OLD | NEW |
| (Empty) |
1 // Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file | |
2 // for details. All rights reserved. Use of this source code is governed by a | |
3 // BSD-style license that can be found in the LICENSE file. | |
4 | |
5 library elements; | |
6 | |
7 | |
8 import '../constants/expressions.dart'; | |
9 import '../tree/tree.dart'; | |
10 import '../util/util.dart'; | |
11 import '../resolution/resolution.dart'; | |
12 | |
13 import '../dart2jslib.dart' show InterfaceType, | |
14 DartType, | |
15 TypeVariableType, | |
16 TypedefType, | |
17 DualKind, | |
18 MessageKind, | |
19 DiagnosticListener, | |
20 Script, | |
21 FunctionType, | |
22 Selector, | |
23 Constant, | |
24 Compiler, | |
25 Backend, | |
26 isPrivateName; | |
27 | |
28 import '../dart_types.dart'; | |
29 import '../helpers/helpers.dart'; | |
30 | |
31 import '../scanner/scannerlib.dart' show Token, | |
32 isUserDefinableOperator, | |
33 isMinusOperator; | |
34 | |
35 import '../ordered_typeset.dart' show OrderedTypeSet; | |
36 | |
37 import 'visitor.dart' show ElementVisitor; | |
38 | |
39 part 'names.dart'; | |
40 | |
41 const int STATE_NOT_STARTED = 0; | |
42 const int STATE_STARTED = 1; | |
43 const int STATE_DONE = 2; | |
44 | |
45 class ElementCategory { | |
46 /** | |
47 * Represents things that we don't expect to find when looking in a | |
48 * scope. | |
49 */ | |
50 static const int NONE = 0; | |
51 | |
52 /** Field, parameter, or variable. */ | |
53 static const int VARIABLE = 1; | |
54 | |
55 /** Function, method, or foreign function. */ | |
56 static const int FUNCTION = 2; | |
57 | |
58 static const int CLASS = 4; | |
59 | |
60 static const int PREFIX = 8; | |
61 | |
62 /** Constructor or factory. */ | |
63 static const int FACTORY = 16; | |
64 | |
65 static const int ALIAS = 32; | |
66 | |
67 static const int SUPER = 64; | |
68 | |
69 /** Type variable */ | |
70 static const int TYPE_VARIABLE = 128; | |
71 | |
72 static const int IMPLIES_TYPE = CLASS | ALIAS | TYPE_VARIABLE; | |
73 } | |
74 | |
75 class ElementKind { | |
76 final String id; | |
77 final int category; | |
78 | |
79 const ElementKind(String this.id, this.category); | |
80 | |
81 static const ElementKind VARIABLE = | |
82 const ElementKind('variable', ElementCategory.VARIABLE); | |
83 static const ElementKind PARAMETER = | |
84 const ElementKind('parameter', ElementCategory.VARIABLE); | |
85 // Parameters in constructors that directly initialize fields. For example: | |
86 // [:A(this.field):]. | |
87 static const ElementKind INITIALIZING_FORMAL = | |
88 const ElementKind('initializing_formal', ElementCategory.VARIABLE); | |
89 static const ElementKind FUNCTION = | |
90 const ElementKind('function', ElementCategory.FUNCTION); | |
91 static const ElementKind CLASS = | |
92 const ElementKind('class', ElementCategory.CLASS); | |
93 static const ElementKind GENERATIVE_CONSTRUCTOR = | |
94 const ElementKind('generative_constructor', ElementCategory.FACTORY); | |
95 static const ElementKind FIELD = | |
96 const ElementKind('field', ElementCategory.VARIABLE); | |
97 static const ElementKind FIELD_LIST = | |
98 const ElementKind('field_list', ElementCategory.NONE); | |
99 static const ElementKind GENERATIVE_CONSTRUCTOR_BODY = | |
100 const ElementKind('generative_constructor_body', ElementCategory.NONE); | |
101 static const ElementKind COMPILATION_UNIT = | |
102 const ElementKind('compilation_unit', ElementCategory.NONE); | |
103 static const ElementKind GETTER = | |
104 const ElementKind('getter', ElementCategory.NONE); | |
105 static const ElementKind SETTER = | |
106 const ElementKind('setter', ElementCategory.NONE); | |
107 static const ElementKind TYPE_VARIABLE = | |
108 const ElementKind('type_variable', ElementCategory.TYPE_VARIABLE); | |
109 static const ElementKind ABSTRACT_FIELD = | |
110 const ElementKind('abstract_field', ElementCategory.VARIABLE); | |
111 static const ElementKind LIBRARY = | |
112 const ElementKind('library', ElementCategory.NONE); | |
113 static const ElementKind PREFIX = | |
114 const ElementKind('prefix', ElementCategory.PREFIX); | |
115 static const ElementKind TYPEDEF = | |
116 const ElementKind('typedef', ElementCategory.ALIAS); | |
117 | |
118 static const ElementKind AMBIGUOUS = | |
119 const ElementKind('ambiguous', ElementCategory.NONE); | |
120 static const ElementKind WARN_ON_USE = | |
121 const ElementKind('warn_on_use', ElementCategory.NONE); | |
122 static const ElementKind ERROR = | |
123 const ElementKind('error', ElementCategory.NONE); | |
124 | |
125 toString() => id; | |
126 } | |
127 | |
128 /// Abstract interface for entities. | |
129 /// | |
130 /// Implement this directly if the entity is not a Dart language entity. | |
131 /// Entities defined within the Dart language should implement [Element]. | |
132 /// | |
133 /// For instance, the JavaScript backend need to create synthetic variables for | |
134 /// calling intercepted classes and such variables do not correspond to an | |
135 /// entity in the Dart source code nor in the terminology of the Dart language | |
136 /// and should therefore implement [Entity] directly. | |
137 abstract class Entity implements Spannable { | |
138 String get name; | |
139 } | |
140 | |
141 /** | |
142 * A declared element of a program. | |
143 * | |
144 * The declared elements of a program include classes, methods, | |
145 * fields, variables, parameters, etc. | |
146 * | |
147 * Sometimes it makes sense to construct "synthetic" elements that | |
148 * have not been declared anywhere in a program, for example, there | |
149 * are elements corresponding to "dynamic", "null", and unresolved | |
150 * references. | |
151 * | |
152 * Elements are distinct from types ([DartType]). For example, there | |
153 * is one declaration of the class List, but several related types, | |
154 * for example, List, List<int>, List<String>, etc. | |
155 * | |
156 * Elements are distinct from AST nodes ([Node]), and there normally is a | |
157 * one-to-one correspondence between an AST node and an element | |
158 * (except that not all kinds of AST nodes have an associated | |
159 * element). | |
160 * | |
161 * AST nodes represent precisely what is written in source code, for | |
162 * example, when a user writes "class MyClass {}", the corresponding | |
163 * AST node does not have a superclass. On the other hand, the | |
164 * corresponding element (once fully resolved) will record the | |
165 * information about the implicit superclass as defined by the | |
166 * language semantics. | |
167 * | |
168 * Generally, the contents of a method are represented as AST nodes | |
169 * without additional elements, but things like local functions, local | |
170 * variables, and labels have a corresponding element. | |
171 * | |
172 * We generally say that scanning, parsing, resolution, and type | |
173 * checking comprise the "front-end" of the compiler. The "back-end" | |
174 * includes things like SSA graph construction, optimizations, and | |
175 * code generation. | |
176 * | |
177 * The front-end data structures are designed to be reusable by | |
178 * several back-ends. For example, we may want to support emitting | |
179 * minified Dart and JavaScript code in one go. Also, we're planning | |
180 * on adding an incremental compilation server that should be able to | |
181 * reuse elements between compilations. So to keep things simple, it | |
182 * is best if the backends avoid setting state directly in elements. | |
183 * It is better to keep such state in a table on the side. | |
184 */ | |
185 abstract class Element implements Entity { | |
186 String get name; | |
187 ElementKind get kind; | |
188 Element get enclosingElement; | |
189 Link<MetadataAnnotation> get metadata; | |
190 | |
191 /// Do not use [computeType] outside of the resolver; instead retrieve the | |
192 /// type from the corresponding field: | |
193 /// - `type` for fields, variables, type variable, and function elements. | |
194 /// - `thisType` or `rawType` for [TypeDeclarationElement]s (classes and | |
195 /// typedefs), depending on the use case. | |
196 /// Trying to access a type that has not been computed in resolution is an | |
197 /// error and calling [computeType] covers that error. | |
