if (selector.isSetter) { | |
3131 registry.registerDynamicSetter(selector); | |
3132 } else { | |
3133 registry.registerDynamicInvocation(selector); | |
3134 } | |
3135 } else if (Elements.isStaticOrTopLevel(target)) { | |
3136 // Avoid registration of type variables since they are not analyzable but | |
3137 // instead resolved through their enclosing type declaration. | |
3138 if (!target.isTypeVariable) { | |
3139 // [target] might be the implementation element and only declaration | |
3140 // elements may be registered. | |
3141 registry.registerStaticUse(target.declaration); | |
3142 } | |
3143 } | |
3144 } | |
3145 | |
3146 visitLiteralInt(LiteralInt node) { | |
3147 registry.registerInstantiatedClass(compiler.intClass); | |
3148 } | |
3149 | |
3150 visitLiteralDouble(LiteralDouble node) { | |
3151 registry.registerInstantiatedClass(compiler.doubleClass); | |
3152 } | |
3153 | |
3154 visitLiteralBool(LiteralBool node) { | |
3155 registry.registerInstantiatedClass(compiler.boolClass); | |
3156 } | |
3157 | |
3158 visitLiteralString(LiteralString node) { | |
3159 registry.registerInstantiatedClass(compiler.stringClass); | |
3160 } | |
3161 | |
3162 visitLiteralNull(LiteralNull node) { | |
3163 registry.registerInstantiatedClass(compiler.nullClass); | |
3164 } | |
3165 | |
3166 visitLiteralSymbol(LiteralSymbol node) { | |
3167 registry.registerInstantiatedClass(compiler.symbolClass); | |
3168 registry.registerStaticUse(compiler.symbolConstructor.declaration); | |
3169 registry.registerConstSymbol(node.slowNameString); | |
3170 if (!validateSymbol(node, node.slowNameString, reportError: false)) { | |
3171 compiler.reportError(node, | |
3172 MessageKind.UNSUPPORTED_LITERAL_SYMBOL, | |
3173 {'value': node.slowNameString}); | |
3174 } | |
3175 analyzeConstant(node); | |
3176 } | |
3177 | |
3178 visitStringJuxtaposition(StringJuxtaposition node) { | |
3179 registry.registerInstantiatedClass(compiler.stringClass); | |
3180 node.visitChildren(this); | |
3181 } | |
3182 | |
3183 visitNodeList(NodeList node) { | |
3184 for (Link<Node> link = node.nodes; !link.isEmpty; link = link.tail) { | |
3185 visit(link.head); | |
3186 } | |
3187 } | |
3188 | |
3189 visitOperator(Operator node) { | |
3190 internalError(node, 'operator'); | |
3191 } | |
3192 | |
3193 visitRethrow(Rethrow node) { | |
3194 if (!inCatchBlock) { | |
3195 error(node, MessageKind.THROW_WITHOUT_EXPRESSION); | |
3196 } | |
3197 } | |
3198 | |
3199 visitReturn(Return node) { | |
3200 Node expression = node.expression; | |
3201 if (expression != null && | |
3202 enclosingElement.isGenerativeConstructor) { | |
3203 // It is a compile-time error if a return statement of the form | |
3204 // `return e;` appears in a generative constructor. (Dart Language | |
3205 // Specification 13.12.) | |
3206 compiler.reportError(expression, | |
3207 MessageKind.CANNOT_RETURN_FROM_CONSTRUCTOR); | |
3208 } | |
3209 visit(node.expression); | |
3210 } | |
3211 | |
3212 visitYield(Yield node) { | |
3213 compiler.streamClass.ensureResolved(compiler); | |
3214 compiler.iterableClass.ensureResolved(compiler); | |
3215 visit(node.expression); | |
3216 } | |
3217 | |
3218 visitRedirectingFactoryBody(RedirectingFactoryBody node) { | |
3219 final isSymbolConstructor = enclosingElement == compiler.symbolConstructor; | |
3220 if (!enclosingElement.isFactoryConstructor) { | |
3221 compiler.reportError( | |
3222 node, MessageKind.FACTORY_REDIRECTION_IN_NON_FACTORY); | |
3223 compiler.reportHint( | |
3224 enclosingElement, MessageKind.MISSING_FACTORY_KEYWORD); | |
3225 } | |
3226 ConstructorElementX constructor = enclosingElement; | |
3227 bool isConstConstructor = constructor.isConst; | |
3228 ConstructorElement redirectionTarget = resolveRedirectingFactory( | |
3229 node, inConstContext: isConstConstructor); | |
3230 constructor.immediateRedirectionTarget = redirectionTarget; | |
3231 registry.setRedirectingTargetConstructor(node, redirectionTarget); | |
3232 if (Elements.isUnresolved(redirectionTarget)) { | |
3233 registry.registerThrowNoSuchMethod(); | |
3234 return; | |
3235 } else { | |
3236 if (isConstConstructor && | |
3237 !redirectionTarget.isConst) { | |
3238 compiler.reportError(node, MessageKind.CONSTRUCTOR_IS_NOT_CONST); | |
3239 } | |
3240 if (redirectionTarget == constructor) { | |
3241 compiler.reportError(node, MessageKind.CYCLIC_REDIRECTING_FACTORY); | |
3242 return; | |
3243 } | |
3244 } | |
3245 | |
3246 // Check that the target constructor is type compatible with the | |
3247 // redirecting constructor. | |
3248 ClassElement targetClass = redirectionTarget.enclosingClass; | |
3249 InterfaceType type = registry.getType(node); | |
3250 FunctionType targetType = redirectionTarget.computeType(compiler) | |
3251 .subst(type.typeArguments, targetClass.typeVariables); | |
3252 FunctionType constructorType = constructor.computeType(compiler); | |
3253 bool isSubtype = compiler.types.isSubtype(targetType, constructorType); | |
3254 if (!isSubtype) { | |
3255 warning(node, MessageKind.NOT_ASSIGNABLE, | |
3256 {'fromType': targetType, 'toType': constructorType}); | |
3257 } | |
3258 | |
3259 FunctionSignature targetSignature = | |
3260 redirectionTarget.computeSignature(compiler); | |
3261 FunctionSignature constructorSignature = | |
3262 constructor.computeSignature(compiler); | |
3263 if (!targetSignature.isCompatibleWith(constructorSignature)) { | |
3264 assert(!isSubtype); | |
3265 registry.registerThrowNoSuchMethod(); | |
3266 } | |
3267 | |
3268 // Register a post process to check for cycles in the redirection chain and | |
3269 // set the actual generative constructor at the end of the chain. | |
3270 addDeferredAction(constructor, () { | |
3271 compiler.resolver.resolveRedirectionChain(constructor, node); | |
3272 }); | |
3273 | |
3274 registry.registerStaticUse(redirectionTarget); | |
3275 // TODO(johnniwinther): Register the effective target type instead. | |
3276 registry.registerInstantiatedClass( | |
3277 redirectionTarget.enclosingClass.declaration); | |
3278 if (isSymbolConstructor) { | |
3279 registry.registerSymbolConstructor(); | |
3280 } | |
3281 } | |
3282 | |
3283 visitThrow(Throw node) { | |
3284 registry.registerThrowExpression(); | |
3285 visit(node.expression); | |
3286 } | |
3287 | |
3288 visitAwait(Await node) { | |
3289 compiler.futureClass.ensureResolved(compiler); | |
3290 visit(node.expression); | |
3291 } | |
3292 | |
3293 visitVariableDefinitions(VariableDefinitions node) { | |
3294 DartType type; | |
3295 if (node.type != null) { | |
3296 type = resolveTypeAnnotation(node.type); | |
3297 } else { | |
3298 type = const DynamicType(); | |
3299 } | |
3300 VariableList variables = new VariableList.node(node, type); | |
3301 VariableDefinitionsVisitor visitor = | |
3302 new VariableDefinitionsVisitor(compiler, node, this, variables); | |
3303 | |
3304 Modifiers modifiers = node.modifiers; | |
3305 void reportExtraModifier(String modifier) { | |
3306 Node modifierNode; | |
3307 for (Link<Node> nodes = modifiers.nodes.nodes; | |
3308 !nodes.isEmpty; | |
3309 nodes = nodes.tail) { | |
3310 if (modifier == nodes.head.asIdentifier().source) { | |
3311 modifierNode = nodes.head; | |
3312 break; | |
3313 } | |
3314 } | |
3315 assert(modifierNode != null); | |
3316 compiler.reportError(modifierNode, MessageKind.EXTRANEOUS_MODIFIER, | |
3317 {'modifier': modifier}); | |
3318 } | |
3319 if (modifiers.isFinal && (modifiers.isConst || modifiers.isVar)) { | |
3320 reportExtraModifier('final'); | |
3321 } | |
3322 if (modifiers.isVar && (modifiers.isConst || node.type != null)) { | |
3323 reportExtraModifier('var'); | |
3324 } | |
3325 if (enclosingElement.isFunction) { | |
3326 if (modifiers.isAbstract) { | |
3327 reportExtraModifier('abstract'); | |
3328 } | |
3329 if (modifiers.isStatic) { | |
3330 reportExtraModifier('static'); | |
3331 } | |
3332 } | |
3333 if (node.metadata != null) { | |
3334 variables.metadata = | |
3335 compiler.resolver.resolveMetadata(enclosingElement, node); | |
3336 } | |
3337 visitor.visit(node.definitions); | |
3338 } | |
3339 | |
3340 visitWhile(While node) { | |
3341 visit(node.condition); | |
3342 visitLoopBodyIn(node, node.body, new BlockScope(scope)); | |
3343 } | |
3344 | |
3345 visitParenthesizedExpression(ParenthesizedExpression node) { | |
3346 bool oldSendIsMemberAccess = sendIsMemberAccess; | |
3347 sendIsMemberAccess = false; | |
3348 visit(node.expression); | |
3349 sendIsMemberAccess = oldSendIsMemberAccess; | |
3350 } | |
3351 | |
3352 ResolutionResult visitNewExpression(NewExpression node) { | |
3353 Node selector = node.send.selector; | |
3354 FunctionElement constructor = resolveConstructor(node); | |
3355 final bool isSymbolConstructor = constructor == compiler.symbolConstructor; | |
3356 final bool isMirrorsUsedConstant = | |
3357 node.isConst && (constructor == compiler.mirrorsUsedConstructor); | |
3358 Selector callSelector = resolveSelector(node.send, constructor); | |
3359 resolveArguments(node.send.argumentsNode); | |
3360 registry.useElement(node.send, constructor); | |
3361 if (Elements.isUnresolved(constructor)) { | |
3362 return new ElementResult(constructor); | |
3363 } | |
3364 constructor.computeSignature(compiler); | |
3365 if (!callSelector.applies(constructor, compiler.world)) { | |
3366 registry.registerThrowNoSuchMethod(); | |
3367 } | |
3368 | |
3369 // [constructor] might be the implementation element | |
3370 // and only declaration elements may be registered. | |
3371 registry.registerStaticUse(constructor.declaration); | |
3372 ClassElement cls = constructor.enclosingClass; | |
3373 InterfaceType type = registry.getType(node); | |
