| Index: third_party/sqlite/src/test/fts3rnd.test
|
| diff --git a/third_party/sqlite/src/test/fts3rnd.test b/third_party/sqlite/src/test/fts3rnd.test
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..0909cee614d089491b2487099a4d62d5813a98fc
|
| --- /dev/null
|
| +++ b/third_party/sqlite/src/test/fts3rnd.test
|
| @@ -0,0 +1,434 @@
|
| +# 2009 December 03
|
| +#
|
| +# May you do good and not evil.
|
| +# May you find forgiveness for yourself and forgive others.
|
| +# May you share freely, never taking more than you give.
|
| +#
|
| +#***********************************************************************
|
| +#
|
| +# Brute force (random data) tests for FTS3.
|
| +#
|
| +
|
| +#-------------------------------------------------------------------------
|
| +#
|
| +# The FTS3 tests implemented in this file focus on testing that FTS3
|
| +# returns the correct set of documents for various types of full-text
|
| +# query. This is done using pseudo-randomly generated data and queries.
|
| +# The expected result of each query is calculated using Tcl code.
|
| +#
|
| +# 1. The database is initialized to contain a single table with three
|
| +# columns. 100 rows are inserted into the table. Each of the three
|
| +# values in each row is a document consisting of between 0 and 100
|
| +# terms. Terms are selected from a vocabulary of $G(nVocab) terms.
|
| +#
|
| +# 2. The following is performed 100 times:
|
| +#
|
| +# a. A row is inserted into the database. The row contents are
|
| +# generated as in step 1. The docid is a pseudo-randomly selected
|
| +# value between 0 and 1000000.
|
| +#
|
| +# b. A psuedo-randomly selected row is updated. One of its columns is
|
| +# set to contain a new document generated in the same way as the
|
| +# documents in step 1.
|
| +#
|
| +# c. A psuedo-randomly selected row is deleted.
|
| +#
|
| +# d. For each of several types of fts3 queries, 10 SELECT queries
|
| +# of the form:
|
| +#
|
| +# SELECT docid FROM <tbl> WHERE <tbl> MATCH '<query>'
|
| +#
|
| +# are evaluated. The results are compared to those calculated by
|
| +# Tcl code in this file. The patterns used for the different query
|
| +# types are:
|
| +#
|
| +# 1. query = <term>
|
| +# 2. query = <prefix>
|
| +# 3. query = "<term> <term>"
|
| +# 4. query = "<term> <term> <term>"
|
| +# 5. query = "<prefix> <prefix> <prefix>"
|
| +# 6. query = <term> NEAR <term>
|
| +# 7. query = <term> NEAR/11 <term> NEAR/11 <term>
|
| +# 8. query = <term> OR <term>
|
| +# 9. query = <term> NOT <term>
|
| +# 10. query = <term> AND <term>
|
| +# 11. query = <term> NEAR <term> OR <term> NEAR <term>
|
| +# 12. query = <term> NEAR <term> NOT <term> NEAR <term>
|
| +# 13. query = <term> NEAR <term> AND <term> NEAR <term>
|
| +#
|
| +# where <term> is a term psuedo-randomly selected from the vocabulary
|
| +# and prefix is the first 2 characters of such a term followed by
|
| +# a "*" character.
|
| +#
|
| +# Every second iteration, steps (a) through (d) above are performed
|
| +# within a single transaction. This forces the queries in (d) to
|
| +# read data from both the database and the in-memory hash table
|
| +# that caches the full-text index entries created by steps (a), (b)
|
| +# and (c) until the transaction is committed.
|
| +#
|
| +# The procedure above is run 5 times, using advisory fts3 node sizes of 50,
|
| +# 500, 1000 and 2000 bytes.
|
| +#
|
| +# After the test using an advisory node-size of 50, an OOM test is run using
|
| +# the database. This test is similar to step (d) above, except that it tests
|
| +# the effects of transient and persistent OOM conditions encountered while
|
| +# executing each query.
|
| +#
|
| +
|
| +set testdir [file dirname $argv0]
|
| +source $testdir/tester.tcl
|
| +
|
| +# If this build does not include FTS3, skip the tests in this file.
|
| +#
|
| +ifcapable !fts3 { finish_test ; return }
|
| +source $testdir/fts3_common.tcl
|
| +source $testdir/malloc_common.tcl
|
| +
|
| +set G(nVocab) 100
|
| +
|
| +set nVocab 100
|
| +set lVocab [list]
|
| +
|
| +expr srand(0)
|
| +
|
| +# Generate a vocabulary of nVocab words. Each word is 3 characters long.
