| Index: third_party/sqlite/src/ext/fts1/fts1_hash.c
|
| diff --git a/third_party/sqlite/src/ext/fts1/fts1_hash.c b/third_party/sqlite/src/ext/fts1/fts1_hash.c
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..463a52b64555b00e01845983d2874235e53d7a17
|
| --- /dev/null
|
| +++ b/third_party/sqlite/src/ext/fts1/fts1_hash.c
|
| @@ -0,0 +1,369 @@
|
| +/*
|
| +** 2001 September 22
|
| +**
|
| +** The author disclaims copyright to this source code. In place of
|
| +** a legal notice, here is a blessing:
|
| +**
|
| +** May you do good and not evil.
|
| +** May you find forgiveness for yourself and forgive others.
|
| +** May you share freely, never taking more than you give.
|
| +**
|
| +*************************************************************************
|
| +** This is the implementation of generic hash-tables used in SQLite.
|
| +** We've modified it slightly to serve as a standalone hash table
|
| +** implementation for the full-text indexing module.
|
| +*/
|
| +#include <assert.h>
|
| +#include <stdlib.h>
|
| +#include <string.h>
|
| +
|
| +/*
|
| +** The code in this file is only compiled if:
|
| +**
|
| +** * The FTS1 module is being built as an extension
|
| +** (in which case SQLITE_CORE is not defined), or
|
| +**
|
| +** * The FTS1 module is being built into the core of
|
| +** SQLite (in which case SQLITE_ENABLE_FTS1 is defined).
|
| +*/
|
| +#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS1)
|
| +
|
| +
|
| +#include "fts1_hash.h"
|
| +
|
| +static void *malloc_and_zero(int n){
|
| + void *p = malloc(n);
|
| + if( p ){
|
| + memset(p, 0, n);
|
| + }
|
| + return p;
|
| +}
|
| +
|
| +/* Turn bulk memory into a hash table object by initializing the
|
| +** fields of the Hash structure.
|
| +**
|
| +** "pNew" is a pointer to the hash table that is to be initialized.
|
| +** keyClass is one of the constants
|
| +** FTS1_HASH_BINARY or FTS1_HASH_STRING. The value of keyClass
|
| +** determines what kind of key the hash table will use. "copyKey" is
|
| +** true if the hash table should make its own private copy of keys and
|
| +** false if it should just use the supplied pointer.
|
| +*/
|
| +void sqlite3Fts1HashInit(fts1Hash *pNew, int keyClass, int copyKey){
|
| + assert( pNew!=0 );
|
| + assert( keyClass>=FTS1_HASH_STRING && keyClass<=FTS1_HASH_BINARY );
|
| + pNew->keyClass = keyClass;
|
| + pNew->copyKey = copyKey;
|
| + pNew->first = 0;
|
| + pNew->count = 0;
|
| + pNew->htsize = 0;
|
| + pNew->ht = 0;
|
| + pNew->xMalloc = malloc_and_zero;
|
| + pNew->xFree = free;
|
| +}
|
| +
|
| +/* Remove all entries from a hash table. Reclaim all memory.
|
| +** Call this routine to delete a hash table or to reset a hash table
|
| +** to the empty state.