198 /// This method will go away! | |
199 @deprecated DartType computeType(Compiler compiler); | |
200 | |
201 /// `true` if this element is a library. | |
202 bool get isLibrary => kind == ElementKind.LIBRARY; | |
203 | |
204 /// `true` if this element is a compilation unit. | |
205 bool get isCompilationUnit => kind == ElementKind.COMPILATION_UNIT; | |
206 | |
207 /// `true` if this element is defines the scope of prefix used by one or | |
208 /// more import declarations. | |
209 bool get isPrefix => kind == ElementKind.PREFIX; | |
210 | |
211 /// `true` if this element is a class declaration or a mixin application. | |
212 bool get isClass => kind == ElementKind.CLASS; | |
213 | |
214 /// `true` if this element is a type variable declaration. | |
215 bool get isTypeVariable => kind == ElementKind.TYPE_VARIABLE; | |
216 | |
217 /// `true` if this element is a typedef declaration. | |
218 bool get isTypedef => kind == ElementKind.TYPEDEF; | |
219 | |
220 /// `true` if this element is a top level function, static or instance | |
221 /// method, local function or closure defined by a function expression. | |
222 /// | |
223 /// This property is `true` for operator methods and factory constructors but | |
224 /// `false` for getter and setter methods, and generative constructors. | |
225 /// | |
226 /// See also [isConstructor], [isGenerativeConstructor], and | |
227 /// [isFactoryConstructor] for constructor properties, and [isAccessor], | |
228 /// [isGetter] and [isSetter] for getter/setter properties. | |
229 bool get isFunction => kind == ElementKind.FUNCTION; | |
230 | |
231 /// `true` if this element is an operator method. | |
232 bool get isOperator; | |
233 | |
234 /// `true` if this element is an accessor, that is either an explicit | |
235 /// getter or an explicit setter. | |
236 bool get isAccessor => isGetter || isSetter; | |
237 | |
238 /// `true` if this element is an explicit getter method. | |
239 bool get isGetter => kind == ElementKind.GETTER; | |
240 | |
241 /// `true` if this element is an explicit setter method. | |
242 bool get isSetter => kind == ElementKind.SETTER; | |
243 | |
244 /// `true` if this element is a generative or factory constructor. | |
245 bool get isConstructor => isGenerativeConstructor || isFactoryConstructor; | |
246 | |
247 /// `true` if this element is a generative constructor, potentially | |
248 /// redirecting. | |
249 bool get isGenerativeConstructor => | |
250 kind == ElementKind.GENERATIVE_CONSTRUCTOR; | |
251 | |
252 /// `true` if this element is the body of a generative constructor. | |
253 /// | |
254 /// This is a synthetic element kind used only be the JavaScript backend. | |
255 bool get isGenerativeConstructorBody => | |
256 kind == ElementKind.GENERATIVE_CONSTRUCTOR_BODY; | |
257 | |
258 /// `true` if this element is a factory constructor, | |
259 /// potentially redirecting. | |
260 bool get isFactoryConstructor; | |
261 | |
262 /// `true` if this element is a local variable. | |
263 bool get isVariable => kind == ElementKind.VARIABLE; | |
264 | |
265 /// `true` if this element is a top level variable, static or instance field. | |
266 bool get isField => kind == ElementKind.FIELD; | |
267 | |
268 /// `true` if this element is the abstract field implicitly defined by an | |
269 /// explicit getter and/or setter. | |
270 bool get isAbstractField => kind == ElementKind.ABSTRACT_FIELD; | |
271 | |
272 /// `true` if this element is formal parameter either from a constructor, | |
273 /// method, or typedef declaration or from an inlined function typed | |
274 /// parameter. | |
275 /// | |
276 /// This property is `false` if this element is an initializing formal. | |
277 /// See [isInitializingFormal]. | |
278 bool get isParameter => kind == ElementKind.PARAMETER; | |
279 | |
280 /// `true` if this element is an initializing formal of constructor, that | |
281 /// is a formal of the form `this.foo`. | |
282 bool get isInitializingFormal => kind == ElementKind.INITIALIZING_FORMAL; | |
283 | |
284 /// `true` if this element represents a resolution error. | |
285 bool get isErroneous => kind == ElementKind.ERROR; | |
286 | |
287 /// `true` if this element represents an ambiguous name. | |
288 /// | |
289 /// Ambiguous names occur when two imports/exports contain different entities | |
290 /// by the same name. If an ambiguous name is resolved an warning or error | |
291 /// is produced. | |
292 bool get isAmbiguous => kind == ElementKind.AMBIGUOUS; | |
293 | |
294 /// `true` if this element represents an entity whose access causes one or | |
295 /// more warnings. | |
296 bool get isWarnOnUse => kind == ElementKind.WARN_ON_USE; | |
297 | |
298 bool get isClosure; | |
299 | |
300 /// `true` if the element is a (static or instance) member of a class. | |
301 /// | |
302 /// Members are constructors, methods and fields. | |
303 bool get isClassMember; | |
304 | |
305 /// `true` if the element is a nonstatic member of a class. | |
306 /// | |
307 /// Instance members are methods and fields but not constructors. | |
308 bool get isInstanceMember; | |
309 | |
310 /// Returns true if this [Element] is a top level element. | |
311 /// That is, if it is not defined within the scope of a class. | |
312 /// | |
313 /// This means whether the enclosing element is a compilation unit. | |
314 /// With the exception of [ClosureClassElement] that is considered top level | |
315 /// as all other classes. | |
316 bool get isTopLevel; | |
317 bool get isAssignable; | |
318 bool get isNative; | |
319 bool get isDeferredLoaderGetter; | |
320 | |
321 /// True if the element is declared in a patch library but has no | |
322 /// corresponding declaration in the origin library. | |
323 bool get isInjected; | |
324 | |
325 /// `true` if this element is a constructor, top level or local variable, | |
326 /// or static field that is declared `const`. | |
327 bool get isConst; | |
328 | |
329 /// `true` if this element is a top level or local variable, static or | |
330 /// instance field, or parameter that is declared `final`. | |
331 bool get isFinal; | |
332 | |
333 /// `true` if this element is a method, getter, setter or field that | |
334 /// is declared `static`. | |
335 bool get isStatic; | |
336 | |
337 /// `true` if this element is local element, that is, a local variable, | |
338 /// local function or parameter. | |
339 bool get isLocal; | |
340 | |
341 bool get impliesType; | |
342 | |
343 Token get position; | |
344 | |
345 CompilationUnitElement get compilationUnit; | |
346 LibraryElement get library; | |
347 LibraryElement get implementationLibrary; | |
348 ClassElement get enclosingClass; | |
349 Element get enclosingClassOrCompilationUnit; | |
350 Element get outermostEnclosingMemberOrTopLevel; | |
351 | |
352 /// The enclosing class that defines the type environment for this element. | |
353 ClassElement get contextClass; | |
354 | |
355 FunctionElement asFunctionElement(); | |
356 | |
357 /// Is [:true:] if this element has a corresponding patch. | |
358 /// | |
359 /// If [:true:] this element has a non-null [patch] field. | |
360 /// | |
361 /// See [:patch_parser.dart:] for a description of the terminology. | |
362 bool get isPatched; | |
363 | |
364 /// Is [:true:] if this element is a patch. | |
365 /// | |
366 /// If [:true:] this element has a non-null [origin] field. | |
367 /// | |
368 /// See [:patch_parser.dart:] for a description of the terminology. | |
369 bool get isPatch; | |
370 | |
371 /// Is [:true:] if this element defines the implementation for the entity of | |
372 /// this element. | |
373 /// | |
374 /// See [:patch_parser.dart:] for a description of the terminology. | |
375 bool get isImplementation; | |
376 | |
377 /// Is [:true:] if this element introduces the entity of this element. | |
378 /// | |
379 /// See [:patch_parser.dart:] for a description of the terminology. | |
380 bool get isDeclaration; | |
381 | |
382 /// Returns the element which defines the implementation for the entity of | |
383 /// this element. | |
384 /// | |
385 /// See [:patch_parser.dart:] for a description of the terminology. | |
386 Element get implementation; | |
387 | |
388 /// Returns the element which introduces the entity of this element. | |
389 /// | |