|
| +#
|
| +set lChar {a b c d e f g h i j k l m n o p q r s t u v w x y z}
|
| +for {set i 0} {$i < $nVocab} {incr i} {
|
| + set len [expr int(rand()*3)+2]
|
| + set word [lindex $lChar [expr int(rand()*26)]]
|
| + append word [lindex $lChar [expr int(rand()*26)]]
|
| + if {$len>2} { append word [lindex $lChar [expr int(rand()*26)]] }
|
| + if {$len>3} { append word [lindex $lChar [expr int(rand()*26)]] }
|
| + lappend lVocab $word
|
| +}
|
| +
|
| +proc random_term {} {
|
| + lindex $::lVocab [expr {int(rand()*$::nVocab)}]
|
| +}
|
| +
|
| +# Return a document consisting of $nWord arbitrarily selected terms
|
| +# from the $::lVocab list.
|
| +#
|
| +proc generate_doc {nWord} {
|
| + set doc [list]
|
| + for {set i 0} {$i < $nWord} {incr i} {
|
| + lappend doc [random_term]
|
| + }
|
| + return $doc
|
| +}
|
| +
|
| +
|
| +
|
| +# Primitives to update the table.
|
| +#
|
| +unset -nocomplain t1
|
| +proc insert_row {rowid} {
|
| + set a [generate_doc [expr int((rand()*100))]]
|
| + set b [generate_doc [expr int((rand()*100))]]
|
| + set c [generate_doc [expr int((rand()*100))]]
|
| + execsql { INSERT INTO t1(docid, a, b, c) VALUES($rowid, $a, $b, $c) }
|
| + set ::t1($rowid) [list $a $b $c]
|
| +}
|
| +proc delete_row {rowid} {
|
| + execsql { DELETE FROM t1 WHERE rowid = $rowid }
|
| + catch {unset ::t1($rowid)}
|
| +}
|
| +proc update_row {rowid} {
|
| + set cols {a b c}
|
| + set iCol [expr int(rand()*3)]
|
| + set doc [generate_doc [expr int((rand()*100))]]
|
| + lset ::t1($rowid) $iCol $doc
|
| + execsql "UPDATE t1 SET [lindex $cols $iCol] = \$doc WHERE rowid = \$rowid"
|
| +}
|
| +
|
| +proc simple_phrase {zPrefix} {
|
| + set ret [list]
|
| +
|
| + set reg [string map {* {[^ ]*}} $zPrefix]
|
| + set reg " $reg "
|
| +
|
| + foreach key [lsort -integer [array names ::t1]] {
|
| + set value $::t1($key)
|
| + set cnt [list]
|
| + foreach col $value {
|
| + if {[regexp $reg " $col "]} { lappend ret $key ; break }
|
| + }
|
| + }
|
| +
|
| + #lsort -uniq -integer $ret
|
| + set ret
|
| +}
|
| +
|
| +# This [proc] is used to test the FTS3 matchinfo() function.
|
| +#
|
| +proc simple_token_matchinfo {zToken} {
|
| +
|
| + set nDoc(0) 0
|
| + set nDoc(1) 0
|
| + set nDoc(2) 0
|
| + set nHit(0) 0
|
| + set nHit(1) 0
|
| + set nHit(2) 0
|
| +
|
| +
|
| + foreach key [array names ::t1] {
|
| + set value $::t1($key)
|
| + set a($key) [list]
|
| + foreach i {0 1 2} col $value {
|
| + set hit [llength [lsearch -all $col $zToken]]
|
| + lappend a($key) $hit
|
| + incr nHit($i) $hit
|
| + if {$hit>0} { incr nDoc($i) }
|
| + }
|
| + }
|
| +
|
| + set ret [list]
|
| + foreach docid [lsort -integer [array names a]] {
|
| + if { [lindex [lsort -integer $a($docid)] end] } {
|
| + set matchinfo [list 1 3]
|
| + foreach i {0 1 2} hit $a($docid) {
|
| + lappend matchinfo $hit $nHit($i) $nDoc($i)
|
| + }
|
| + lappend ret $docid $matchinfo
|
| + }
|
| + }
|
| +
|
| + set ret
|
| +}
|
| +
|
| +proc simple_near {termlist nNear} {
|
| + set ret [list]
|
| +
|
| + foreach {key value} [array get ::t1] {
|
| + foreach v $value {
|
| +
|
| + set l [lsearch -exact -all $v [lindex $termlist 0]]
|
| + foreach T [lrange $termlist 1 end] {
|
| + set l2 [list]
|
| + foreach i $l {
|
| + set iStart [expr $i - $nNear - 1]
|
| + set iEnd [expr $i + $nNear + 1]
|
| + if {$iStart < 0} {set iStart 0}
|
| + foreach i2 [lsearch -exact -all [lrange $v $iStart $iEnd] $T] {
|
| + incr i2 $iStart
|
| + if {$i2 != $i} { lappend l2 $i2 }
|
| + }
|
| + }
|
| + set l [lsort -uniq -integer $l2]
|
| + }
|
| +
|
| + if {[llength $l]} {
|
| +#puts "MATCH($key): $v"
|
| + lappend ret $key
|
| + }
|
| + }
|
| + }
|
| +
|
| + lsort -unique -integer $ret
|
| +}
|
| +
|
| +# The following three procs:
|
| +#
|
| +# setup_not A B
|
| +# setup_or A B
|
| +# setup_and A B
|
| +#
|
| +# each take two arguments. Both arguments must be lists of integer values
|
| +# sorted by value. The return value is the list produced by evaluating
|
| +# the equivalent of "A op B", where op is the FTS3 operator NOT, OR or
|
| +# AND.
