| Index: third_party/sqlite/src/src/expr.c
|
| diff --git a/third_party/sqlite/src/src/expr.c b/third_party/sqlite/src/src/expr.c
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..9d1193b35825ff7ea5b10d9e391ca425a1771840
|
| --- /dev/null
|
| +++ b/third_party/sqlite/src/src/expr.c
|
| @@ -0,0 +1,3755 @@
|
| +/*
|
| +** 2001 September 15
|
| +**
|
| +** The author disclaims copyright to this source code. In place of
|
| +** a legal notice, here is a blessing:
|
| +**
|
| +** May you do good and not evil.
|
| +** May you find forgiveness for yourself and forgive others.
|
| +** May you share freely, never taking more than you give.
|
| +**
|
| +*************************************************************************
|
| +** This file contains routines used for analyzing expressions and
|
| +** for generating VDBE code that evaluates expressions in SQLite.
|
| +*/
|
| +#include "sqliteInt.h"
|
| +
|
| +/*
|
| +** Return the 'affinity' of the expression pExpr if any.
|
| +**
|
| +** If pExpr is a column, a reference to a column via an 'AS' alias,
|
| +** or a sub-select with a column as the return value, then the
|
| +** affinity of that column is returned. Otherwise, 0x00 is returned,
|
| +** indicating no affinity for the expression.
|
| +**
|
| +** i.e. the WHERE clause expresssions in the following statements all
|
| +** have an affinity:
|
| +**
|
| +** CREATE TABLE t1(a);
|
| +** SELECT * FROM t1 WHERE a;
|
| +** SELECT a AS b FROM t1 WHERE b;
|
| +** SELECT * FROM t1 WHERE (select a from t1);
|
| +*/
|
| +char sqlite3ExprAffinity(Expr *pExpr){
|
| + int op = pExpr->op;
|
| + if( op==TK_SELECT ){
|
| + assert( pExpr->flags&EP_xIsSelect );
|
| + return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
|
| + }
|
| +#ifndef SQLITE_OMIT_CAST
|
| + if( op==TK_CAST ){
|
| + assert( !ExprHasProperty(pExpr, EP_IntValue) );
|
| + return sqlite3AffinityType(pExpr->u.zToken);
|
| + }
|
| +#endif
|
| + if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER)
|
| + && pExpr->pTab!=0
|
| + ){
|
| + /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally
|
| + ** a TK_COLUMN but was previously evaluated and cached in a register */
|
| + int j = pExpr->iColumn;
|
| + if( j<0 ) return SQLITE_AFF_INTEGER;
|
| + assert( pExpr->pTab && j<pExpr->pTab->nCol );
|
| + return pExpr->pTab->aCol[j].affinity;
|
| + }
|
| + return pExpr->affinity;
|
| +}
|
| +
|
| +/*
|
| +** Set the explicit collating sequence for an expression to the
|
| +** collating sequence supplied in the second argument.
|
| +*/
|
| +Expr *sqlite3ExprSetColl(Expr *pExpr, CollSeq *pColl){
|
| + if( pExpr && pColl ){
|
| + pExpr->pColl = pColl;
|
| + pExpr->flags |= EP_ExpCollate;
|
| + }
|
| + return pExpr;
|
| +}
|
| +
|
| +/*
|
| +** Set the collating sequence for expression pExpr to be the collating
|
| +** sequence named by pToken. Return a pointer to the revised expression.
|
| +** The collating sequence is marked as "explicit" using the EP_ExpCollate
|
| +** flag. An explicit collating sequence will override implicit
|
| +** collating sequences.
|
| +*/
|
| +Expr *sqlite3ExprSetCollByToken(Parse *pParse, Expr *pExpr, Token *pCollName){
|
| + char *zColl = 0; /* Dequoted name of collation sequence */
|
| + CollSeq *pColl;
|
| + sqlite3 *db = pParse->db;
|
| + zColl = sqlite3NameFromToken(db, pCollName);
|
| + pColl = sqlite3LocateCollSeq(pParse, zColl);
|
| + sqlite3ExprSetColl(pExpr, pColl);
|
| + sqlite3DbFree(db, zColl);
|
| + return pExpr;
|
| +}
|
| +
|
| +/*
|
| +** Return the default collation sequence for the expression pExpr. If
|
| +** there is no default collation type, return 0.
|
| +*/
|
| +CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
|
| + CollSeq *pColl = 0;
|
| + Expr *p = pExpr;
|
| + while( p ){
|
| + int op;
|
| + pColl = p->pColl;
|
| + if( pColl ) break;
|
| + op = p->op;
|
| + if( p->pTab!=0 && (
|
| + op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER || op==TK_TRIGGER
|
| + )){
|
| + /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally
|
| + ** a TK_COLUMN but was previously evaluated and cached in a register */
|
| + const char *zColl;
|
| + int j = p->iColumn;
|
| + if( j>=0 ){
|
| + sqlite3 *db = pParse->db;
|
| + zColl = p->pTab->aCol[j].zColl;
|
| + pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
|
| + pExpr->pColl = pColl;
|
| + }
|
| + break;
|
| + }
|
| + if( op!=TK_CAST && op!=TK_UPLUS ){
|
| + break;
|
| + }
|
| + p = p->pLeft;
|
| + }
|
| + if( sqlite3CheckCollSeq(pParse, pColl) ){
|
| + pColl = 0;
|
| + }
|
| + return pColl;
|
| +}
|
| +
|
| +/*
|
| +** pExpr is an operand of a comparison operator. aff2 is the
|
| +** type affinity of the other operand. This routine returns the
|
| +** type affinity that should be used for the comparison operator.
|
| +*/
|
| +char sqlite3CompareAffinity(Expr *pExpr, char aff2){
|
| + char aff1 = sqlite3ExprAffinity(pExpr);
|
| + if( aff1 && aff2 ){
|
| + /* Both sides of the comparison are columns. If one has numeric
|
| + ** affinity, use that. Otherwise use no affinity.
|
| + */
|
| + if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
|
| + return SQLITE_AFF_NUMERIC;
|
| + }else{
|
| + return SQLITE_AFF_NONE;
|
| + }
|
| + }else if( !aff1 && !aff2 ){
|
| + /* Neither side of the comparison is a column. Compare the
|
| + ** results directly.
|
| + */
|
| + return SQLITE_AFF_NONE;
|
| + }else{
|
| + /* One side is a column, the other is not. Use the columns affinity. */
|
| + assert( aff1==0 || aff2==0 );
|
| + return (aff1 + aff2);
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** pExpr is a comparison operator. Return the type affinity that should
|
| +** be applied to both operands prior to doing the comparison.
|
| +*/
|
| +static char comparisonAffinity(Expr *pExpr){
|
| + char aff;
|
| + assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
|
| + pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
|
| + pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
|
| + assert( pExpr->pLeft );
|
| + aff = sqlite3ExprAffinity(pExpr->pLeft);
|
| + if( pExpr->pRight ){
|
| + aff = sqlite3CompareAffinity(pExpr->pRight, aff);
|
| + }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
|
| + aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
|
| + }else if( !aff ){
|
| + aff = SQLITE_AFF_NONE;
|
| + }
|
| + return aff;
|
| +}
|
| +
|
| +/*
|
| +** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
|
| +** idx_affinity is the affinity of an indexed column. Return true
|
| +** if the index with affinity idx_affinity may be used to implement
|
| +** the comparison in pExpr.
|
| +*/
|
| +int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
|
| + char aff = comparisonAffinity(pExpr);
|
| + switch( aff ){
|
| + case SQLITE_AFF_NONE:
|
| + return 1;
|
| + case SQLITE_AFF_TEXT:
|
| + return idx_affinity==SQLITE_AFF_TEXT;
|
| + default:
|
| + return sqlite3IsNumericAffinity(idx_affinity);
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Return the P5 value that should be used for a binary comparison
|
| +** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
|
| +*/
|
| +static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
|
| + u8 aff = (char)sqlite3ExprAffinity(pExpr2);
|
| + aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
|
| + return aff;
|
| +}
|
| +
|
| +/*
|
| +** Return a pointer to the collation sequence that should be used by
|
| +** a binary comparison operator comparing pLeft and pRight.
|
| +**
|
| +** If the left hand expression has a collating sequence type, then it is
|
| +** used. Otherwise the collation sequence for the right hand expression
|
| +** is used, or the default (BINARY) if neither expression has a collating
|
| +** type.
|
| +**
|
| +** Argument pRight (but not pLeft) may be a null pointer. In this case,
|
| +** it is not considered.
|
| +*/
|
| +CollSeq *sqlite3BinaryCompareCollSeq(
|
| + Parse *pParse,
|
| + Expr *pLeft,
|
| + Expr *pRight
|
| +){
|
| + CollSeq *pColl;
|
| + assert( pLeft );
|
| + if( pLeft->flags & EP_ExpCollate ){
|
| + assert( pLeft->pColl );
|
| + pColl = pLeft->pColl;
|
| + }else if( pRight && pRight->flags & EP_ExpCollate ){
|
| + assert( pRight->pColl );
|
| + pColl = pRight->pColl;
|
| + }else{
|
| + pColl = sqlite3ExprCollSeq(pParse, pLeft);
|
| + if( !pColl ){
|
| + pColl = sqlite3ExprCollSeq(pParse, pRight);
|
| + }
|
| + }
|
| + return pColl;
|
| +}
|
| +
|
| +/*
|
| +** Generate code for a comparison operator.
|
| +*/
|
| +static int codeCompare(
|
| + Parse *pParse, /* The parsing (and code generating) context */
|
| + Expr *pLeft, /* The left operand */
|
| + Expr *pRight, /* The right operand */
|
| + int opcode, /* The comparison opcode */
|
| + int in1, int in2, /* Register holding operands */
|
| + int dest, /* Jump here if true. */
|
| + int jumpIfNull /* If true, jump if either operand is NULL */
|
| +){
|
| + int p5;
|
| + int addr;
|
| + CollSeq *p4;
|
| +
|
| + p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
|
| + p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
|
| + addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
|
| + (void*)p4, P4_COLLSEQ);
|
| + sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
|
| + return addr;
|
| +}
|
| +
|
| +#if SQLITE_MAX_EXPR_DEPTH>0
|
| +/*
|
| +** Check that argument nHeight is less than or equal to the maximum
|
| +** expression depth allowed. If it is not, leave an error message in
|
| +** pParse.
|
| +*/
|
| +int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
|
| + int rc = SQLITE_OK;
|
| + int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
|
| + if( nHeight>mxHeight ){
|
| + sqlite3ErrorMsg(pParse,
|
| + "Expression tree is too large (maximum depth %d)", mxHeight
|
| + );
|
| + rc = SQLITE_ERROR;
|
| + }
|
| + return rc;
|
| +}
|
| +
|
| +/* The following three functions, heightOfExpr(), heightOfExprList()
|
| +** and heightOfSelect(), are used to determine the maximum height
|
| +** of any expression tree referenced by the structure passed as the
|
| +** first argument.
|
| +**
|
| +** If this maximum height is greater than the current value pointed
|
| +** to by pnHeight, the second parameter, then set *pnHeight to that
|
| +** value.
|
| +*/
|
| +static void heightOfExpr(Expr *p, int *pnHeight){
|
| + if( p ){
|
| + if( p->nHeight>*pnHeight ){
|
| + *pnHeight = p->nHeight;
|
| + }
|
| + }
|
| +}
|
| +static void heightOfExprList(ExprList *p, int *pnHeight){
|
| + if( p ){
|
| + int i;
|
| + for(i=0; i<p->nExpr; i++){
|
| + heightOfExpr(p->a[i].pExpr, pnHeight);
|
| + }
|
| + }
|
| +}
|
| +static void heightOfSelect(Select *p, int *pnHeight){
|
| + if( p ){
|
| + heightOfExpr(p->pWhere, pnHeight);
|
| + heightOfExpr(p->pHaving, pnHeight);
|
| + heightOfExpr(p->pLimit, pnHeight);
|
| + heightOfExpr(p->pOffset, pnHeight);
|
| + heightOfExprList(p->pEList, pnHeight);
|
| + heightOfExprList(p->pGroupBy, pnHeight);
|
| + heightOfExprList(p->pOrderBy, pnHeight);
|
| + heightOfSelect(p->pPrior, pnHeight);
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Set the Expr.nHeight variable in the structure passed as an
|
| +** argument. An expression with no children, Expr.pList or
|
| +** Expr.pSelect member has a height of 1. Any other expression
|
| +** has a height equal to the maximum height of any other
|
| +** referenced Expr plus one.
|
| +*/
|
| +static void exprSetHeight(Expr *p){
|
| + int nHeight = 0;
|
| + heightOfExpr(p->pLeft, &nHeight);
|
| + heightOfExpr(p->pRight, &nHeight);
|
| + if( ExprHasProperty(p, EP_xIsSelect) ){
|
| + heightOfSelect(p->x.pSelect, &nHeight);
|
| + }else{
|
| + heightOfExprList(p->x.pList, &nHeight);
|
| + }
|
| + p->nHeight = nHeight + 1;
|
| +}
|
| +
|
| +/*
|
| +** Set the Expr.nHeight variable using the exprSetHeight() function. If
|
| +** the height is greater than the maximum allowed expression depth,
|
| +** leave an error in pParse.
|
| +*/
|
| +void sqlite3ExprSetHeight(Parse *pParse, Expr *p){
|
| + exprSetHeight(p);
|
| + sqlite3ExprCheckHeight(pParse, p->nHeight);
|
| +}
|
| +
|
| +/*
|
| +** Return the maximum height of any expression tree referenced
|
| +** by the select statement passed as an argument.
|
| +*/
|
| +int sqlite3SelectExprHeight(Select *p){
|
| + int nHeight = 0;
|
| + heightOfSelect(p, &nHeight);
|
| + return nHeight;
|
| +}
|
| +#else
|
| + #define exprSetHeight(y)
|
| +#endif /* SQLITE_MAX_EXPR_DEPTH>0 */
|
| +
|
| +/*
|
| +** This routine is the core allocator for Expr nodes.
|
| +**
|
| +** Construct a new expression node and return a pointer to it. Memory
|
| +** for this node and for the pToken argument is a single allocation
|
| +** obtained from sqlite3DbMalloc(). The calling function
|
| +** is responsible for making sure the node eventually gets freed.
|
| +**
|
| +** If dequote is true, then the token (if it exists) is dequoted.
|
| +** If dequote is false, no dequoting is performance. The deQuote
|
| +** parameter is ignored if pToken is NULL or if the token does not
|
| +** appear to be quoted. If the quotes were of the form "..." (double-quotes)
|
| +** then the EP_DblQuoted flag is set on the expression node.
|
| +**
|
| +** Special case: If op==TK_INTEGER and pToken points to a string that
|
| +** can be translated into a 32-bit integer, then the token is not
|
| +** stored in u.zToken. Instead, the integer values is written
|
| +** into u.iValue and the EP_IntValue flag is set. No extra storage
|
| +** is allocated to hold the integer text and the dequote flag is ignored.
|
| +*/
|
| +Expr *sqlite3ExprAlloc(
|
| + sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */
|
| + int op, /* Expression opcode */
|
| + const Token *pToken, /* Token argument. Might be NULL */
|
| + int dequote /* True to dequote */
|
| +){
|
| + Expr *pNew;
|
| + int nExtra = 0;
|
| + int iValue = 0;
|
| +
|
| + if( pToken ){
|
| + if( op!=TK_INTEGER || pToken->z==0
|
| + || sqlite3GetInt32(pToken->z, &iValue)==0 ){
|
| + nExtra = pToken->n+1;
|
| + assert( iValue>=0 );
|
| + }
|
| + }
|
| + pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra);
|
| + if( pNew ){
|
| + pNew->op = (u8)op;
|
| + pNew->iAgg = -1;
|
| + if( pToken ){
|
| + if( nExtra==0 ){
|
| + pNew->flags |= EP_IntValue;
|
| + pNew->u.iValue = iValue;
|
| + }else{
|
| + int c;
|
| + pNew->u.zToken = (char*)&pNew[1];
|
| + memcpy(pNew->u.zToken, pToken->z, pToken->n);
|
| + pNew->u.zToken[pToken->n] = 0;
|
| + if( dequote && nExtra>=3
|
| + && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){
|
| + sqlite3Dequote(pNew->u.zToken);
|
| + if( c=='"' ) pNew->flags |= EP_DblQuoted;
|
| + }
|
| + }
|
| + }
|
| +#if SQLITE_MAX_EXPR_DEPTH>0
|
| + pNew->nHeight = 1;
|
| +#endif
|
| + }
|
| + return pNew;
|
| +}
|
| +
|
| +/*
|
| +** Allocate a new expression node from a zero-terminated token that has
|
| +** already been dequoted.
|
| +*/
|
| +Expr *sqlite3Expr(
|
| + sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */
|
| + int op, /* Expression opcode */
|
| + const char *zToken /* Token argument. Might be NULL */
|
| +){
|
| + Token x;
|
| + x.z = zToken;
|
| + x.n = zToken ? sqlite3Strlen30(zToken) : 0;
|
| + return sqlite3ExprAlloc(db, op, &x, 0);
|
| +}
|
| +
|
| +/*
|
| +** Attach subtrees pLeft and pRight to the Expr node pRoot.
|
| +**
|
| +** If pRoot==NULL that means that a memory allocation error has occurred.
|
| +** In that case, delete the subtrees pLeft and pRight.
|
| +*/
|
| +void sqlite3ExprAttachSubtrees(
|
| + sqlite3 *db,
|
| + Expr *pRoot,
|
| + Expr *pLeft,
|
| + Expr *pRight
|
| +){
|
| + if( pRoot==0 ){
|
| + assert( db->mallocFailed );
|
| + sqlite3ExprDelete(db, pLeft);
|
| + sqlite3ExprDelete(db, pRight);
|
| + }else{
|
| + if( pRight ){
|
| + pRoot->pRight = pRight;
|
| + if( pRight->flags & EP_ExpCollate ){
|
| + pRoot->flags |= EP_ExpCollate;
|
| + pRoot->pColl = pRight->pColl;
|
| + }
|
| + }
|
| + if( pLeft ){
|
| + pRoot->pLeft = pLeft;
|
| + if( pLeft->flags & EP_ExpCollate ){
|
| + pRoot->flags |= EP_ExpCollate;
|
| + pRoot->pColl = pLeft->pColl;
|
| + }
|
| + }
|
| + exprSetHeight(pRoot);
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Allocate a Expr node which joins as many as two subtrees.