3374 if (node.isConst && type.containsTypeVariables) { | |
3375 compiler.reportError(node.send.selector, | |
3376 MessageKind.TYPE_VARIABLE_IN_CONSTANT); | |
3377 } | |
3378 // TODO(johniwinther): Avoid registration of `type` in face of redirecting | |
3379 // factory constructors. | |
3380 registry.registerInstantiatedType(type); | |
3381 if (constructor.isFactoryConstructor && !type.typeArguments.isEmpty) { | |
3382 registry.registerFactoryWithTypeArguments(); | |
3383 } | |
3384 if (constructor.isGenerativeConstructor && cls.isAbstract) { | |
3385 warning(node, MessageKind.ABSTRACT_CLASS_INSTANTIATION); | |
3386 registry.registerAbstractClassInstantiation(); | |
3387 } | |
3388 | |
3389 if (isSymbolConstructor) { | |
3390 if (node.isConst) { | |
3391 Node argumentNode = node.send.arguments.head; | |
3392 ConstantExpression constant = | |
3393 compiler.resolver.constantCompiler.compileNode( | |
3394 argumentNode, registry.mapping); | |
3395 ConstantValue name = constant.value; | |
3396 if (!name.isString) { | |
3397 DartType type = name.computeType(compiler); | |
3398 compiler.reportError(argumentNode, MessageKind.STRING_EXPECTED, | |
3399 {'type': type}); | |
3400 } else { | |
3401 StringConstantValue stringConstant = name; | |
3402 String nameString = stringConstant.toDartString().slowToString(); | |
3403 if (validateSymbol(argumentNode, nameString)) { | |
3404 registry.registerConstSymbol(nameString); | |
3405 } | |
3406 } | |
3407 } else { | |
3408 if (!compiler.mirrorUsageAnalyzerTask.hasMirrorUsage( | |
3409 enclosingElement)) { | |
3410 compiler.reportHint( | |
3411 node.newToken, MessageKind.NON_CONST_BLOAT, | |
3412 {'name': compiler.symbolClass.name}); | |
3413 } | |
3414 registry.registerNewSymbol(); | |
3415 } | |
3416 } else if (isMirrorsUsedConstant) { | |
3417 compiler.mirrorUsageAnalyzerTask.validate(node, registry.mapping); | |
3418 } | |
3419 if (node.isConst) { | |
3420 analyzeConstant(node); | |
3421 } | |
3422 | |
3423 return null; | |
3424 } | |
3425 | |
3426 void checkConstMapKeysDontOverrideEquals(Spannable spannable, | |
3427 MapConstantValue map) { | |
3428 for (ConstantValue key in map.keys) { | |
3429 if (!key.isObject) continue; | |
3430 ObjectConstantValue objectConstant = key; | |
3431 DartType keyType = objectConstant.type; | |
3432 ClassElement cls = keyType.element; | |
3433 if (cls == compiler.stringClass) continue; | |
3434 Element equals = cls.lookupMember('=='); | |
3435 if (equals.enclosingClass != compiler.objectClass) { | |
3436 compiler.reportError(spannable, | |
3437 MessageKind.CONST_MAP_KEY_OVERRIDES_EQUALS, | |
3438 {'type': keyType}); | |
3439 } | |
3440 } | |
3441 } | |
3442 | |
3443 void analyzeConstant(Node node) { | |
3444 addDeferredAction(enclosingElement, () { | |
3445 ConstantExpression constant = | |
3446 compiler.resolver.constantCompiler.compileNode( | |
3447 node, registry.mapping); | |
3448 | |
3449 ConstantValue value = constant.value; | |
3450 if (value.isMap) { | |
3451 checkConstMapKeysDontOverrideEquals(node, value); | |
3452 } | |
3453 | |
3454 // The type constant that is an argument to JS_INTERCEPTOR_CONSTANT names | |
3455 // a class that will be instantiated outside the program by attaching a | |
3456 // native class dispatch record referencing the interceptor. | |
3457 if (argumentsToJsInterceptorConstant != null && | |
3458 argumentsToJsInterceptorConstant.contains(node)) { | |
3459 if (value.isType) { | |
3460 TypeConstantValue typeConstant = value; | |
3461 if (typeConstant.representedType is InterfaceType) { | |
3462 registry.registerInstantiatedType(typeConstant.representedType); | |
3463 } else { | |
3464 compiler.reportError(node, | |
3465 MessageKind.WRONG_ARGUMENT_FOR_JS_INTERCEPTOR_CONSTANT); | |
3466 } | |
3467 } else { | |
3468 compiler.reportError(node, | |
3469 MessageKind.WRONG_ARGUMENT_FOR_JS_INTERCEPTOR_CONSTANT); | |
3470 } | |
3471 } | |
3472 }); | |
3473 } | |
3474 | |
3475 bool validateSymbol(Node node, String name, {bool reportError: true}) { | |
3476 if (name.isEmpty) return true; | |
3477 if (name.startsWith('_')) { | |
3478 if (reportError) { | |
3479 compiler.reportError(node, MessageKind.PRIVATE_IDENTIFIER, | |
3480 {'value': name}); | |
3481 } | |
3482 return false; | |
3483 } | |
3484 if (!symbolValidationPattern.hasMatch(name)) { | |
3485 if (reportError) { | |
3486 compiler.reportError(node, MessageKind.INVALID_SYMBOL, | |
3487 {'value': name}); | |
3488 } | |
3489 return false; | |
3490 } | |
3491 return true; | |
3492 } | |
3493 | |
3494 /** | |
3495 * Try to resolve the constructor that is referred to by [node]. | |
3496 * Note: this function may return an ErroneousFunctionElement instead of | |
3497 * [:null:], if there is no corresponding constructor, class or library. | |
3498 */ | |
3499 ConstructorElement resolveConstructor(NewExpression node) { | |
3500 return node.accept(new ConstructorResolver(compiler, this)); | |
3501 } | |
3502 | |
3503 ConstructorElement resolveRedirectingFactory(RedirectingFactoryBody node, | |
3504 {bool inConstContext: false}) { | |
3505 return node.accept(new ConstructorResolver(compiler, this, | |
3506 inConstContext: inConstContext)); | |
3507 } | |
3508 | |
3509 DartType resolveTypeAnnotation(TypeAnnotation node, | |
3510 {bool malformedIsError: false, | |
3511 bool deferredIsMalformed: true}) { | |
3512 DartType type = typeResolver.resolveTypeAnnotation( | |
3513 this, node, malformedIsError: malformedIsError, | |
3514 deferredIsMalformed: deferredIsMalformed); | |
3515 if (inCheckContext) { | |
3516 registry.registerIsCheck(type); | |
3517 registry.registerRequiredType(type, enclosingElement); | |
3518 } | |
3519 return type; | |
3520 } | |
3521 | |
3522 visitModifiers(Modifiers node) { | |
3523 internalError(node, 'modifiers'); | |
3524 } | |
3525 | |
3526 visitLiteralList(LiteralList node) { | |
3527 bool oldSendIsMemberAccess = sendIsMemberAccess; | |
3528 sendIsMemberAccess = false; | |
3529 | |
3530 NodeList arguments = node.typeArguments; | |
3531 DartType typeArgument; | |
3532 if (arguments != null) { | |
3533 Link<Node> nodes = arguments.nodes; | |
3534 if (nodes.isEmpty) { | |
3535 // The syntax [: <>[] :] is not allowed. | |
3536 error(arguments, MessageKind.MISSING_TYPE_ARGUMENT); | |
3537 } else { | |
3538 typeArgument = resolveTypeAnnotation(nodes.head); | |
3539 for (nodes = nodes.tail; !nodes.isEmpty; nodes = nodes.tail) { | |
3540 warning(nodes.head, MessageKind.ADDITIONAL_TYPE_ARGUMENT); | |
3541 resolveTypeAnnotation(nodes.head); | |
3542 } | |
3543 } | |
3544 } | |
3545 DartType listType; | |
3546 if (typeArgument != null) { | |
3547 if (node.isConst && typeArgument.containsTypeVariables) { | |
3548 compiler.reportError(arguments.nodes.head, | |
3549 MessageKind.TYPE_VARIABLE_IN_CONSTANT); | |
3550 } | |
3551 listType = new InterfaceType(compiler.listClass, [typeArgument]); | |
3552 } else { | |
3553 compiler.listClass.computeType(compiler); | |
3554 listType = compiler.listClass.rawType; | |
3555 } | |
3556 registry.setType(node, listType); | |
3557 registry.registerInstantiatedType(listType); | |
3558 registry.registerRequiredType(listType, enclosingElement); | |
3559 visit(node.elements); | |
3560 if (node.isConst) { | |
3561 analyzeConstant(node); | |
3562 } | |
3563 | |
3564 sendIsMemberAccess = false; | |
3565 } | |
3566 | |
3567 visitConditional(Conditional node) { | |
3568 doInPromotionScope(node.condition, () => visit(node.condition)); | |
3569 doInPromotionScope(node.thenExpression, () => visit(node.thenExpression)); | |
3570 visit(node.elseExpression); | |
3571 } | |
3572 | |
3573 visitStringInterpolation(StringInterpolation node) { | |
3574 registry.registerInstantiatedClass(compiler.stringClass); | |
3575 registry.registerStringInterpolation(); | |
3576 node.visitChildren(this); | |
3577 } | |
3578 | |
3579 visitStringInterpolationPart(StringInterpolationPart node) { | |
3580 registerImplicitInvocation('toString', 0); | |
3581 node.visitChildren(this); | |
3582 } | |
3583 | |
3584 visitBreakStatement(BreakStatement node) { | |
3585 JumpTarget target; | |
3586 if (node.target == null) { | |
3587 target = statementScope.currentBreakTarget(); | |
3588 if (target == null) { | |
3589 error(node, MessageKind.NO_BREAK_TARGET); | |
3590 return; | |
3591 } | |
3592 target.isBreakTarget = true; | |
3593 } else { | |
3594 String labelName = node.target.source; | |
3595 LabelDefinition label = statementScope.lookupLabel(labelName); | |
3596 if (label == null) { | |
3597 error(node.target, MessageKind.UNBOUND_LABEL, {'labelName': labelName}); | |
3598 return; | |
3599 } | |
3600 target = label.target; | |
3601 if (!target.statement.isValidBreakTarget()) { | |
3602 error(node.target, MessageKind.INVALID_BREAK); | |
3603 return; | |
3604 } | |
3605 label.setBreakTarget(); | |
3606 registry.useLabel(node, label); | |
3607 } | |
3608 registry.registerTargetOf(node, target); | |
3609 } | |
3610 | |
3611 visitContinueStatement(ContinueStatement node) { | |
3612 JumpTarget target; | |
3613 if (node.target == null) { | |
3614 target = statementScope.currentContinueTarget(); | |
3615 if (target == null) { | |
3616 error(node, MessageKind.NO_CONTINUE_TARGET); | |
3617 return; | |
3618 } | |
3619 target.isContinueTarget = true; | |
3620 } else { | |
3621 String labelName = node.target.source; | |
3622 LabelDefinition label = statementScope.lookupLabel(labelName); | |
3623 if (label == null) { | |
3624 error(node.target, MessageKind.UNBOUND_LABEL, {'labelName': labelName}); | |
3625 return; | |
3626 } | |
3627 target = label.target; | |
3628 if (!target.statement.isValidContinueTarget()) { | |
3629 error(node.target, MessageKind.INVALID_CONTINUE); | |