390 /// See [:patch_parser.dart:] for a description of the terminology. | |
391 Element get declaration; | |
392 | |
393 /// Returns the patch for this element if this element is patched. | |
394 /// | |
395 /// See [:patch_parser.dart:] for a description of the terminology. | |
396 Element get patch; | |
397 | |
398 /// Returns the origin for this element if this element is a patch. | |
399 /// | |
400 /// See [:patch_parser.dart:] for a description of the terminology. | |
401 Element get origin; | |
402 | |
403 bool get isSynthesized; | |
404 bool get isForwardingConstructor; | |
405 bool get isMixinApplication; | |
406 | |
407 bool get hasFixedBackendName; | |
408 String get fixedBackendName; | |
409 | |
410 bool get isAbstract; | |
411 bool isForeign(Backend backend); | |
412 | |
413 void addMetadata(MetadataAnnotation annotation); | |
414 void setNative(String name); | |
415 void setFixedBackendName(String name); | |
416 | |
417 Scope buildScope(); | |
418 | |
419 void diagnose(Element context, DiagnosticListener listener); | |
420 | |
421 // TODO(johnniwinther): Move this to [AstElement]. | |
422 /// Returns the [Element] that holds the [TreeElements] for this element. | |
423 AnalyzableElement get analyzableElement; | |
424 | |
425 accept(ElementVisitor visitor); | |
426 } | |
427 | |
428 class Elements { | |
429 static bool isUnresolved(Element e) { | |
430 return e == null || e.isErroneous; | |
431 } | |
432 static bool isErroneousElement(Element e) => e != null && e.isErroneous; | |
433 | |
434 /// Unwraps [element] reporting any warnings attached to it, if any. | |
435 static Element unwrap(Element element, | |
436 DiagnosticListener listener, | |
437 Spannable spannable) { | |
438 if (element != null && element.isWarnOnUse) { | |
439 WarnOnUseElement wrappedElement = element; | |
440 element = wrappedElement.unwrap(listener, spannable); | |
441 } | |
442 return element; | |
443 } | |
444 | |
445 static bool isClass(Element e) => e != null && e.kind == ElementKind.CLASS; | |
446 static bool isTypedef(Element e) { | |
447 return e != null && e.kind == ElementKind.TYPEDEF; | |
448 } | |
449 | |
450 static bool isLocal(Element element) { | |
451 return !Elements.isUnresolved(element) && element.isLocal; | |
452 } | |
453 | |
454 static bool isInstanceField(Element element) { | |
455 return !Elements.isUnresolved(element) | |
456 && element.isInstanceMember | |
457 && (identical(element.kind, ElementKind.FIELD) | |
458 || identical(element.kind, ElementKind.GETTER) | |
459 || identical(element.kind, ElementKind.SETTER)); | |
460 } | |
461 | |
462 static bool isStaticOrTopLevel(Element element) { | |
463 // TODO(johnniwinther): Clean this up. This currently returns true for a | |
464 // PartialConstructorElement, SynthesizedConstructorElementX, and | |
465 // TypeVariableElementX though neither `element.isStatic` nor | |
466 // `element.isTopLevel` is true. | |
467 if (Elements.isUnresolved(element)) return false; | |
468 if (element.isStatic || element.isTopLevel) return true; | |
469 return !element.isAmbiguous | |
470 && !element.isInstanceMember | |
471 && !element.isPrefix | |
472 && element.enclosingElement != null | |
473 && (element.enclosingElement.kind == ElementKind.CLASS || | |
474 element.enclosingElement.kind == ElementKind.COMPILATION_UNIT || | |
475 element.enclosingElement.kind == ElementKind.LIBRARY || | |
476 element.enclosingElement.kind == ElementKind.PREFIX); | |
477 } | |
478 | |
479 static bool isInStaticContext(Element element) { | |
480 if (isUnresolved(element)) return true; | |
481 if (element.enclosingElement.isClosure) { | |
482 var closureClass = element.enclosingElement; | |
483 element = closureClass.methodElement; | |
484 } | |
485 Element outer = element.outermostEnclosingMemberOrTopLevel; | |
486 if (isUnresolved(outer)) return true; | |
487 if (outer.isTopLevel) return true; | |
488 if (outer.isGenerativeConstructor) return false; | |
489 if (outer.isInstanceMember) return false; | |
490 return true; | |
491 } | |
492 | |
493 static bool isStaticOrTopLevelField(Element element) { | |
494 return isStaticOrTopLevel(element) | |
495 && (identical(element.kind, ElementKind.FIELD) | |
496 || identical(element.kind, ElementKind.GETTER) | |
497 || identical(element.kind, ElementKind.SETTER)); | |
498 } | |
499 | |
500 static bool isStaticOrTopLevelFunction(Element element) { | |
501 return isStaticOrTopLevel(element) | |
502 && (identical(element.kind, ElementKind.FUNCTION)); | |
503 } | |
504 | |
505 static bool isInstanceMethod(Element element) { | |
506 return !Elements.isUnresolved(element) | |
507 && element.isInstanceMember | |
508 && (identical(element.kind, ElementKind.FUNCTION)); | |
509 } | |
510 | |
511 /// Also returns true for [ConstructorBodyElement]s and getters/setters. | |
512 static bool isNonAbstractInstanceMember(Element element) { | |
513 // The generative constructor body is not a function. We therefore treat | |
514 // it specially. | |
515 if (element.isGenerativeConstructorBody) return true; | |
516 return !Elements.isUnresolved(element) && | |
517 !element.isAbstract && | |
518 element.isInstanceMember && | |
519 (element.isFunction || element.isAccessor); | |
520 } | |
521 | |
522 static bool isNativeOrExtendsNative(ClassElement element) { | |
523 if (element == null) return false; | |
524 if (element.isNative) return true; | |
525 assert(element.resolutionState == STATE_DONE); | |
526 return isNativeOrExtendsNative(element.superclass); | |
527 } | |
528 | |
529 static bool isInstanceSend(Send send, TreeElements elements) { | |
530 Element element = elements[send]; | |
531 if (element == null) return !isClosureSend(send, element); | |
532 return isInstanceMethod(element) || isInstanceField(element); | |
533 } | |
534 | |
535 static bool isClosureSend(Send send, Element element) { | |
536 if (send.isPropertyAccess) return false; | |
537 if (send.receiver != null) return false; | |
538 Node selector = send.selector; | |
539 // this(). | |
540 if (selector.isThis()) return true; | |
541 // (o)() or foo()(). | |
542 if (element == null && selector.asIdentifier() == null) return true; | |
543 if (element == null) return false; | |
544 // foo() with foo a local or a parameter. | |
545 return isLocal(element); | |
546 } | |
547 | |
548 static String reconstructConstructorNameSourceString(Element element) { | |
549 if (element.name == '') { | |
550 return element.enclosingClass.name; | |
551 } else { | |
552 return reconstructConstructorName(element); | |
553 } | |
554 } | |
555 | |
556 // TODO(johnniwinther): Remove this method. | |
557 static String reconstructConstructorName(Element element) { | |
558 String className = element.enclosingClass.name; | |
559 if (element.name == '') { | |
560 return className; | |
561 } else { | |
562 return '$className\$${element.name}'; | |
563 } | |
564 } | |
565 | |
566 static String constructorNameForDiagnostics(String className, | |
567 String constructorName) { | |
568 String classNameString = className; | |
569 String constructorNameString = constructorName; | |
570 return (constructorName == '') | |
571 ? classNameString | |
572 : "$classNameString.$constructorNameString"; | |
573 } | |
574 | |
575 /// Returns `true` if [name] is the name of an operator method. | |
576 static bool isOperatorName(String name) { | |
577 return name == 'unary-' || isUserDefinableOperator(name); | |
578 } | |
579 | |
580 /** | |
581 * Map an operator-name to a valid JavaScript identifier. | |
582 * | |
583 * For non-operator names, this method just returns its input. | |
584 * | |
585 * The results returned from this method are guaranteed to be valid | |
586 * JavaScript identifers, except it may include reserved words for | |
587 * non-operator names. | |
588 */ | |
589 static String operatorNameToIdentifier(String name) { | |
590 if (name == null) { | |
591 return name; | |
592 } else if (identical(name, '==')) { | |
593 return r'operator$eq'; | |
594 } else if (identical(name, '~')) { | |
595 return r'operator$not'; | |
596 } else if (identical(name, '[]')) { | |
597 return r'operator$index'; | |
598 } else if (identical(name, '[]=')) { | |
599 return r'operator$indexSet'; | |
600 } else if (identical(name, '*')) { | |