|
| +*/
|
| +void sqlite3Fts1HashClear(fts1Hash *pH){
|
| + fts1HashElem *elem; /* For looping over all elements of the table */
|
| +
|
| + assert( pH!=0 );
|
| + elem = pH->first;
|
| + pH->first = 0;
|
| + if( pH->ht ) pH->xFree(pH->ht);
|
| + pH->ht = 0;
|
| + pH->htsize = 0;
|
| + while( elem ){
|
| + fts1HashElem *next_elem = elem->next;
|
| + if( pH->copyKey && elem->pKey ){
|
| + pH->xFree(elem->pKey);
|
| + }
|
| + pH->xFree(elem);
|
| + elem = next_elem;
|
| + }
|
| + pH->count = 0;
|
| +}
|
| +
|
| +/*
|
| +** Hash and comparison functions when the mode is FTS1_HASH_STRING
|
| +*/
|
| +static int strHash(const void *pKey, int nKey){
|
| + const char *z = (const char *)pKey;
|
| + int h = 0;
|
| + if( nKey<=0 ) nKey = (int) strlen(z);
|
| + while( nKey > 0 ){
|
| + h = (h<<3) ^ h ^ *z++;
|
| + nKey--;
|
| + }
|
| + return h & 0x7fffffff;
|
| +}
|
| +static int strCompare(const void *pKey1, int n1, const void *pKey2, int n2){
|
| + if( n1!=n2 ) return 1;
|
| + return strncmp((const char*)pKey1,(const char*)pKey2,n1);
|
| +}
|
| +
|
| +/*
|
| +** Hash and comparison functions when the mode is FTS1_HASH_BINARY
|
| +*/
|
| +static int binHash(const void *pKey, int nKey){
|
| + int h = 0;
|
| + const char *z = (const char *)pKey;
|
| + while( nKey-- > 0 ){
|
| + h = (h<<3) ^ h ^ *(z++);
|
| + }
|
| + return h & 0x7fffffff;
|
| +}
|
| +static int binCompare(const void *pKey1, int n1, const void *pKey2, int n2){
|
| + if( n1!=n2 ) return 1;
|
| + return memcmp(pKey1,pKey2,n1);
|
| +}
|
| +
|
| +/*
|
| +** Return a pointer to the appropriate hash function given the key class.
|
| +**
|
| +** The C syntax in this function definition may be unfamilar to some
|
| +** programmers, so we provide the following additional explanation:
|
| +**
|
| +** The name of the function is "hashFunction". The function takes a
|
| +** single parameter "keyClass". The return value of hashFunction()
|
| +** is a pointer to another function. Specifically, the return value
|
| +** of hashFunction() is a pointer to a function that takes two parameters
|
| +** with types "const void*" and "int" and returns an "int".
|
| +*/
|
| +static int (*hashFunction(int keyClass))(const void*,int){
|
| + if( keyClass==FTS1_HASH_STRING ){
|
| + return &strHash;
|
| + }else{
|
| + assert( keyClass==FTS1_HASH_BINARY );
|
| + return &binHash;
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Return a pointer to the appropriate hash function given the key class.
|
| +**
|
| +** For help in interpreted the obscure C code in the function definition,
|
| +** see the header comment on the previous function.
|
| +*/
|
| +static int (*compareFunction(int keyClass))(const void*,int,const void*,int){
|
| + if( keyClass==FTS1_HASH_STRING ){
|
| + return &strCompare;
|
| + }else{
|
| + assert( keyClass==FTS1_HASH_BINARY );
|
| + return &binCompare;
|
| + }
|
| +}
|
| +
|
| +/* Link an element into the hash table
|
| +*/
|
| +static void insertElement(
|
| + fts1Hash *pH, /* The complete hash table */
|
| + struct _fts1ht *pEntry, /* The entry into which pNew is inserted */
|
| + fts1HashElem *pNew /* The element to be inserted */
|
| +){
|
| + fts1HashElem *pHead; /* First element already in pEntry */
|
| + pHead = pEntry->chain;
|
| + if( pHead ){
|
| + pNew->next = pHead;
|
| + pNew->prev = pHead->prev;
|
| + if( pHead->prev ){ pHead->prev->next = pNew; }
|
| + else { pH->first = pNew; }
|
| + pHead->prev = pNew;
|
| + }else{
|
| + pNew->next = pH->first;
|
| + if( pH->first ){ pH->first->prev = pNew; }
|
| + pNew->prev = 0;
|
| + pH->first = pNew;
|
| + }
|
| + pEntry->count++;
|
| + pEntry->chain = pNew;
|
| +}
|
| +
|
| +
|
| +/* Resize the hash table so that it cantains "new_size" buckets.
|
| +** "new_size" must be a power of 2. The hash table might fail
|
| +** to resize if sqliteMalloc() fails.