3630 } | |
3631 label.setContinueTarget(); | |
3632 registry.useLabel(node, label); | |
3633 } | |
3634 registry.registerTargetOf(node, target); | |
3635 } | |
3636 | |
3637 registerImplicitInvocation(String name, int arity) { | |
3638 Selector selector = new Selector.call(name, null, arity); | |
3639 registry.registerDynamicInvocation(selector); | |
3640 } | |
3641 | |
3642 visitForIn(ForIn node) { | |
3643 LibraryElement library = enclosingElement.library; | |
3644 registry.setIteratorSelector(node, compiler.iteratorSelector); | |
3645 registry.registerDynamicGetter(compiler.iteratorSelector); | |
3646 registry.setCurrentSelector(node, compiler.currentSelector); | |
3647 registry.registerDynamicGetter(compiler.currentSelector); | |
3648 registry.setMoveNextSelector(node, compiler.moveNextSelector); | |
3649 registry.registerDynamicInvocation(compiler.moveNextSelector); | |
3650 | |
3651 visit(node.expression); | |
3652 Scope blockScope = new BlockScope(scope); | |
3653 Node declaration = node.declaredIdentifier; | |
3654 | |
3655 bool oldAllowFinalWithoutInitializer = allowFinalWithoutInitializer; | |
3656 allowFinalWithoutInitializer = true; | |
3657 visitIn(declaration, blockScope); | |
3658 allowFinalWithoutInitializer = oldAllowFinalWithoutInitializer; | |
3659 | |
3660 Send send = declaration.asSend(); | |
3661 VariableDefinitions variableDefinitions = | |
3662 declaration.asVariableDefinitions(); | |
3663 Element loopVariable; | |
3664 Selector loopVariableSelector; | |
3665 if (send != null) { | |
3666 loopVariable = registry.getDefinition(send); | |
3667 Identifier identifier = send.selector.asIdentifier(); | |
3668 if (identifier == null) { | |
3669 compiler.reportError(send.selector, MessageKind.INVALID_FOR_IN); | |
3670 } else { | |
3671 loopVariableSelector = new Selector.setter(identifier.source, library); | |
3672 } | |
3673 if (send.receiver != null) { | |
3674 compiler.reportError(send.receiver, MessageKind.INVALID_FOR_IN); | |
3675 } | |
3676 } else if (variableDefinitions != null) { | |
3677 Link<Node> nodes = variableDefinitions.definitions.nodes; | |
3678 if (!nodes.tail.isEmpty) { | |
3679 compiler.reportError(nodes.tail.head, MessageKind.INVALID_FOR_IN); | |
3680 } | |
3681 Node first = nodes.head; | |
3682 Identifier identifier = first.asIdentifier(); | |
3683 if (identifier == null) { | |
3684 compiler.reportError(first, MessageKind.INVALID_FOR_IN); | |
3685 } else { | |
3686 loopVariableSelector = new Selector.setter(identifier.source, library); | |
3687 loopVariable = registry.getDefinition(identifier); | |
3688 } | |
3689 } else { | |
3690 compiler.reportError(declaration, MessageKind.INVALID_FOR_IN); | |
3691 } | |
3692 if (loopVariableSelector != null) { | |
3693 registry.setSelector(declaration, loopVariableSelector); | |
3694 registerSend(loopVariableSelector, loopVariable); | |
3695 } else { | |
3696 // The selector may only be null if we reported an error. | |
3697 assert(invariant(declaration, compiler.compilationFailed)); | |
3698 } | |
3699 if (loopVariable != null) { | |
3700 // loopVariable may be null if it could not be resolved. | |
3701 registry.setForInVariable(node, loopVariable); | |
3702 } | |
3703 visitLoopBodyIn(node, node.body, blockScope); | |
3704 } | |
3705 | |
3706 visitLabel(Label node) { | |
3707 // Labels are handled by their containing statements/cases. | |
3708 } | |
3709 | |
3710 visitLabeledStatement(LabeledStatement node) { | |
3711 Statement body = node.statement; | |
3712 JumpTarget targetElement = getOrDefineTarget(body); | |
3713 Map<String, LabelDefinition> labelElements = <String, LabelDefinition>{}; | |
3714 for (Label label in node.labels) { | |
3715 String labelName = label.labelName; | |
3716 if (labelElements.containsKey(labelName)) continue; | |
3717 LabelDefinition element = targetElement.addLabel(label, labelName); | |
3718 labelElements[labelName] = element; | |
3719 } | |
3720 statementScope.enterLabelScope(labelElements); | |
3721 visit(node.statement); | |
3722 statementScope.exitLabelScope(); | |
3723 labelElements.forEach((String labelName, LabelDefinition element) { | |
3724 if (element.isTarget) { | |
3725 registry.defineLabel(element.label, element); | |
3726 } else { | |
3727 warning(element.label, MessageKind.UNUSED_LABEL, | |
3728 {'labelName': labelName}); | |
3729 } | |
3730 }); | |
3731 if (!targetElement.isTarget) { | |
3732 registry.undefineTarget(body); | |
3733 } | |
3734 } | |
3735 | |
3736 visitLiteralMap(LiteralMap node) { | |
3737 bool oldSendIsMemberAccess = sendIsMemberAccess; | |
3738 sendIsMemberAccess = false; | |
3739 | |
3740 NodeList arguments = node.typeArguments; | |
3741 DartType keyTypeArgument; | |
3742 DartType valueTypeArgument; | |
3743 if (arguments != null) { | |
3744 Link<Node> nodes = arguments.nodes; | |
3745 if (nodes.isEmpty) { | |
3746 // The syntax [: <>{} :] is not allowed. | |
3747 error(arguments, MessageKind.MISSING_TYPE_ARGUMENT); | |
3748 } else { | |
3749 keyTypeArgument = resolveTypeAnnotation(nodes.head); | |
3750 nodes = nodes.tail; | |
3751 if (nodes.isEmpty) { | |
3752 warning(arguments, MessageKind.MISSING_TYPE_ARGUMENT); | |
3753 } else { | |
3754 valueTypeArgument = resolveTypeAnnotation(nodes.head); | |
3755 for (nodes = nodes.tail; !nodes.isEmpty; nodes = nodes.tail) { | |
3756 warning(nodes.head, MessageKind.ADDITIONAL_TYPE_ARGUMENT); | |
3757 resolveTypeAnnotation(nodes.head); | |
3758 } | |
3759 } | |
3760 } | |
3761 } | |
3762 DartType mapType; | |
3763 if (valueTypeArgument != null) { | |
3764 mapType = new InterfaceType(compiler.mapClass, | |
3765 [keyTypeArgument, valueTypeArgument]); | |
3766 } else { | |
3767 compiler.mapClass.computeType(compiler); | |
3768 mapType = compiler.mapClass.rawType; | |
3769 } | |
3770 if (node.isConst && mapType.containsTypeVariables) { | |
3771 compiler.reportError(arguments, | |
3772 MessageKind.TYPE_VARIABLE_IN_CONSTANT); | |
3773 } | |
3774 registry.setType(node, mapType); | |
3775 registry.registerInstantiatedType(mapType); | |
3776 if (node.isConst) { | |
3777 registry.registerConstantMap(); | |
3778 } | |
3779 registry.registerRequiredType(mapType, enclosingElement); | |
3780 node.visitChildren(this); | |
3781 if (node.isConst) { | |
3782 analyzeConstant(node); | |
3783 } | |
3784 | |
3785 sendIsMemberAccess = false; | |
3786 } | |
3787 | |
3788 visitLiteralMapEntry(LiteralMapEntry node) { | |
3789 node.visitChildren(this); | |
3790 } | |
3791 | |
3792 visitNamedArgument(NamedArgument node) { | |
3793 visit(node.expression); | |
3794 } | |
3795 | |
3796 DartType typeOfConstant(ConstantValue constant) { | |
3797 if (constant.isInt) return compiler.intClass.rawType; | |
3798 if (constant.isBool) return compiler.boolClass.rawType; | |
3799 if (constant.isDouble) return compiler.doubleClass.rawType; | |
3800 if (constant.isString) return compiler.stringClass.rawType; | |
3801 if (constant.isNull) return compiler.nullClass.rawType; | |
3802 if (constant.isFunction) return compiler.functionClass.rawType; | |
3803 assert(constant.isObject); | |
3804 ObjectConstantValue objectConstant = constant; | |
3805 return objectConstant.type; | |
3806 } | |
3807 | |
3808 bool overridesEquals(DartType type) { | |
3809 ClassElement cls = type.element; | |
3810 Element equals = cls.lookupMember('=='); | |
3811 return equals.enclosingClass != compiler.objectClass; | |
3812 } | |
3813 | |
3814 void checkCaseExpressions(SwitchStatement node) { | |
3815 JumpTarget breakElement = getOrDefineTarget(node); | |
3816 Map<String, LabelDefinition> continueLabels = <String, LabelDefinition>{}; | |
3817 | |
3818 Link<Node> cases = node.cases.nodes; | |
3819 CaseMatch firstCase = null; | |
3820 DartType firstCaseType = null; | |
3821 bool hasReportedProblem = false; | |
3822 | |
3823 for (Link<Node> cases = node.cases.nodes; | |
3824 !cases.isEmpty; | |
3825 cases = cases.tail) { | |
3826 SwitchCase switchCase = cases.head; | |
3827 | |
3828 for (Node labelOrCase in switchCase.labelsAndCases) { | |
3829 CaseMatch caseMatch = labelOrCase.asCaseMatch(); | |
3830 if (caseMatch == null) continue; | |
3831 | |
3832 // Analyze the constant. | |
3833 ConstantExpression constant = | |
3834 registry.getConstant(caseMatch.expression); | |
3835 assert(invariant(node, constant != null, | |
3836 message: 'No constant computed for $node')); | |
3837 | |
3838 DartType caseType = typeOfConstant(constant.value); | |
3839 | |
3840 if (firstCaseType == null) { | |
3841 firstCase = caseMatch; | |
3842 firstCaseType = caseType; | |
3843 | |
3844 // We only report the bad type on the first class element. All others | |
3845 // get a "type differs" error. | |
3846 if (caseType.element == compiler.doubleClass) { | |
3847 compiler.reportError(node, | |
3848 MessageKind.SWITCH_CASE_VALUE_OVERRIDES_EQUALS, | |
3849 {'type': "double"}); | |
3850 } else if (caseType.element == compiler.functionClass) { | |
3851 compiler.reportError(node, MessageKind.SWITCH_CASE_FORBIDDEN, | |
3852 {'type': "Function"}); | |
3853 } else if (constant.value.isObject && overridesEquals(caseType)) { | |
3854 compiler.reportError(firstCase.expression, | |
3855 MessageKind.SWITCH_CASE_VALUE_OVERRIDES_EQUALS, | |
3856 {'type': caseType}); | |
3857 } | |
3858 } else { | |
3859 if (caseType != firstCaseType) { | |
3860 if (!hasReportedProblem) { | |
3861 compiler.reportError( | |
3862 node, | |
3863 MessageKind.SWITCH_CASE_TYPES_NOT_EQUAL, | |
3864 {'type': firstCaseType}); | |
3865 compiler.reportInfo( | |
3866 firstCase.expression, | |
3867 MessageKind.SWITCH_CASE_TYPES_NOT_EQUAL_CASE, | |
3868 {'type': firstCaseType}); | |
3869 hasReportedProblem = true; | |
3870 } | |