601 return r'operator$mul'; | |
602 } else if (identical(name, '/')) { | |
603 return r'operator$div'; | |
604 } else if (identical(name, '%')) { | |
605 return r'operator$mod'; | |
606 } else if (identical(name, '~/')) { | |
607 return r'operator$tdiv'; | |
608 } else if (identical(name, '+')) { | |
609 return r'operator$add'; | |
610 } else if (identical(name, '<<')) { | |
611 return r'operator$shl'; | |
612 } else if (identical(name, '>>')) { | |
613 return r'operator$shr'; | |
614 } else if (identical(name, '>=')) { | |
615 return r'operator$ge'; | |
616 } else if (identical(name, '>')) { | |
617 return r'operator$gt'; | |
618 } else if (identical(name, '<=')) { | |
619 return r'operator$le'; | |
620 } else if (identical(name, '<')) { | |
621 return r'operator$lt'; | |
622 } else if (identical(name, '&')) { | |
623 return r'operator$and'; | |
624 } else if (identical(name, '^')) { | |
625 return r'operator$xor'; | |
626 } else if (identical(name, '|')) { | |
627 return r'operator$or'; | |
628 } else if (identical(name, '-')) { | |
629 return r'operator$sub'; | |
630 } else if (identical(name, 'unary-')) { | |
631 return r'operator$negate'; | |
632 } else { | |
633 return name; | |
634 } | |
635 } | |
636 | |
637 static String constructOperatorNameOrNull(String op, bool isUnary) { | |
638 if (isMinusOperator(op)) { | |
639 return isUnary ? 'unary-' : op; | |
640 } else if (isUserDefinableOperator(op)) { | |
641 return op; | |
642 } else { | |
643 return null; | |
644 } | |
645 } | |
646 | |
647 static String constructOperatorName(String op, bool isUnary) { | |
648 String operatorName = constructOperatorNameOrNull(op, isUnary); | |
649 if (operatorName == null) throw 'Unhandled operator: $op'; | |
650 else return operatorName; | |
651 } | |
652 | |
653 static String mapToUserOperatorOrNull(String op) { | |
654 if (identical(op, '!=')) return '=='; | |
655 if (identical(op, '*=')) return '*'; | |
656 if (identical(op, '/=')) return '/'; | |
657 if (identical(op, '%=')) return '%'; | |
658 if (identical(op, '~/=')) return '~/'; | |
659 if (identical(op, '+=')) return '+'; | |
660 if (identical(op, '-=')) return '-'; | |
661 if (identical(op, '<<=')) return '<<'; | |
662 if (identical(op, '>>=')) return '>>'; | |
663 if (identical(op, '&=')) return '&'; | |
664 if (identical(op, '^=')) return '^'; | |
665 if (identical(op, '|=')) return '|'; | |
666 | |
667 return null; | |
668 } | |
669 | |
670 static String mapToUserOperator(String op) { | |
671 String userOperator = mapToUserOperatorOrNull(op); | |
672 if (userOperator == null) throw 'Unhandled operator: $op'; | |
673 else return userOperator; | |
674 } | |
675 | |
676 static bool isNumberOrStringSupertype(Element element, Compiler compiler) { | |
677 LibraryElement coreLibrary = compiler.coreLibrary; | |
678 return (element == coreLibrary.find('Comparable')); | |
679 } | |
680 | |
681 static bool isStringOnlySupertype(Element element, Compiler compiler) { | |
682 LibraryElement coreLibrary = compiler.coreLibrary; | |
683 return element == coreLibrary.find('Pattern'); | |
684 } | |
685 | |
686 static bool isListSupertype(Element element, Compiler compiler) { | |
687 LibraryElement coreLibrary = compiler.coreLibrary; | |
688 return element == coreLibrary.find('Iterable'); | |
689 } | |
690 | |
691 /// A `compareTo` function that places [Element]s in a consistent order based | |
692 /// on the source code order. | |
693 static int compareByPosition(Element a, Element b) { | |
694 if (identical(a, b)) return 0; | |
695 int r = a.library.compareTo(b.library); | |
696 if (r != 0) return r; | |
697 r = a.compilationUnit.compareTo(b.compilationUnit); | |
698 if (r != 0) return r; | |
699 Token positionA = a.position; | |
700 Token positionB = b.position; | |
701 int offsetA = positionA == null ? -1 : positionA.charOffset; | |
702 int offsetB = positionB == null ? -1 : positionB.charOffset; | |
703 r = offsetA.compareTo(offsetB); | |
704 if (r != 0) return r; | |
705 r = a.name.compareTo(b.name); | |
706 if (r != 0) return r; | |
707 // Same file, position and name. If this happens, we should find out why | |
708 // and make the order total and independent of hashCode. | |
709 return a.hashCode.compareTo(b.hashCode); | |
710 } | |
711 | |
712 static List<Element> sortedByPosition(Iterable<Element> elements) { | |
713 return elements.toList()..sort(compareByPosition); | |
714 } | |
715 | |
716 static bool isFixedListConstructorCall(Element element, | |
717 Send node, | |
718 Compiler compiler) { | |
719 return element == compiler.unnamedListConstructor | |
720 && node.isCall | |
721 && !node.arguments.isEmpty | |
722 && node.arguments.tail.isEmpty; | |
723 } | |
724 | |
725 static bool isGrowableListConstructorCall(Element element, | |
726 Send node, | |
727 Compiler compiler) { | |
728 return element == compiler.unnamedListConstructor | |
729 && node.isCall | |
730 && node.arguments.isEmpty; | |
731 } | |
732 | |
733 static bool isFilledListConstructorCall(Element element, | |
734 Send node, | |
735 Compiler compiler) { | |
736 return element == compiler.filledListConstructor | |
737 && node.isCall | |
738 && !node.arguments.isEmpty | |
739 && !node.arguments.tail.isEmpty | |
740 && node.arguments.tail.tail.isEmpty; | |
741 } | |
742 | |
743 static bool isConstructorOfTypedArraySubclass(Element element, | |
744 Compiler compiler) { | |
745 if (compiler.typedDataLibrary == null) return false; | |
746 if (!element.isConstructor) return false; | |
747 ConstructorElement constructor = element.implementation; | |
748 constructor = constructor.effectiveTarget; | |
749 ClassElement cls = constructor.enclosingClass; | |
750 return cls.library == compiler.typedDataLibrary | |
751 && cls.isNative | |
752 && compiler.world.isSubtypeOf(cls, compiler.typedDataClass) | |
753 && compiler.world.isSubtypeOf(cls, compiler.listClass) | |
754 && constructor.name == ''; | |
755 } | |
756 | |
757 static bool switchStatementHasContinue(SwitchStatement node, | |
758 TreeElements elements) { | |
759 for (SwitchCase switchCase in node.cases) { | |
760 for (Node labelOrCase in switchCase.labelsAndCases) { | |
761 Node label = labelOrCase.asLabel(); | |
762 if (label != null) { | |
763 LabelDefinition labelElement = elements.getLabelDefinition(label); | |
764 if (labelElement != null && labelElement.isContinueTarget) { | |
765 return true; | |
766 } | |
767 } | |
768 } | |
769 } | |
770 return false; | |
771 } | |
772 | |
773 static bool isUnusedLabel(LabeledStatement node, TreeElements elements) { | |
774 Node body = node.statement; | |
775 JumpTarget element = elements.getTargetDefinition(body); | |
776 // Labeled statements with no element on the body have no breaks. | |
777 // A different target statement only happens if the body is itself | |
778 // a break or continue for a different target. In that case, this | |
779 // label is also always unused. | |
780 return element == null || element.statement != body; | |
781 } | |
782 } | |
783 | |
784 /// An element representing an erroneous resolution. | |
785 /// | |
786 /// An [ErroneousElement] is used instead of `null` to provide additional | |
787 /// information about the error that caused the element to be unresolvable | |
788 /// or otherwise invalid. | |
789 /// | |
790 /// Accessing any field or calling any method defined on [ErroneousElement] | |
791 /// except [isErroneous] will currently throw an exception. (This might | |
792 /// change when we actually want more information on the erroneous element, | |
793 /// e.g., the name of the element we were trying to resolve.) | |
794 /// | |
795 /// Code that cannot not handle an [ErroneousElement] should use | |
796 /// `Element.isUnresolved(element)` to check for unresolvable elements instead | |
797 /// of `element == null`. | |
798 abstract class ErroneousElement extends Element implements ConstructorElement { | |
799 MessageKind get messageKind; | |
800 Map get messageArguments; | |
801 String get message; | |
802 } | |
803 | |
804 /// An [Element] whose usage should cause one or more warnings. | |
805 abstract class WarnOnUseElement extends Element { | |
806 /// The element whose usage cause a warning. | |
807 Element get wrappedElement; | |
808 | |