|
| +**
|
| +** One or both of the subtrees can be NULL. Return a pointer to the new
|
| +** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed,
|
| +** free the subtrees and return NULL.
|
| +*/
|
| +Expr *sqlite3PExpr(
|
| + Parse *pParse, /* Parsing context */
|
| + int op, /* Expression opcode */
|
| + Expr *pLeft, /* Left operand */
|
| + Expr *pRight, /* Right operand */
|
| + const Token *pToken /* Argument token */
|
| +){
|
| + Expr *p = sqlite3ExprAlloc(pParse->db, op, pToken, 1);
|
| + sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
|
| + if( p ) {
|
| + sqlite3ExprCheckHeight(pParse, p->nHeight);
|
| + }
|
| + return p;
|
| +}
|
| +
|
| +/*
|
| +** Join two expressions using an AND operator. If either expression is
|
| +** NULL, then just return the other expression.
|
| +*/
|
| +Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
|
| + if( pLeft==0 ){
|
| + return pRight;
|
| + }else if( pRight==0 ){
|
| + return pLeft;
|
| + }else{
|
| + Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0);
|
| + sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight);
|
| + return pNew;
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Construct a new expression node for a function with multiple
|
| +** arguments.
|
| +*/
|
| +Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
|
| + Expr *pNew;
|
| + sqlite3 *db = pParse->db;
|
| + assert( pToken );
|
| + pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
|
| + if( pNew==0 ){
|
| + sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
|
| + return 0;
|
| + }
|
| + pNew->x.pList = pList;
|
| + assert( !ExprHasProperty(pNew, EP_xIsSelect) );
|
| + sqlite3ExprSetHeight(pParse, pNew);
|
| + return pNew;
|
| +}
|
| +
|
| +/*
|
| +** Assign a variable number to an expression that encodes a wildcard
|
| +** in the original SQL statement.
|
| +**
|
| +** Wildcards consisting of a single "?" are assigned the next sequential
|
| +** variable number.
|
| +**
|
| +** Wildcards of the form "?nnn" are assigned the number "nnn". We make
|
| +** sure "nnn" is not too be to avoid a denial of service attack when
|
| +** the SQL statement comes from an external source.
|
| +**
|
| +** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
|
| +** as the previous instance of the same wildcard. Or if this is the first
|
| +** instance of the wildcard, the next sequenial variable number is
|
| +** assigned.
|
| +*/
|
| +void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
|
| + sqlite3 *db = pParse->db;
|
| + const char *z;
|
| +
|
| + if( pExpr==0 ) return;
|
| + assert( !ExprHasAnyProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
|
| + z = pExpr->u.zToken;
|
| + assert( z!=0 );
|
| + assert( z[0]!=0 );
|
| + if( z[1]==0 ){
|
| + /* Wildcard of the form "?". Assign the next variable number */
|
| + assert( z[0]=='?' );
|
| + pExpr->iColumn = (ynVar)(++pParse->nVar);
|
| + }else if( z[0]=='?' ){
|
| + /* Wildcard of the form "?nnn". Convert "nnn" to an integer and
|
| + ** use it as the variable number */
|
| + i64 i;
|
| + int bOk = 0==sqlite3Atoi64(&z[1], &i, sqlite3Strlen30(&z[1]), SQLITE_UTF8);
|
| + pExpr->iColumn = (ynVar)i;
|
| + testcase( i==0 );
|
| + testcase( i==1 );
|
| + testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
|
| + testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
|
| + if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
|
| + sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
|
| + db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
|
| + }
|
| + if( i>pParse->nVar ){
|
| + pParse->nVar = (int)i;
|
| + }
|
| + }else{
|
| + /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable
|
| + ** number as the prior appearance of the same name, or if the name
|
| + ** has never appeared before, reuse the same variable number
|
| + */
|
| + int i;
|
| + for(i=0; i<pParse->nVarExpr; i++){
|
| + Expr *pE = pParse->apVarExpr[i];
|
| + assert( pE!=0 );
|
| + if( strcmp(pE->u.zToken, z)==0 ){
|
| + pExpr->iColumn = pE->iColumn;
|
| + break;
|
| + }
|
| + }
|
| + if( i>=pParse->nVarExpr ){
|
| + pExpr->iColumn = (ynVar)(++pParse->nVar);
|
| + if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){
|
| + pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10;
|
| + pParse->apVarExpr =
|
| + sqlite3DbReallocOrFree(
|
| + db,
|
| + pParse->apVarExpr,
|
| + pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0])
|
| + );
|
| + }
|
| + if( !db->mallocFailed ){
|
| + assert( pParse->apVarExpr!=0 );
|
| + pParse->apVarExpr[pParse->nVarExpr++] = pExpr;
|
| + }
|
| + }
|
| + }
|
| + if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
|
| + sqlite3ErrorMsg(pParse, "too many SQL variables");
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Recursively delete an expression tree.
|
| +*/
|
| +void sqlite3ExprDelete(sqlite3 *db, Expr *p){
|
| + if( p==0 ) return;
|
| + /* Sanity check: Assert that the IntValue is non-negative if it exists */
|
| + assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
|
| + if( !ExprHasAnyProperty(p, EP_TokenOnly) ){
|
| + sqlite3ExprDelete(db, p->pLeft);
|
| + sqlite3ExprDelete(db, p->pRight);
|
| + if( !ExprHasProperty(p, EP_Reduced) && (p->flags2 & EP2_MallocedToken)!=0 ){
|
| + sqlite3DbFree(db, p->u.zToken);
|
| + }
|
| + if( ExprHasProperty(p, EP_xIsSelect) ){
|
| + sqlite3SelectDelete(db, p->x.pSelect);
|
| + }else{
|
| + sqlite3ExprListDelete(db, p->x.pList);
|
| + }
|
| + }
|
| + if( !ExprHasProperty(p, EP_Static) ){
|
| + sqlite3DbFree(db, p);
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Return the number of bytes allocated for the expression structure
|
| +** passed as the first argument. This is always one of EXPR_FULLSIZE,
|
| +** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
|
| +*/
|
| +static int exprStructSize(Expr *p){
|
| + if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
|
| + if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
|
| + return EXPR_FULLSIZE;
|
| +}
|
| +
|
| +/*
|
| +** The dupedExpr*Size() routines each return the number of bytes required
|
| +** to store a copy of an expression or expression tree. They differ in
|
| +** how much of the tree is measured.
|
| +**
|
| +** dupedExprStructSize() Size of only the Expr structure
|
| +** dupedExprNodeSize() Size of Expr + space for token
|
| +** dupedExprSize() Expr + token + subtree components
|
| +**
|
| +***************************************************************************
|
| +**
|
| +** The dupedExprStructSize() function returns two values OR-ed together:
|
| +** (1) the space required for a copy of the Expr structure only and
|
| +** (2) the EP_xxx flags that indicate what the structure size should be.
|
| +** The return values is always one of:
|
| +**
|
| +** EXPR_FULLSIZE
|
| +** EXPR_REDUCEDSIZE | EP_Reduced
|
| +** EXPR_TOKENONLYSIZE | EP_TokenOnly
|
| +**
|
| +** The size of the structure can be found by masking the return value
|
| +** of this routine with 0xfff. The flags can be found by masking the
|
| +** return value with EP_Reduced|EP_TokenOnly.
|
| +**
|
| +** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
|
| +** (unreduced) Expr objects as they or originally constructed by the parser.
|
| +** During expression analysis, extra information is computed and moved into
|
| +** later parts of teh Expr object and that extra information might get chopped
|
| +** off if the expression is reduced. Note also that it does not work to
|
| +** make a EXPRDUP_REDUCE copy of a reduced expression. It is only legal
|
| +** to reduce a pristine expression tree from the parser. The implementation
|
| +** of dupedExprStructSize() contain multiple assert() statements that attempt
|
| +** to enforce this constraint.
|
| +*/
|
| +static int dupedExprStructSize(Expr *p, int flags){
|
| + int nSize;
|
| + assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
|
| + if( 0==(flags&EXPRDUP_REDUCE) ){
|
| + nSize = EXPR_FULLSIZE;
|
| + }else{
|
| + assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) );
|
| + assert( !ExprHasProperty(p, EP_FromJoin) );
|
| + assert( (p->flags2 & EP2_MallocedToken)==0 );
|
| + assert( (p->flags2 & EP2_Irreducible)==0 );
|
| + if( p->pLeft || p->pRight || p->pColl || p->x.pList ){
|
| + nSize = EXPR_REDUCEDSIZE | EP_Reduced;
|
| + }else{
|
| + nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
|
| + }
|
| + }
|
| + return nSize;
|
| +}
|
| +
|
| +/*
|
| +** This function returns the space in bytes required to store the copy
|
| +** of the Expr structure and a copy of the Expr.u.zToken string (if that
|
| +** string is defined.)
|
| +*/
|
| +static int dupedExprNodeSize(Expr *p, int flags){
|
| + int nByte = dupedExprStructSize(p, flags) & 0xfff;
|
| + if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
|
| + nByte += sqlite3Strlen30(p->u.zToken)+1;
|
| + }
|
| + return ROUND8(nByte);
|
| +}
|
| +
|
| +/*
|
| +** Return the number of bytes required to create a duplicate of the
|
| +** expression passed as the first argument. The second argument is a
|
| +** mask containing EXPRDUP_XXX flags.
|
| +**
|
| +** The value returned includes space to create a copy of the Expr struct
|
| +** itself and the buffer referred to by Expr.u.zToken, if any.
|
| +**
|
| +** If the EXPRDUP_REDUCE flag is set, then the return value includes
|
| +** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
|
| +** and Expr.pRight variables (but not for any structures pointed to or
|
| +** descended from the Expr.x.pList or Expr.x.pSelect variables).
|
| +*/
|
| +static int dupedExprSize(Expr *p, int flags){
|
| + int nByte = 0;
|
| + if( p ){
|
| + nByte = dupedExprNodeSize(p, flags);
|
| + if( flags&EXPRDUP_REDUCE ){
|
| + nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
|
| + }
|
| + }
|
| + return nByte;
|
| +}
|
| +
|
| +/*
|
| +** This function is similar to sqlite3ExprDup(), except that if pzBuffer
|
| +** is not NULL then *pzBuffer is assumed to point to a buffer large enough
|
| +** to store the copy of expression p, the copies of p->u.zToken
|
| +** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
|
| +** if any. Before returning, *pzBuffer is set to the first byte passed the
|
| +** portion of the buffer copied into by this function.
|
| +*/
|
| +static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){
|
| + Expr *pNew = 0; /* Value to return */
|
| + if( p ){
|
| + const int isReduced = (flags&EXPRDUP_REDUCE);
|
| + u8 *zAlloc;
|
| + u32 staticFlag = 0;
|
| +
|
| + assert( pzBuffer==0 || isReduced );
|
| +
|
| + /* Figure out where to write the new Expr structure. */
|
| + if( pzBuffer ){
|
| + zAlloc = *pzBuffer;
|
| + staticFlag = EP_Static;
|
| + }else{
|
| + zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags));
|
| + }
|
| + pNew = (Expr *)zAlloc;
|
| +
|
| + if( pNew ){
|
| + /* Set nNewSize to the size allocated for the structure pointed to
|
| + ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
|
| + ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
|
| + ** by the copy of the p->u.zToken string (if any).
|
| + */
|
| + const unsigned nStructSize = dupedExprStructSize(p, flags);
|
| + const int nNewSize = nStructSize & 0xfff;
|
| + int nToken;
|
| + if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
|
| + nToken = sqlite3Strlen30(p->u.zToken) + 1;
|
| + }else{
|
| + nToken = 0;
|
| + }
|
| + if( isReduced ){
|
| + assert( ExprHasProperty(p, EP_Reduced)==0 );
|
| + memcpy(zAlloc, p, nNewSize);
|
| + }else{
|
| + int nSize = exprStructSize(p);
|
| + memcpy(zAlloc, p, nSize);
|
| + if( EXPR_FULLSIZE>nSize ){
|
| + memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
|
| + }
|
| + }
|
| +
|
| + /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
|
| + pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static);
|
| + pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
|
| + pNew->flags |= staticFlag;
|
| +
|
| + /* Copy the p->u.zToken string, if any. */
|
| + if( nToken ){
|
| + char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
|
| + memcpy(zToken, p->u.zToken, nToken);
|
| + }
|
| +
|
| + if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){
|
| + /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
|
| + if( ExprHasProperty(p, EP_xIsSelect) ){
|
| + pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced);
|
| + }else{
|
| + pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced);
|
| + }
|
| + }
|
| +
|
| + /* Fill in pNew->pLeft and pNew->pRight. */
|
| + if( ExprHasAnyProperty(pNew, EP_Reduced|EP_TokenOnly) ){
|
| + zAlloc += dupedExprNodeSize(p, flags);
|
| + if( ExprHasProperty(pNew, EP_Reduced) ){
|
| + pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc);
|
| + pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc);
|
| + }
|
| + if( pzBuffer ){
|
| + *pzBuffer = zAlloc;
|
| + }
|
| + }else{
|
| + pNew->flags2 = 0;
|
| + if( !ExprHasAnyProperty(p, EP_TokenOnly) ){
|
| + pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
|
| + pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
|
| + }
|
| + }
|
| +
|
| + }
|
| + }
|
| + return pNew;
|
| +}
|
| +
|
| +/*
|
| +** The following group of routines make deep copies of expressions,
|
| +** expression lists, ID lists, and select statements. The copies can
|
| +** be deleted (by being passed to their respective ...Delete() routines)
|
| +** without effecting the originals.
|
| +**
|
| +** The expression list, ID, and source lists return by sqlite3ExprListDup(),
|
| +** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
|
| +** by subsequent calls to sqlite*ListAppend() routines.
|
| +**
|
| +** Any tables that the SrcList might point to are not duplicated.
|
| +**
|
| +** The flags parameter contains a combination of the EXPRDUP_XXX flags.
|
| +** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
|
| +** truncated version of the usual Expr structure that will be stored as
|
| +** part of the in-memory representation of the database schema.
|
| +*/
|
| +Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
|
| + return exprDup(db, p, flags, 0);
|
| +}
|
| +ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
|
| + ExprList *pNew;
|
| + struct ExprList_item *pItem, *pOldItem;
|
| + int i;
|
| + if( p==0 ) return 0;
|
| + pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
|
| + if( pNew==0 ) return 0;
|
| + pNew->iECursor = 0;
|
| + pNew->nExpr = pNew->nAlloc = p->nExpr;
|
| + pNew->a = pItem = sqlite3DbMallocRaw(db, p->nExpr*sizeof(p->a[0]) );
|
| + if( pItem==0 ){
|
| + sqlite3DbFree(db, pNew);
|
| + return 0;
|
| + }
|
| + pOldItem = p->a;
|
| + for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
|
| + Expr *pOldExpr = pOldItem->pExpr;
|
| + pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
|
| + pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
|
| + pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan);
|
| + pItem->sortOrder = pOldItem->sortOrder;
|
| + pItem->done = 0;
|
| + pItem->iCol = pOldItem->iCol;
|
| + pItem->iAlias = pOldItem->iAlias;
|
| + }
|
| + return pNew;
|
| +}
|
| +
|
| +/*
|
| +** If cursors, triggers, views and subqueries are all omitted from
|
| +** the build, then none of the following routines, except for
|
| +** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
|
| +** called with a NULL argument.
|
| +*/
|
| +#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
|
| + || !defined(SQLITE_OMIT_SUBQUERY)
|
| +SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
|
| + SrcList *pNew;
|
| + int i;
|
| + int nByte;
|
| + if( p==0 ) return 0;
|
| + nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
|
| + pNew = sqlite3DbMallocRaw(db, nByte );
|
| + if( pNew==0 ) return 0;
|
| + pNew->nSrc = pNew->nAlloc = p->nSrc;
|
| + for(i=0; i<p->nSrc; i++){
|
| + struct SrcList_item *pNewItem = &pNew->a[i];
|
| + struct SrcList_item *pOldItem = &p->a[i];
|
| + Table *pTab;
|
| + pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
|
| + pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
|
| + pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
|
| + pNewItem->jointype = pOldItem->jointype;
|
| + pNewItem->iCursor = pOldItem->iCursor;
|
| + pNewItem->isPopulated = pOldItem->isPopulated;
|
| + pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex);
|
| + pNewItem->notIndexed = pOldItem->notIndexed;
|
| + pNewItem->pIndex = pOldItem->pIndex;
|
| + pTab = pNewItem->pTab = pOldItem->pTab;
|
| + if( pTab ){
|
| + pTab->nRef++;
|
| + }
|
| + pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
|
| + pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
|
| + pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
|
| + pNewItem->colUsed = pOldItem->colUsed;
|
| + }
|
| + return pNew;
|
| +}
|
| +IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
|
| + IdList *pNew;
|
| + int i;
|
| + if( p==0 ) return 0;
|
| + pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
|
| + if( pNew==0 ) return 0;
|
| + pNew->nId = pNew->nAlloc = p->nId;
|
| + pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) );
|
| + if( pNew->a==0 ){
|
| + sqlite3DbFree(db, pNew);
|
| + return 0;
|
| + }
|
| + for(i=0; i<p->nId; i++){
|
| + struct IdList_item *pNewItem = &pNew->a[i];
|
| + struct IdList_item *pOldItem = &p->a[i];
|
| + pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
|
| + pNewItem->idx = pOldItem->idx;
|
| + }
|
| + return pNew;
|
| +}
|
| +Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
|
| + Select *pNew;
|
| + if( p==0 ) return 0;
|
| + pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
|
| + if( pNew==0 ) return 0;
|
| + pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
|
| + pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
|
| + pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
|
| + pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
|
| + pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
|
| + pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
|
| + pNew->op = p->op;
|
| + pNew->pPrior = sqlite3SelectDup(db, p->pPrior, flags);
|
| + pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
|
| + pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags);
|
| + pNew->iLimit = 0;
|
| + pNew->iOffset = 0;
|
| + pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
|
| + pNew->pRightmost = 0;
|
| + pNew->addrOpenEphm[0] = -1;
|
| + pNew->addrOpenEphm[1] = -1;
|
| + pNew->addrOpenEphm[2] = -1;
|
| + return pNew;
|
| +}
|
| +#else
|
| +Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
|
| + assert( p==0 );
|
| + return 0;
|
| +}
|
| +#endif
|
| +
|
| +
|
| +/*
|
| +** Add a new element to the end of an expression list. If pList is
|
| +** initially NULL, then create a new expression list.