|
| +*/
|
| +static void rehash(fts1Hash *pH, int new_size){
|
| + struct _fts1ht *new_ht; /* The new hash table */
|
| + fts1HashElem *elem, *next_elem; /* For looping over existing elements */
|
| + int (*xHash)(const void*,int); /* The hash function */
|
| +
|
| + assert( (new_size & (new_size-1))==0 );
|
| + new_ht = (struct _fts1ht *)pH->xMalloc( new_size*sizeof(struct _fts1ht) );
|
| + if( new_ht==0 ) return;
|
| + if( pH->ht ) pH->xFree(pH->ht);
|
| + pH->ht = new_ht;
|
| + pH->htsize = new_size;
|
| + xHash = hashFunction(pH->keyClass);
|
| + for(elem=pH->first, pH->first=0; elem; elem = next_elem){
|
| + int h = (*xHash)(elem->pKey, elem->nKey) & (new_size-1);
|
| + next_elem = elem->next;
|
| + insertElement(pH, &new_ht[h], elem);
|
| + }
|
| +}
|
| +
|
| +/* This function (for internal use only) locates an element in an
|
| +** hash table that matches the given key. The hash for this key has
|
| +** already been computed and is passed as the 4th parameter.
|
| +*/
|
| +static fts1HashElem *findElementGivenHash(
|
| + const fts1Hash *pH, /* The pH to be searched */
|
| + const void *pKey, /* The key we are searching for */
|
| + int nKey,
|
| + int h /* The hash for this key. */
|
| +){
|
| + fts1HashElem *elem; /* Used to loop thru the element list */
|
| + int count; /* Number of elements left to test */
|
| + int (*xCompare)(const void*,int,const void*,int); /* comparison function */
|
| +
|
| + if( pH->ht ){
|
| + struct _fts1ht *pEntry = &pH->ht[h];
|
| + elem = pEntry->chain;
|
| + count = pEntry->count;
|
| + xCompare = compareFunction(pH->keyClass);
|
| + while( count-- && elem ){
|
| + if( (*xCompare)(elem->pKey,elem->nKey,pKey,nKey)==0 ){
|
| + return elem;
|
| + }
|
| + elem = elem->next;
|
| + }
|
| + }
|
| + return 0;
|
| +}
|
| +
|
| +/* Remove a single entry from the hash table given a pointer to that
|
| +** element and a hash on the element's key.
|
| +*/
|
| +static void removeElementGivenHash(
|
| + fts1Hash *pH, /* The pH containing "elem" */
|
| + fts1HashElem* elem, /* The element to be removed from the pH */
|
| + int h /* Hash value for the element */
|
| +){
|
| + struct _fts1ht *pEntry;
|
| + if( elem->prev ){
|
| + elem->prev->next = elem->next;
|
| + }else{
|
| + pH->first = elem->next;
|
| + }
|
| + if( elem->next ){
|
| + elem->next->prev = elem->prev;
|
| + }
|
| + pEntry = &pH->ht[h];
|
| + if( pEntry->chain==elem ){
|
| + pEntry->chain = elem->next;
|
| + }
|
| + pEntry->count--;
|
| + if( pEntry->count<=0 ){
|
| + pEntry->chain = 0;
|
| + }
|
| + if( pH->copyKey && elem->pKey ){
|
| + pH->xFree(elem->pKey);
|
| + }
|
| + pH->xFree( elem );
|
| + pH->count--;
|
| + if( pH->count<=0 ){
|
| + assert( pH->first==0 );
|
| + assert( pH->count==0 );
|
| + fts1HashClear(pH);
|
| + }
|
| +}
|
| +
|
| +/* Attempt to locate an element of the hash table pH with a key
|
| +** that matches pKey,nKey. Return the data for this element if it is
|
| +** found, or NULL if there is no match.