3871 compiler.reportInfo( | |
3872 caseMatch.expression, | |
3873 MessageKind.SWITCH_CASE_TYPES_NOT_EQUAL_CASE, | |
3874 {'type': caseType}); | |
3875 } | |
3876 } | |
3877 } | |
3878 } | |
3879 } | |
3880 | |
3881 visitSwitchStatement(SwitchStatement node) { | |
3882 node.expression.accept(this); | |
3883 | |
3884 JumpTarget breakElement = getOrDefineTarget(node); | |
3885 Map<String, LabelDefinition> continueLabels = <String, LabelDefinition>{}; | |
3886 Link<Node> cases = node.cases.nodes; | |
3887 while (!cases.isEmpty) { | |
3888 SwitchCase switchCase = cases.head; | |
3889 for (Node labelOrCase in switchCase.labelsAndCases) { | |
3890 CaseMatch caseMatch = labelOrCase.asCaseMatch(); | |
3891 if (caseMatch != null) { | |
3892 analyzeConstant(caseMatch.expression); | |
3893 continue; | |
3894 } | |
3895 Label label = labelOrCase; | |
3896 String labelName = label.labelName; | |
3897 | |
3898 LabelDefinition existingElement = continueLabels[labelName]; | |
3899 if (existingElement != null) { | |
3900 // It's an error if the same label occurs twice in the same switch. | |
3901 compiler.reportError( | |
3902 label, | |
3903 MessageKind.DUPLICATE_LABEL, {'labelName': labelName}); | |
3904 compiler.reportInfo( | |
3905 existingElement.label, | |
3906 MessageKind.EXISTING_LABEL, {'labelName': labelName}); | |
3907 } else { | |
3908 // It's only a warning if it shadows another label. | |
3909 existingElement = statementScope.lookupLabel(labelName); | |
3910 if (existingElement != null) { | |
3911 compiler.reportWarning( | |
3912 label, | |
3913 MessageKind.DUPLICATE_LABEL, {'labelName': labelName}); | |
3914 compiler.reportInfo( | |
3915 existingElement.label, | |
3916 MessageKind.EXISTING_LABEL, {'labelName': labelName}); | |
3917 } | |
3918 } | |
3919 | |
3920 JumpTarget targetElement = getOrDefineTarget(switchCase); | |
3921 LabelDefinition labelElement = targetElement.addLabel(label, labelName); | |
3922 registry.defineLabel(label, labelElement); | |
3923 continueLabels[labelName] = labelElement; | |
3924 } | |
3925 cases = cases.tail; | |
3926 // Test that only the last case, if any, is a default case. | |
3927 if (switchCase.defaultKeyword != null && !cases.isEmpty) { | |
3928 error(switchCase, MessageKind.INVALID_CASE_DEFAULT); | |
3929 } | |
3930 } | |
3931 | |
3932 addDeferredAction(enclosingElement, () { | |
3933 checkCaseExpressions(node); | |
3934 }); | |
3935 | |
3936 statementScope.enterSwitch(breakElement, continueLabels); | |
3937 node.cases.accept(this); | |
3938 statementScope.exitSwitch(); | |
3939 | |
3940 // Clean-up unused labels. | |
3941 continueLabels.forEach((String key, LabelDefinition label) { | |
3942 if (!label.isContinueTarget) { | |
3943 JumpTarget targetElement = label.target; | |
3944 SwitchCase switchCase = targetElement.statement; | |
3945 registry.undefineTarget(switchCase); | |
3946 registry.undefineLabel(label.label); | |
3947 } | |
3948 }); | |
3949 // TODO(15575): We should warn if we can detect a fall through | |
3950 // error. | |
3951 registry.registerFallThroughError(); | |
3952 } | |
3953 | |
3954 visitSwitchCase(SwitchCase node) { | |
3955 node.labelsAndCases.accept(this); | |
3956 visitIn(node.statements, new BlockScope(scope)); | |
3957 } | |
3958 | |
3959 visitCaseMatch(CaseMatch node) { | |
3960 visit(node.expression); | |
3961 } | |
3962 | |
3963 visitTryStatement(TryStatement node) { | |
3964 visit(node.tryBlock); | |
3965 if (node.catchBlocks.isEmpty && node.finallyBlock == null) { | |
3966 error(node.getEndToken().next, MessageKind.NO_CATCH_NOR_FINALLY); | |
3967 } | |
3968 visit(node.catchBlocks); | |
3969 visit(node.finallyBlock); | |
3970 } | |
3971 | |
3972 visitCatchBlock(CatchBlock node) { | |
3973 registry.registerCatchStatement(); | |
3974 // Check that if catch part is present, then | |
3975 // it has one or two formal parameters. | |
3976 VariableDefinitions exceptionDefinition; | |
3977 VariableDefinitions stackTraceDefinition; | |
3978 if (node.formals != null) { | |
3979 Link<Node> formalsToProcess = node.formals.nodes; | |
3980 if (formalsToProcess.isEmpty) { | |
3981 error(node, MessageKind.EMPTY_CATCH_DECLARATION); | |
3982 } else { | |
3983 exceptionDefinition = formalsToProcess.head.asVariableDefinitions(); | |
3984 formalsToProcess = formalsToProcess.tail; | |
3985 if (!formalsToProcess.isEmpty) { | |
3986 stackTraceDefinition = formalsToProcess.head.asVariableDefinitions(); | |
3987 formalsToProcess = formalsToProcess.tail; | |
3988 if (!formalsToProcess.isEmpty) { | |
3989 for (Node extra in formalsToProcess) { | |
3990 error(extra, MessageKind.EXTRA_CATCH_DECLARATION); | |
3991 } | |
3992 } | |
3993 registry.registerStackTraceInCatch(); | |
3994 } | |
3995 } | |
3996 | |
3997 // Check that the formals aren't optional and that they have no | |
3998 // modifiers or type. | |
3999 for (Link<Node> link = node.formals.nodes; | |
4000 !link.isEmpty; | |
4001 link = link.tail) { | |
4002 // If the formal parameter is a node list, it means that it is a | |
4003 // sequence of optional parameters. | |
4004 NodeList nodeList = link.head.asNodeList(); | |
4005 if (nodeList != null) { | |
4006 error(nodeList, MessageKind.OPTIONAL_PARAMETER_IN_CATCH); | |
4007 } else { | |
4008 VariableDefinitions declaration = link.head; | |
4009 for (Node modifier in declaration.modifiers.nodes) { | |
4010 error(modifier, MessageKind.PARAMETER_WITH_MODIFIER_IN_CATCH); | |
4011 } | |
4012 TypeAnnotation type = declaration.type; | |
4013 if (type != null) { | |
4014 error(type, MessageKind.PARAMETER_WITH_TYPE_IN_CATCH); | |
4015 } | |
4016 } | |
4017 } | |
4018 } | |
4019 | |
4020 Scope blockScope = new BlockScope(scope); | |
4021 doInCheckContext(() => visitIn(node.type, blockScope)); | |
4022 visitIn(node.formals, blockScope); | |
4023 var oldInCatchBlock = inCatchBlock; | |
4024 inCatchBlock = true; | |
4025 visitIn(node.block, blockScope); | |
4026 inCatchBlock = oldInCatchBlock; | |
4027 | |
4028 if (node.type != null && exceptionDefinition != null) { | |
4029 DartType exceptionType = registry.getType(node.type); | |
4030 Node exceptionVariable = exceptionDefinition.definitions.nodes.head; | |
4031 VariableElementX exceptionElement = | |
4032 registry.getDefinition(exceptionVariable); | |
4033 exceptionElement.variables.type = exceptionType; | |
4034 } | |
4035 if (stackTraceDefinition != null) { | |
4036 Node stackTraceVariable = stackTraceDefinition.definitions.nodes.head; | |
4037 VariableElementX stackTraceElement = | |
4038 registry.getDefinition(stackTraceVariable); | |
4039 registry.registerInstantiatedClass(compiler.stackTraceClass); | |
4040 stackTraceElement.variables.type = compiler.stackTraceClass.rawType; | |
4041 } | |
4042 } | |
4043 | |
4044 visitTypedef(Typedef node) { | |
4045 internalError(node, 'typedef'); | |
4046 } | |
4047 } | |
4048 | |
4049 class TypeDefinitionVisitor extends MappingVisitor<DartType> { | |
4050 Scope scope; | |
4051 final TypeDeclarationElement enclosingElement; | |
4052 TypeDeclarationElement get element => enclosingElement; | |
4053 | |
4054 TypeDefinitionVisitor(Compiler compiler, | |
4055 TypeDeclarationElement element, | |
4056 ResolutionRegistry registry) | |
4057 : this.enclosingElement = element, | |
4058 scope = Scope.buildEnclosingScope(element), | |
4059 super(compiler, registry); | |
4060 | |
4061 DartType get objectType => compiler.objectClass.rawType; | |
4062 | |
4063 void resolveTypeVariableBounds(NodeList node) { | |
4064 if (node == null) return; | |
4065 | |
4066 Setlet<String> nameSet = new Setlet<String>(); | |
4067 // Resolve the bounds of type variables. | |
4068 Iterator<DartType> types = element.typeVariables.iterator; | |
4069 Link<Node> nodeLink = node.nodes; | |
4070 while (!nodeLink.isEmpty) { | |
4071 types.moveNext(); | |
4072 TypeVariableType typeVariable = types.current; | |
4073 String typeName = typeVariable.name; | |
4074 TypeVariable typeNode = nodeLink.head; | |
4075 registry.useType(typeNode, typeVariable); | |
4076 if (nameSet.contains(typeName)) { | |
4077 error(typeNode, MessageKind.DUPLICATE_TYPE_VARIABLE_NAME, | |
4078 {'typeVariableName': typeName}); | |
4079 } | |
4080 nameSet.add(typeName); | |
4081 | |
4082 TypeVariableElementX variableElement = typeVariable.element; | |
4083 if (typeNode.bound != null) { | |
4084 DartType boundType = typeResolver.resolveTypeAnnotation( | |
4085 this, typeNode.bound); | |
4086 variableElement.boundCache = boundType; | |
4087 | |
4088 void checkTypeVariableBound() { | |
4089 Link<TypeVariableElement> seenTypeVariables = | |
4090 const Link<TypeVariableElement>(); | |
4091 seenTypeVariables = seenTypeVariables.prepend(variableElement); | |
4092 DartType bound = boundType; | |
4093 while (bound.isTypeVariable) { | |
4094 TypeVariableElement element = bound.element; | |
4095 if (seenTypeVariables.contains(element)) { | |
4096 if (identical(element, variableElement)) { | |
4097 // Only report an error on the checked type variable to avoid | |
4098 // generating multiple errors for the same cyclicity. | |
4099 warning(typeNode.name, MessageKind.CYCLIC_TYPE_VARIABLE, | |
4100 {'typeVariableName': variableElement.name}); | |
4101 } | |
4102 break; | |
4103 } | |
4104 seenTypeVariables = seenTypeVariables.prepend(element); | |
4105 bound = element.bound; | |
4106 } | |
4107 } | |
4108 addDeferredAction(element, checkTypeVariableBound); | |
4109 } else { | |
4110 variableElement.boundCache = objectType; | |
4111 } | |
4112 nodeLink = nodeLink.tail; | |
4113 } | |
4114 assert(!types.moveNext()); | |
4115 } | |
4116 } | |
4117 | |
4118 class TypedefResolverVisitor extends TypeDefinitionVisitor { | |