|
| +**
|
| +** If a memory allocation error occurs, the entire list is freed and
|
| +** NULL is returned. If non-NULL is returned, then it is guaranteed
|
| +** that the new entry was successfully appended.
|
| +*/
|
| +ExprList *sqlite3ExprListAppend(
|
| + Parse *pParse, /* Parsing context */
|
| + ExprList *pList, /* List to which to append. Might be NULL */
|
| + Expr *pExpr /* Expression to be appended. Might be NULL */
|
| +){
|
| + sqlite3 *db = pParse->db;
|
| + if( pList==0 ){
|
| + pList = sqlite3DbMallocZero(db, sizeof(ExprList) );
|
| + if( pList==0 ){
|
| + goto no_mem;
|
| + }
|
| + assert( pList->nAlloc==0 );
|
| + }
|
| + if( pList->nAlloc<=pList->nExpr ){
|
| + struct ExprList_item *a;
|
| + int n = pList->nAlloc*2 + 4;
|
| + a = sqlite3DbRealloc(db, pList->a, n*sizeof(pList->a[0]));
|
| + if( a==0 ){
|
| + goto no_mem;
|
| + }
|
| + pList->a = a;
|
| + pList->nAlloc = sqlite3DbMallocSize(db, a)/sizeof(a[0]);
|
| + }
|
| + assert( pList->a!=0 );
|
| + if( 1 ){
|
| + struct ExprList_item *pItem = &pList->a[pList->nExpr++];
|
| + memset(pItem, 0, sizeof(*pItem));
|
| + pItem->pExpr = pExpr;
|
| + }
|
| + return pList;
|
| +
|
| +no_mem:
|
| + /* Avoid leaking memory if malloc has failed. */
|
| + sqlite3ExprDelete(db, pExpr);
|
| + sqlite3ExprListDelete(db, pList);
|
| + return 0;
|
| +}
|
| +
|
| +/*
|
| +** Set the ExprList.a[].zName element of the most recently added item
|
| +** on the expression list.
|
| +**
|
| +** pList might be NULL following an OOM error. But pName should never be
|
| +** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag
|
| +** is set.
|
| +*/
|
| +void sqlite3ExprListSetName(
|
| + Parse *pParse, /* Parsing context */
|
| + ExprList *pList, /* List to which to add the span. */
|
| + Token *pName, /* Name to be added */
|
| + int dequote /* True to cause the name to be dequoted */
|
| +){
|
| + assert( pList!=0 || pParse->db->mallocFailed!=0 );
|
| + if( pList ){
|
| + struct ExprList_item *pItem;
|
| + assert( pList->nExpr>0 );
|
| + pItem = &pList->a[pList->nExpr-1];
|
| + assert( pItem->zName==0 );
|
| + pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
|
| + if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName);
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Set the ExprList.a[].zSpan element of the most recently added item
|
| +** on the expression list.
|
| +**
|
| +** pList might be NULL following an OOM error. But pSpan should never be
|
| +** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag
|
| +** is set.
|
| +*/
|
| +void sqlite3ExprListSetSpan(
|
| + Parse *pParse, /* Parsing context */
|
| + ExprList *pList, /* List to which to add the span. */
|
| + ExprSpan *pSpan /* The span to be added */
|
| +){
|
| + sqlite3 *db = pParse->db;
|
| + assert( pList!=0 || db->mallocFailed!=0 );
|
| + if( pList ){
|
| + struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
|
| + assert( pList->nExpr>0 );
|
| + assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr );
|
| + sqlite3DbFree(db, pItem->zSpan);
|
| + pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
|
| + (int)(pSpan->zEnd - pSpan->zStart));
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** If the expression list pEList contains more than iLimit elements,
|
| +** leave an error message in pParse.
|
| +*/
|
| +void sqlite3ExprListCheckLength(
|
| + Parse *pParse,
|
| + ExprList *pEList,
|
| + const char *zObject
|
| +){
|
| + int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
|
| + testcase( pEList && pEList->nExpr==mx );
|
| + testcase( pEList && pEList->nExpr==mx+1 );
|
| + if( pEList && pEList->nExpr>mx ){
|
| + sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Delete an entire expression list.
|
| +*/
|
| +void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
|
| + int i;
|
| + struct ExprList_item *pItem;
|
| + if( pList==0 ) return;
|
| + assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) );
|
| + assert( pList->nExpr<=pList->nAlloc );
|
| + for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
|
| + sqlite3ExprDelete(db, pItem->pExpr);
|
| + sqlite3DbFree(db, pItem->zName);
|
| + sqlite3DbFree(db, pItem->zSpan);
|
| + }
|
| + sqlite3DbFree(db, pList->a);
|
| + sqlite3DbFree(db, pList);
|
| +}
|
| +
|
| +/*
|
| +** These routines are Walker callbacks. Walker.u.pi is a pointer
|
| +** to an integer. These routines are checking an expression to see
|
| +** if it is a constant. Set *Walker.u.pi to 0 if the expression is
|
| +** not constant.
|
| +**
|
| +** These callback routines are used to implement the following:
|
| +**
|
| +** sqlite3ExprIsConstant()
|
| +** sqlite3ExprIsConstantNotJoin()
|
| +** sqlite3ExprIsConstantOrFunction()
|
| +**
|
| +*/
|
| +static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
|
| +
|
| + /* If pWalker->u.i is 3 then any term of the expression that comes from
|
| + ** the ON or USING clauses of a join disqualifies the expression
|
| + ** from being considered constant. */
|
| + if( pWalker->u.i==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){
|
| + pWalker->u.i = 0;
|
| + return WRC_Abort;
|
| + }
|
| +
|
| + switch( pExpr->op ){
|
| + /* Consider functions to be constant if all their arguments are constant
|
| + ** and pWalker->u.i==2 */
|
| + case TK_FUNCTION:
|
| + if( pWalker->u.i==2 ) return 0;
|
| + /* Fall through */
|
| + case TK_ID:
|
| + case TK_COLUMN:
|
| + case TK_AGG_FUNCTION:
|
| + case TK_AGG_COLUMN:
|
| + testcase( pExpr->op==TK_ID );
|
| + testcase( pExpr->op==TK_COLUMN );
|
| + testcase( pExpr->op==TK_AGG_FUNCTION );
|
| + testcase( pExpr->op==TK_AGG_COLUMN );
|
| + pWalker->u.i = 0;
|
| + return WRC_Abort;
|
| + default:
|
| + testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */
|
| + testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */
|
| + return WRC_Continue;
|
| + }
|
| +}
|
| +static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){
|
| + UNUSED_PARAMETER(NotUsed);
|
| + pWalker->u.i = 0;
|
| + return WRC_Abort;
|
| +}
|
| +static int exprIsConst(Expr *p, int initFlag){
|
| + Walker w;
|
| + w.u.i = initFlag;
|
| + w.xExprCallback = exprNodeIsConstant;
|
| + w.xSelectCallback = selectNodeIsConstant;
|
| + sqlite3WalkExpr(&w, p);
|
| + return w.u.i;
|
| +}
|
| +
|
| +/*
|
| +** Walk an expression tree. Return 1 if the expression is constant
|
| +** and 0 if it involves variables or function calls.
|
| +**
|
| +** For the purposes of this function, a double-quoted string (ex: "abc")
|
| +** is considered a variable but a single-quoted string (ex: 'abc') is
|
| +** a constant.
|
| +*/
|
| +int sqlite3ExprIsConstant(Expr *p){
|
| + return exprIsConst(p, 1);
|
| +}
|
| +
|
| +/*
|
| +** Walk an expression tree. Return 1 if the expression is constant
|
| +** that does no originate from the ON or USING clauses of a join.
|
| +** Return 0 if it involves variables or function calls or terms from
|
| +** an ON or USING clause.
|
| +*/
|
| +int sqlite3ExprIsConstantNotJoin(Expr *p){
|
| + return exprIsConst(p, 3);
|
| +}
|
| +
|
| +/*
|
| +** Walk an expression tree. Return 1 if the expression is constant
|
| +** or a function call with constant arguments. Return and 0 if there
|
| +** are any variables.
|
| +**
|
| +** For the purposes of this function, a double-quoted string (ex: "abc")
|
| +** is considered a variable but a single-quoted string (ex: 'abc') is
|
| +** a constant.
|
| +*/
|
| +int sqlite3ExprIsConstantOrFunction(Expr *p){
|
| + return exprIsConst(p, 2);
|
| +}
|
| +
|
| +/*
|
| +** If the expression p codes a constant integer that is small enough
|
| +** to fit in a 32-bit integer, return 1 and put the value of the integer
|
| +** in *pValue. If the expression is not an integer or if it is too big
|
| +** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
|
| +*/
|
| +int sqlite3ExprIsInteger(Expr *p, int *pValue){
|
| + int rc = 0;
|
| +
|
| + /* If an expression is an integer literal that fits in a signed 32-bit
|
| + ** integer, then the EP_IntValue flag will have already been set */
|
| + assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
|
| + || sqlite3GetInt32(p->u.zToken, &rc)==0 );
|
| +
|
| + if( p->flags & EP_IntValue ){
|
| + *pValue = p->u.iValue;
|
| + return 1;
|
| + }
|
| + switch( p->op ){
|
| + case TK_UPLUS: {
|
| + rc = sqlite3ExprIsInteger(p->pLeft, pValue);
|
| + break;
|
| + }
|
| + case TK_UMINUS: {
|
| + int v;
|
| + if( sqlite3ExprIsInteger(p->pLeft, &v) ){
|
| + *pValue = -v;
|
| + rc = 1;
|
| + }
|
| + break;
|
| + }
|
| + default: break;
|
| + }
|
| + return rc;
|
| +}
|
| +
|
| +/*
|
| +** Return FALSE if there is no chance that the expression can be NULL.
|
| +**
|
| +** If the expression might be NULL or if the expression is too complex
|
| +** to tell return TRUE.
|
| +**
|
| +** This routine is used as an optimization, to skip OP_IsNull opcodes
|
| +** when we know that a value cannot be NULL. Hence, a false positive
|
| +** (returning TRUE when in fact the expression can never be NULL) might
|
| +** be a small performance hit but is otherwise harmless. On the other
|
| +** hand, a false negative (returning FALSE when the result could be NULL)
|
| +** will likely result in an incorrect answer. So when in doubt, return
|
| +** TRUE.
|
| +*/
|
| +int sqlite3ExprCanBeNull(const Expr *p){
|
| + u8 op;
|
| + while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
|
| + op = p->op;
|
| + if( op==TK_REGISTER ) op = p->op2;
|
| + switch( op ){
|
| + case TK_INTEGER:
|
| + case TK_STRING:
|
| + case TK_FLOAT:
|
| + case TK_BLOB:
|
| + return 0;
|
| + default:
|
| + return 1;
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Generate an OP_IsNull instruction that tests register iReg and jumps
|
| +** to location iDest if the value in iReg is NULL. The value in iReg
|
| +** was computed by pExpr. If we can look at pExpr at compile-time and
|
| +** determine that it can never generate a NULL, then the OP_IsNull operation
|
| +** can be omitted.
|
| +*/
|
| +void sqlite3ExprCodeIsNullJump(
|
| + Vdbe *v, /* The VDBE under construction */
|
| + const Expr *pExpr, /* Only generate OP_IsNull if this expr can be NULL */
|
| + int iReg, /* Test the value in this register for NULL */
|
| + int iDest /* Jump here if the value is null */
|
| +){
|
| + if( sqlite3ExprCanBeNull(pExpr) ){
|
| + sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iDest);
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Return TRUE if the given expression is a constant which would be
|
| +** unchanged by OP_Affinity with the affinity given in the second
|
| +** argument.
|
| +**
|
| +** This routine is used to determine if the OP_Affinity operation
|
| +** can be omitted. When in doubt return FALSE. A false negative
|
| +** is harmless. A false positive, however, can result in the wrong
|
| +** answer.
|
| +*/
|
| +int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
|
| + u8 op;
|
| + if( aff==SQLITE_AFF_NONE ) return 1;
|
| + while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
|
| + op = p->op;
|
| + if( op==TK_REGISTER ) op = p->op2;
|
| + switch( op ){
|
| + case TK_INTEGER: {
|
| + return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC;
|
| + }
|
| + case TK_FLOAT: {
|
| + return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC;
|
| + }
|
| + case TK_STRING: {
|
| + return aff==SQLITE_AFF_TEXT;
|
| + }
|
| + case TK_BLOB: {
|
| + return 1;
|
| + }
|
| + case TK_COLUMN: {
|
| + assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */
|
| + return p->iColumn<0
|
| + && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC);
|
| + }
|
| + default: {
|
| + return 0;
|
| + }
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Return TRUE if the given string is a row-id column name.
|
| +*/
|
| +int sqlite3IsRowid(const char *z){
|
| + if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
|
| + if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
|
| + if( sqlite3StrICmp(z, "OID")==0 ) return 1;
|
| + return 0;
|
| +}
|
| +
|
| +/*
|
| +** Return true if we are able to the IN operator optimization on a
|
| +** query of the form
|
| +**
|
| +** x IN (SELECT ...)
|
| +**
|
| +** Where the SELECT... clause is as specified by the parameter to this
|
| +** routine.
|
| +**
|
| +** The Select object passed in has already been preprocessed and no
|
| +** errors have been found.
|
| +*/
|
| +#ifndef SQLITE_OMIT_SUBQUERY
|
| +static int isCandidateForInOpt(Select *p){
|
| + SrcList *pSrc;
|
| + ExprList *pEList;
|
| + Table *pTab;
|
| + if( p==0 ) return 0; /* right-hand side of IN is SELECT */
|
| + if( p->pPrior ) return 0; /* Not a compound SELECT */
|
| + if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
|
| + testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
|
| + testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
|
| + return 0; /* No DISTINCT keyword and no aggregate functions */
|
| + }
|
| + assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */
|
| + if( p->pLimit ) return 0; /* Has no LIMIT clause */
|
| + assert( p->pOffset==0 ); /* No LIMIT means no OFFSET */
|
| + if( p->pWhere ) return 0; /* Has no WHERE clause */
|
| + pSrc = p->pSrc;
|
| + assert( pSrc!=0 );
|
| + if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */
|
| + if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */
|
| + pTab = pSrc->a[0].pTab;
|
| + if( NEVER(pTab==0) ) return 0;
|
| + assert( pTab->pSelect==0 ); /* FROM clause is not a view */
|
| + if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */
|
| + pEList = p->pEList;
|
| + if( pEList->nExpr!=1 ) return 0; /* One column in the result set */
|
| + if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */
|
| + return 1;
|
| +}
|
| +#endif /* SQLITE_OMIT_SUBQUERY */
|
| +
|
| +/*
|
| +** This function is used by the implementation of the IN (...) operator.
|
| +** It's job is to find or create a b-tree structure that may be used
|
| +** either to test for membership of the (...) set or to iterate through
|
| +** its members, skipping duplicates.
|
| +**
|
| +** The index of the cursor opened on the b-tree (database table, database index
|
| +** or ephermal table) is stored in pX->iTable before this function returns.
|
| +** The returned value of this function indicates the b-tree type, as follows:
|
| +**
|
| +** IN_INDEX_ROWID - The cursor was opened on a database table.
|
| +** IN_INDEX_INDEX - The cursor was opened on a database index.
|
| +** IN_INDEX_EPH - The cursor was opened on a specially created and
|
| +** populated epheremal table.
|
| +**
|
| +** An existing b-tree may only be used if the SELECT is of the simple
|
| +** form:
|
| +**
|
| +** SELECT <column> FROM <table>
|
| +**
|
| +** If the prNotFound parameter is 0, then the b-tree will be used to iterate
|
| +** through the set members, skipping any duplicates. In this case an
|
| +** epheremal table must be used unless the selected <column> is guaranteed
|
| +** to be unique - either because it is an INTEGER PRIMARY KEY or it
|
| +** has a UNIQUE constraint or UNIQUE index.
|
| +**
|
| +** If the prNotFound parameter is not 0, then the b-tree will be used
|
| +** for fast set membership tests. In this case an epheremal table must
|
| +** be used unless <column> is an INTEGER PRIMARY KEY or an index can
|
| +** be found with <column> as its left-most column.
|
| +**
|
| +** When the b-tree is being used for membership tests, the calling function
|
| +** needs to know whether or not the structure contains an SQL NULL
|
| +** value in order to correctly evaluate expressions like "X IN (Y, Z)".
|
| +** If there is any chance that the (...) might contain a NULL value at
|
| +** runtime, then a register is allocated and the register number written
|
| +** to *prNotFound. If there is no chance that the (...) contains a
|
| +** NULL value, then *prNotFound is left unchanged.
|
| +**
|
| +** If a register is allocated and its location stored in *prNotFound, then
|
| +** its initial value is NULL. If the (...) does not remain constant
|
| +** for the duration of the query (i.e. the SELECT within the (...)
|
| +** is a correlated subquery) then the value of the allocated register is
|
| +** reset to NULL each time the subquery is rerun. This allows the
|
| +** caller to use vdbe code equivalent to the following:
|
| +**
|
| +** if( register==NULL ){
|
| +** has_null = <test if data structure contains null>
|
| +** register = 1
|
| +** }
|
| +**
|
| +** in order to avoid running the <test if data structure contains null>
|
| +** test more often than is necessary.
|
| +*/
|
| +#ifndef SQLITE_OMIT_SUBQUERY
|
| +int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){
|
| + Select *p; /* SELECT to the right of IN operator */
|
| + int eType = 0; /* Type of RHS table. IN_INDEX_* */
|
| + int iTab = pParse->nTab++; /* Cursor of the RHS table */
|
| + int mustBeUnique = (prNotFound==0); /* True if RHS must be unique */
|
| +
|
| + assert( pX->op==TK_IN );
|
| +
|
| + /* Check to see if an existing table or index can be used to
|
| + ** satisfy the query. This is preferable to generating a new
|
| + ** ephemeral table.