|
| +#
|
| +proc setop_not {A B} {
|
| + foreach b $B { set n($b) {} }
|
| + set ret [list]
|
| + foreach a $A { if {![info exists n($a)]} {lappend ret $a} }
|
| + return $ret
|
| +}
|
| +proc setop_or {A B} {
|
| + lsort -integer -uniq [concat $A $B]
|
| +}
|
| +proc setop_and {A B} {
|
| + foreach b $B { set n($b) {} }
|
| + set ret [list]
|
| + foreach a $A { if {[info exists n($a)]} {lappend ret $a} }
|
| + return $ret
|
| +}
|
| +
|
| +proc mit {blob} {
|
| + set scan(littleEndian) i*
|
| + set scan(bigEndian) I*
|
| + binary scan $blob $scan($::tcl_platform(byteOrder)) r
|
| + return $r
|
| +}
|
| +db func mit mit
|
| +
|
| +set sqlite_fts3_enable_parentheses 1
|
| +
|
| +foreach nodesize {50 500 1000 2000} {
|
| + catch { array unset ::t1 }
|
| +
|
| + # Create the FTS3 table. Populate it (and the Tcl array) with 100 rows.
|
| + #
|
| + db transaction {
|
| + catchsql { DROP TABLE t1 }
|
| + execsql "CREATE VIRTUAL TABLE t1 USING fts3(a, b, c)"
|
| + execsql "INSERT INTO t1(t1) VALUES('nodesize=$nodesize')"
|
| + for {set i 0} {$i < 100} {incr i} { insert_row $i }
|
| + }
|
| +
|
| + for {set iTest 1} {$iTest <= 100} {incr iTest} {
|
| + catchsql COMMIT
|
| +
|
| + set DO_MALLOC_TEST 0
|
| + set nRep 10
|
| + if {$iTest==100 && $nodesize==50} {
|
| + set DO_MALLOC_TEST 1
|
| + set nRep 2
|
| + }
|
| +
|
| + # Delete one row, update one row and insert one row.
|
| + #
|
| + set rows [array names ::t1]
|
| + set nRow [llength $rows]
|
| + set iUpdate [lindex $rows [expr {int(rand()*$nRow)}]]
|
| + set iDelete $iUpdate
|
| + while {$iDelete == $iUpdate} {
|
| + set iDelete [lindex $rows [expr {int(rand()*$nRow)}]]
|
| + }
|
| + set iInsert $iUpdate
|
| + while {[info exists ::t1($iInsert)]} {
|
| + set iInsert [expr {int(rand()*1000000)}]
|
| + }
|
| + execsql BEGIN
|
| + insert_row $iInsert
|
| + update_row $iUpdate
|
| + delete_row $iDelete
|
| + if {0==($iTest%2)} { execsql COMMIT }
|
| +
|
| + if {0==($iTest%2)} {
|
| + do_test fts3rnd-1.$nodesize.$iTest.0 { fts3_integrity_check t1 } ok
|
| + }
|
| +
|
| + # Pick 10 terms from the vocabulary. Check that the results of querying
|
| + # the database for the set of documents containing each of these terms
|
| + # is the same as the result obtained by scanning the contents of the Tcl
|
| + # array for each term.
|
| + #
|
| + for {set i 0} {$i < 10} {incr i} {
|
| + set term [random_term]
|
| + do_select_test fts3rnd-1.$nodesize.$iTest.1.$i {
|
| + SELECT docid, mit(matchinfo(t1)) FROM t1 WHERE t1 MATCH $term
|
| + } [simple_token_matchinfo $term]
|
| + }
|
| +
|
| + # This time, use the first two characters of each term as a term prefix
|
| + # to query for. Test that querying the Tcl array produces the same results
|
| + # as querying the FTS3 table for the prefix.