4119 TypedefElementX get element => enclosingElement; | |
4120 | |
4121 TypedefResolverVisitor(Compiler compiler, | |
4122 TypedefElement typedefElement, | |
4123 ResolutionRegistry registry) | |
4124 : super(compiler, typedefElement, registry); | |
4125 | |
4126 visitTypedef(Typedef node) { | |
4127 TypedefType type = element.computeType(compiler); | |
4128 scope = new TypeDeclarationScope(scope, element); | |
4129 resolveTypeVariableBounds(node.typeParameters); | |
4130 | |
4131 FunctionSignature signature = SignatureResolver.analyze( | |
4132 compiler, node.formals, node.returnType, element, registry, | |
4133 defaultValuesError: MessageKind.TYPEDEF_FORMAL_WITH_DEFAULT); | |
4134 element.functionSignature = signature; | |
4135 | |
4136 scope = new MethodScope(scope, element); | |
4137 signature.forEachParameter(addToScope); | |
4138 | |
4139 element.alias = signature.type; | |
4140 | |
4141 void checkCyclicReference() { | |
4142 element.checkCyclicReference(compiler); | |
4143 } | |
4144 addDeferredAction(element, checkCyclicReference); | |
4145 } | |
4146 } | |
4147 | |
4148 // TODO(johnniwinther): Replace with a traversal on the AST when the type | |
4149 // annotations in typedef alias are stored in a [TreeElements] mapping. | |
4150 class TypedefCyclicVisitor extends DartTypeVisitor { | |
4151 final Compiler compiler; | |
4152 final TypedefElementX element; | |
4153 bool hasCyclicReference = false; | |
4154 | |
4155 Link<TypedefElement> seenTypedefs = const Link<TypedefElement>(); | |
4156 | |
4157 int seenTypedefsCount = 0; | |
4158 | |
4159 Link<TypeVariableElement> seenTypeVariables = | |
4160 const Link<TypeVariableElement>(); | |
4161 | |
4162 TypedefCyclicVisitor(Compiler this.compiler, TypedefElement this.element); | |
4163 | |
4164 visitType(DartType type, _) { | |
4165 // Do nothing. | |
4166 } | |
4167 | |
4168 visitTypedefType(TypedefType type, _) { | |
4169 TypedefElementX typedefElement = type.element; | |
4170 if (seenTypedefs.contains(typedefElement)) { | |
4171 if (!hasCyclicReference && identical(element, typedefElement)) { | |
4172 // Only report an error on the checked typedef to avoid generating | |
4173 // multiple errors for the same cyclicity. | |
4174 hasCyclicReference = true; | |
4175 if (seenTypedefsCount == 1) { | |
4176 // Direct cyclicity. | |
4177 compiler.reportError(element, | |
4178 MessageKind.CYCLIC_TYPEDEF, | |
4179 {'typedefName': element.name}); | |
4180 } else if (seenTypedefsCount == 2) { | |
4181 // Cyclicity through one other typedef. | |
4182 compiler.reportError(element, | |
4183 MessageKind.CYCLIC_TYPEDEF_ONE, | |
4184 {'typedefName': element.name, | |
4185 'otherTypedefName': seenTypedefs.head.name}); | |
4186 } else { | |
4187 // Cyclicity through more than one other typedef. | |
4188 for (TypedefElement cycle in seenTypedefs) { | |
4189 if (!identical(typedefElement, cycle)) { | |
4190 compiler.reportError(element, | |
4191 MessageKind.CYCLIC_TYPEDEF_ONE, | |
4192 {'typedefName': element.name, | |
4193 'otherTypedefName': cycle.name}); | |
4194 } | |
4195 } | |
4196 } | |
4197 ErroneousElementX erroneousElement = new ErroneousElementX( | |
4198 MessageKind.CYCLIC_TYPEDEF, | |
4199 {'typedefName': element.name}, | |
4200 element.name, element); | |
4201 element.alias = | |
4202 new MalformedType(erroneousElement, typedefElement.alias); | |
4203 element.hasBeenCheckedForCycles = true; | |
4204 } | |
4205 } else { | |
4206 seenTypedefs = seenTypedefs.prepend(typedefElement); | |
4207 seenTypedefsCount++; | |
4208 type.visitChildren(this, null); | |
4209 typedefElement.alias.accept(this, null); | |
4210 seenTypedefs = seenTypedefs.tail; | |
4211 seenTypedefsCount--; | |
4212 } | |
4213 } | |
4214 | |
4215 visitFunctionType(FunctionType type, _) { | |
4216 type.visitChildren(this, null); | |
4217 } | |
4218 | |
4219 visitInterfaceType(InterfaceType type, _) { | |
4220 type.visitChildren(this, null); | |
4221 } | |
4222 | |
4223 visitTypeVariableType(TypeVariableType type, _) { | |
4224 TypeVariableElement typeVariableElement = type.element; | |
4225 if (seenTypeVariables.contains(typeVariableElement)) { | |
4226 // Avoid running in cycles on cyclic type variable bounds. | |
4227 // Cyclicity is reported elsewhere. | |
4228 return; | |
4229 } | |
4230 seenTypeVariables = seenTypeVariables.prepend(typeVariableElement); | |
4231 typeVariableElement.bound.accept(this, null); | |
4232 seenTypeVariables = seenTypeVariables.tail; | |
4233 } | |
4234 } | |
4235 | |
4236 /** | |
4237 * The implementation of [ResolverTask.resolveClass]. | |
4238 * | |
4239 * This visitor has to be extra careful as it is building the basic | |
4240 * element information, and cannot safely look at other elements as | |
4241 * this may lead to cycles. | |
4242 * | |
4243 * This visitor can assume that the supertypes have already been | |
4244 * resolved, but it cannot call [ResolverTask.resolveClass] directly | |
4245 * or indirectly (through [ClassElement.ensureResolved]) for any other | |
4246 * types. | |
4247 */ | |
4248 class ClassResolverVisitor extends TypeDefinitionVisitor { | |
4249 BaseClassElementX get element => enclosingElement; | |
4250 | |
4251 ClassResolverVisitor(Compiler compiler, | |
4252 ClassElement classElement, | |
4253 ResolutionRegistry registry) | |
4254 : super(compiler, classElement, registry); | |
4255 | |
4256 DartType visitClassNode(ClassNode node) { | |
4257 invariant(node, element != null); | |
4258 invariant(element, element.resolutionState == STATE_STARTED, | |
4259 message: () => 'cyclic resolution of class $element'); | |
4260 | |
4261 InterfaceType type = element.computeType(compiler); | |
4262 scope = new TypeDeclarationScope(scope, element); | |
4263 // TODO(ahe): It is not safe to call resolveTypeVariableBounds yet. | |
4264 // As a side-effect, this may get us back here trying to | |
4265 // resolve this class again. | |
4266 resolveTypeVariableBounds(node.typeParameters); | |
4267 | |
4268 // Setup the supertype for the element (if there is a cycle in the | |
4269 // class hierarchy, it has already been set to Object). | |
4270 if (element.supertype == null && node.superclass != null) { | |
4271 MixinApplication superMixin = node.superclass.asMixinApplication(); | |
4272 if (superMixin != null) { | |
4273 DartType supertype = resolveSupertype(element, superMixin.superclass); | |
4274 Link<Node> link = superMixin.mixins.nodes; | |
4275 while (!link.isEmpty) { | |
4276 supertype = applyMixin(supertype, | |
4277 checkMixinType(link.head), link.head); | |
4278 link = link.tail; | |
4279 } | |
4280 element.supertype = supertype; | |
4281 } else { | |
4282 element.supertype = resolveSupertype(element, node.superclass); | |
4283 } | |
4284 } | |
4285 // If the super type isn't specified, we provide a default. The language | |
4286 // specifies [Object] but the backend can pick a specific 'implementation' | |
4287 // of Object - the JavaScript backend chooses between Object and | |
4288 // Interceptor. | |
4289 if (element.supertype == null) { | |
4290 ClassElement superElement = registry.defaultSuperclass(element); | |
4291 // Avoid making the superclass (usually Object) extend itself. | |
4292 if (element != superElement) { | |
4293 if (superElement == null) { | |
4294 compiler.internalError(node, | |
4295 "Cannot resolve default superclass for $element."); | |
4296 } else { | |
4297 superElement.ensureResolved(compiler); | |
4298 } | |
4299 element.supertype = superElement.computeType(compiler); | |
4300 } | |
4301 } | |
4302 | |
4303 if (element.interfaces == null) { | |
4304 element.interfaces = resolveInterfaces(node.interfaces, node.superclass); | |
4305 } else { | |
4306 assert(invariant(element, element.hasIncompleteHierarchy)); | |
4307 } | |
4308 calculateAllSupertypes(element); | |
4309 | |
4310 if (!element.hasConstructor) { | |
4311 Element superMember = element.superclass.localLookup(''); | |
4312 if (superMember == null || !superMember.isGenerativeConstructor) { | |
4313 MessageKind kind = MessageKind.CANNOT_FIND_CONSTRUCTOR; | |
4314 Map arguments = {'constructorName': ''}; | |
4315 // TODO(ahe): Why is this a compile-time error? Or if it is an error, | |
4316 // why do we bother to registerThrowNoSuchMethod below? | |
4317 compiler.reportError(node, kind, arguments); | |
4318 superMember = new ErroneousElementX( | |
4319 kind, arguments, '', element); | |
4320 registry.registerThrowNoSuchMethod(); | |
4321 } else { | |
4322 ConstructorElement superConstructor = superMember; | |
4323 Selector callToMatch = new Selector.call("", element.library, 0); | |
4324 superConstructor.computeSignature(compiler); | |
4325 if (!callToMatch.applies(superConstructor, compiler.world)) { | |
4326 MessageKind kind = MessageKind.NO_MATCHING_CONSTRUCTOR_FOR_IMPLICIT; | |
4327 compiler.reportError(node, kind); | |
4328 superMember = new ErroneousElementX(kind, {}, '', element); | |
4329 } | |
4330 } | |
4331 FunctionElement constructor = | |
4332 new SynthesizedConstructorElementX.forDefault(superMember, element); | |
4333 element.setDefaultConstructor(constructor, compiler); | |
4334 } | |
4335 return element.computeType(compiler); | |
4336 } | |
4337 | |
4338 /// Resolves the mixed type for [mixinNode] and checks that the the mixin type | |
4339 /// is a valid, non-blacklisted interface type. The mixin type is returned. | |
4340 DartType checkMixinType(TypeAnnotation mixinNode) { | |
4341 DartType mixinType = resolveType(mixinNode); | |
4342 if (isBlackListed(mixinType)) { | |
4343 compiler.reportError(mixinNode, | |
4344 MessageKind.CANNOT_MIXIN, {'type': mixinType}); | |
4345 } else if (mixinType.isTypeVariable) { | |