|
| + */
|
| + p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0);
|
| + if( ALWAYS(pParse->nErr==0) && isCandidateForInOpt(p) ){
|
| + sqlite3 *db = pParse->db; /* Database connection */
|
| + Expr *pExpr = p->pEList->a[0].pExpr; /* Expression <column> */
|
| + int iCol = pExpr->iColumn; /* Index of column <column> */
|
| + Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */
|
| + Table *pTab = p->pSrc->a[0].pTab; /* Table <table>. */
|
| + int iDb; /* Database idx for pTab */
|
| +
|
| + /* Code an OP_VerifyCookie and OP_TableLock for <table>. */
|
| + iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
|
| + sqlite3CodeVerifySchema(pParse, iDb);
|
| + sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
|
| +
|
| + /* This function is only called from two places. In both cases the vdbe
|
| + ** has already been allocated. So assume sqlite3GetVdbe() is always
|
| + ** successful here.
|
| + */
|
| + assert(v);
|
| + if( iCol<0 ){
|
| + int iMem = ++pParse->nMem;
|
| + int iAddr;
|
| +
|
| + iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem);
|
| + sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem);
|
| +
|
| + sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
|
| + eType = IN_INDEX_ROWID;
|
| +
|
| + sqlite3VdbeJumpHere(v, iAddr);
|
| + }else{
|
| + Index *pIdx; /* Iterator variable */
|
| +
|
| + /* The collation sequence used by the comparison. If an index is to
|
| + ** be used in place of a temp-table, it must be ordered according
|
| + ** to this collation sequence. */
|
| + CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr);
|
| +
|
| + /* Check that the affinity that will be used to perform the
|
| + ** comparison is the same as the affinity of the column. If
|
| + ** it is not, it is not possible to use any index.
|
| + */
|
| + char aff = comparisonAffinity(pX);
|
| + int affinity_ok = (pTab->aCol[iCol].affinity==aff||aff==SQLITE_AFF_NONE);
|
| +
|
| + for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){
|
| + if( (pIdx->aiColumn[0]==iCol)
|
| + && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq
|
| + && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None))
|
| + ){
|
| + int iMem = ++pParse->nMem;
|
| + int iAddr;
|
| + char *pKey;
|
| +
|
| + pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx);
|
| + iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem);
|
| + sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem);
|
| +
|
| + sqlite3VdbeAddOp4(v, OP_OpenRead, iTab, pIdx->tnum, iDb,
|
| + pKey,P4_KEYINFO_HANDOFF);
|
| + VdbeComment((v, "%s", pIdx->zName));
|
| + eType = IN_INDEX_INDEX;
|
| +
|
| + sqlite3VdbeJumpHere(v, iAddr);
|
| + if( prNotFound && !pTab->aCol[iCol].notNull ){
|
| + *prNotFound = ++pParse->nMem;
|
| + }
|
| + }
|
| + }
|
| + }
|
| + }
|
| +
|
| + if( eType==0 ){
|
| + /* Could not found an existing table or index to use as the RHS b-tree.
|
| + ** We will have to generate an ephemeral table to do the job.
|
| + */
|
| + double savedNQueryLoop = pParse->nQueryLoop;
|
| + int rMayHaveNull = 0;
|
| + eType = IN_INDEX_EPH;
|
| + if( prNotFound ){
|
| + *prNotFound = rMayHaveNull = ++pParse->nMem;
|
| + }else{
|
| + testcase( pParse->nQueryLoop>(double)1 );
|
| + pParse->nQueryLoop = (double)1;
|
| + if( pX->pLeft->iColumn<0 && !ExprHasAnyProperty(pX, EP_xIsSelect) ){
|
| + eType = IN_INDEX_ROWID;
|
| + }
|
| + }
|
| + sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
|
| + pParse->nQueryLoop = savedNQueryLoop;
|
| + }else{
|
| + pX->iTable = iTab;
|
| + }
|
| + return eType;
|
| +}
|
| +#endif
|
| +
|
| +/*
|
| +** Generate code for scalar subqueries used as a subquery expression, EXISTS,
|
| +** or IN operators. Examples:
|
| +**
|
| +** (SELECT a FROM b) -- subquery
|
| +** EXISTS (SELECT a FROM b) -- EXISTS subquery
|
| +** x IN (4,5,11) -- IN operator with list on right-hand side
|
| +** x IN (SELECT a FROM b) -- IN operator with subquery on the right
|
| +**
|
| +** The pExpr parameter describes the expression that contains the IN
|
| +** operator or subquery.
|
| +**
|
| +** If parameter isRowid is non-zero, then expression pExpr is guaranteed
|
| +** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference
|
| +** to some integer key column of a table B-Tree. In this case, use an
|
| +** intkey B-Tree to store the set of IN(...) values instead of the usual
|
| +** (slower) variable length keys B-Tree.
|
| +**
|
| +** If rMayHaveNull is non-zero, that means that the operation is an IN
|
| +** (not a SELECT or EXISTS) and that the RHS might contains NULLs.
|
| +** Furthermore, the IN is in a WHERE clause and that we really want
|
| +** to iterate over the RHS of the IN operator in order to quickly locate
|
| +** all corresponding LHS elements. All this routine does is initialize
|
| +** the register given by rMayHaveNull to NULL. Calling routines will take
|
| +** care of changing this register value to non-NULL if the RHS is NULL-free.
|
| +**
|
| +** If rMayHaveNull is zero, that means that the subquery is being used
|
| +** for membership testing only. There is no need to initialize any
|
| +** registers to indicate the presense or absence of NULLs on the RHS.
|
| +**
|
| +** For a SELECT or EXISTS operator, return the register that holds the
|
| +** result. For IN operators or if an error occurs, the return value is 0.
|
| +*/
|
| +#ifndef SQLITE_OMIT_SUBQUERY
|
| +int sqlite3CodeSubselect(
|
| + Parse *pParse, /* Parsing context */
|
| + Expr *pExpr, /* The IN, SELECT, or EXISTS operator */
|
| + int rMayHaveNull, /* Register that records whether NULLs exist in RHS */
|
| + int isRowid /* If true, LHS of IN operator is a rowid */
|
| +){
|
| + int testAddr = 0; /* One-time test address */
|
| + int rReg = 0; /* Register storing resulting */
|
| + Vdbe *v = sqlite3GetVdbe(pParse);
|
| + if( NEVER(v==0) ) return 0;
|
| + sqlite3ExprCachePush(pParse);
|
| +
|
| + /* This code must be run in its entirety every time it is encountered
|
| + ** if any of the following is true:
|
| + **
|
| + ** * The right-hand side is a correlated subquery
|
| + ** * The right-hand side is an expression list containing variables
|
| + ** * We are inside a trigger
|
| + **
|
| + ** If all of the above are false, then we can run this code just once
|
| + ** save the results, and reuse the same result on subsequent invocations.
|
| + */
|
| + if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->pTriggerTab ){
|
| + int mem = ++pParse->nMem;
|
| + sqlite3VdbeAddOp1(v, OP_If, mem);
|
| + testAddr = sqlite3VdbeAddOp2(v, OP_Integer, 1, mem);
|
| + assert( testAddr>0 || pParse->db->mallocFailed );
|
| + }
|
| +
|
| +#ifndef SQLITE_OMIT_EXPLAIN
|
| + if( pParse->explain==2 ){
|
| + char *zMsg = sqlite3MPrintf(
|
| + pParse->db, "EXECUTE %s%s SUBQUERY %d", testAddr?"":"CORRELATED ",
|
| + pExpr->op==TK_IN?"LIST":"SCALAR", pParse->iNextSelectId
|
| + );
|
| + sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
|
| + }
|
| +#endif
|
| +
|
| + switch( pExpr->op ){
|
| + case TK_IN: {
|
| + char affinity; /* Affinity of the LHS of the IN */
|
| + KeyInfo keyInfo; /* Keyinfo for the generated table */
|
| + int addr; /* Address of OP_OpenEphemeral instruction */
|
| + Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */
|
| +
|
| + if( rMayHaveNull ){
|
| + sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull);
|
| + }
|
| +
|
| + affinity = sqlite3ExprAffinity(pLeft);
|
| +
|
| + /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
|
| + ** expression it is handled the same way. An ephemeral table is
|
| + ** filled with single-field index keys representing the results
|
| + ** from the SELECT or the <exprlist>.
|
| + **
|
| + ** If the 'x' expression is a column value, or the SELECT...
|
| + ** statement returns a column value, then the affinity of that
|
| + ** column is used to build the index keys. If both 'x' and the
|
| + ** SELECT... statement are columns, then numeric affinity is used
|
| + ** if either column has NUMERIC or INTEGER affinity. If neither
|
| + ** 'x' nor the SELECT... statement are columns, then numeric affinity
|
| + ** is used.
|
| + */
|
| + pExpr->iTable = pParse->nTab++;
|
| + addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid);
|
| + if( rMayHaveNull==0 ) sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
|
| + memset(&keyInfo, 0, sizeof(keyInfo));
|
| + keyInfo.nField = 1;
|
| +
|
| + if( ExprHasProperty(pExpr, EP_xIsSelect) ){
|
| + /* Case 1: expr IN (SELECT ...)
|
| + **
|
| + ** Generate code to write the results of the select into the temporary
|
| + ** table allocated and opened above.
|
| + */
|
| + SelectDest dest;
|
| + ExprList *pEList;
|
| +
|
| + assert( !isRowid );
|
| + sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
|
| + dest.affinity = (u8)affinity;
|
| + assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
|
| + pExpr->x.pSelect->iLimit = 0;
|
| + if( sqlite3Select(pParse, pExpr->x.pSelect, &dest) ){
|
| + return 0;
|
| + }
|
| + pEList = pExpr->x.pSelect->pEList;
|
| + if( ALWAYS(pEList!=0 && pEList->nExpr>0) ){
|
| + keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
|
| + pEList->a[0].pExpr);
|
| + }
|
| + }else if( ALWAYS(pExpr->x.pList!=0) ){
|
| + /* Case 2: expr IN (exprlist)
|
| + **
|
| + ** For each expression, build an index key from the evaluation and
|
| + ** store it in the temporary table. If <expr> is a column, then use
|
| + ** that columns affinity when building index keys. If <expr> is not
|
| + ** a column, use numeric affinity.
|
| + */
|
| + int i;
|
| + ExprList *pList = pExpr->x.pList;
|
| + struct ExprList_item *pItem;
|
| + int r1, r2, r3;
|
| +
|
| + if( !affinity ){
|
| + affinity = SQLITE_AFF_NONE;
|
| + }
|
| + keyInfo.aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
|
| +
|
| + /* Loop through each expression in <exprlist>. */
|
| + r1 = sqlite3GetTempReg(pParse);
|
| + r2 = sqlite3GetTempReg(pParse);
|
| + sqlite3VdbeAddOp2(v, OP_Null, 0, r2);
|
| + for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
|
| + Expr *pE2 = pItem->pExpr;
|
| + int iValToIns;
|
| +
|
| + /* If the expression is not constant then we will need to
|
| + ** disable the test that was generated above that makes sure
|
| + ** this code only executes once. Because for a non-constant
|
| + ** expression we need to rerun this code each time.
|
| + */
|
| + if( testAddr && !sqlite3ExprIsConstant(pE2) ){
|
| + sqlite3VdbeChangeToNoop(v, testAddr-1, 2);
|
| + testAddr = 0;
|
| + }
|
| +
|
| + /* Evaluate the expression and insert it into the temp table */
|
| + if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){
|
| + sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns);
|
| + }else{
|
| + r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
|
| + if( isRowid ){
|
| + sqlite3VdbeAddOp2(v, OP_MustBeInt, r3,
|
| + sqlite3VdbeCurrentAddr(v)+2);
|
| + sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3);
|
| + }else{
|
| + sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
|
| + sqlite3ExprCacheAffinityChange(pParse, r3, 1);
|
| + sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2);
|
| + }
|
| + }
|
| + }
|
| + sqlite3ReleaseTempReg(pParse, r1);
|
| + sqlite3ReleaseTempReg(pParse, r2);
|
| + }
|
| + if( !isRowid ){
|
| + sqlite3VdbeChangeP4(v, addr, (void *)&keyInfo, P4_KEYINFO);
|
| + }
|
| + break;
|
| + }
|
| +
|
| + case TK_EXISTS:
|
| + case TK_SELECT:
|
| + default: {
|
| + /* If this has to be a scalar SELECT. Generate code to put the
|
| + ** value of this select in a memory cell and record the number
|
| + ** of the memory cell in iColumn. If this is an EXISTS, write
|
| + ** an integer 0 (not exists) or 1 (exists) into a memory cell
|
| + ** and record that memory cell in iColumn.
|
| + */
|
| + Select *pSel; /* SELECT statement to encode */
|
| + SelectDest dest; /* How to deal with SELECt result */
|
| +
|
| + testcase( pExpr->op==TK_EXISTS );
|
| + testcase( pExpr->op==TK_SELECT );
|
| + assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
|
| +
|
| + assert( ExprHasProperty(pExpr, EP_xIsSelect) );
|
| + pSel = pExpr->x.pSelect;
|
| + sqlite3SelectDestInit(&dest, 0, ++pParse->nMem);
|
| + if( pExpr->op==TK_SELECT ){
|
| + dest.eDest = SRT_Mem;
|
| + sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iParm);
|
| + VdbeComment((v, "Init subquery result"));
|
| + }else{
|
| + dest.eDest = SRT_Exists;
|
| + sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iParm);
|
| + VdbeComment((v, "Init EXISTS result"));
|
| + }
|
| + sqlite3ExprDelete(pParse->db, pSel->pLimit);
|
| + pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0,
|
| + &sqlite3IntTokens[1]);
|
| + pSel->iLimit = 0;
|
| + if( sqlite3Select(pParse, pSel, &dest) ){
|
| + return 0;
|
| + }
|
| + rReg = dest.iParm;
|
| + ExprSetIrreducible(pExpr);
|
| + break;
|
| + }
|
| + }
|
| +
|
| + if( testAddr ){
|
| + sqlite3VdbeJumpHere(v, testAddr-1);
|
| + }
|
| + sqlite3ExprCachePop(pParse, 1);
|
| +
|
| + return rReg;
|
| +}
|
| +#endif /* SQLITE_OMIT_SUBQUERY */
|
| +
|
| +#ifndef SQLITE_OMIT_SUBQUERY
|
| +/*
|
| +** Generate code for an IN expression.
|
| +**
|
| +** x IN (SELECT ...)
|
| +** x IN (value, value, ...)
|
| +**
|
| +** The left-hand side (LHS) is a scalar expression. The right-hand side (RHS)
|
| +** is an array of zero or more values. The expression is true if the LHS is
|
| +** contained within the RHS. The value of the expression is unknown (NULL)
|
| +** if the LHS is NULL or if the LHS is not contained within the RHS and the
|
| +** RHS contains one or more NULL values.
|
| +**
|
| +** This routine generates code will jump to destIfFalse if the LHS is not
|
| +** contained within the RHS. If due to NULLs we cannot determine if the LHS
|
| +** is contained in the RHS then jump to destIfNull. If the LHS is contained
|
| +** within the RHS then fall through.
|
| +*/
|
| +static void sqlite3ExprCodeIN(
|
| + Parse *pParse, /* Parsing and code generating context */
|
| + Expr *pExpr, /* The IN expression */
|
| + int destIfFalse, /* Jump here if LHS is not contained in the RHS */
|
| + int destIfNull /* Jump here if the results are unknown due to NULLs */
|
| +){
|
| + int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */
|
| + char affinity; /* Comparison affinity to use */
|
| + int eType; /* Type of the RHS */
|
| + int r1; /* Temporary use register */
|
| + Vdbe *v; /* Statement under construction */
|
| +
|
| + /* Compute the RHS. After this step, the table with cursor
|
| + ** pExpr->iTable will contains the values that make up the RHS.
|
| + */
|
| + v = pParse->pVdbe;
|
| + assert( v!=0 ); /* OOM detected prior to this routine */
|
| + VdbeNoopComment((v, "begin IN expr"));
|
| + eType = sqlite3FindInIndex(pParse, pExpr, &rRhsHasNull);
|
| +
|
| + /* Figure out the affinity to use to create a key from the results
|
| + ** of the expression. affinityStr stores a static string suitable for
|
| + ** P4 of OP_MakeRecord.
|
| + */
|
| + affinity = comparisonAffinity(pExpr);
|
| +
|
| + /* Code the LHS, the <expr> from "<expr> IN (...)".
|
| + */
|
| + sqlite3ExprCachePush(pParse);
|
| + r1 = sqlite3GetTempReg(pParse);
|
| + sqlite3ExprCode(pParse, pExpr->pLeft, r1);
|
| +
|
| + /* If the LHS is NULL, then the result is either false or NULL depending
|
| + ** on whether the RHS is empty or not, respectively.
|
| + */
|
| + if( destIfNull==destIfFalse ){
|
| + /* Shortcut for the common case where the false and NULL outcomes are
|
| + ** the same. */
|
| + sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull);
|
| + }else{
|
| + int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1);
|
| + sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse);
|
| + sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
|
| + sqlite3VdbeJumpHere(v, addr1);
|
| + }
|
| +
|
| + if( eType==IN_INDEX_ROWID ){
|
| + /* In this case, the RHS is the ROWID of table b-tree
|
| + */
|
| + sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse);
|
| + sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1);
|
| + }else{
|
| + /* In this case, the RHS is an index b-tree.
|
| + */
|
| + sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1);
|
| +
|
| + /* If the set membership test fails, then the result of the
|
| + ** "x IN (...)" expression must be either 0 or NULL. If the set
|
| + ** contains no NULL values, then the result is 0. If the set
|
| + ** contains one or more NULL values, then the result of the
|
| + ** expression is also NULL.
|
| + */
|
| + if( rRhsHasNull==0 || destIfFalse==destIfNull ){
|
| + /* This branch runs if it is known at compile time that the RHS
|
| + ** cannot contain NULL values. This happens as the result
|
| + ** of a "NOT NULL" constraint in the database schema.
|
| + **
|
| + ** Also run this branch if NULL is equivalent to FALSE
|
| + ** for this particular IN operator.