809 /// Reports the attached warning and returns the wrapped element. | |
810 /// [usageSpannable] is used to report messages on the reference of | |
811 /// [wrappedElement]. | |
812 Element unwrap(DiagnosticListener listener, Spannable usageSpannable); | |
813 } | |
814 | |
815 /// An ambiguous element represents multiple elements accessible by the same | |
816 /// name. | |
817 /// | |
818 /// Ambiguous elements are created during handling of import/export scopes. If | |
819 /// an ambiguous element is encountered during resolution a warning/error is | |
820 /// reported. | |
821 abstract class AmbiguousElement extends Element { | |
822 MessageKind get messageKind; | |
823 Map get messageArguments; | |
824 Element get existingElement; | |
825 Element get newElement; | |
826 } | |
827 | |
828 // TODO(kasperl): This probably shouldn't be called an element. It's | |
829 // just an interface shared by classes and libraries. | |
830 abstract class ScopeContainerElement implements Element { | |
831 Element localLookup(String elementName); | |
832 | |
833 void forEachLocalMember(f(Element element)); | |
834 } | |
835 | |
836 abstract class CompilationUnitElement extends Element { | |
837 Script get script; | |
838 PartOf get partTag; | |
839 | |
840 void forEachLocalMember(f(Element element)); | |
841 void addMember(Element element, DiagnosticListener listener); | |
842 void setPartOf(PartOf tag, DiagnosticListener listener); | |
843 bool get hasMembers; | |
844 | |
845 int compareTo(CompilationUnitElement other); | |
846 } | |
847 | |
848 abstract class LibraryElement extends Element | |
849 implements ScopeContainerElement, AnalyzableElement { | |
850 /** | |
851 * The canonical uri for this library. | |
852 * | |
853 * For user libraries the canonical uri is the script uri. For platform | |
854 * libraries the canonical uri is of the form [:dart:x:]. | |
855 */ | |
856 Uri get canonicalUri; | |
857 | |
858 /// Returns `true` if this library is 'dart:core'. | |
859 bool get isDartCore; | |
860 | |
861 CompilationUnitElement get entryCompilationUnit; | |
862 Link<CompilationUnitElement> get compilationUnits; | |
863 Iterable<LibraryTag> get tags; | |
864 LibraryName get libraryTag; | |
865 Link<Element> get exports; | |
866 | |
867 /** | |
868 * [:true:] if this library is part of the platform, that is, its canonical | |
869 * uri has the scheme 'dart'. | |
870 */ | |
871 bool get isPlatformLibrary; | |
872 | |
873 /** | |
874 * [:true:] if this library is from a package, that is, its canonical uri has | |
875 * the scheme 'package'. | |
876 */ | |
877 bool get isPackageLibrary; | |
878 | |
879 /** | |
880 * [:true:] if this library is a platform library whose path starts with | |
881 * an underscore. | |
882 */ | |
883 bool get isInternalLibrary; | |
884 bool get canUseNative; | |
885 bool get exportsHandled; | |
886 | |
887 // TODO(kasperl): We should try to get rid of these. | |
888 void set canUseNative(bool value); | |
889 void set libraryTag(LibraryName value); | |
890 | |
891 LibraryElement get implementation; | |
892 | |
893 void addCompilationUnit(CompilationUnitElement element); | |
894 void addTag(LibraryTag tag, DiagnosticListener listener); | |
895 void addImport(Element element, Import import, DiagnosticListener listener); | |
896 | |
897 /// Record which element an import or export tag resolved to. | |
898 /// (Belongs on builder object). | |
899 void recordResolvedTag(LibraryDependency tag, LibraryElement library); | |
900 | |
901 /// Return the library element corresponding to an import or export. | |
902 LibraryElement getLibraryFromTag(LibraryDependency tag); | |
903 | |
904 void addMember(Element element, DiagnosticListener listener); | |
905 void addToScope(Element element, DiagnosticListener listener); | |
906 | |
907 // TODO(kasperl): Get rid of this method. | |
908 Iterable<Element> getNonPrivateElementsInScope(); | |
909 | |
910 void setExports(Iterable<Element> exportedElements); | |
911 | |
912 Element find(String elementName); | |
913 Element findLocal(String elementName); | |
914 Element findExported(String elementName); | |
915 void forEachExport(f(Element element)); | |
916 | |
917 /// Returns the imports that import element into this library. | |
918 Link<Import> getImportsFor(Element element); | |
919 | |
920 bool hasLibraryName(); | |
921 String getLibraryName(); | |
922 String getLibraryOrScriptName(); | |
923 | |
924 int compareTo(LibraryElement other); | |
925 } | |
926 | |
927 /// The implicit scope defined by a import declaration with a prefix clause. | |
928 abstract class PrefixElement extends Element { | |
929 void addImport(Element element, Import import, DiagnosticListener listener); | |
930 Element lookupLocalMember(String memberName); | |
931 /// Is true if this prefix belongs to a deferred import. | |
932 bool get isDeferred; | |
933 void markAsDeferred(Import import); | |
934 Import get deferredImport; | |
935 } | |
936 | |
937 /// A type alias definition. | |
938 abstract class TypedefElement extends Element | |
939 implements AstElement, TypeDeclarationElement, FunctionTypedElement { | |
940 | |
941 /// The type defined by this typedef with the type variables as its type | |
942 /// arguments. | |
943 /// | |
944 /// For instance `F<T>` for `typedef void F<T>(T t)`. | |
945 TypedefType get thisType; | |
946 | |
947 /// The type defined by this typedef with `dynamic` as its type arguments. | |
948 /// | |
949 /// For instance `F<dynamic>` for `typedef void F<T>(T t)`. | |
950 TypedefType get rawType; | |
951 | |
952 /// The type, function type if well-defined, for which this typedef is an | |
953 /// alias. | |
954 /// | |
955 /// For instance `(int)->void` for `typedef void F(int)`. | |
956 DartType get alias; | |
957 | |
958 void checkCyclicReference(Compiler compiler); | |
959 } | |
960 | |
961 /// An executable element is an element that can hold code. | |
962 /// | |
963 /// These elements variables (fields, parameters and locals), which can hold | |
964 /// code in their initializer, and functions (including methods and | |
965 /// constructors), which can hold code in their body. | |
966 abstract class ExecutableElement extends Element | |
967 implements TypedElement, AstElement { | |
968 /// The outermost member that contains this element. | |
969 /// | |
970 /// For top level, static or instance members, the member context is the | |
971 /// element itself. For parameters, local variables and nested closures, the | |
972 /// member context is the top level, static or instance member in which it is | |
973 /// defined. | |
974 MemberElement get memberContext; | |
975 } | |
976 | |
977 /// A top-level, static or instance field or method, or a constructor. | |
978 /// | |
979 /// A [MemberElement] is the outermost executable element for any executable | |
980 /// context. | |
981 abstract class MemberElement extends Element implements ExecutableElement { | |
982 /// The local functions defined within this member. | |
983 List<FunctionElement> get nestedClosures; | |
984 } | |
985 | |
986 /// A function, variable or parameter defined in an executable context. | |
987 abstract class LocalElement extends Element implements TypedElement, Local { | |
988 } | |
989 | |
990 /// A top level, static or instance field, a formal parameter or local variable. | |
991 abstract class VariableElement extends ExecutableElement { | |
992 Expression get initializer; | |
993 } | |
994 | |
995 /// An entity that defines a local entity (memory slot) in generated code. | |
996 /// | |
997 /// Parameters, local variables and local functions (can) define local entity | |
998 /// and thus implement [Local] through [LocalElement]. For non-element locals, | |
999 /// like `this` and boxes, specialized [Local] classes are created. | |
1000 /// | |
1001 /// Type variables can introduce locals in factories and constructors | |
1002 /// but since one type variable can introduce different locals in different | |
1003 /// factories and constructors it is not itself a [Local] but instead | |
1004 /// a non-element [Local] is created through a specialized class. | |
1005 // TODO(johnniwinther): Should [Local] have `isAssignable` or `type`? | |
1006 abstract class Local extends Entity { | |