4346 compiler.reportError(mixinNode, MessageKind.CLASS_NAME_EXPECTED); | |
4347 } else if (mixinType.isMalformed) { | |
4348 compiler.reportError(mixinNode, MessageKind.CANNOT_MIXIN_MALFORMED, | |
4349 {'className': element.name, 'malformedType': mixinType}); | |
4350 } | |
4351 return mixinType; | |
4352 } | |
4353 | |
4354 DartType visitNamedMixinApplication(NamedMixinApplication node) { | |
4355 invariant(node, element != null); | |
4356 invariant(element, element.resolutionState == STATE_STARTED, | |
4357 message: () => 'cyclic resolution of class $element'); | |
4358 | |
4359 if (identical(node.classKeyword.stringValue, 'typedef')) { | |
4360 // TODO(aprelev@gmail.com): Remove this deprecation diagnostic | |
4361 // together with corresponding TODO in parser.dart. | |
4362 compiler.reportWarning(node.classKeyword, | |
4363 MessageKind.DEPRECATED_TYPEDEF_MIXIN_SYNTAX); | |
4364 } | |
4365 | |
4366 InterfaceType type = element.computeType(compiler); | |
4367 scope = new TypeDeclarationScope(scope, element); | |
4368 resolveTypeVariableBounds(node.typeParameters); | |
4369 | |
4370 // Generate anonymous mixin application elements for the | |
4371 // intermediate mixin applications (excluding the last). | |
4372 DartType supertype = resolveSupertype(element, node.superclass); | |
4373 Link<Node> link = node.mixins.nodes; | |
4374 while (!link.tail.isEmpty) { | |
4375 supertype = applyMixin(supertype, checkMixinType(link.head), link.head); | |
4376 link = link.tail; | |
4377 } | |
4378 doApplyMixinTo(element, supertype, checkMixinType(link.head)); | |
4379 return element.computeType(compiler); | |
4380 } | |
4381 | |
4382 DartType applyMixin(DartType supertype, DartType mixinType, Node node) { | |
4383 String superName = supertype.name; | |
4384 String mixinName = mixinType.name; | |
4385 MixinApplicationElementX mixinApplication = new MixinApplicationElementX( | |
4386 "${superName}+${mixinName}", | |
4387 element.compilationUnit, | |
4388 compiler.getNextFreeClassId(), | |
4389 node, | |
4390 new Modifiers.withFlags(new NodeList.empty(), Modifiers.FLAG_ABSTRACT)); | |
4391 // Create synthetic type variables for the mixin application. | |
4392 List<DartType> typeVariables = <DartType>[]; | |
4393 element.typeVariables.forEach((TypeVariableType type) { | |
4394 TypeVariableElementX typeVariableElement = new TypeVariableElementX( | |
4395 type.name, mixinApplication, type.element.node); | |
4396 TypeVariableType typeVariable = new TypeVariableType(typeVariableElement); | |
4397 typeVariables.add(typeVariable); | |
4398 }); | |
4399 // Setup bounds on the synthetic type variables. | |
4400 List<DartType> link = typeVariables; | |
4401 int index = 0; | |
4402 element.typeVariables.forEach((TypeVariableType type) { | |
4403 TypeVariableType typeVariable = typeVariables[index++]; | |
4404 TypeVariableElementX typeVariableElement = typeVariable.element; | |
4405 typeVariableElement.typeCache = typeVariable; | |
4406 typeVariableElement.boundCache = | |
4407 type.element.bound.subst(typeVariables, element.typeVariables); | |
4408 }); | |
4409 // Setup this and raw type for the mixin application. | |
4410 mixinApplication.computeThisAndRawType(compiler, typeVariables); | |
4411 // Substitute in synthetic type variables in super and mixin types. | |
4412 supertype = supertype.subst(typeVariables, element.typeVariables); | |
4413 mixinType = mixinType.subst(typeVariables, element.typeVariables); | |
4414 | |
4415 doApplyMixinTo(mixinApplication, supertype, mixinType); | |
4416 mixinApplication.resolutionState = STATE_DONE; | |
4417 mixinApplication.supertypeLoadState = STATE_DONE; | |
4418 // Replace the synthetic type variables by the original type variables in | |
4419 // the returned type (which should be the type actually extended). | |
4420 InterfaceType mixinThisType = mixinApplication.computeType(compiler); | |
4421 return mixinThisType.subst(element.typeVariables, | |
4422 mixinThisType.typeArguments); | |
4423 } | |
4424 | |
4425 bool isDefaultConstructor(FunctionElement constructor) { | |
4426 return constructor.name == '' && | |
4427 constructor.computeSignature(compiler).parameterCount == 0; | |
4428 } | |
4429 | |
4430 FunctionElement createForwardingConstructor(ConstructorElement target, | |
4431 ClassElement enclosing) { | |
4432 return new SynthesizedConstructorElementX( | |
4433 target.name, target, enclosing, false); | |
4434 } | |
4435 | |
4436 void doApplyMixinTo(MixinApplicationElementX mixinApplication, | |
4437 DartType supertype, | |
4438 DartType mixinType) { | |
4439 Node node = mixinApplication.parseNode(compiler); | |
4440 | |
4441 if (mixinApplication.supertype != null) { | |
4442 // [supertype] is not null if there was a cycle. | |
4443 assert(invariant(node, compiler.compilationFailed)); | |
4444 supertype = mixinApplication.supertype; | |
4445 assert(invariant(node, supertype.element == compiler.objectClass)); | |
4446 } else { | |
4447 mixinApplication.supertype = supertype; | |
4448 } | |
4449 | |
4450 // Named mixin application may have an 'implements' clause. | |
4451 NamedMixinApplication namedMixinApplication = | |
4452 node.asNamedMixinApplication(); | |
4453 Link<DartType> interfaces = (namedMixinApplication != null) | |
4454 ? resolveInterfaces(namedMixinApplication.interfaces, | |
4455 namedMixinApplication.superclass) | |
4456 : const Link<DartType>(); | |
4457 | |
4458 // The class that is the result of a mixin application implements | |
4459 // the interface of the class that was mixed in so always prepend | |
4460 // that to the interface list. | |
4461 if (mixinApplication.interfaces == null) { | |
4462 if (mixinType.isInterfaceType) { | |
4463 // Avoid malformed types in the interfaces. | |
4464 interfaces = interfaces.prepend(mixinType); | |
4465 } | |
4466 mixinApplication.interfaces = interfaces; | |
4467 } else { | |
4468 assert(invariant(mixinApplication, | |
4469 mixinApplication.hasIncompleteHierarchy)); | |
4470 } | |
4471 | |
4472 ClassElement superclass = supertype.element; | |
4473 if (mixinType.kind != TypeKind.INTERFACE) { | |
4474 mixinApplication.hasIncompleteHierarchy = true; | |
4475 mixinApplication.allSupertypesAndSelf = superclass.allSupertypesAndSelf; | |
4476 return; | |
4477 } | |
4478 | |
4479 assert(mixinApplication.mixinType == null); | |
4480 mixinApplication.mixinType = resolveMixinFor(mixinApplication, mixinType); | |
4481 | |
4482 // Create forwarding constructors for constructor defined in the superclass | |
4483 // because they are now hidden by the mixin application. | |
4484 superclass.forEachLocalMember((Element member) { | |
4485 if (!member.isGenerativeConstructor) return; | |
4486 FunctionElement forwarder = | |
4487 createForwardingConstructor(member, mixinApplication); | |
4488 if (isPrivateName(member.name) && | |
4489 mixinApplication.library != superclass.library) { | |
4490 // Do not create a forwarder to the super constructor, because the mixin | |
4491 // application is in a different library than the constructor in the | |
4492 // super class and it is not possible to call that constructor from the | |
4493 // library using the mixin application. | |
4494 return; | |
4495 } | |
4496 mixinApplication.addConstructor(forwarder); | |
4497 }); | |
4498 calculateAllSupertypes(mixinApplication); | |
4499 } | |
4500 | |
4501 InterfaceType resolveMixinFor(MixinApplicationElement mixinApplication, | |
4502 DartType mixinType) { | |
4503 ClassElement mixin = mixinType.element; | |
4504 mixin.ensureResolved(compiler); | |
4505 | |
4506 // Check for cycles in the mixin chain. | |
4507 ClassElement previous = mixinApplication; // For better error messages. | |
4508 ClassElement current = mixin; | |
4509 while (current != null && current.isMixinApplication) { | |
4510 MixinApplicationElement currentMixinApplication = current; | |
4511 if (currentMixinApplication == mixinApplication) { | |
4512 compiler.reportError( | |
4513 mixinApplication, MessageKind.ILLEGAL_MIXIN_CYCLE, | |
4514 {'mixinName1': current.name, 'mixinName2': previous.name}); | |
4515 // We have found a cycle in the mixin chain. Return null as | |
4516 // the mixin for this application to avoid getting into | |
4517 // infinite recursion when traversing members. | |
4518 return null; | |
4519 } | |
4520 previous = current; | |
4521 current = currentMixinApplication.mixin; | |
4522 } | |
4523 registry.registerMixinUse(mixinApplication, mixin); | |
4524 return mixinType; | |
4525 } | |
4526 | |
4527 DartType resolveType(TypeAnnotation node) { | |
4528 return typeResolver.resolveTypeAnnotation(this, node); | |
4529 } | |
4530 | |
4531 DartType resolveSupertype(ClassElement cls, TypeAnnotation superclass) { | |
4532 DartType supertype = resolveType(superclass); | |
4533 if (supertype != null) { | |
4534 if (identical(supertype.kind, TypeKind.MALFORMED_TYPE)) { | |
4535 compiler.reportError(superclass, MessageKind.CANNOT_EXTEND_MALFORMED, | |
4536 {'className': element.name, 'malformedType': supertype}); | |
4537 return objectType; | |
4538 } else if (!identical(supertype.kind, TypeKind.INTERFACE)) { | |
4539 compiler.reportError(superclass.typeName, | |
4540 MessageKind.CLASS_NAME_EXPECTED); | |
4541 return objectType; | |
4542 } else if (isBlackListed(supertype)) { | |
4543 compiler.reportError(superclass, MessageKind.CANNOT_EXTEND, | |
4544 {'type': supertype}); | |
4545 return objectType; | |
4546 } | |
4547 } | |
4548 return supertype; | |
4549 } | |
4550 | |
4551 Link<DartType> resolveInterfaces(NodeList interfaces, Node superclass) { | |
4552 Link<DartType> result = const Link<DartType>(); | |
4553 if (interfaces == null) return result; | |