|
| + */
|
| + sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1);
|
| +
|
| + }else{
|
| + /* In this branch, the RHS of the IN might contain a NULL and
|
| + ** the presence of a NULL on the RHS makes a difference in the
|
| + ** outcome.
|
| + */
|
| + int j1, j2, j3;
|
| +
|
| + /* First check to see if the LHS is contained in the RHS. If so,
|
| + ** then the presence of NULLs in the RHS does not matter, so jump
|
| + ** over all of the code that follows.
|
| + */
|
| + j1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1);
|
| +
|
| + /* Here we begin generating code that runs if the LHS is not
|
| + ** contained within the RHS. Generate additional code that
|
| + ** tests the RHS for NULLs. If the RHS contains a NULL then
|
| + ** jump to destIfNull. If there are no NULLs in the RHS then
|
| + ** jump to destIfFalse.
|
| + */
|
| + j2 = sqlite3VdbeAddOp1(v, OP_NotNull, rRhsHasNull);
|
| + j3 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, rRhsHasNull, 1);
|
| + sqlite3VdbeAddOp2(v, OP_Integer, -1, rRhsHasNull);
|
| + sqlite3VdbeJumpHere(v, j3);
|
| + sqlite3VdbeAddOp2(v, OP_AddImm, rRhsHasNull, 1);
|
| + sqlite3VdbeJumpHere(v, j2);
|
| +
|
| + /* Jump to the appropriate target depending on whether or not
|
| + ** the RHS contains a NULL
|
| + */
|
| + sqlite3VdbeAddOp2(v, OP_If, rRhsHasNull, destIfNull);
|
| + sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
|
| +
|
| + /* The OP_Found at the top of this branch jumps here when true,
|
| + ** causing the overall IN expression evaluation to fall through.
|
| + */
|
| + sqlite3VdbeJumpHere(v, j1);
|
| + }
|
| + }
|
| + sqlite3ReleaseTempReg(pParse, r1);
|
| + sqlite3ExprCachePop(pParse, 1);
|
| + VdbeComment((v, "end IN expr"));
|
| +}
|
| +#endif /* SQLITE_OMIT_SUBQUERY */
|
| +
|
| +/*
|
| +** Duplicate an 8-byte value
|
| +*/
|
| +static char *dup8bytes(Vdbe *v, const char *in){
|
| + char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8);
|
| + if( out ){
|
| + memcpy(out, in, 8);
|
| + }
|
| + return out;
|
| +}
|
| +
|
| +#ifndef SQLITE_OMIT_FLOATING_POINT
|
| +/*
|
| +** Generate an instruction that will put the floating point
|
| +** value described by z[0..n-1] into register iMem.
|
| +**
|
| +** The z[] string will probably not be zero-terminated. But the
|
| +** z[n] character is guaranteed to be something that does not look
|
| +** like the continuation of the number.
|
| +*/
|
| +static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
|
| + if( ALWAYS(z!=0) ){
|
| + double value;
|
| + char *zV;
|
| + sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
|
| + assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
|
| + if( negateFlag ) value = -value;
|
| + zV = dup8bytes(v, (char*)&value);
|
| + sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL);
|
| + }
|
| +}
|
| +#endif
|
| +
|
| +
|
| +/*
|
| +** Generate an instruction that will put the integer describe by
|
| +** text z[0..n-1] into register iMem.
|
| +**
|
| +** Expr.u.zToken is always UTF8 and zero-terminated.
|
| +*/
|
| +static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
|
| + Vdbe *v = pParse->pVdbe;
|
| + if( pExpr->flags & EP_IntValue ){
|
| + int i = pExpr->u.iValue;
|
| + assert( i>=0 );
|
| + if( negFlag ) i = -i;
|
| + sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
|
| + }else{
|
| + int c;
|
| + i64 value;
|
| + const char *z = pExpr->u.zToken;
|
| + assert( z!=0 );
|
| + c = sqlite3Atoi64(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
|
| + if( c==0 || (c==2 && negFlag) ){
|
| + char *zV;
|
| + if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; }
|
| + zV = dup8bytes(v, (char*)&value);
|
| + sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64);
|
| + }else{
|
| +#ifdef SQLITE_OMIT_FLOATING_POINT
|
| + sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
|
| +#else
|
| + codeReal(v, z, negFlag, iMem);
|
| +#endif
|
| + }
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Clear a cache entry.
|
| +*/
|
| +static void cacheEntryClear(Parse *pParse, struct yColCache *p){
|
| + if( p->tempReg ){
|
| + if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
|
| + pParse->aTempReg[pParse->nTempReg++] = p->iReg;
|
| + }
|
| + p->tempReg = 0;
|
| + }
|
| +}
|
| +
|
| +
|
| +/*
|
| +** Record in the column cache that a particular column from a
|
| +** particular table is stored in a particular register.
|
| +*/
|
| +void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){
|
| + int i;
|
| + int minLru;
|
| + int idxLru;
|
| + struct yColCache *p;
|
| +
|
| + assert( iReg>0 ); /* Register numbers are always positive */
|
| + assert( iCol>=-1 && iCol<32768 ); /* Finite column numbers */
|
| +
|
| + /* The SQLITE_ColumnCache flag disables the column cache. This is used
|
| + ** for testing only - to verify that SQLite always gets the same answer
|
| + ** with and without the column cache.
|
| + */
|
| + if( pParse->db->flags & SQLITE_ColumnCache ) return;
|
| +
|
| + /* First replace any existing entry.
|
| + **
|
| + ** Actually, the way the column cache is currently used, we are guaranteed
|
| + ** that the object will never already be in cache. Verify this guarantee.
|
| + */
|
| +#ifndef NDEBUG
|
| + for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
|
| +#if 0 /* This code wold remove the entry from the cache if it existed */
|
| + if( p->iReg && p->iTable==iTab && p->iColumn==iCol ){
|
| + cacheEntryClear(pParse, p);
|
| + p->iLevel = pParse->iCacheLevel;
|
| + p->iReg = iReg;
|
| + p->lru = pParse->iCacheCnt++;
|
| + return;
|
| + }
|
| +#endif
|
| + assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol );
|
| + }
|
| +#endif
|
| +
|
| + /* Find an empty slot and replace it */
|
| + for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
|
| + if( p->iReg==0 ){
|
| + p->iLevel = pParse->iCacheLevel;
|
| + p->iTable = iTab;
|
| + p->iColumn = iCol;
|
| + p->iReg = iReg;
|
| + p->tempReg = 0;
|
| + p->lru = pParse->iCacheCnt++;
|
| + return;
|
| + }
|
| + }
|
| +
|
| + /* Replace the last recently used */
|
| + minLru = 0x7fffffff;
|
| + idxLru = -1;
|
| + for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
|
| + if( p->lru<minLru ){
|
| + idxLru = i;
|
| + minLru = p->lru;
|
| + }
|
| + }
|
| + if( ALWAYS(idxLru>=0) ){
|
| + p = &pParse->aColCache[idxLru];
|
| + p->iLevel = pParse->iCacheLevel;
|
| + p->iTable = iTab;
|
| + p->iColumn = iCol;
|
| + p->iReg = iReg;
|
| + p->tempReg = 0;
|
| + p->lru = pParse->iCacheCnt++;
|
| + return;
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Indicate that registers between iReg..iReg+nReg-1 are being overwritten.
|
| +** Purge the range of registers from the column cache.
|
| +*/
|
| +void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){
|
| + int i;
|
| + int iLast = iReg + nReg - 1;
|
| + struct yColCache *p;
|
| + for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
|
| + int r = p->iReg;
|
| + if( r>=iReg && r<=iLast ){
|
| + cacheEntryClear(pParse, p);
|
| + p->iReg = 0;
|
| + }
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Remember the current column cache context. Any new entries added
|
| +** added to the column cache after this call are removed when the
|
| +** corresponding pop occurs.
|
| +*/
|
| +void sqlite3ExprCachePush(Parse *pParse){
|
| + pParse->iCacheLevel++;
|
| +}
|
| +
|
| +/*
|
| +** Remove from the column cache any entries that were added since the
|
| +** the previous N Push operations. In other words, restore the cache
|
| +** to the state it was in N Pushes ago.
|
| +*/
|
| +void sqlite3ExprCachePop(Parse *pParse, int N){
|
| + int i;
|
| + struct yColCache *p;
|
| + assert( N>0 );
|
| + assert( pParse->iCacheLevel>=N );
|
| + pParse->iCacheLevel -= N;
|
| + for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
|
| + if( p->iReg && p->iLevel>pParse->iCacheLevel ){
|
| + cacheEntryClear(pParse, p);
|
| + p->iReg = 0;
|
| + }
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** When a cached column is reused, make sure that its register is
|
| +** no longer available as a temp register. ticket #3879: that same
|
| +** register might be in the cache in multiple places, so be sure to
|
| +** get them all.
|
| +*/
|
| +static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){
|
| + int i;
|
| + struct yColCache *p;
|
| + for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
|
| + if( p->iReg==iReg ){
|
| + p->tempReg = 0;
|
| + }
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Generate code to extract the value of the iCol-th column of a table.
|
| +*/
|
| +void sqlite3ExprCodeGetColumnOfTable(
|
| + Vdbe *v, /* The VDBE under construction */
|
| + Table *pTab, /* The table containing the value */
|
| + int iTabCur, /* The cursor for this table */
|
| + int iCol, /* Index of the column to extract */
|
| + int regOut /* Extract the valud into this register */
|
| +){
|
| + if( iCol<0 || iCol==pTab->iPKey ){
|
| + sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
|
| + }else{
|
| + int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
|
| + sqlite3VdbeAddOp3(v, op, iTabCur, iCol, regOut);
|
| + }
|
| + if( iCol>=0 ){
|
| + sqlite3ColumnDefault(v, pTab, iCol, regOut);
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Generate code that will extract the iColumn-th column from
|
| +** table pTab and store the column value in a register. An effort
|
| +** is made to store the column value in register iReg, but this is
|
| +** not guaranteed. The location of the column value is returned.
|
| +**
|
| +** There must be an open cursor to pTab in iTable when this routine
|
| +** is called. If iColumn<0 then code is generated that extracts the rowid.
|
| +*/
|
| +int sqlite3ExprCodeGetColumn(
|
| + Parse *pParse, /* Parsing and code generating context */
|
| + Table *pTab, /* Description of the table we are reading from */
|
| + int iColumn, /* Index of the table column */
|
| + int iTable, /* The cursor pointing to the table */
|
| + int iReg /* Store results here */
|
| +){
|
| + Vdbe *v = pParse->pVdbe;
|
| + int i;
|
| + struct yColCache *p;
|
| +
|
| + for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
|
| + if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){
|
| + p->lru = pParse->iCacheCnt++;
|
| + sqlite3ExprCachePinRegister(pParse, p->iReg);
|
| + return p->iReg;
|
| + }
|
| + }
|
| + assert( v!=0 );
|
| + sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg);
|
| + sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg);
|
| + return iReg;
|
| +}
|
| +
|
| +/*
|
| +** Clear all column cache entries.
|
| +*/
|
| +void sqlite3ExprCacheClear(Parse *pParse){
|
| + int i;
|
| + struct yColCache *p;
|
| +
|
| + for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
|
| + if( p->iReg ){
|
| + cacheEntryClear(pParse, p);
|
| + p->iReg = 0;
|
| + }
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Record the fact that an affinity change has occurred on iCount
|
| +** registers starting with iStart.
|
| +*/
|
| +void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){
|
| + sqlite3ExprCacheRemove(pParse, iStart, iCount);
|
| +}
|
| +
|
| +/*
|
| +** Generate code to move content from registers iFrom...iFrom+nReg-1
|
| +** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
|
| +*/
|
| +void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
|
| + int i;
|
| + struct yColCache *p;
|
| + if( NEVER(iFrom==iTo) ) return;
|
| + sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
|
| + for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
|
| + int x = p->iReg;
|
| + if( x>=iFrom && x<iFrom+nReg ){
|
| + p->iReg += iTo-iFrom;
|
| + }
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Generate code to copy content from registers iFrom...iFrom+nReg-1
|
| +** over to iTo..iTo+nReg-1.
|
| +*/
|
| +void sqlite3ExprCodeCopy(Parse *pParse, int iFrom, int iTo, int nReg){
|
| + int i;
|
| + if( NEVER(iFrom==iTo) ) return;
|
| + for(i=0; i<nReg; i++){
|
| + sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, iFrom+i, iTo+i);
|
| + }
|
| +}
|
| +
|
| +#if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST)
|
| +/*
|
| +** Return true if any register in the range iFrom..iTo (inclusive)
|
| +** is used as part of the column cache.
|
| +**
|
| +** This routine is used within assert() and testcase() macros only
|
| +** and does not appear in a normal build.
|
| +*/
|
| +static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){
|
| + int i;
|
| + struct yColCache *p;
|
| + for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
|
| + int r = p->iReg;
|
| + if( r>=iFrom && r<=iTo ) return 1; /*NO_TEST*/
|
| + }
|
| + return 0;
|
| +}
|
| +#endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */
|
| +
|
| +/*
|
| +** Generate code into the current Vdbe to evaluate the given
|
| +** expression. Attempt to store the results in register "target".
|
| +** Return the register where results are stored.
|
| +**
|
| +** With this routine, there is no guarantee that results will
|
| +** be stored in target. The result might be stored in some other
|
| +** register if it is convenient to do so. The calling function
|
| +** must check the return code and move the results to the desired
|
| +** register.