1007 /// The context in which this local is defined. | |
1008 ExecutableElement get executableContext; | |
1009 } | |
1010 | |
1011 /// A variable or parameter that is local to an executable context. | |
1012 /// | |
1013 /// The executable context is the [ExecutableElement] in which this variable | |
1014 /// is defined. | |
1015 abstract class LocalVariableElement extends VariableElement | |
1016 implements LocalElement { | |
1017 } | |
1018 | |
1019 /// A top-level, static or instance field. | |
1020 abstract class FieldElement extends VariableElement implements MemberElement { | |
1021 } | |
1022 | |
1023 /// A parameter-like element of a function signature. | |
1024 /// | |
1025 /// If the function signature comes from a typedef or an inline function-typed | |
1026 /// parameter (e.g. the parameter 'f' in `method(void f())`), then its | |
1027 /// parameters are not real parameters in that they can take no argument and | |
1028 /// hold no value. Such parameter-like elements are modeled by [FormalElement]. | |
1029 /// | |
1030 /// If the function signature comes from a function or constructor, its | |
1031 /// parameters are real parameters and are modeled by [ParameterElement]. | |
1032 abstract class FormalElement extends Element | |
1033 implements FunctionTypedElement, TypedElement, AstElement { | |
1034 /// Use [functionDeclaration] instead. | |
1035 @deprecated | |
1036 get enclosingElement; | |
1037 | |
1038 /// The function, typedef or inline function-typed parameter on which | |
1039 /// this parameter is declared. | |
1040 FunctionTypedElement get functionDeclaration; | |
1041 | |
1042 VariableDefinitions get node; | |
1043 } | |
1044 | |
1045 /// A formal parameter of a function or constructor. | |
1046 /// | |
1047 /// Normal parameter that introduce a local variable are modeled by | |
1048 /// [LocalParameterElement] whereas initializing formals, that is parameter of | |
1049 /// the form `this.x`, are modeled by [InitializingFormalParameter]. | |
1050 abstract class ParameterElement extends Element | |
1051 implements VariableElement, FormalElement, LocalElement { | |
1052 /// Use [functionDeclaration] instead. | |
1053 @deprecated | |
1054 get enclosingElement; | |
1055 | |
1056 /// The function on which this parameter is declared. | |
1057 FunctionElement get functionDeclaration; | |
1058 } | |
1059 | |
1060 /// A formal parameter on a function or constructor that introduces a local | |
1061 /// variable in the scope of the function or constructor. | |
1062 abstract class LocalParameterElement extends ParameterElement | |
1063 implements LocalVariableElement { | |
1064 } | |
1065 | |
1066 /// A formal parameter in a constructor that directly initializes a field. | |
1067 /// | |
1068 /// For example: `A(this.field)`. | |
1069 abstract class InitializingFormalElement extends ParameterElement { | |
1070 /// The field initialized by this initializing formal. | |
1071 FieldElement get fieldElement; | |
1072 | |
1073 /// The function on which this parameter is declared. | |
1074 ConstructorElement get functionDeclaration; | |
1075 } | |
1076 | |
1077 /** | |
1078 * A synthetic element which holds a getter and/or a setter. | |
1079 * | |
1080 * This element unifies handling of fields and getters/setters. When | |
1081 * looking at code like "foo.x", we don't have to look for both a | |
1082 * field named "x", a getter named "x", and a setter named "x=". | |
1083 */ | |
1084 abstract class AbstractFieldElement extends Element { | |
1085 FunctionElement get getter; | |
1086 FunctionElement get setter; | |
1087 } | |
1088 | |
1089 abstract class FunctionSignature { | |
1090 FunctionType get type; | |
1091 Link<FormalElement> get requiredParameters; | |
1092 Link<FormalElement> get optionalParameters; | |
1093 | |
1094 int get requiredParameterCount; | |
1095 int get optionalParameterCount; | |
1096 bool get optionalParametersAreNamed; | |
1097 FormalElement get firstOptionalParameter; | |
1098 bool get hasOptionalParameters; | |
1099 | |
1100 int get parameterCount; | |
1101 List<FormalElement> get orderedOptionalParameters; | |
1102 | |
1103 void forEachParameter(void function(FormalElement parameter)); | |
1104 void forEachRequiredParameter(void function(FormalElement parameter)); | |
1105 void forEachOptionalParameter(void function(FormalElement parameter)); | |
1106 | |
1107 void orderedForEachParameter(void function(FormalElement parameter)); | |
1108 | |
1109 bool isCompatibleWith(FunctionSignature constructorSignature); | |
1110 } | |
1111 | |
1112 /// A top level, static or instance method, constructor, local function, or | |
1113 /// closure (anonymous local function). | |
1114 abstract class FunctionElement extends Element | |
1115 implements AstElement, | |
1116 TypedElement, | |
1117 FunctionTypedElement, | |
1118 ExecutableElement { | |
1119 FunctionExpression get node; | |
1120 | |
1121 FunctionElement get patch; | |
1122 FunctionElement get origin; | |
1123 | |
1124 /// Used to retrieve a link to the abstract field element representing this | |
1125 /// element. | |
1126 AbstractFieldElement get abstractField; | |
1127 | |
1128 /// Do not use [computeSignature] outside of the resolver; instead retrieve | |
1129 /// the signature through the [functionSignature] field. | |
1130 /// Trying to access a function signature that has not been computed in | |
1131 /// resolution is an error and calling [computeSignature] covers that error. | |
1132 /// This method will go away! | |
1133 // TODO(johnniwinther): Rename to `ensureFunctionSignature`. | |
1134 @deprecated FunctionSignature computeSignature(Compiler compiler); | |
1135 | |
1136 bool get hasFunctionSignature; | |
1137 | |
1138 /// The type of this function. | |
1139 FunctionType get type; | |
1140 | |
1141 /// The synchronous/asynchronous marker on this function. | |
1142 AsyncMarker get asyncMarker; | |
1143 } | |
1144 | |
1145 /// Enum for the synchronous/asynchronous function body modifiers. | |
1146 class AsyncMarker { | |
1147 /// The default function body marker. | |
1148 static AsyncMarker SYNC = const AsyncMarker._(); | |
1149 | |
1150 /// The `sync*` function body marker. | |
1151 static AsyncMarker SYNC_STAR = const AsyncMarker._(isYielding: true); | |
1152 | |
1153 /// The `async` function body marker. | |
1154 static AsyncMarker ASYNC = const AsyncMarker._(isAsync: true); | |
1155 | |
1156 /// The `async*` function body marker. | |
1157 static AsyncMarker ASYNC_STAR = | |
1158 const AsyncMarker._(isAsync: true, isYielding: true); | |
1159 | |
1160 /// Is `true` if this marker defines the function body to have an | |
1161 /// asynchronous result, that is, either a [Future] or a [Stream]. | |
1162 final bool isAsync; | |
1163 | |
1164 /// Is `true` if this marker defines the function body to have a plural | |
1165 /// result, that is, either an [Iterable] or a [Stream]. | |
1166 final bool isYielding; | |
1167 | |
1168 const AsyncMarker._({this.isAsync: false, this.isYielding: false}); | |
1169 | |
1170 String toString() { | |
1171 return '${isAsync ? 'async' : 'sync'}${isYielding ? '*' : ''}'; | |
1172 } | |
1173 } | |
1174 | |
1175 /// A top level, static or instance function. | |
1176 abstract class MethodElement extends FunctionElement | |
1177 implements MemberElement { | |
1178 } | |
1179 | |
1180 /// A local function or closure (anonymous local function). | |
1181 abstract class LocalFunctionElement extends FunctionElement | |
1182 implements LocalElement { | |
1183 } | |
1184 | |
1185 /// A constructor. | |
1186 abstract class ConstructorElement extends FunctionElement | |
1187 implements MemberElement { | |
1188 /// The effective target of this constructor, that is the non-redirecting | |
1189 /// constructor that is called on invocation of this constructor. | |
1190 /// | |
1191 /// Consider for instance this hierachy: | |
1192 /// | |
1193 /// class C { factory C.c() = D.d; } | |
1194 /// class D { factory D.d() = E.e2; } | |
1195 /// class E { E.e1(); | |
1196 /// E.e2() : this.e1(); } | |
1197 /// | |
1198 /// The effective target of both `C.c`, `D.d`, and `E.e2` is `E.e2`, and the | |
1199 /// effective target of `E.e1` is `E.e1` itself. | |
1200 ConstructorElement get effectiveTarget; | |
1201 | |