4554 for (Link<Node> link = interfaces.nodes; !link.isEmpty; link = link.tail) { | |
4555 DartType interfaceType = resolveType(link.head); | |
4556 if (interfaceType != null) { | |
4557 if (identical(interfaceType.kind, TypeKind.MALFORMED_TYPE)) { | |
4558 compiler.reportError(superclass, | |
4559 MessageKind.CANNOT_IMPLEMENT_MALFORMED, | |
4560 {'className': element.name, 'malformedType': interfaceType}); | |
4561 } else if (!identical(interfaceType.kind, TypeKind.INTERFACE)) { | |
4562 // TODO(johnniwinther): Handle dynamic. | |
4563 TypeAnnotation typeAnnotation = link.head; | |
4564 error(typeAnnotation.typeName, MessageKind.CLASS_NAME_EXPECTED); | |
4565 } else { | |
4566 if (interfaceType == element.supertype) { | |
4567 compiler.reportError( | |
4568 superclass, | |
4569 MessageKind.DUPLICATE_EXTENDS_IMPLEMENTS, | |
4570 {'type': interfaceType}); | |
4571 compiler.reportError( | |
4572 link.head, | |
4573 MessageKind.DUPLICATE_EXTENDS_IMPLEMENTS, | |
4574 {'type': interfaceType}); | |
4575 } | |
4576 if (result.contains(interfaceType)) { | |
4577 compiler.reportError( | |
4578 link.head, | |
4579 MessageKind.DUPLICATE_IMPLEMENTS, | |
4580 {'type': interfaceType}); | |
4581 } | |
4582 result = result.prepend(interfaceType); | |
4583 if (isBlackListed(interfaceType)) { | |
4584 error(link.head, MessageKind.CANNOT_IMPLEMENT, | |
4585 {'type': interfaceType}); | |
4586 } | |
4587 } | |
4588 } | |
4589 } | |
4590 return result; | |
4591 } | |
4592 | |
4593 /** | |
4594 * Compute the list of all supertypes. | |
4595 * | |
4596 * The elements of this list are ordered as follows: first the supertype that | |
4597 * the class extends, then the implemented interfaces, and then the supertypes | |
4598 * of these. The class [Object] appears only once, at the end of the list. | |
4599 * | |
4600 * For example, for a class `class C extends S implements I1, I2`, we compute | |
4601 * supertypes(C) = [S, I1, I2] ++ supertypes(S) ++ supertypes(I1) | |
4602 * ++ supertypes(I2), | |
4603 * where ++ stands for list concatenation. | |
4604 * | |
4605 * This order makes sure that if a class implements an interface twice with | |
4606 * different type arguments, the type used in the most specific class comes | |
4607 * first. | |
4608 */ | |
4609 void calculateAllSupertypes(BaseClassElementX cls) { | |
4610 if (cls.allSupertypesAndSelf != null) return; | |
4611 final DartType supertype = cls.supertype; | |
4612 if (supertype != null) { | |
4613 OrderedTypeSetBuilder allSupertypes = new OrderedTypeSetBuilder(cls); | |
4614 // TODO(15296): Collapse these iterations to one when the order is not | |
4615 // needed. | |
4616 allSupertypes.add(compiler, supertype); | |
4617 for (Link<DartType> interfaces = cls.interfaces; | |
4618 !interfaces.isEmpty; | |
4619 interfaces = interfaces.tail) { | |
4620 allSupertypes.add(compiler, interfaces.head); | |
4621 } | |
4622 | |
4623 addAllSupertypes(allSupertypes, supertype); | |
4624 for (Link<DartType> interfaces = cls.interfaces; | |
4625 !interfaces.isEmpty; | |
4626 interfaces = interfaces.tail) { | |
4627 addAllSupertypes(allSupertypes, interfaces.head); | |
4628 } | |
4629 allSupertypes.add(compiler, cls.computeType(compiler)); | |
4630 cls.allSupertypesAndSelf = allSupertypes.toTypeSet(); | |
4631 } else { | |
4632 assert(identical(cls, compiler.objectClass)); | |
4633 cls.allSupertypesAndSelf = | |
4634 new OrderedTypeSet.singleton(cls.computeType(compiler)); | |
4635 } | |
4636 } | |
4637 | |
4638 /** | |
4639 * Adds [type] and all supertypes of [type] to [allSupertypes] while | |
4640 * substituting type variables. | |
4641 */ | |
4642 void addAllSupertypes(OrderedTypeSetBuilder allSupertypes, | |
4643 InterfaceType type) { | |
4644 ClassElement classElement = type.element; | |
4645 Link<DartType> supertypes = classElement.allSupertypes; | |
4646 assert(invariant(element, supertypes != null, | |
4647 message: "Supertypes not computed on $classElement " | |
4648 "during resolution of $element")); | |
4649 while (!supertypes.isEmpty) { | |
4650 DartType supertype = supertypes.head; | |
4651 allSupertypes.add(compiler, supertype.substByContext(type)); | |
4652 supertypes = supertypes.tail; | |
4653 } | |
4654 } | |
4655 | |
4656 isBlackListed(DartType type) { | |
4657 LibraryElement lib = element.library; | |
4658 return | |
4659 !identical(lib, compiler.coreLibrary) && | |
4660 !compiler.backend.isBackendLibrary(lib) && | |
4661 (type.isDynamic || | |
4662 identical(type.element, compiler.boolClass) || | |
4663 identical(type.element, compiler.numClass) || | |
4664 identical(type.element, compiler.intClass) || | |
4665 identical(type.element, compiler.doubleClass) || | |
4666 identical(type.element, compiler.stringClass) || | |
4667 identical(type.element, compiler.nullClass)); | |
4668 } | |
4669 } | |
4670 | |
4671 class ClassSupertypeResolver extends CommonResolverVisitor { | |
4672 Scope context; | |
4673 ClassElement classElement; | |
4674 | |
4675 ClassSupertypeResolver(Compiler compiler, ClassElement cls) | |
4676 : context = Scope.buildEnclosingScope(cls), | |
4677 this.classElement = cls, | |
4678 super(compiler); | |
4679 | |
4680 void loadSupertype(ClassElement element, Node from) { | |
4681 compiler.resolver.loadSupertypes(element, from); | |
4682 element.ensureResolved(compiler); | |
4683 } | |
4684 | |
4685 void visitNodeList(NodeList node) { | |
4686 if (node != null) { | |
4687 for (Link<Node> link = node.nodes; !link.isEmpty; link = link.tail) { | |
4688 link.head.accept(this); | |
4689 } | |
4690 } | |
4691 } | |
4692 | |
4693 void visitClassNode(ClassNode node) { | |
4694 if (node.superclass == null) { | |
4695 if (!identical(classElement, compiler.objectClass)) { | |
4696 loadSupertype(compiler.objectClass, node); | |
4697 } | |
4698 } else { | |
4699 node.superclass.accept(this); | |
4700 } | |
4701 visitNodeList(node.interfaces); | |
4702 } | |
4703 | |
4704 void visitMixinApplication(MixinApplication node) { | |
4705 node.superclass.accept(this); | |
4706 visitNodeList(node.mixins); | |
4707 } | |
4708 | |
4709 void visitNamedMixinApplication(NamedMixinApplication node) { | |
4710 node.superclass.accept(this); | |
4711 visitNodeList(node.mixins); | |
4712 visitNodeList(node.interfaces); | |
4713 } | |
4714 | |
4715 void visitTypeAnnotation(TypeAnnotation node) { | |
4716 node.typeName.accept(this); | |
4717 } | |
4718 | |
4719 void visitIdentifier(Identifier node) { | |
4720 Element element = lookupInScope(compiler, node, context, node.source); | |
4721 if (element != null && element.isClass) { | |
4722 loadSupertype(element, node); | |
4723 } | |
4724 } | |
4725 | |
4726 void visitSend(Send node) { | |
4727 Identifier prefix = node.receiver.asIdentifier(); | |
4728 if (prefix == null) { | |
4729 error(node.receiver, MessageKind.NOT_A_PREFIX, {'node': node.receiver}); | |
4730 return; | |
4731 } | |
4732 Element element = lookupInScope(compiler, prefix, context, prefix.source); | |
4733 if (element == null || !identical(element.kind, ElementKind.PREFIX)) { | |
4734 error(node.receiver, MessageKind.NOT_A_PREFIX, {'node': node.receiver}); | |
4735 return; | |
4736 } | |
4737 PrefixElement prefixElement = element; | |
4738 Identifier selector = node.selector.asIdentifier(); | |
4739 var e = prefixElement.lookupLocalMember(selector.source); | |
4740 if (e == null || !e.impliesType) { | |
4741 error(node.selector, MessageKind.CANNOT_RESOLVE_TYPE, | |
4742 {'typeName': node.selector}); | |
4743 return; | |
4744 } | |
4745 loadSupertype(e, node); | |
4746 } | |
4747 } | |
4748 | |
4749 class VariableDefinitionsVisitor extends CommonResolverVisitor<Identifier> { | |
4750 VariableDefinitions definitions; | |
4751 ResolverVisitor resolver; | |
4752 VariableList variables; | |
4753 | |
4754 VariableDefinitionsVisitor(Compiler compiler, | |
4755 this.definitions, | |
4756 this.resolver, | |
4757 this.variables) | |
4758 : super(compiler) { | |
4759 } | |
4760 | |
4761 ResolutionRegistry get registry => resolver.registry; | |
4762 | |
4763 Identifier visitSendSet(SendSet node) { | |
4764 assert(node.arguments.tail.isEmpty); // Sanity check | |
4765 Identifier identifier = node.selector; | |
4766 String name = identifier.source; | |
4767 VariableDefinitionScope scope = | |
4768 new VariableDefinitionScope(resolver.scope, name); | |
4769 resolver.visitIn(node.arguments.head, scope); | |
4770 if (scope.variableReferencedInInitializer) { | |
4771 compiler.reportError( | |
4772 identifier, MessageKind.REFERENCE_IN_INITIALIZATION, | |
4773 {'variableName': name}); | |
4774 } | |
4775 return identifier; | |
4776 } | |
4777 | |
4778 Identifier visitIdentifier(Identifier node) { | |
4779 // The variable is initialized to null. | |
4780 registry.registerInstantiatedClass(compiler.nullClass); | |
4781 if (definitions.modifiers.isConst) { | |
4782 compiler.reportError(node, MessageKind.CONST_WITHOUT_INITIALIZER); | |
4783 } | |
4784 if (definitions.modifiers.isFinal && | |
4785 !resolver.allowFinalWithoutInitializer) { | |
4786 compiler.reportError(node, MessageKind.FINAL_WITHOUT_INITIALIZER); | |
4787 } | |
4788 return node; | |
4789 } | |
4790 | |
4791 visitNodeList(NodeList node) { | |
4792 for (Link<Node> link = node.nodes; !link.isEmpty; link = link.tail) { | |
4793 Identifier name = visit(link.head); | |
4794 LocalVariableElement element = new LocalVariableElementX( | |
4795 name.source, resolver.enclosingElement, | |
4796 variables, name.token); | |
4797 resolver.defineLocalVariable(link.head, element); | |
4798 resolver.addToScope(element); | |
4799 if (definitions.modifiers.isConst) { | |
4800 compiler.enqueuer.resolution.addDeferredAction(element, () { | |