|
| +*/
|
| +int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
|
| + Vdbe *v = pParse->pVdbe; /* The VM under construction */
|
| + int op; /* The opcode being coded */
|
| + int inReg = target; /* Results stored in register inReg */
|
| + int regFree1 = 0; /* If non-zero free this temporary register */
|
| + int regFree2 = 0; /* If non-zero free this temporary register */
|
| + int r1, r2, r3, r4; /* Various register numbers */
|
| + sqlite3 *db = pParse->db; /* The database connection */
|
| +
|
| + assert( target>0 && target<=pParse->nMem );
|
| + if( v==0 ){
|
| + assert( pParse->db->mallocFailed );
|
| + return 0;
|
| + }
|
| +
|
| + if( pExpr==0 ){
|
| + op = TK_NULL;
|
| + }else{
|
| + op = pExpr->op;
|
| + }
|
| + switch( op ){
|
| + case TK_AGG_COLUMN: {
|
| + AggInfo *pAggInfo = pExpr->pAggInfo;
|
| + struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
|
| + if( !pAggInfo->directMode ){
|
| + assert( pCol->iMem>0 );
|
| + inReg = pCol->iMem;
|
| + break;
|
| + }else if( pAggInfo->useSortingIdx ){
|
| + sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdx,
|
| + pCol->iSorterColumn, target);
|
| + break;
|
| + }
|
| + /* Otherwise, fall thru into the TK_COLUMN case */
|
| + }
|
| + case TK_COLUMN: {
|
| + if( pExpr->iTable<0 ){
|
| + /* This only happens when coding check constraints */
|
| + assert( pParse->ckBase>0 );
|
| + inReg = pExpr->iColumn + pParse->ckBase;
|
| + }else{
|
| + inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
|
| + pExpr->iColumn, pExpr->iTable, target);
|
| + }
|
| + break;
|
| + }
|
| + case TK_INTEGER: {
|
| + codeInteger(pParse, pExpr, 0, target);
|
| + break;
|
| + }
|
| +#ifndef SQLITE_OMIT_FLOATING_POINT
|
| + case TK_FLOAT: {
|
| + assert( !ExprHasProperty(pExpr, EP_IntValue) );
|
| + codeReal(v, pExpr->u.zToken, 0, target);
|
| + break;
|
| + }
|
| +#endif
|
| + case TK_STRING: {
|
| + assert( !ExprHasProperty(pExpr, EP_IntValue) );
|
| + sqlite3VdbeAddOp4(v, OP_String8, 0, target, 0, pExpr->u.zToken, 0);
|
| + break;
|
| + }
|
| + case TK_NULL: {
|
| + sqlite3VdbeAddOp2(v, OP_Null, 0, target);
|
| + break;
|
| + }
|
| +#ifndef SQLITE_OMIT_BLOB_LITERAL
|
| + case TK_BLOB: {
|
| + int n;
|
| + const char *z;
|
| + char *zBlob;
|
| + assert( !ExprHasProperty(pExpr, EP_IntValue) );
|
| + assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
|
| + assert( pExpr->u.zToken[1]=='\'' );
|
| + z = &pExpr->u.zToken[2];
|
| + n = sqlite3Strlen30(z) - 1;
|
| + assert( z[n]=='\'' );
|
| + zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
|
| + sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
|
| + break;
|
| + }
|
| +#endif
|
| + case TK_VARIABLE: {
|
| + assert( !ExprHasProperty(pExpr, EP_IntValue) );
|
| + assert( pExpr->u.zToken!=0 );
|
| + assert( pExpr->u.zToken[0]!=0 );
|
| + sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
|
| + if( pExpr->u.zToken[1]!=0 ){
|
| + sqlite3VdbeChangeP4(v, -1, pExpr->u.zToken, P4_TRANSIENT);
|
| + }
|
| + break;
|
| + }
|
| + case TK_REGISTER: {
|
| + inReg = pExpr->iTable;
|
| + break;
|
| + }
|
| + case TK_AS: {
|
| + inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
|
| + break;
|
| + }
|
| +#ifndef SQLITE_OMIT_CAST
|
| + case TK_CAST: {
|
| + /* Expressions of the form: CAST(pLeft AS token) */
|
| + int aff, to_op;
|
| + inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
|
| + assert( !ExprHasProperty(pExpr, EP_IntValue) );
|
| + aff = sqlite3AffinityType(pExpr->u.zToken);
|
| + to_op = aff - SQLITE_AFF_TEXT + OP_ToText;
|
| + assert( to_op==OP_ToText || aff!=SQLITE_AFF_TEXT );
|
| + assert( to_op==OP_ToBlob || aff!=SQLITE_AFF_NONE );
|
| + assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC );
|
| + assert( to_op==OP_ToInt || aff!=SQLITE_AFF_INTEGER );
|
| + assert( to_op==OP_ToReal || aff!=SQLITE_AFF_REAL );
|
| + testcase( to_op==OP_ToText );
|
| + testcase( to_op==OP_ToBlob );
|
| + testcase( to_op==OP_ToNumeric );
|
| + testcase( to_op==OP_ToInt );
|
| + testcase( to_op==OP_ToReal );
|
| + if( inReg!=target ){
|
| + sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
|
| + inReg = target;
|
| + }
|
| + sqlite3VdbeAddOp1(v, to_op, inReg);
|
| + testcase( usedAsColumnCache(pParse, inReg, inReg) );
|
| + sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
|
| + break;
|
| + }
|
| +#endif /* SQLITE_OMIT_CAST */
|
| + case TK_LT:
|
| + case TK_LE:
|
| + case TK_GT:
|
| + case TK_GE:
|
| + case TK_NE:
|
| + case TK_EQ: {
|
| + assert( TK_LT==OP_Lt );
|
| + assert( TK_LE==OP_Le );
|
| + assert( TK_GT==OP_Gt );
|
| + assert( TK_GE==OP_Ge );
|
| + assert( TK_EQ==OP_Eq );
|
| + assert( TK_NE==OP_Ne );
|
| + testcase( op==TK_LT );
|
| + testcase( op==TK_LE );
|
| + testcase( op==TK_GT );
|
| + testcase( op==TK_GE );
|
| + testcase( op==TK_EQ );
|
| + testcase( op==TK_NE );
|
| + r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
|
| + r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2);
|
| + codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
|
| + r1, r2, inReg, SQLITE_STOREP2);
|
| + testcase( regFree1==0 );
|
| + testcase( regFree2==0 );
|
| + break;
|
| + }
|
| + case TK_IS:
|
| + case TK_ISNOT: {
|
| + testcase( op==TK_IS );
|
| + testcase( op==TK_ISNOT );
|
| + r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
|
| + r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2);
|
| + op = (op==TK_IS) ? TK_EQ : TK_NE;
|
| + codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
|
| + r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ);
|
| + testcase( regFree1==0 );
|
| + testcase( regFree2==0 );
|
| + break;
|
| + }
|
| + case TK_AND:
|
| + case TK_OR:
|
| + case TK_PLUS:
|
| + case TK_STAR:
|
| + case TK_MINUS:
|
| + case TK_REM:
|
| + case TK_BITAND:
|
| + case TK_BITOR:
|
| + case TK_SLASH:
|
| + case TK_LSHIFT:
|
| + case TK_RSHIFT:
|
| + case TK_CONCAT: {
|
| + assert( TK_AND==OP_And );
|
| + assert( TK_OR==OP_Or );
|
| + assert( TK_PLUS==OP_Add );
|
| + assert( TK_MINUS==OP_Subtract );
|
| + assert( TK_REM==OP_Remainder );
|
| + assert( TK_BITAND==OP_BitAnd );
|
| + assert( TK_BITOR==OP_BitOr );
|
| + assert( TK_SLASH==OP_Divide );
|
| + assert( TK_LSHIFT==OP_ShiftLeft );
|
| + assert( TK_RSHIFT==OP_ShiftRight );
|
| + assert( TK_CONCAT==OP_Concat );
|
| + testcase( op==TK_AND );
|
| + testcase( op==TK_OR );
|
| + testcase( op==TK_PLUS );
|
| + testcase( op==TK_MINUS );
|
| + testcase( op==TK_REM );
|
| + testcase( op==TK_BITAND );
|
| + testcase( op==TK_BITOR );
|
| + testcase( op==TK_SLASH );
|
| + testcase( op==TK_LSHIFT );
|
| + testcase( op==TK_RSHIFT );
|
| + testcase( op==TK_CONCAT );
|
| + r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
|
| + r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2);
|
| + sqlite3VdbeAddOp3(v, op, r2, r1, target);
|
| + testcase( regFree1==0 );
|
| + testcase( regFree2==0 );
|
| + break;
|
| + }
|
| + case TK_UMINUS: {
|
| + Expr *pLeft = pExpr->pLeft;
|
| + assert( pLeft );
|
| + if( pLeft->op==TK_INTEGER ){
|
| + codeInteger(pParse, pLeft, 1, target);
|
| +#ifndef SQLITE_OMIT_FLOATING_POINT
|
| + }else if( pLeft->op==TK_FLOAT ){
|
| + assert( !ExprHasProperty(pExpr, EP_IntValue) );
|
| + codeReal(v, pLeft->u.zToken, 1, target);
|
| +#endif
|
| + }else{
|
| + regFree1 = r1 = sqlite3GetTempReg(pParse);
|
| + sqlite3VdbeAddOp2(v, OP_Integer, 0, r1);
|
| + r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2);
|
| + sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
|
| + testcase( regFree2==0 );
|
| + }
|
| + inReg = target;
|
| + break;
|
| + }
|
| + case TK_BITNOT:
|
| + case TK_NOT: {
|
| + assert( TK_BITNOT==OP_BitNot );
|
| + assert( TK_NOT==OP_Not );
|
| + testcase( op==TK_BITNOT );
|
| + testcase( op==TK_NOT );
|
| + r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
|
| + testcase( regFree1==0 );
|
| + inReg = target;
|
| + sqlite3VdbeAddOp2(v, op, r1, inReg);
|
| + break;
|
| + }
|
| + case TK_ISNULL:
|
| + case TK_NOTNULL: {
|
| + int addr;
|
| + assert( TK_ISNULL==OP_IsNull );
|
| + assert( TK_NOTNULL==OP_NotNull );
|
| + testcase( op==TK_ISNULL );
|
| + testcase( op==TK_NOTNULL );
|
| + sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
|
| + r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
|
| + testcase( regFree1==0 );
|
| + addr = sqlite3VdbeAddOp1(v, op, r1);
|
| + sqlite3VdbeAddOp2(v, OP_AddImm, target, -1);
|
| + sqlite3VdbeJumpHere(v, addr);
|
| + break;
|
| + }
|
| + case TK_AGG_FUNCTION: {
|
| + AggInfo *pInfo = pExpr->pAggInfo;
|
| + if( pInfo==0 ){
|
| + assert( !ExprHasProperty(pExpr, EP_IntValue) );
|
| + sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
|
| + }else{
|
| + inReg = pInfo->aFunc[pExpr->iAgg].iMem;
|
| + }
|
| + break;
|
| + }
|
| + case TK_CONST_FUNC:
|
| + case TK_FUNCTION: {
|
| + ExprList *pFarg; /* List of function arguments */
|
| + int nFarg; /* Number of function arguments */
|
| + FuncDef *pDef; /* The function definition object */
|
| + int nId; /* Length of the function name in bytes */
|
| + const char *zId; /* The function name */
|
| + int constMask = 0; /* Mask of function arguments that are constant */
|
| + int i; /* Loop counter */
|
| + u8 enc = ENC(db); /* The text encoding used by this database */
|
| + CollSeq *pColl = 0; /* A collating sequence */
|
| +
|
| + assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
|
| + testcase( op==TK_CONST_FUNC );
|
| + testcase( op==TK_FUNCTION );
|
| + if( ExprHasAnyProperty(pExpr, EP_TokenOnly) ){
|
| + pFarg = 0;
|
| + }else{
|
| + pFarg = pExpr->x.pList;
|
| + }
|
| + nFarg = pFarg ? pFarg->nExpr : 0;
|
| + assert( !ExprHasProperty(pExpr, EP_IntValue) );
|
| + zId = pExpr->u.zToken;
|
| + nId = sqlite3Strlen30(zId);
|
| + pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0);
|
| + if( pDef==0 ){
|
| + sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId);
|
| + break;
|
| + }
|
| +
|
| + /* Attempt a direct implementation of the built-in COALESCE() and
|
| + ** IFNULL() functions. This avoids unnecessary evalation of
|
| + ** arguments past the first non-NULL argument.
|
| + */
|
| + if( pDef->flags & SQLITE_FUNC_COALESCE ){
|
| + int endCoalesce = sqlite3VdbeMakeLabel(v);
|
| + assert( nFarg>=2 );
|
| + sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
|
| + for(i=1; i<nFarg; i++){
|
| + sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
|
| + sqlite3ExprCacheRemove(pParse, target, 1);
|
| + sqlite3ExprCachePush(pParse);
|
| + sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
|
| + sqlite3ExprCachePop(pParse, 1);
|
| + }
|
| + sqlite3VdbeResolveLabel(v, endCoalesce);
|
| + break;
|
| + }
|
| +
|
| +
|
| + if( pFarg ){
|
| + r1 = sqlite3GetTempRange(pParse, nFarg);
|
| + sqlite3ExprCachePush(pParse); /* Ticket 2ea2425d34be */
|
| + sqlite3ExprCodeExprList(pParse, pFarg, r1, 1);
|
| + sqlite3ExprCachePop(pParse, 1); /* Ticket 2ea2425d34be */
|
| + }else{
|
| + r1 = 0;
|
| + }
|
| +#ifndef SQLITE_OMIT_VIRTUALTABLE
|
| + /* Possibly overload the function if the first argument is
|
| + ** a virtual table column.
|
| + **
|
| + ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
|
| + ** second argument, not the first, as the argument to test to
|
| + ** see if it is a column in a virtual table. This is done because
|
| + ** the left operand of infix functions (the operand we want to
|
| + ** control overloading) ends up as the second argument to the
|
| + ** function. The expression "A glob B" is equivalent to
|
| + ** "glob(B,A). We want to use the A in "A glob B" to test
|
| + ** for function overloading. But we use the B term in "glob(B,A)".
|
| + */
|
| + if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){
|
| + pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
|
| + }else if( nFarg>0 ){
|
| + pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
|
| + }
|
| +#endif
|
| + for(i=0; i<nFarg; i++){
|
| + if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
|
| + constMask |= (1<<i);
|
| + }
|
| + if( (pDef->flags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
|
| + pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
|
| + }
|
| + }
|
| + if( pDef->flags & SQLITE_FUNC_NEEDCOLL ){
|
| + if( !pColl ) pColl = db->pDfltColl;
|
| + sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
|
| + }
|
| + sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target,
|
| + (char*)pDef, P4_FUNCDEF);
|
| + sqlite3VdbeChangeP5(v, (u8)nFarg);
|
| + if( nFarg ){
|
| + sqlite3ReleaseTempRange(pParse, r1, nFarg);
|
| + }
|
| + break;
|
| + }
|
| +#ifndef SQLITE_OMIT_SUBQUERY
|
| + case TK_EXISTS:
|
| + case TK_SELECT: {
|
| + testcase( op==TK_EXISTS );
|
| + testcase( op==TK_SELECT );
|
| + inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0);
|
| + break;
|
| + }
|
| + case TK_IN: {
|
| + int destIfFalse = sqlite3VdbeMakeLabel(v);
|
| + int destIfNull = sqlite3VdbeMakeLabel(v);
|
| + sqlite3VdbeAddOp2(v, OP_Null, 0, target);
|
| + sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
|
| + sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
|
| + sqlite3VdbeResolveLabel(v, destIfFalse);
|
| + sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
|
| + sqlite3VdbeResolveLabel(v, destIfNull);
|
| + break;
|
| + }
|
| +#endif /* SQLITE_OMIT_SUBQUERY */
|
| +
|
| +
|
| + /*
|
| + ** x BETWEEN y AND z
|
| + **
|
| + ** This is equivalent to
|
| + **
|
| + ** x>=y AND x<=z
|
| + **
|
| + ** X is stored in pExpr->pLeft.
|
| + ** Y is stored in pExpr->pList->a[0].pExpr.
|
| + ** Z is stored in pExpr->pList->a[1].pExpr.
|
| + */
|
| + case TK_BETWEEN: {
|
| + Expr *pLeft = pExpr->pLeft;
|
| + struct ExprList_item *pLItem = pExpr->x.pList->a;
|
| + Expr *pRight = pLItem->pExpr;
|
| +
|
| + r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1);
|
| + r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2);
|
| + testcase( regFree1==0 );
|
| + testcase( regFree2==0 );
|
| + r3 = sqlite3GetTempReg(pParse);
|
| + r4 = sqlite3GetTempReg(pParse);
|
| + codeCompare(pParse, pLeft, pRight, OP_Ge,
|
| + r1, r2, r3, SQLITE_STOREP2);
|
| + pLItem++;
|
| + pRight = pLItem->pExpr;
|
| + sqlite3ReleaseTempReg(pParse, regFree2);
|
| + r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2);
|
| + testcase( regFree2==0 );
|
| + codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2);
|
| + sqlite3VdbeAddOp3(v, OP_And, r3, r4, target);
|
| + sqlite3ReleaseTempReg(pParse, r3);
|
| + sqlite3ReleaseTempReg(pParse, r4);
|
| + break;
|
| + }
|
| + case TK_UPLUS: {
|
| + inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
|
| + break;
|
| + }
|
| +
|
| + case TK_TRIGGER: {
|
| + /* If the opcode is TK_TRIGGER, then the expression is a reference
|
| + ** to a column in the new.* or old.* pseudo-tables available to
|
| + ** trigger programs. In this case Expr.iTable is set to 1 for the
|
| + ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
|
| + ** is set to the column of the pseudo-table to read, or to -1 to
|
| + ** read the rowid field.
|
| + **
|
| + ** The expression is implemented using an OP_Param opcode. The p1
|
| + ** parameter is set to 0 for an old.rowid reference, or to (i+1)
|
| + ** to reference another column of the old.* pseudo-table, where
|
| + ** i is the index of the column. For a new.rowid reference, p1 is
|
| + ** set to (n+1), where n is the number of columns in each pseudo-table.
|
| + ** For a reference to any other column in the new.* pseudo-table, p1
|
| + ** is set to (n+2+i), where n and i are as defined previously. For
|
| + ** example, if the table on which triggers are being fired is
|
| + ** declared as:
|
| + **
|
| + ** CREATE TABLE t1(a, b);
|
| + **
|
| + ** Then p1 is interpreted as follows:
|
| + **
|
| + ** p1==0 -> old.rowid p1==3 -> new.rowid
|
| + ** p1==1 -> old.a p1==4 -> new.a
|
| + ** p1==2 -> old.b p1==5 -> new.b
|
| + */
|
| + Table *pTab = pExpr->pTab;
|
| + int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn;
|
| +
|
| + assert( pExpr->iTable==0 || pExpr->iTable==1 );
|
| + assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol );
|
| + assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey );
|
| + assert( p1>=0 && p1<(pTab->nCol*2+2) );
|
| +
|
| + sqlite3VdbeAddOp2(v, OP_Param, p1, target);
|
| + VdbeComment((v, "%s.%s -> $%d",
|
| + (pExpr->iTable ? "new" : "old"),
|
| + (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName),
|
| + target
|
| + ));
|
| +
|
| +#ifndef SQLITE_OMIT_FLOATING_POINT
|
| + /* If the column has REAL affinity, it may currently be stored as an
|
| + ** integer. Use OP_RealAffinity to make sure it is really real. */
|
| + if( pExpr->iColumn>=0
|
| + && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL
|
| + ){
|
| + sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
|
| + }
|
| +#endif
|
| + break;
|
| + }
|
| +
|
| +
|
| + /*
|
| + ** Form A:
|
| + ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
|
| + **
|
| + ** Form B:
|
| + ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
|
| + **
|
| + ** Form A is can be transformed into the equivalent form B as follows:
|
| + ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
|
| + ** WHEN x=eN THEN rN ELSE y END
|
| + **
|
| + ** X (if it exists) is in pExpr->pLeft.
|
| + ** Y is in pExpr->pRight. The Y is also optional. If there is no
|
| + ** ELSE clause and no other term matches, then the result of the
|
| + ** exprssion is NULL.
|
| + ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
|
| + **
|
| + ** The result of the expression is the Ri for the first matching Ei,
|
| + ** or if there is no matching Ei, the ELSE term Y, or if there is
|
| + ** no ELSE term, NULL.
|
| + */
|
| + default: assert( op==TK_CASE ); {
|
| + int endLabel; /* GOTO label for end of CASE stmt */
|
| + int nextCase; /* GOTO label for next WHEN clause */
|
| + int nExpr; /* 2x number of WHEN terms */
|
| + int i; /* Loop counter */
|
| + ExprList *pEList; /* List of WHEN terms */
|
| + struct ExprList_item *aListelem; /* Array of WHEN terms */
|
| + Expr opCompare; /* The X==Ei expression */
|
| + Expr cacheX; /* Cached expression X */
|
| + Expr *pX; /* The X expression */
|
| + Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */
|
| + VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; )
|
| +
|
| + assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
|
| + assert((pExpr->x.pList->nExpr % 2) == 0);
|
| + assert(pExpr->x.pList->nExpr > 0);
|
| + pEList = pExpr->x.pList;
|
| + aListelem = pEList->a;
|
| + nExpr = pEList->nExpr;
|
| + endLabel = sqlite3VdbeMakeLabel(v);
|
| + if( (pX = pExpr->pLeft)!=0 ){
|
| + cacheX = *pX;
|
| + testcase( pX->op==TK_COLUMN );
|
| + testcase( pX->op==TK_REGISTER );
|
| + cacheX.iTable = sqlite3ExprCodeTemp(pParse, pX, ®Free1);
|
| + testcase( regFree1==0 );
|
| + cacheX.op = TK_REGISTER;
|
| + opCompare.op = TK_EQ;
|
| + opCompare.pLeft = &cacheX;
|
| + pTest = &opCompare;
|
| + /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
|
| + ** The value in regFree1 might get SCopy-ed into the file result.