1202 /// The immediate redirection target of a redirecting factory constructor. | |
1203 /// | |
1204 /// Consider for instance this hierachy: | |
1205 /// | |
1206 /// class C { factory C() = D; } | |
1207 /// class D { factory D() = E; } | |
1208 /// class E { E(); } | |
1209 /// | |
1210 /// The immediate redirection target of `C` is `D` and the immediate | |
1211 /// redirection target of `D` is `E`. `E` is not a redirecting factory | |
1212 /// constructor so its immediate redirection target is `null`. | |
1213 ConstructorElement get immediateRedirectionTarget; | |
1214 | |
1215 /// Is `true` if this constructor is a redirecting factory constructor. | |
1216 bool get isRedirectingFactory; | |
1217 | |
1218 /// Compute the type of the effective target of this constructor for an | |
1219 /// instantiation site with type [:newType:]. | |
1220 InterfaceType computeEffectiveTargetType(InterfaceType newType); | |
1221 | |
1222 /// If this is a synthesized constructor [definingConstructor] points to | |
1223 /// the generative constructor from which this constructor was created. | |
1224 /// Otherwise [definingConstructor] is `null`. | |
1225 /// | |
1226 /// Consider for instance this hierarchy: | |
1227 /// | |
1228 /// class C { C.c(a, {b}); | |
1229 /// class D {} | |
1230 /// class E = C with D; | |
1231 /// | |
1232 /// Class `E` has a synthesized constructor, `E.c`, whose defining constructor | |
1233 /// is `C.c`. | |
1234 ConstructorElement get definingConstructor; | |
1235 | |
1236 /// Use [enclosingClass] instead. | |
1237 @deprecated | |
1238 get enclosingElement; | |
1239 } | |
1240 | |
1241 /// JavaScript backend specific element for the body of constructor. | |
1242 // TODO(johnniwinther): Remove this class for the element model. | |
1243 abstract class ConstructorBodyElement extends FunctionElement { | |
1244 FunctionElement get constructor; | |
1245 } | |
1246 | |
1247 /// [TypeDeclarationElement] defines the common interface for class/interface | |
1248 /// declarations and typedefs. | |
1249 abstract class TypeDeclarationElement extends Element implements AstElement { | |
1250 /** | |
1251 * The `this type` for this type declaration. | |
1252 * | |
1253 * The type of [:this:] is the generic type based on this element in which | |
1254 * the type arguments are the declared type variables. For instance, | |
1255 * [:List<E>:] for [:List:] and [:Map<K,V>:] for [:Map:]. | |
1256 * | |
1257 * For a class declaration this is the type of [:this:]. | |
1258 */ | |
1259 GenericType get thisType; | |
1260 | |
1261 /** | |
1262 * The raw type for this type declaration. | |
1263 * | |
1264 * The raw type is the generic type base on this element in which the type | |
1265 * arguments are all [dynamic]. For instance [:List<dynamic>:] for [:List:] | |
1266 * and [:Map<dynamic,dynamic>:] for [:Map:]. For non-generic classes [rawType] | |
1267 * is the same as [thisType]. | |
1268 * | |
1269 * The [rawType] field is a canonicalization of the raw type and should be | |
1270 * used to distinguish explicit and implicit uses of the [dynamic] | |
1271 * type arguments. For instance should [:List:] be the [rawType] of the | |
1272 * [:List:] class element whereas [:List<dynamic>:] should be its own | |
1273 * instantiation of [InterfaceType] with [:dynamic:] as type argument. Using | |
1274 * this distinction, we can print the raw type with type arguments only when | |
1275 * the input source has used explicit type arguments. | |
1276 */ | |
1277 GenericType get rawType; | |
1278 | |
1279 /** | |
1280 * The type variables declared on this declaration. The type variables are not | |
1281 * available until the type of the element has been computed through | |
1282 * [computeType]. | |
1283 */ | |
1284 List<DartType> get typeVariables; | |
1285 | |
1286 bool get isResolved; | |
1287 | |
1288 int get resolutionState; | |
1289 | |
1290 void ensureResolved(Compiler compiler); | |
1291 } | |
1292 | |
1293 abstract class ClassElement extends TypeDeclarationElement | |
1294 implements ScopeContainerElement { | |
1295 int get id; | |
1296 | |
1297 /// The length of the longest inheritance path from [:Object:]. | |
1298 int get hierarchyDepth; | |
1299 | |
1300 InterfaceType get rawType; | |
1301 InterfaceType get thisType; | |
1302 ClassElement get superclass; | |
1303 | |
1304 /// The direct supertype of this class. | |
1305 DartType get supertype; | |
1306 | |
1307 /// Ordered set of all supertypes of this class including the class itself. | |
1308 OrderedTypeSet get allSupertypesAndSelf; | |
1309 | |
1310 /// A list of all supertypes of this class excluding the class itself. | |
1311 Link<DartType> get allSupertypes; | |
1312 | |
1313 /// Returns the this type of this class as an instance of [cls]. | |
1314 InterfaceType asInstanceOf(ClassElement cls); | |
1315 | |
1316 /// A list of all direct superinterfaces of this class. | |
1317 Link<DartType> get interfaces; | |
1318 | |
1319 bool get hasConstructor; | |
1320 Link<Element> get constructors; | |
1321 | |
1322 ClassElement get patch; | |
1323 ClassElement get origin; | |
1324 ClassElement get declaration; | |
1325 ClassElement get implementation; | |
1326 | |
1327 int get supertypeLoadState; | |
1328 String get nativeTagInfo; | |
1329 | |
1330 bool get isMixinApplication; | |
1331 bool get isUnnamedMixinApplication; | |
1332 bool get hasBackendMembers; | |
1333 bool get hasLocalScopeMembers; | |
1334 | |
1335 /// Returns `true` if this class is `Object` from dart:core. | |
1336 bool get isObject; | |
1337 | |
1338 bool isSubclassOf(ClassElement cls); | |
1339 /// Returns true if `this` explicitly/nominally implements [intrface]. | |
1340 /// | |
1341 /// Note that, if [intrface] is the `Function` class, this method returns | |
1342 /// falso for a class that has a `call` method but does not explicitly | |
1343 /// implement `Function`. | |
1344 bool implementsInterface(ClassElement intrface); | |
1345 bool hasFieldShadowedBy(Element fieldMember); | |
1346 | |
1347 /// Returns `true` if this class has a @proxy annotation. | |
1348 bool get isProxy; | |
1349 | |
1350 /// Returns `true` if the class hierarchy for this class contains errors. | |
1351 bool get hasIncompleteHierarchy; | |
1352 | |
1353 void addMember(Element element, DiagnosticListener listener); | |
1354 void addToScope(Element element, DiagnosticListener listener); | |
1355 | |
1356 void setDefaultConstructor(FunctionElement constructor, Compiler compiler); | |
1357 | |
1358 void addBackendMember(Element element); | |
1359 void reverseBackendMembers(); | |
1360 | |
1361 Element lookupMember(String memberName); | |
1362 Element lookupSelector(Selector selector); | |
1363 Element lookupSuperSelector(Selector selector); | |
1364 | |
1365 Element lookupLocalMember(String memberName); | |
1366 Element lookupBackendMember(String memberName); | |
1367 Element lookupSuperMember(String memberName); | |
1368 | |
1369 Element lookupSuperMemberInLibrary(String memberName, | |
1370 LibraryElement library); | |
1371 | |
1372 Element validateConstructorLookupResults(Selector selector, | |
1373 Element result, | |
1374 Element noMatch(Element)); | |
1375 | |
1376 Element lookupConstructor(Selector selector, [Element noMatch(Element)]); | |
1377 | |
1378 void forEachMember(void f(ClassElement enclosingClass, Element member), | |
1379 {bool includeBackendMembers: false, | |
1380 bool includeSuperAndInjectedMembers: false}); | |
1381 | |
1382 void forEachInstanceField(void f(ClassElement enclosingClass, | |
1383 FieldElement field), | |
1384 {bool includeSuperAndInjectedMembers: false}); | |
1385 | |
1386 /// Similar to [forEachInstanceField] but visits static fields. | |
1387 void forEachStaticField(void f(ClassElement enclosingClass, Element field)); | |
1388 | |
1389 void forEachBackendMember(void f(Element member)); | |
1390 | |
1391 List<DartType> computeTypeParameters(Compiler compiler); | |
1392 | |
1393 /// Looks up the member [name] in this class. | |
1394 Member lookupClassMember(Name name); | |
1395 | |
1396 /// Calls [f] with each member of this class. | |
1397 void forEachClassMember(f(Member member)); | |
1398 | |
1399 /// Looks up the member [name] in the interface of this class. | |