|
| + #
|
| + for {set i 0} {$i < $nRep} {incr i} {
|
| + set prefix [string range [random_term] 0 end-1]
|
| + set match "${prefix}*"
|
| + do_select_test fts3rnd-1.$nodesize.$iTest.2.$i {
|
| + SELECT docid FROM t1 WHERE t1 MATCH $match
|
| + } [simple_phrase $match]
|
| + }
|
| +
|
| + # Similar to the above, except for phrase queries.
|
| + #
|
| + for {set i 0} {$i < $nRep} {incr i} {
|
| + set term [list [random_term] [random_term]]
|
| + set match "\"$term\""
|
| + do_select_test fts3rnd-1.$nodesize.$iTest.3.$i {
|
| + SELECT docid FROM t1 WHERE t1 MATCH $match
|
| + } [simple_phrase $term]
|
| + }
|
| +
|
| + # Three word phrases.
|
| + #
|
| + for {set i 0} {$i < $nRep} {incr i} {
|
| + set term [list [random_term] [random_term] [random_term]]
|
| + set match "\"$term\""
|
| + do_select_test fts3rnd-1.$nodesize.$iTest.4.$i {
|
| + SELECT docid FROM t1 WHERE t1 MATCH $match
|
| + } [simple_phrase $term]
|
| + }
|
| +
|
| + # Three word phrases made up of term-prefixes.
|
| + #
|
| + for {set i 0} {$i < $nRep} {incr i} {
|
| + set query "[string range [random_term] 0 end-1]* "
|
| + append query "[string range [random_term] 0 end-1]* "
|
| + append query "[string range [random_term] 0 end-1]*"
|
| +
|
| + set match "\"$query\""
|
| + do_select_test fts3rnd-1.$nodesize.$iTest.5.$i {
|
| + SELECT docid FROM t1 WHERE t1 MATCH $match
|
| + } [simple_phrase $query]
|
| + }
|
| +
|
| + # A NEAR query with terms as the arguments.
|
| + #
|
| + for {set i 0} {$i < $nRep} {incr i} {
|
| + set terms [list [random_term] [random_term]]
|
| + set match [join $terms " NEAR "]
|
| + do_select_test fts3rnd-1.$nodesize.$iTest.6.$i {
|
| + SELECT docid FROM t1 WHERE t1 MATCH $match
|
| + } [simple_near $terms 10]
|
| + }
|
| +
|
| + # A 3-way NEAR query with terms as the arguments.
|
| + #
|
| + for {set i 0} {$i < $nRep} {incr i} {
|
| + set terms [list [random_term] [random_term] [random_term]]
|
| + set nNear 11
|
| + set match [join $terms " NEAR/$nNear "]
|
| + do_select_test fts3rnd-1.$nodesize.$iTest.7.$i {
|
| + SELECT docid FROM t1 WHERE t1 MATCH $match
|
| + } [simple_near $terms $nNear]
|
| + }
|
| +
|
| + # Set operations on simple term queries.
|
| + #
|
| + foreach {tn op proc} {
|
| + 8 OR setop_or
|
| + 9 NOT setop_not
|
| + 10 AND setop_and
|
| + } {
|
| + for {set i 0} {$i < $nRep} {incr i} {
|
| + set term1 [random_term]
|
| + set term2 [random_term]
|
| + set match "$term1 $op $term2"
|
| + do_select_test fts3rnd-1.$nodesize.$iTest.$tn.$i {
|
| + SELECT docid FROM t1 WHERE t1 MATCH $match
|
| + } [$proc [simple_phrase $term1] [simple_phrase $term2]]
|
| + }
|
| + }
|
| +
|
| + # Set operations on NEAR queries.
|
| + #
|
| + foreach {tn op proc} {
|
| + 8 OR setop_or
|
| + 9 NOT setop_not
|
| + 10 AND setop_and
|
| + } {
|
| + for {set i 0} {$i < $nRep} {incr i} {
|
| + set term1 [random_term]
|
| + set term2 [random_term]
|
| + set term3 [random_term]
|
| + set term4 [random_term]
|
| + set match "$term1 NEAR $term2 $op $term3 NEAR $term4"
|
| + do_select_test fts3rnd-1.$nodesize.$iTest.$tn.$i {
|
| + SELECT docid FROM t1 WHERE t1 MATCH $match
|
| + } [$proc \
|
| + [simple_near [list $term1 $term2] 10] \
|
| + [simple_near [list $term3 $term4] 10]
|
| + ]
|
| + }
|
| + }
|
| +
|
| + catchsql COMMIT
|
| + }
|
| +}
|
| +
|
| +finish_test
|
|
|