|
| +*/
|
| +void *sqlite3Fts1HashFind(const fts1Hash *pH, const void *pKey, int nKey){
|
| + int h; /* A hash on key */
|
| + fts1HashElem *elem; /* The element that matches key */
|
| + int (*xHash)(const void*,int); /* The hash function */
|
| +
|
| + if( pH==0 || pH->ht==0 ) return 0;
|
| + xHash = hashFunction(pH->keyClass);
|
| + assert( xHash!=0 );
|
| + h = (*xHash)(pKey,nKey);
|
| + assert( (pH->htsize & (pH->htsize-1))==0 );
|
| + elem = findElementGivenHash(pH,pKey,nKey, h & (pH->htsize-1));
|
| + return elem ? elem->data : 0;
|
| +}
|
| +
|
| +/* Insert an element into the hash table pH. The key is pKey,nKey
|
| +** and the data is "data".
|
| +**
|
| +** If no element exists with a matching key, then a new
|
| +** element is created. A copy of the key is made if the copyKey
|
| +** flag is set. NULL is returned.
|
| +**
|
| +** If another element already exists with the same key, then the
|
| +** new data replaces the old data and the old data is returned.
|
| +** The key is not copied in this instance. If a malloc fails, then
|
| +** the new data is returned and the hash table is unchanged.
|
| +**
|
| +** If the "data" parameter to this function is NULL, then the
|
| +** element corresponding to "key" is removed from the hash table.
|
| +*/
|
| +void *sqlite3Fts1HashInsert(
|
| + fts1Hash *pH, /* The hash table to insert into */
|
| + const void *pKey, /* The key */
|
| + int nKey, /* Number of bytes in the key */
|
| + void *data /* The data */
|
| +){
|
| + int hraw; /* Raw hash value of the key */
|
| + int h; /* the hash of the key modulo hash table size */
|
| + fts1HashElem *elem; /* Used to loop thru the element list */
|
| + fts1HashElem *new_elem; /* New element added to the pH */
|
| + int (*xHash)(const void*,int); /* The hash function */
|
| +
|
| + assert( pH!=0 );
|
| + xHash = hashFunction(pH->keyClass);
|
| + assert( xHash!=0 );
|
| + hraw = (*xHash)(pKey, nKey);
|
| + assert( (pH->htsize & (pH->htsize-1))==0 );
|
| + h = hraw & (pH->htsize-1);
|
| + elem = findElementGivenHash(pH,pKey,nKey,h);
|
| + if( elem ){
|
| + void *old_data = elem->data;
|
| + if( data==0 ){
|
| + removeElementGivenHash(pH,elem,h);
|
| + }else{
|
| + elem->data = data;
|
| + }
|
| + return old_data;
|
| + }
|
| + if( data==0 ) return 0;
|
| + new_elem = (fts1HashElem*)pH->xMalloc( sizeof(fts1HashElem) );
|
| + if( new_elem==0 ) return data;
|
| + if( pH->copyKey && pKey!=0 ){
|
| + new_elem->pKey = pH->xMalloc( nKey );
|
| + if( new_elem->pKey==0 ){
|
| + pH->xFree(new_elem);
|
| + return data;
|
| + }
|
| + memcpy((void*)new_elem->pKey, pKey, nKey);
|
| + }else{
|
| + new_elem->pKey = (void*)pKey;
|
| + }
|
| + new_elem->nKey = nKey;
|
| + pH->count++;
|
| + if( pH->htsize==0 ){
|
| + rehash(pH,8);
|
| + if( pH->htsize==0 ){
|
| + pH->count = 0;
|
| + pH->xFree(new_elem);
|
| + return data;
|
| + }
|
| + }
|
| + if( pH->count > pH->htsize ){
|
| + rehash(pH,pH->htsize*2);
|
| + }
|
| + assert( pH->htsize>0 );
|
| + assert( (pH->htsize & (pH->htsize-1))==0 );
|
| + h = hraw & (pH->htsize-1);
|
| + insertElement(pH, &pH->ht[h], new_elem);
|
| + new_elem->data = data;
|
| + return 0;
|
| +}
|
| +
|
| +#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS1) */
|
|
|