|
| + ** So make sure that the regFree1 register is not reused for other
|
| + ** purposes and possibly overwritten. */
|
| + regFree1 = 0;
|
| + }
|
| + for(i=0; i<nExpr; i=i+2){
|
| + sqlite3ExprCachePush(pParse);
|
| + if( pX ){
|
| + assert( pTest!=0 );
|
| + opCompare.pRight = aListelem[i].pExpr;
|
| + }else{
|
| + pTest = aListelem[i].pExpr;
|
| + }
|
| + nextCase = sqlite3VdbeMakeLabel(v);
|
| + testcase( pTest->op==TK_COLUMN );
|
| + sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
|
| + testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
|
| + testcase( aListelem[i+1].pExpr->op==TK_REGISTER );
|
| + sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
|
| + sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel);
|
| + sqlite3ExprCachePop(pParse, 1);
|
| + sqlite3VdbeResolveLabel(v, nextCase);
|
| + }
|
| + if( pExpr->pRight ){
|
| + sqlite3ExprCachePush(pParse);
|
| + sqlite3ExprCode(pParse, pExpr->pRight, target);
|
| + sqlite3ExprCachePop(pParse, 1);
|
| + }else{
|
| + sqlite3VdbeAddOp2(v, OP_Null, 0, target);
|
| + }
|
| + assert( db->mallocFailed || pParse->nErr>0
|
| + || pParse->iCacheLevel==iCacheLevel );
|
| + sqlite3VdbeResolveLabel(v, endLabel);
|
| + break;
|
| + }
|
| +#ifndef SQLITE_OMIT_TRIGGER
|
| + case TK_RAISE: {
|
| + assert( pExpr->affinity==OE_Rollback
|
| + || pExpr->affinity==OE_Abort
|
| + || pExpr->affinity==OE_Fail
|
| + || pExpr->affinity==OE_Ignore
|
| + );
|
| + if( !pParse->pTriggerTab ){
|
| + sqlite3ErrorMsg(pParse,
|
| + "RAISE() may only be used within a trigger-program");
|
| + return 0;
|
| + }
|
| + if( pExpr->affinity==OE_Abort ){
|
| + sqlite3MayAbort(pParse);
|
| + }
|
| + assert( !ExprHasProperty(pExpr, EP_IntValue) );
|
| + if( pExpr->affinity==OE_Ignore ){
|
| + sqlite3VdbeAddOp4(
|
| + v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
|
| + }else{
|
| + sqlite3HaltConstraint(pParse, pExpr->affinity, pExpr->u.zToken, 0);
|
| + }
|
| +
|
| + break;
|
| + }
|
| +#endif
|
| + }
|
| + sqlite3ReleaseTempReg(pParse, regFree1);
|
| + sqlite3ReleaseTempReg(pParse, regFree2);
|
| + return inReg;
|
| +}
|
| +
|
| +/*
|
| +** Generate code to evaluate an expression and store the results
|
| +** into a register. Return the register number where the results
|
| +** are stored.
|
| +**
|
| +** If the register is a temporary register that can be deallocated,
|
| +** then write its number into *pReg. If the result register is not
|
| +** a temporary, then set *pReg to zero.
|
| +*/
|
| +int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
|
| + int r1 = sqlite3GetTempReg(pParse);
|
| + int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
|
| + if( r2==r1 ){
|
| + *pReg = r1;
|
| + }else{
|
| + sqlite3ReleaseTempReg(pParse, r1);
|
| + *pReg = 0;
|
| + }
|
| + return r2;
|
| +}
|
| +
|
| +/*
|
| +** Generate code that will evaluate expression pExpr and store the
|
| +** results in register target. The results are guaranteed to appear
|
| +** in register target.
|
| +*/
|
| +int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
|
| + int inReg;
|
| +
|
| + assert( target>0 && target<=pParse->nMem );
|
| + if( pExpr && pExpr->op==TK_REGISTER ){
|
| + sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target);
|
| + }else{
|
| + inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
|
| + assert( pParse->pVdbe || pParse->db->mallocFailed );
|
| + if( inReg!=target && pParse->pVdbe ){
|
| + sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
|
| + }
|
| + }
|
| + return target;
|
| +}
|
| +
|
| +/*
|
| +** Generate code that evalutes the given expression and puts the result
|
| +** in register target.
|
| +**
|
| +** Also make a copy of the expression results into another "cache" register
|
| +** and modify the expression so that the next time it is evaluated,
|
| +** the result is a copy of the cache register.
|
| +**
|
| +** This routine is used for expressions that are used multiple
|
| +** times. They are evaluated once and the results of the expression
|
| +** are reused.
|
| +*/
|
| +int sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
|
| + Vdbe *v = pParse->pVdbe;
|
| + int inReg;
|
| + inReg = sqlite3ExprCode(pParse, pExpr, target);
|
| + assert( target>0 );
|
| + /* This routine is called for terms to INSERT or UPDATE. And the only
|
| + ** other place where expressions can be converted into TK_REGISTER is
|
| + ** in WHERE clause processing. So as currently implemented, there is
|
| + ** no way for a TK_REGISTER to exist here. But it seems prudent to
|
| + ** keep the ALWAYS() in case the conditions above change with future
|
| + ** modifications or enhancements. */
|
| + if( ALWAYS(pExpr->op!=TK_REGISTER) ){
|
| + int iMem;
|
| + iMem = ++pParse->nMem;
|
| + sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem);
|
| + pExpr->iTable = iMem;
|
| + pExpr->op2 = pExpr->op;
|
| + pExpr->op = TK_REGISTER;
|
| + }
|
| + return inReg;
|
| +}
|
| +
|
| +/*
|
| +** Return TRUE if pExpr is an constant expression that is appropriate
|
| +** for factoring out of a loop. Appropriate expressions are:
|
| +**
|
| +** * Any expression that evaluates to two or more opcodes.
|
| +**
|
| +** * Any OP_Integer, OP_Real, OP_String, OP_Blob, OP_Null,
|
| +** or OP_Variable that does not need to be placed in a
|
| +** specific register.
|
| +**
|
| +** There is no point in factoring out single-instruction constant
|
| +** expressions that need to be placed in a particular register.
|
| +** We could factor them out, but then we would end up adding an
|
| +** OP_SCopy instruction to move the value into the correct register
|
| +** later. We might as well just use the original instruction and
|
| +** avoid the OP_SCopy.
|
| +*/
|
| +static int isAppropriateForFactoring(Expr *p){
|
| + if( !sqlite3ExprIsConstantNotJoin(p) ){
|
| + return 0; /* Only constant expressions are appropriate for factoring */
|
| + }
|
| + if( (p->flags & EP_FixedDest)==0 ){
|
| + return 1; /* Any constant without a fixed destination is appropriate */
|
| + }
|
| + while( p->op==TK_UPLUS ) p = p->pLeft;
|
| + switch( p->op ){
|
| +#ifndef SQLITE_OMIT_BLOB_LITERAL
|
| + case TK_BLOB:
|
| +#endif
|
| + case TK_VARIABLE:
|
| + case TK_INTEGER:
|
| + case TK_FLOAT:
|
| + case TK_NULL:
|
| + case TK_STRING: {
|
| + testcase( p->op==TK_BLOB );
|
| + testcase( p->op==TK_VARIABLE );
|
| + testcase( p->op==TK_INTEGER );
|
| + testcase( p->op==TK_FLOAT );
|
| + testcase( p->op==TK_NULL );
|
| + testcase( p->op==TK_STRING );
|
| + /* Single-instruction constants with a fixed destination are
|
| + ** better done in-line. If we factor them, they will just end
|
| + ** up generating an OP_SCopy to move the value to the destination
|
| + ** register. */
|
| + return 0;
|
| + }
|
| + case TK_UMINUS: {
|
| + if( p->pLeft->op==TK_FLOAT || p->pLeft->op==TK_INTEGER ){
|
| + return 0;
|
| + }
|
| + break;
|
| + }
|
| + default: {
|
| + break;
|
| + }
|
| + }
|
| + return 1;
|
| +}
|
| +
|
| +/*
|
| +** If pExpr is a constant expression that is appropriate for
|
| +** factoring out of a loop, then evaluate the expression
|
| +** into a register and convert the expression into a TK_REGISTER
|
| +** expression.
|
| +*/
|
| +static int evalConstExpr(Walker *pWalker, Expr *pExpr){
|
| + Parse *pParse = pWalker->pParse;
|
| + switch( pExpr->op ){
|
| + case TK_IN:
|
| + case TK_REGISTER: {
|
| + return WRC_Prune;
|
| + }
|
| + case TK_FUNCTION:
|
| + case TK_AGG_FUNCTION:
|
| + case TK_CONST_FUNC: {
|
| + /* The arguments to a function have a fixed destination.
|
| + ** Mark them this way to avoid generated unneeded OP_SCopy
|
| + ** instructions.
|
| + */
|
| + ExprList *pList = pExpr->x.pList;
|
| + assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
|
| + if( pList ){
|
| + int i = pList->nExpr;
|
| + struct ExprList_item *pItem = pList->a;
|
| + for(; i>0; i--, pItem++){
|
| + if( ALWAYS(pItem->pExpr) ) pItem->pExpr->flags |= EP_FixedDest;
|
| + }
|
| + }
|
| + break;
|
| + }
|
| + }
|
| + if( isAppropriateForFactoring(pExpr) ){
|
| + int r1 = ++pParse->nMem;
|
| + int r2;
|
| + r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
|
| + if( NEVER(r1!=r2) ) sqlite3ReleaseTempReg(pParse, r1);
|
| + pExpr->op2 = pExpr->op;
|
| + pExpr->op = TK_REGISTER;
|
| + pExpr->iTable = r2;
|
| + return WRC_Prune;
|
| + }
|
| + return WRC_Continue;
|
| +}
|
| +
|
| +/*
|
| +** Preevaluate constant subexpressions within pExpr and store the
|
| +** results in registers. Modify pExpr so that the constant subexpresions
|
| +** are TK_REGISTER opcodes that refer to the precomputed values.
|
| +**
|
| +** This routine is a no-op if the jump to the cookie-check code has
|
| +** already occur. Since the cookie-check jump is generated prior to
|
| +** any other serious processing, this check ensures that there is no
|
| +** way to accidently bypass the constant initializations.
|
| +**
|
| +** This routine is also a no-op if the SQLITE_FactorOutConst optimization
|
| +** is disabled via the sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS)
|
| +** interface. This allows test logic to verify that the same answer is
|
| +** obtained for queries regardless of whether or not constants are
|
| +** precomputed into registers or if they are inserted in-line.
|
| +*/
|
| +void sqlite3ExprCodeConstants(Parse *pParse, Expr *pExpr){
|
| + Walker w;
|
| + if( pParse->cookieGoto ) return;
|
| + if( (pParse->db->flags & SQLITE_FactorOutConst)!=0 ) return;
|
| + w.xExprCallback = evalConstExpr;
|
| + w.xSelectCallback = 0;
|
| + w.pParse = pParse;
|
| + sqlite3WalkExpr(&w, pExpr);
|
| +}
|
| +
|
| +
|
| +/*
|
| +** Generate code that pushes the value of every element of the given
|
| +** expression list into a sequence of registers beginning at target.
|
| +**
|
| +** Return the number of elements evaluated.
|
| +*/
|
| +int sqlite3ExprCodeExprList(
|
| + Parse *pParse, /* Parsing context */
|
| + ExprList *pList, /* The expression list to be coded */
|
| + int target, /* Where to write results */
|
| + int doHardCopy /* Make a hard copy of every element */
|
| +){
|
| + struct ExprList_item *pItem;
|
| + int i, n;
|
| + assert( pList!=0 );
|
| + assert( target>0 );
|
| + assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */
|
| + n = pList->nExpr;
|
| + for(pItem=pList->a, i=0; i<n; i++, pItem++){
|
| + Expr *pExpr = pItem->pExpr;
|
| + int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
|
| + if( inReg!=target+i ){
|
| + sqlite3VdbeAddOp2(pParse->pVdbe, doHardCopy ? OP_Copy : OP_SCopy,
|
| + inReg, target+i);
|
| + }
|
| + }
|
| + return n;
|
| +}
|
| +
|
| +/*
|
| +** Generate code for a BETWEEN operator.
|
| +**
|
| +** x BETWEEN y AND z
|
| +**
|
| +** The above is equivalent to
|
| +**
|
| +** x>=y AND x<=z
|
| +**
|
| +** Code it as such, taking care to do the common subexpression
|
| +** elementation of x.
|
| +*/
|
| +static void exprCodeBetween(
|
| + Parse *pParse, /* Parsing and code generating context */
|
| + Expr *pExpr, /* The BETWEEN expression */
|
| + int dest, /* Jump here if the jump is taken */
|
| + int jumpIfTrue, /* Take the jump if the BETWEEN is true */
|
| + int jumpIfNull /* Take the jump if the BETWEEN is NULL */
|
| +){
|
| + Expr exprAnd; /* The AND operator in x>=y AND x<=z */
|
| + Expr compLeft; /* The x>=y term */
|
| + Expr compRight; /* The x<=z term */
|
| + Expr exprX; /* The x subexpression */
|
| + int regFree1 = 0; /* Temporary use register */
|
| +
|
| + assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
|
| + exprX = *pExpr->pLeft;
|
| + exprAnd.op = TK_AND;
|
| + exprAnd.pLeft = &compLeft;
|
| + exprAnd.pRight = &compRight;
|
| + compLeft.op = TK_GE;
|
| + compLeft.pLeft = &exprX;
|
| + compLeft.pRight = pExpr->x.pList->a[0].pExpr;
|
| + compRight.op = TK_LE;
|
| + compRight.pLeft = &exprX;
|
| + compRight.pRight = pExpr->x.pList->a[1].pExpr;
|
| + exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, ®Free1);
|
| + exprX.op = TK_REGISTER;
|
| + if( jumpIfTrue ){
|
| + sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull);
|
| + }else{
|
| + sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull);
|
| + }
|
| + sqlite3ReleaseTempReg(pParse, regFree1);
|
| +
|
| + /* Ensure adequate test coverage */
|
| + testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 );
|
| + testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 );
|
| + testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 );
|
| + testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 );
|
| + testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 );
|
| + testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 );
|
| + testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 );
|
| + testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 );
|
| +}
|
| +
|
| +/*
|
| +** Generate code for a boolean expression such that a jump is made
|
| +** to the label "dest" if the expression is true but execution
|
| +** continues straight thru if the expression is false.
|
| +**
|
| +** If the expression evaluates to NULL (neither true nor false), then
|
| +** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
|
| +**
|
| +** This code depends on the fact that certain token values (ex: TK_EQ)
|
| +** are the same as opcode values (ex: OP_Eq) that implement the corresponding
|
| +** operation. Special comments in vdbe.c and the mkopcodeh.awk script in
|
| +** the make process cause these values to align. Assert()s in the code
|
| +** below verify that the numbers are aligned correctly.
|
| +*/
|
| +void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
|
| + Vdbe *v = pParse->pVdbe;
|
| + int op = 0;
|
| + int regFree1 = 0;
|
| + int regFree2 = 0;
|
| + int r1, r2;
|
| +
|
| + assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
|
| + if( NEVER(v==0) ) return; /* Existance of VDBE checked by caller */
|
| + if( NEVER(pExpr==0) ) return; /* No way this can happen */
|
| + op = pExpr->op;
|
| + switch( op ){
|
| + case TK_AND: {
|
| + int d2 = sqlite3VdbeMakeLabel(v);
|
| + testcase( jumpIfNull==0 );
|
| + sqlite3ExprCachePush(pParse);
|
| + sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
|
| + sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
|
| + sqlite3VdbeResolveLabel(v, d2);
|
| + sqlite3ExprCachePop(pParse, 1);
|
| + break;
|
| + }
|
| + case TK_OR: {
|
| + testcase( jumpIfNull==0 );
|
| + sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
|
| + sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
|
| + break;
|
| + }
|
| + case TK_NOT: {
|
| + testcase( jumpIfNull==0 );
|
| + sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
|
| + break;
|
| + }
|
| + case TK_LT:
|
| + case TK_LE:
|
| + case TK_GT:
|
| + case TK_GE:
|
| + case TK_NE:
|
| + case TK_EQ: {
|
| + assert( TK_LT==OP_Lt );
|
| + assert( TK_LE==OP_Le );
|
| + assert( TK_GT==OP_Gt );
|
| + assert( TK_GE==OP_Ge );
|
| + assert( TK_EQ==OP_Eq );
|
| + assert( TK_NE==OP_Ne );
|
| + testcase( op==TK_LT );
|
| + testcase( op==TK_LE );
|
| + testcase( op==TK_GT );
|
| + testcase( op==TK_GE );
|
| + testcase( op==TK_EQ );
|
| + testcase( op==TK_NE );
|
| + testcase( jumpIfNull==0 );
|
| + r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
|
| + r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2);
|
| + codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
|
| + r1, r2, dest, jumpIfNull);
|
| + testcase( regFree1==0 );
|
| + testcase( regFree2==0 );
|
| + break;
|
| + }
|
| + case TK_IS:
|
| + case TK_ISNOT: {
|
| + testcase( op==TK_IS );
|
| + testcase( op==TK_ISNOT );
|
| + r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
|
| + r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2);
|
| + op = (op==TK_IS) ? TK_EQ : TK_NE;
|
| + codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
|
| + r1, r2, dest, SQLITE_NULLEQ);
|
| + testcase( regFree1==0 );
|
| + testcase( regFree2==0 );
|
| + break;
|
| + }
|
| + case TK_ISNULL:
|
| + case TK_NOTNULL: {
|
| + assert( TK_ISNULL==OP_IsNull );
|
| + assert( TK_NOTNULL==OP_NotNull );
|
| + testcase( op==TK_ISNULL );
|
| + testcase( op==TK_NOTNULL );
|
| + r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
|
| + sqlite3VdbeAddOp2(v, op, r1, dest);
|
| + testcase( regFree1==0 );
|
| + break;
|
| + }
|
| + case TK_BETWEEN: {
|
| + testcase( jumpIfNull==0 );
|
| + exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull);
|
| + break;
|
| + }
|
| +#ifndef SQLITE_OMIT_SUBQUERY
|
| + case TK_IN: {
|
| + int destIfFalse = sqlite3VdbeMakeLabel(v);
|
| + int destIfNull = jumpIfNull ? dest : destIfFalse;
|
| + sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
|
| + sqlite3VdbeAddOp2(v, OP_Goto, 0, dest);
|
| + sqlite3VdbeResolveLabel(v, destIfFalse);
|
| + break;
|
| + }
|
| +#endif
|
| + default: {
|
| + r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1);
|
| + sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
|
| + testcase( regFree1==0 );
|
| + testcase( jumpIfNull==0 );
|
| + break;
|
| + }
|
| + }
|
| + sqlite3ReleaseTempReg(pParse, regFree1);
|
| + sqlite3ReleaseTempReg(pParse, regFree2);
|
| +}
|
| +
|
| +/*
|
| +** Generate code for a boolean expression such that a jump is made
|
| +** to the label "dest" if the expression is false but execution
|
| +** continues straight thru if the expression is true.
|
| +**
|
| +** If the expression evaluates to NULL (neither true nor false) then
|
| +** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
|
| +** is 0.