1400 MemberSignature lookupInterfaceMember(Name name); | |
1401 | |
1402 /// Calls [f] with each member of the interface of this class. | |
1403 void forEachInterfaceMember(f(MemberSignature member)); | |
1404 | |
1405 /// Returns the type of the 'call' method in the interface of this class, or | |
1406 /// `null` if the interface has no 'call' method. | |
1407 FunctionType get callType; | |
1408 } | |
1409 | |
1410 abstract class MixinApplicationElement extends ClassElement { | |
1411 ClassElement get mixin; | |
1412 InterfaceType get mixinType; | |
1413 void set mixinType(InterfaceType value); | |
1414 void addConstructor(FunctionElement constructor); | |
1415 } | |
1416 | |
1417 /// The label entity defined by a labeled statement. | |
1418 abstract class LabelDefinition extends Entity { | |
1419 Label get label; | |
1420 String get labelName; | |
1421 JumpTarget get target; | |
1422 | |
1423 bool get isTarget; | |
1424 bool get isBreakTarget; | |
1425 bool get isContinueTarget; | |
1426 | |
1427 void setBreakTarget(); | |
1428 void setContinueTarget(); | |
1429 } | |
1430 | |
1431 /// A jump target is the reference point of a statement or switch-case, | |
1432 /// either by label or as the default target of a break or continue. | |
1433 abstract class JumpTarget extends Local { | |
1434 Node get statement; | |
1435 int get nestingLevel; | |
1436 Link<LabelDefinition> get labels; | |
1437 | |
1438 bool get isTarget; | |
1439 bool get isBreakTarget; | |
1440 bool get isContinueTarget; | |
1441 bool get isSwitch; | |
1442 | |
1443 // TODO(kasperl): Try to get rid of these. | |
1444 void set isBreakTarget(bool value); | |
1445 void set isContinueTarget(bool value); | |
1446 | |
1447 LabelDefinition addLabel(Label label, String labelName); | |
1448 } | |
1449 | |
1450 /// The [Element] for a type variable declaration on a generic class or typedef. | |
1451 abstract class TypeVariableElement extends Element | |
1452 implements AstElement, TypedElement { | |
1453 | |
1454 /// Use [typeDeclaration] instead. | |
1455 @deprecated | |
1456 get enclosingElement; | |
1457 | |
1458 /// The class or typedef on which this type variable is defined. | |
1459 TypeDeclarationElement get typeDeclaration; | |
1460 | |
1461 /// The [type] defined by the type variable. | |
1462 TypeVariableType get type; | |
1463 | |
1464 /// The upper bound on the type variable. If not explicitly declared, this is | |
1465 /// `Object`. | |
1466 DartType get bound; | |
1467 } | |
1468 | |
1469 abstract class MetadataAnnotation implements Spannable { | |
1470 /// The front-end constant of this metadata annotation. | |
1471 ConstantExpression get constant; | |
1472 Element get annotatedElement; | |
1473 int get resolutionState; | |
1474 Token get beginToken; | |
1475 Token get endToken; | |
1476 | |
1477 bool get hasNode; | |
1478 Node get node; | |
1479 | |
1480 MetadataAnnotation ensureResolved(Compiler compiler); | |
1481 } | |
1482 | |
1483 /// An [Element] that has a type. | |
1484 abstract class TypedElement extends Element { | |
1485 DartType get type; | |
1486 } | |
1487 | |
1488 /// An [Element] that can define a function type. | |
1489 abstract class FunctionTypedElement extends Element { | |
1490 /// The function signature for the function type defined by this element, | |
1491 /// if any. | |
1492 FunctionSignature get functionSignature; | |
1493 } | |
1494 | |
1495 /// An [Element] that holds a [TreeElements] mapping. | |
1496 abstract class AnalyzableElement extends Element { | |
1497 /// Return `true` if [treeElements] have been (partially) computed for this | |
1498 /// element. | |
1499 bool get hasTreeElements; | |
1500 | |
1501 /// Returns the [TreeElements] that hold the resolution information for the | |
1502 /// AST nodes of this element. | |
1503 TreeElements get treeElements; | |
1504 } | |
1505 | |
1506 /// An [Element] that (potentially) has a node. | |
1507 /// | |
1508 /// Synthesized elements may return `null` from [node]. | |
1509 abstract class AstElement extends AnalyzableElement { | |
1510 /// `true` if [node] is available and non-null. | |
1511 bool get hasNode; | |
1512 | |
1513 /// The AST node of this element. | |
1514 Node get node; | |
1515 | |
1516 /// `true` if [resolvedAst] is available. | |
1517 bool get hasResolvedAst; | |
1518 | |
1519 /// The defining AST node of this element with is corresponding | |
1520 /// [TreeElements]. This is not available if [hasResolvedAst] is `false`. | |
1521 ResolvedAst get resolvedAst; | |
1522 } | |
1523 | |
1524 class ResolvedAst { | |
1525 final Element element; | |
1526 final Node node; | |
1527 final TreeElements elements; | |
1528 | |
1529 ResolvedAst(this.element, this.node, this.elements); | |
1530 } | |
1531 | |
1532 /// A [MemberSignature] is a member of an interface. | |
1533 /// | |
1534 /// A signature is either a method or a getter or setter, possibly implicitly | |
1535 /// defined by a field declarations. Fields themselves are not members of an | |
1536 /// interface. | |
1537 /// | |
1538 /// A [MemberSignature] may be defined by a member declaration or may be | |
1539 /// synthetized from a set of declarations. | |
1540 abstract class MemberSignature { | |
1541 /// The name of this member. | |
1542 Name get name; | |
1543 | |
1544 /// The type of the member when accessed. For getters and setters this is the | |
1545 /// return type and argument type, respectively. For methods the type is the | |
1546 /// [functionType] defined by the return type and parameters. | |
1547 DartType get type; | |
1548 | |
1549 /// The function type of the member. For a getter `Foo get foo` this is | |
1550 /// `() -> Foo`, for a setter `void set foo(Foo _)` this is `(Foo) -> void`. | |
1551 /// For methods the function type is defined by the return type and | |
1552 /// parameters. | |
1553 FunctionType get functionType; | |
1554 | |
1555 /// Returns `true` if this member is a getter, possibly implictly defined by a | |
1556 /// field declaration. | |
1557 bool get isGetter; | |
1558 | |
1559 /// Returns `true` if this member is a setter, possibly implictly defined by a | |
1560 /// field declaration. | |
1561 bool get isSetter; | |
1562 | |
1563 /// Returns `true` if this member is a method, that is neither a getter nor | |
1564 /// setter. | |
1565 bool get isMethod; | |
1566 | |
1567 /// Returns an iterable of the declarations that define this member. | |
1568 Iterable<Member> get declarations; | |
1569 } | |
1570 | |
1571 /// A [Member] is a member of a class, that is either a method or a getter or | |
1572 /// setter, possibly implicitly defined by a field declarations. Fields | |
1573 /// themselves are not members of a class. | |
1574 /// | |
1575 /// A [Member] of a class also defines a signature which is a member of the | |
1576 /// corresponding interface type. | |
1577 /// | |
1578 /// A [Member] is implicitly concrete. An abstract declaration only declares | |
1579 /// a signature in the interface of its class. | |
1580 /// | |
1581 /// A [Member] is always declared by an [Element] which is accessibly through | |
1582 /// the [element] getter. | |
1583 abstract class Member extends MemberSignature { | |
1584 /// The [Element] that declared this member, possibly implicitly in case of | |
1585 /// a getter or setter defined by a field. | |
1586 Element get element; | |
1587 | |
1588 /// The instance of the class that declared this member. | |
1589 /// | |
1590 /// For instance: | |
1591 /// class A<T> { T m() {} } | |
1592 /// class B<S> extends A<S> {} | |
1593 /// The declarer of `m` in `A` is `A<T>` whereas the declarer of `m` in `B` is | |
1594 /// `A<S>`. | |
1595 InterfaceType get declarer; | |
1596 | |
1597 /// Returns `true` if this member is static. | |
1598 bool get isStatic; | |
1599 | |
1600 /// Returns `true` if this member is a getter or setter implicitly declared | |
1601 /// by a field. | |
1602 bool get isDeclaredByField; | |
1603 | |
1604 /// Returns `true` if this member is abstract. | |
1605 bool get isAbstract; | |
1606 | |
1607 /// If abstract, [implementation] points to the overridden concrete member, | |
1608 /// if any. Otherwise [implementation] points to the member itself. | |
1609 Member get implementation; | |
1610 } | |
1611 | |
OLD | NEW |