4801 compiler.resolver.constantCompiler.compileConstant(element); | |
4802 }); | |
4803 } | |
4804 } | |
4805 } | |
4806 } | |
4807 | |
4808 class ConstructorResolver extends CommonResolverVisitor<Element> { | |
4809 final ResolverVisitor resolver; | |
4810 bool inConstContext; | |
4811 DartType type; | |
4812 | |
4813 ConstructorResolver(Compiler compiler, this.resolver, | |
4814 {bool this.inConstContext: false}) | |
4815 : super(compiler); | |
4816 | |
4817 ResolutionRegistry get registry => resolver.registry; | |
4818 | |
4819 visitNode(Node node) { | |
4820 throw 'not supported'; | |
4821 } | |
4822 | |
4823 failOrReturnErroneousElement(Element enclosing, Node diagnosticNode, | |
4824 String targetName, MessageKind kind, | |
4825 Map arguments) { | |
4826 if (kind == MessageKind.CANNOT_FIND_CONSTRUCTOR) { | |
4827 registry.registerThrowNoSuchMethod(); | |
4828 } else { | |
4829 registry.registerThrowRuntimeError(); | |
4830 } | |
4831 if (inConstContext) { | |
4832 compiler.reportError(diagnosticNode, kind, arguments); | |
4833 } else { | |
4834 compiler.reportWarning(diagnosticNode, kind, arguments); | |
4835 } | |
4836 return new ErroneousElementX(kind, arguments, targetName, enclosing); | |
4837 } | |
4838 | |
4839 Selector createConstructorSelector(String constructorName) { | |
4840 return constructorName == '' | |
4841 ? new Selector.callDefaultConstructor( | |
4842 resolver.enclosingElement.library) | |
4843 : new Selector.callConstructor( | |
4844 constructorName, | |
4845 resolver.enclosingElement.library); | |
4846 } | |
4847 | |
4848 FunctionElement resolveConstructor(ClassElement cls, | |
4849 Node diagnosticNode, | |
4850 String constructorName) { | |
4851 cls.ensureResolved(compiler); | |
4852 Selector selector = createConstructorSelector(constructorName); | |
4853 Element result = cls.lookupConstructor(selector); | |
4854 if (result == null) { | |
4855 String fullConstructorName = Elements.constructorNameForDiagnostics( | |
4856 cls.name, | |
4857 constructorName); | |
4858 return failOrReturnErroneousElement( | |
4859 cls, | |
4860 diagnosticNode, | |
4861 fullConstructorName, | |
4862 MessageKind.CANNOT_FIND_CONSTRUCTOR, | |
4863 {'constructorName': fullConstructorName}); | |
4864 } else if (inConstContext && !result.isConst) { | |
4865 error(diagnosticNode, MessageKind.CONSTRUCTOR_IS_NOT_CONST); | |
4866 } | |
4867 return result; | |
4868 } | |
4869 | |
4870 Element visitNewExpression(NewExpression node) { | |
4871 inConstContext = node.isConst; | |
4872 Node selector = node.send.selector; | |
4873 Element element = visit(selector); | |
4874 assert(invariant(selector, element != null, | |
4875 message: 'No element return for $selector.')); | |
4876 return finishConstructorReference(element, node.send.selector, node); | |
4877 } | |
4878 | |
4879 /// Finishes resolution of a constructor reference and records the | |
4880 /// type of the constructed instance on [expression]. | |
4881 FunctionElement finishConstructorReference(Element element, | |
4882 Node diagnosticNode, | |
4883 Node expression) { | |
4884 assert(invariant(diagnosticNode, element != null, | |
4885 message: 'No element return for $diagnosticNode.')); | |
4886 // Find the unnamed constructor if the reference resolved to a | |
4887 // class. | |
4888 if (!Elements.isUnresolved(element) && !element.isConstructor) { | |
4889 if (element.isClass) { | |
4890 ClassElement cls = element; | |
4891 cls.ensureResolved(compiler); | |
4892 // The unnamed constructor may not exist, so [e] may become unresolved. | |
4893 element = resolveConstructor(cls, diagnosticNode, ''); | |
4894 } else { | |
4895 element = failOrReturnErroneousElement( | |
4896 element, diagnosticNode, element.name, MessageKind.NOT_A_TYPE, | |
4897 {'node': diagnosticNode}); | |
4898 } | |
4899 } | |
4900 if (type == null) { | |
4901 if (Elements.isUnresolved(element)) { | |
4902 type = const DynamicType(); | |
4903 } else { | |
4904 type = element.enclosingClass.rawType; | |
4905 } | |
4906 } | |
4907 resolver.registry.setType(expression, type); | |
4908 return element; | |
4909 } | |
4910 | |
4911 Element visitTypeAnnotation(TypeAnnotation node) { | |
4912 assert(invariant(node, type == null)); | |
4913 // This is not really resolving a type-annotation, but the name of the | |
4914 // constructor. Therefore we allow deferred types. | |
4915 type = resolver.resolveTypeAnnotation(node, | |
4916 malformedIsError: inConstContext, | |
4917 deferredIsMalformed: false); | |
4918 registry.registerRequiredType(type, resolver.enclosingElement); | |
4919 return type.element; | |
4920 } | |
4921 | |
4922 Element visitSend(Send node) { | |
4923 Element element = visit(node.receiver); | |
4924 assert(invariant(node.receiver, element != null, | |
4925 message: 'No element return for $node.receiver.')); | |
4926 if (Elements.isUnresolved(element)) return element; | |
4927 Identifier name = node.selector.asIdentifier(); | |
4928 if (name == null) internalError(node.selector, 'unexpected node'); | |
4929 | |
4930 if (element.isClass) { | |
4931 ClassElement cls = element; | |
4932 cls.ensureResolved(compiler); | |
4933 return resolveConstructor(cls, name, name.source); | |
4934 } else if (element.isPrefix) { | |
4935 PrefixElement prefix = element; | |
4936 element = prefix.lookupLocalMember(name.source); | |
4937 element = Elements.unwrap(element, compiler, node); | |
4938 if (element == null) { | |
4939 return failOrReturnErroneousElement( | |
4940 resolver.enclosingElement, name, | |
4941 name.source, | |
4942 MessageKind.CANNOT_RESOLVE, | |
4943 {'name': name}); | |
4944 } else if (!element.isClass) { | |
4945 error(node, MessageKind.NOT_A_TYPE, {'node': name}); | |
4946 } | |
4947 } else { | |
4948 internalError(node.receiver, 'unexpected element $element'); | |
4949 } | |
4950 return element; | |
4951 } | |
4952 | |
4953 Element visitIdentifier(Identifier node) { | |
4954 String name = node.source; | |
4955 Element element = resolver.reportLookupErrorIfAny( | |
4956 lookupInScope(compiler, node, resolver.scope, name), node, name); | |
4957 registry.useElement(node, element); | |
4958 // TODO(johnniwinther): Change errors to warnings, cf. 11.11.1. | |
4959 if (element == null) { | |
4960 return failOrReturnErroneousElement(resolver.enclosingElement, node, name, | |
4961 MessageKind.CANNOT_RESOLVE, | |
4962 {'name': name}); | |
4963 } else if (element.isErroneous) { | |
4964 return element; | |
4965 } else if (element.isTypedef) { | |
4966 error(node, MessageKind.CANNOT_INSTANTIATE_TYPEDEF, | |
4967 {'typedefName': name}); | |
4968 } else if (element.isTypeVariable) { | |
4969 error(node, MessageKind.CANNOT_INSTANTIATE_TYPE_VARIABLE, | |
4970 {'typeVariableName': name}); | |
4971 } else if (!element.isClass && !element.isPrefix) { | |
4972 error(node, MessageKind.NOT_A_TYPE, {'node': name}); | |
4973 } | |
4974 return element; | |
4975 } | |
4976 | |
4977 /// Assumed to be called by [resolveRedirectingFactory]. | |
4978 Element visitRedirectingFactoryBody(RedirectingFactoryBody node) { | |
4979 Node constructorReference = node.constructorReference; | |
4980 return finishConstructorReference(visit(constructorReference), | |
4981 constructorReference, node); | |
4982 } | |
4983 } | |
4984 | |
4985 /// Looks up [name] in [scope] and unwraps the result. | |
4986 Element lookupInScope(Compiler compiler, Node node, | |
4987 Scope scope, String name) { | |
4988 return Elements.unwrap(scope.lookup(name), compiler, node); | |
4989 } | |
4990 | |
4991 TreeElements _ensureTreeElements(AnalyzableElementX element) { | |
4992 if (element._treeElements == null) { | |
4993 element._treeElements = new TreeElementMapping(element); | |
4994 } | |
4995 return element._treeElements; | |
4996 } | |
4997 | |
4998 abstract class AnalyzableElementX implements AnalyzableElement { | |
4999 TreeElements _treeElements; | |
5000 | |
5001 bool get hasTreeElements => _treeElements != null; | |
5002 | |
5003 TreeElements get treeElements { | |
5004 assert(invariant(this, _treeElements !=null, | |
5005 message: "TreeElements have not been computed for $this.")); | |
5006 return _treeElements; | |
5007 } | |
5008 | |
5009 void reuseElement() { | |
5010 _treeElements = null; | |
5011 } | |
5012 } | |
5013 | |
5014 /// The result of resolving a node. | |
5015 abstract class ResolutionResult { | |
5016 Element get element; | |
5017 } | |
5018 | |
5019 /// The result for the resolution of a node that points to an [Element]. | |
5020 class ElementResult implements ResolutionResult { | |
5021 final Element element; | |
5022 | |
5023 // TODO(johnniwinther): Remove this factory constructor when `null` is never | |
5024 // passed as an element result. | |
5025 factory ElementResult(Element element) { | |
5026 return element != null ? new ElementResult.internal(element) : null; | |
5027 } | |
5028 | |
5029 ElementResult.internal(this.element); | |
5030 | |
5031 String toString() => 'ElementResult($element)'; | |
5032 } | |
5033 | |
5034 /// The result for the resolution of a node that points to an [DartType]. | |
5035 class TypeResult implements ResolutionResult { | |
5036 final DartType type; | |
5037 | |
5038 TypeResult(this.type) { | |
5039 assert(type != null); | |
5040 } | |
5041 | |
5042 Element get element => type.element; | |
5043 | |
5044 String toString() => 'TypeResult($type)'; | |
5045 } | |
5046 | |
5047 /// The result for the resolution of the `assert` method. | |
5048 class AssertResult implements ResolutionResult { | |
5049 const AssertResult(); | |
5050 | |
5051 Element get element => null; | |
5052 | |
5053 String toString() => 'AssertResult()'; | |
5054 } | |
OLD | NEW |