|
| +*/
|
| +void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
|
| + Vdbe *v = pParse->pVdbe;
|
| + int op = 0;
|
| + int regFree1 = 0;
|
| + int regFree2 = 0;
|
| + int r1, r2;
|
| +
|
| + assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
|
| + if( NEVER(v==0) ) return; /* Existance of VDBE checked by caller */
|
| + if( pExpr==0 ) return;
|
| +
|
| + /* The value of pExpr->op and op are related as follows:
|
| + **
|
| + ** pExpr->op op
|
| + ** --------- ----------
|
| + ** TK_ISNULL OP_NotNull
|
| + ** TK_NOTNULL OP_IsNull
|
| + ** TK_NE OP_Eq
|
| + ** TK_EQ OP_Ne
|
| + ** TK_GT OP_Le
|
| + ** TK_LE OP_Gt
|
| + ** TK_GE OP_Lt
|
| + ** TK_LT OP_Ge
|
| + **
|
| + ** For other values of pExpr->op, op is undefined and unused.
|
| + ** The value of TK_ and OP_ constants are arranged such that we
|
| + ** can compute the mapping above using the following expression.
|
| + ** Assert()s verify that the computation is correct.
|
| + */
|
| + op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
|
| +
|
| + /* Verify correct alignment of TK_ and OP_ constants
|
| + */
|
| + assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
|
| + assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
|
| + assert( pExpr->op!=TK_NE || op==OP_Eq );
|
| + assert( pExpr->op!=TK_EQ || op==OP_Ne );
|
| + assert( pExpr->op!=TK_LT || op==OP_Ge );
|
| + assert( pExpr->op!=TK_LE || op==OP_Gt );
|
| + assert( pExpr->op!=TK_GT || op==OP_Le );
|
| + assert( pExpr->op!=TK_GE || op==OP_Lt );
|
| +
|
| + switch( pExpr->op ){
|
| + case TK_AND: {
|
| + testcase( jumpIfNull==0 );
|
| + sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
|
| + sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
|
| + break;
|
| + }
|
| + case TK_OR: {
|
| + int d2 = sqlite3VdbeMakeLabel(v);
|
| + testcase( jumpIfNull==0 );
|
| + sqlite3ExprCachePush(pParse);
|
| + sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
|
| + sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
|
| + sqlite3VdbeResolveLabel(v, d2);
|
| + sqlite3ExprCachePop(pParse, 1);
|
| + break;
|
| + }
|
| + case TK_NOT: {
|
| + testcase( jumpIfNull==0 );
|
| + sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
|
| + break;
|
| + }
|
| + case TK_LT:
|
| + case TK_LE:
|
| + case TK_GT:
|
| + case TK_GE:
|
| + case TK_NE:
|
| + case TK_EQ: {
|
| + testcase( op==TK_LT );
|
| + testcase( op==TK_LE );
|
| + testcase( op==TK_GT );
|
| + testcase( op==TK_GE );
|
| + testcase( op==TK_EQ );
|
| + testcase( op==TK_NE );
|
| + testcase( jumpIfNull==0 );
|
| + r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
|
| + r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2);
|
| + codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
|
| + r1, r2, dest, jumpIfNull);
|
| + testcase( regFree1==0 );
|
| + testcase( regFree2==0 );
|
| + break;
|
| + }
|
| + case TK_IS:
|
| + case TK_ISNOT: {
|
| + testcase( pExpr->op==TK_IS );
|
| + testcase( pExpr->op==TK_ISNOT );
|
| + r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
|
| + r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2);
|
| + op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
|
| + codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
|
| + r1, r2, dest, SQLITE_NULLEQ);
|
| + testcase( regFree1==0 );
|
| + testcase( regFree2==0 );
|
| + break;
|
| + }
|
| + case TK_ISNULL:
|
| + case TK_NOTNULL: {
|
| + testcase( op==TK_ISNULL );
|
| + testcase( op==TK_NOTNULL );
|
| + r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
|
| + sqlite3VdbeAddOp2(v, op, r1, dest);
|
| + testcase( regFree1==0 );
|
| + break;
|
| + }
|
| + case TK_BETWEEN: {
|
| + testcase( jumpIfNull==0 );
|
| + exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull);
|
| + break;
|
| + }
|
| +#ifndef SQLITE_OMIT_SUBQUERY
|
| + case TK_IN: {
|
| + if( jumpIfNull ){
|
| + sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
|
| + }else{
|
| + int destIfNull = sqlite3VdbeMakeLabel(v);
|
| + sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
|
| + sqlite3VdbeResolveLabel(v, destIfNull);
|
| + }
|
| + break;
|
| + }
|
| +#endif
|
| + default: {
|
| + r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1);
|
| + sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
|
| + testcase( regFree1==0 );
|
| + testcase( jumpIfNull==0 );
|
| + break;
|
| + }
|
| + }
|
| + sqlite3ReleaseTempReg(pParse, regFree1);
|
| + sqlite3ReleaseTempReg(pParse, regFree2);
|
| +}
|
| +
|
| +/*
|
| +** Do a deep comparison of two expression trees. Return 0 if the two
|
| +** expressions are completely identical. Return 1 if they differ only
|
| +** by a COLLATE operator at the top level. Return 2 if there are differences
|
| +** other than the top-level COLLATE operator.
|
| +**
|
| +** Sometimes this routine will return 2 even if the two expressions
|
| +** really are equivalent. If we cannot prove that the expressions are
|
| +** identical, we return 2 just to be safe. So if this routine
|
| +** returns 2, then you do not really know for certain if the two
|
| +** expressions are the same. But if you get a 0 or 1 return, then you
|
| +** can be sure the expressions are the same. In the places where
|
| +** this routine is used, it does not hurt to get an extra 2 - that
|
| +** just might result in some slightly slower code. But returning
|
| +** an incorrect 0 or 1 could lead to a malfunction.
|
| +*/
|
| +int sqlite3ExprCompare(Expr *pA, Expr *pB){
|
| + if( pA==0||pB==0 ){
|
| + return pB==pA ? 0 : 2;
|
| + }
|
| + assert( !ExprHasAnyProperty(pA, EP_TokenOnly|EP_Reduced) );
|
| + assert( !ExprHasAnyProperty(pB, EP_TokenOnly|EP_Reduced) );
|
| + if( ExprHasProperty(pA, EP_xIsSelect) || ExprHasProperty(pB, EP_xIsSelect) ){
|
| + return 2;
|
| + }
|
| + if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2;
|
| + if( pA->op!=pB->op ) return 2;
|
| + if( sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 2;
|
| + if( sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 2;
|
| + if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList) ) return 2;
|
| + if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 2;
|
| + if( ExprHasProperty(pA, EP_IntValue) ){
|
| + if( !ExprHasProperty(pB, EP_IntValue) || pA->u.iValue!=pB->u.iValue ){
|
| + return 2;
|
| + }
|
| + }else if( pA->op!=TK_COLUMN && pA->u.zToken ){
|
| + if( ExprHasProperty(pB, EP_IntValue) || NEVER(pB->u.zToken==0) ) return 2;
|
| + if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ){
|
| + return 2;
|
| + }
|
| + }
|
| + if( (pA->flags & EP_ExpCollate)!=(pB->flags & EP_ExpCollate) ) return 1;
|
| + if( (pA->flags & EP_ExpCollate)!=0 && pA->pColl!=pB->pColl ) return 2;
|
| + return 0;
|
| +}
|
| +
|
| +/*
|
| +** Compare two ExprList objects. Return 0 if they are identical and
|
| +** non-zero if they differ in any way.
|
| +**
|
| +** This routine might return non-zero for equivalent ExprLists. The
|
| +** only consequence will be disabled optimizations. But this routine
|
| +** must never return 0 if the two ExprList objects are different, or
|
| +** a malfunction will result.
|
| +**
|
| +** Two NULL pointers are considered to be the same. But a NULL pointer
|
| +** always differs from a non-NULL pointer.
|
| +*/
|
| +int sqlite3ExprListCompare(ExprList *pA, ExprList *pB){
|
| + int i;
|
| + if( pA==0 && pB==0 ) return 0;
|
| + if( pA==0 || pB==0 ) return 1;
|
| + if( pA->nExpr!=pB->nExpr ) return 1;
|
| + for(i=0; i<pA->nExpr; i++){
|
| + Expr *pExprA = pA->a[i].pExpr;
|
| + Expr *pExprB = pB->a[i].pExpr;
|
| + if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1;
|
| + if( sqlite3ExprCompare(pExprA, pExprB) ) return 1;
|
| + }
|
| + return 0;
|
| +}
|
| +
|
| +/*
|
| +** Add a new element to the pAggInfo->aCol[] array. Return the index of
|
| +** the new element. Return a negative number if malloc fails.
|
| +*/
|
| +static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
|
| + int i;
|
| + pInfo->aCol = sqlite3ArrayAllocate(
|
| + db,
|
| + pInfo->aCol,
|
| + sizeof(pInfo->aCol[0]),
|
| + 3,
|
| + &pInfo->nColumn,
|
| + &pInfo->nColumnAlloc,
|
| + &i
|
| + );
|
| + return i;
|
| +}
|
| +
|
| +/*
|
| +** Add a new element to the pAggInfo->aFunc[] array. Return the index of
|
| +** the new element. Return a negative number if malloc fails.
|
| +*/
|
| +static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
|
| + int i;
|
| + pInfo->aFunc = sqlite3ArrayAllocate(
|
| + db,
|
| + pInfo->aFunc,
|
| + sizeof(pInfo->aFunc[0]),
|
| + 3,
|
| + &pInfo->nFunc,
|
| + &pInfo->nFuncAlloc,
|
| + &i
|
| + );
|
| + return i;
|
| +}
|
| +
|
| +/*
|
| +** This is the xExprCallback for a tree walker. It is used to
|
| +** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates
|
| +** for additional information.
|
| +*/
|
| +static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
|
| + int i;
|
| + NameContext *pNC = pWalker->u.pNC;
|
| + Parse *pParse = pNC->pParse;
|
| + SrcList *pSrcList = pNC->pSrcList;
|
| + AggInfo *pAggInfo = pNC->pAggInfo;
|
| +
|
| + switch( pExpr->op ){
|
| + case TK_AGG_COLUMN:
|
| + case TK_COLUMN: {
|
| + testcase( pExpr->op==TK_AGG_COLUMN );
|
| + testcase( pExpr->op==TK_COLUMN );
|
| + /* Check to see if the column is in one of the tables in the FROM
|
| + ** clause of the aggregate query */
|
| + if( ALWAYS(pSrcList!=0) ){
|
| + struct SrcList_item *pItem = pSrcList->a;
|
| + for(i=0; i<pSrcList->nSrc; i++, pItem++){
|
| + struct AggInfo_col *pCol;
|
| + assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) );
|
| + if( pExpr->iTable==pItem->iCursor ){
|
| + /* If we reach this point, it means that pExpr refers to a table
|
| + ** that is in the FROM clause of the aggregate query.
|
| + **
|
| + ** Make an entry for the column in pAggInfo->aCol[] if there
|
| + ** is not an entry there already.
|
| + */
|
| + int k;
|
| + pCol = pAggInfo->aCol;
|
| + for(k=0; k<pAggInfo->nColumn; k++, pCol++){
|
| + if( pCol->iTable==pExpr->iTable &&
|
| + pCol->iColumn==pExpr->iColumn ){
|
| + break;
|
| + }
|
| + }
|
| + if( (k>=pAggInfo->nColumn)
|
| + && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
|
| + ){
|
| + pCol = &pAggInfo->aCol[k];
|
| + pCol->pTab = pExpr->pTab;
|
| + pCol->iTable = pExpr->iTable;
|
| + pCol->iColumn = pExpr->iColumn;
|
| + pCol->iMem = ++pParse->nMem;
|
| + pCol->iSorterColumn = -1;
|
| + pCol->pExpr = pExpr;
|
| + if( pAggInfo->pGroupBy ){
|
| + int j, n;
|
| + ExprList *pGB = pAggInfo->pGroupBy;
|
| + struct ExprList_item *pTerm = pGB->a;
|
| + n = pGB->nExpr;
|
| + for(j=0; j<n; j++, pTerm++){
|
| + Expr *pE = pTerm->pExpr;
|
| + if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
|
| + pE->iColumn==pExpr->iColumn ){
|
| + pCol->iSorterColumn = j;
|
| + break;
|
| + }
|
| + }
|
| + }
|
| + if( pCol->iSorterColumn<0 ){
|
| + pCol->iSorterColumn = pAggInfo->nSortingColumn++;
|
| + }
|
| + }
|
| + /* There is now an entry for pExpr in pAggInfo->aCol[] (either
|
| + ** because it was there before or because we just created it).
|
| + ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
|
| + ** pAggInfo->aCol[] entry.
|
| + */
|
| + ExprSetIrreducible(pExpr);
|
| + pExpr->pAggInfo = pAggInfo;
|
| + pExpr->op = TK_AGG_COLUMN;
|
| + pExpr->iAgg = (i16)k;
|
| + break;
|
| + } /* endif pExpr->iTable==pItem->iCursor */
|
| + } /* end loop over pSrcList */
|
| + }
|
| + return WRC_Prune;
|
| + }
|
| + case TK_AGG_FUNCTION: {
|
| + /* The pNC->nDepth==0 test causes aggregate functions in subqueries
|
| + ** to be ignored */
|
| + if( pNC->nDepth==0 ){
|
| + /* Check to see if pExpr is a duplicate of another aggregate
|
| + ** function that is already in the pAggInfo structure
|
| + */
|
| + struct AggInfo_func *pItem = pAggInfo->aFunc;
|
| + for(i=0; i<pAggInfo->nFunc; i++, pItem++){
|
| + if( sqlite3ExprCompare(pItem->pExpr, pExpr)==0 ){
|
| + break;
|
| + }
|
| + }
|
| + if( i>=pAggInfo->nFunc ){
|
| + /* pExpr is original. Make a new entry in pAggInfo->aFunc[]
|
| + */
|
| + u8 enc = ENC(pParse->db);
|
| + i = addAggInfoFunc(pParse->db, pAggInfo);
|
| + if( i>=0 ){
|
| + assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
|
| + pItem = &pAggInfo->aFunc[i];
|
| + pItem->pExpr = pExpr;
|
| + pItem->iMem = ++pParse->nMem;
|
| + assert( !ExprHasProperty(pExpr, EP_IntValue) );
|
| + pItem->pFunc = sqlite3FindFunction(pParse->db,
|
| + pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken),
|
| + pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
|
| + if( pExpr->flags & EP_Distinct ){
|
| + pItem->iDistinct = pParse->nTab++;
|
| + }else{
|
| + pItem->iDistinct = -1;
|
| + }
|
| + }
|
| + }
|
| + /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
|
| + */
|
| + assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) );
|
| + ExprSetIrreducible(pExpr);
|
| + pExpr->iAgg = (i16)i;
|
| + pExpr->pAggInfo = pAggInfo;
|
| + return WRC_Prune;
|
| + }
|
| + }
|
| + }
|
| + return WRC_Continue;
|
| +}
|
| +static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
|
| + NameContext *pNC = pWalker->u.pNC;
|
| + if( pNC->nDepth==0 ){
|
| + pNC->nDepth++;
|
| + sqlite3WalkSelect(pWalker, pSelect);
|
| + pNC->nDepth--;
|
| + return WRC_Prune;
|
| + }else{
|
| + return WRC_Continue;
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Analyze the given expression looking for aggregate functions and
|
| +** for variables that need to be added to the pParse->aAgg[] array.
|
| +** Make additional entries to the pParse->aAgg[] array as necessary.
|
| +**
|
| +** This routine should only be called after the expression has been
|
| +** analyzed by sqlite3ResolveExprNames().
|
| +*/
|
| +void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
|
| + Walker w;
|
| + w.xExprCallback = analyzeAggregate;
|
| + w.xSelectCallback = analyzeAggregatesInSelect;
|
| + w.u.pNC = pNC;
|
| + assert( pNC->pSrcList!=0 );
|
| + sqlite3WalkExpr(&w, pExpr);
|
| +}
|
| +
|
| +/*
|
| +** Call sqlite3ExprAnalyzeAggregates() for every expression in an
|
| +** expression list. Return the number of errors.
|
| +**
|
| +** If an error is found, the analysis is cut short.
|
| +*/
|
| +void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
|
| + struct ExprList_item *pItem;
|
| + int i;
|
| + if( pList ){
|
| + for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
|
| + sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
|
| + }
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Allocate a single new register for use to hold some intermediate result.
|
| +*/
|
| +int sqlite3GetTempReg(Parse *pParse){
|
| + if( pParse->nTempReg==0 ){
|
| + return ++pParse->nMem;
|
| + }
|
| + return pParse->aTempReg[--pParse->nTempReg];
|
| +}
|
| +
|
| +/*
|
| +** Deallocate a register, making available for reuse for some other
|
| +** purpose.
|
| +**
|
| +** If a register is currently being used by the column cache, then
|
| +** the dallocation is deferred until the column cache line that uses
|
| +** the register becomes stale.
|
| +*/
|
| +void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
|
| + if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
|
| + int i;
|
| + struct yColCache *p;
|
| + for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
|
| + if( p->iReg==iReg ){
|
| + p->tempReg = 1;
|
| + return;
|
| + }
|
| + }
|
| + pParse->aTempReg[pParse->nTempReg++] = iReg;
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Allocate or deallocate a block of nReg consecutive registers
|
| +*/
|
| +int sqlite3GetTempRange(Parse *pParse, int nReg){
|
| + int i, n;
|
| + i = pParse->iRangeReg;
|
| + n = pParse->nRangeReg;
|
| + if( nReg<=n ){
|
| + assert( !usedAsColumnCache(pParse, i, i+n-1) );
|
| + pParse->iRangeReg += nReg;
|
| + pParse->nRangeReg -= nReg;
|
| + }else{
|
| + i = pParse->nMem+1;
|
| + pParse->nMem += nReg;
|
| + }
|
| + return i;
|
| +}
|
| +void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
|
| + sqlite3ExprCacheRemove(pParse, iReg, nReg);
|
| + if( nReg>pParse->nRangeReg ){
|
| + pParse->nRangeReg = nReg;
|
| + pParse->iRangeReg = iReg;
|
| + }
|
| +}
|
|
|